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Emergent interaction-induced topology in Bose-Hubbard ladders
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We investigate the quantum many-body dynamics of bosonic atoms hopping in a two-leg ladder with strong
on-site contact interactions. We observe that when the atoms are prepared in a staggered pattern with pairs of
atoms on every other rung, singlon defects, i.e., rungs with only one atom, can localize due to an emergent
topological model, even though the underlying model in the absence of interactions admits only topologically
trivial states. This emergent topological localization results from the formation of a zero-energy edge mode in
an effective lattice formed by two adjacent chains with alternating strong and weak hoping links (Su-Schrieffer-
Heeger chains) and opposite staggering which interface at the defect position. Our findings open the opportunity
to dynamically generate nontrivial topological behaviors without the need for complex Hamiltonian engineering.
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Topological phases of matter [1,2], including the quan-
tum Hall effect [3-5] and topological insulators [6,7] have
attracted significant attention for quantum science and tech-
nologies [8—11] given their robustness against disorder and
defects. While noninteracting topological phases have been
realized in a broad range of settings, both classical [12—15]
and quantum [16-25], and are to a great extent well under-
stood [26,27], interaction-enabled topological states remain
largely unexplored. Understanding how topological phases
may arise in interacting systems is hence an exciting, but
challenging problem.

Ultracold gases [28—-31] with tunable interactions in optical
lattices and tweezer arrays [32] are emerging as an excellent
platform to shed light on this direction [25,33,34], in partic-
ular with their capability to observe many-body states with
single-site and spin resolution [35-42]. These have allowed
the realization of noninteracting topological phases and obser-
vation of key underlying features [17-23], such as edge states
and currents [17-19,43], Chern numbers [21], and topologi-
cal pumping [22,23]. Progress towards the implementation of
interacting systems such as many-body symmetry protected
topological phases [2] include bosonic Su-Schrieffer-Heeger
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(SSH) models [44] in interacting Rydberg atoms [45], frac-
tional quantum Hall states with few atoms [46,47], and the
Haldane phase in Fermi-Hubbard ladders [48,49]. However,
especially for mobile particles, reaching the ultracold tem-
perature necessary to observe interacting topological ground
states remains a significant obstacle. While internal degrees
of freedom can be pumped into a single state with essen-
tially zero entropy, similar techniques do not exist for motion
in lattices. It would be hence highly appealing to find set-
tings where topology emerges naturally in the dynamics of
a strongly interacting system [28-31,50,51] from an easy to
prepare initial state.

In this Letter, we report on emerging interaction-induced
topological localization in an experimentally accessible sys-
tem of strongly interacting bosons in two-leg ladders. Two-leg
ladders have played a major role as model systems for
quantum magnetism [52,53], in nonequilibrium many-body
dynamics, hydrodynamics and transport [54-60], and in real-
izations of synthetic magnetism [17]. More recently, bosons
in optical ladders have been used to study nonequilibrium
dynamics in the hard-core limit where strong interactions pre-
vent more than one atom per site (a model equivalent to an XX
spin ladder [55]). By initially preparing a density wave (DW)
along the legs with filled (empty) sites in even (odd) rungs
[Fig. 1(a)], experiments have observed within their accessible
timescales a crossover from ballistic to diffusive correlation
dynamics when the rung hopping (J, ) increases from zero to
equal to the leg hopping (J)) [61].

Here we analyze the opposite regime when n =J, /J; >
1, focusing on experimentally accessible timescales. Besides
radically different correlations in the hard-core limit, we find
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FIG. 1. (a) Bose-Hubbard ladder with rung (leg) hopping J,
(/). Initially there is one (no) particle per site in even (odd) rungs.
(b) Emergent SSH chains of opposite staggering interface at a central
site (purple), and emergent model in the dynamics of singlon defects.
(c) Overview of the regimes. In the hard-core regime, J,,J; <
U, rung density-density (RDD) correlations are negative, and their
expansion within relevant timescales transitions from ballistic to
diffusive to localized when n = J, /J; grows from O to 2. For n > 2,
staggered RDD correlations expand ballistically. For J; < J, S U,
singlon defects experience topological or nontopological localiza-
tion. We indicate which figures illustrate the regimes.

that, surprisingly, when the on-site interactions are large but
finite, an initial isolated singlon defect in the DW pattern,
i.e., a singly-occupied rung, experiences an emergent effective
lattice composed of two SSH chains of opposite staggering,
and hence different topology, that meet at the initial defect
position [Fig. 1(b)]. These interfaces can feature two distinct
types of localized states resulting in the localization of defects:
(i) zero energy edge modes related to the SSH topology, and
(ii) energetically bound states at the ends of the energy spec-
trum. Our analysis hence unveils a surprising link between
topology and many-body dynamics in strongly interacting
ladders. Contrary to other realizations of topological models
in optical lattices [45,49,62], or topological interfaces of SSH
chains in other systems [63—-66], the SSH chain and the topo-
logical interface are not externally implemented, but emerge
naturally from the interplay of interactions, motion and the
original DW pattern. This intriguing physics [Fig. 1(c)] can
be probed in on-going experiments.

Model. We consider bosons in a square ladder, see
Fig. 1(a), with legs 1 and 2, described in the tight-binding
regime by the Bose-Hubbard (BH) Hamiltonian A = Hy +

g Zt,oz nl,a(nt,a 1), with

where b;, is the bosonic operator at site i of leg «,
Rig = bjabi’a, and U characterizes the on-site interactions.
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FIG. 2. Time evolution of the RDD correlation Cy; with n =0
(a), 1 (b), 2 (c), and 8 (d). Simulations of the hard-core Hamiltonian
H, on 31 sites, using MPS with bond dimensions y = 1536 [(a) and
(b)], 1024 (c), and 512 (d). The black lines correspond to the ballistic
propagation when n = 0. The red “x” in the insets locates the plots
in Fig. 1(c). (¢) Mechanism leading to the staggered correlations in
(d). Quantum fluctuations result in pairs of singlon defects (green),
which when moving apart form a string of rungs (blue shaded area)
with an inverted DW compared to the initial one.

Motivated by recent experiments [61] we assume large U, and
consider an initial DW, in which sites at even (odd) rungs are
occupied by one (no) atom.

Hard-core regime. To develop an intuition of the dynamical
regimes, we first consider an idealized scenario without initial
defects in the DW. Furthermore, we restrict the dynamics to
the hard-core manifold described solely by Hj for very large
U > J,,J;. A Bogoliubov stability analysis shows that the
DW is stable against the exponential proliferation of singlon
defects if n > 2 (see [67] and also Ref. [56]). Indeed, n >~ 2
marks the onset of clearly different dynamics. As in recent
experiments [61], we consider rung density-density (RDD)
correlations C;; = (A;Ai;) — (f;)(AA;), with fi; = A1 + 7 » the
particle number operator of rung i. Our results of Cop;(?),
obtained using Matrix Product State (MPS) calculations, show
a markedly different behavior for n < 2 than for n > 2. For
n = 0 [Fig. 2(a)], the system is integrable, and the correlations
expand ballistically as Cp;(t) = —i%2(2J“t/h), with J; the
Bessel function of first kind. As discussed in Ref. [61], when
n increases from 0 to 1 the expansion changes from ballistic to
diffusive within the timescale of the experiments [Fig. 2(b)].
A further increase of n results in a strong slowdown of
the evolution of the correlations, which within experimen-
tally accessible timescales becomes clearly subdiffusive, and
eventually approximately localized at n = 2 [Fig. 2(c)]. One
would naively expect that the larger n the more localized Cy;
would be. Interestingly, the nature of the correlations changes
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remarkably at n >~ 2. Whereas Cp; < 0 for n < 2, for n > 2
RDD correlations are staggered, (—1)/Cy; > 0, and expand
ballistically as for n = 0 [Fig. 2(d)].

To understand these dynamics for n > 1, we introduce
the hard-core rung states: [2) = (3), |0) = (2), and |£) =
JLE[(;) =+ (7)], where e (o) denotes an occupied (empty) site.
Quantum fluctuations due to leg hopping create singlon-defect
pairs [Fig. 2(e)]: |2,0) — |+, +) — |—, —), with a density
1/5?. These defects, initially at neighboring sites, drift apart
with rate J; by position swaps between |£) and |2) or |0)
induced by the leg hopping [Fig. 2(e)]. After a time ¢, the
defects have a probability 7> | (2J;¢) to be at r > 1 sites apart
[67]. The rungs in between the defects present an inverted DW
pattern compared to the original one [Fig. 2(e)], and the RDD
correlations acquire the form [67]:

Coj (1) o< (— 1)/( QD4 KT 1(2]1‘)) )

k>0

which corresponds to the staggered correlations of Fig. 2(d),
which expand ballistically as for n = 0.

Effective SSH chain. Up to this point we have considered
the hard-core model (1). Large but finite U may however play
an important and surprising role in the defect dynamics. Up to
second order in J, /U, the (again hard-core) model becomes
Heff = HO + AH where

2
JL \
n] 1"/2_ n/anl-Ha

fiJn a 5 MY
— W Z [bj+1,,3(nj+l’a + i’lj,ﬂ)bj,a + H.c.]

j.a,B#a
Ui
=30 2B aiisiabia + He, 3)
J.a

with nearest-neighbor (NN) interactions along the legs and
the rungs (first line), and collisionally-assisted hops along
plaquette diagonals (second line), and between next-to-NN
rungs (third line).

For U = oo, leg hopping induces the same swap rate for
|£) with |2) or |0). For finite U, the interplay of leg hop-
ping and collisionally-induced diagonal hopping causes |+)
to swap with |2) at arate J4 = Jy(1 £2J, /U), while |£) and
|0) still swap at rate J; [Fig. 3(a)]. This is particularly relevant
if, as typically in experiments, the initial DW presents isolated
singlon defects. Consider a singlon defect at rung j =0 in
an otherwise perfect DW [Figs. 3(b) and 3(c)]. The defect
experiences an effective staggered hopping described by the
SSH Hamiltonian:

1
Hssn =5 3 Jij+1(9))(j| + He), “)
J

with |¢;) the state with the defect in rung j, and J; ;41 = J;
(J2) for even (odd) j for j > 0, and the opposite for j < 0.
The defect moves in an effective lattice of two SSH chains
with opposite staggering that meet at the initial defect position
[Figs. 3(b) and 3(c)]. Since one SSH chain is topological and
the other is not, an exponentially localized zero-energy mode
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FIG. 3. (a) A singlon defect propagates by swapping its position
with doubly occupied and empty rungs. Due to finite U, these swaps
result in two different hopping rates (blue and red lines). The defect
propagates in an effective lattice in which the right and the left of the
initial defect position present opposite SSH staggering, illustrated for
the case of a defect in what should have been an empty rung. (b) For
a |—) defect (blue), J; < J,, and the defect experiences topological
localization. (c¢) For a |+) (brown), J; > J,, and the defect displays
nontopological localization. In the effective chain, light blue (yellow)
sites indicate the A (B) sublattice.

appears at the interface [44,63—-66]. We call the sublattice of
even rungs, where the defect is initially, A, and the sublattice
of odd rungs B.

Topological and nontopological localization. We consider
first J; < J, [Fig. 3(b)]. This is the case in which a |—) (|+))
defect occurs where |0) (|2)) should have been, for which J; =
J_ (Jy) and J, = J; (J;). At the interface between the SSH
half-chains, the system presents a localized zero-energy edge
mode [671, [v) = VPy X, € "/ |2), with § = s,
and Py = [(¢o|¥)|*> = (J3 —J})/(J? +J}). The defect (ini-
tially in |¢)) remains hence localized with probability Py, and
the localized population only occupies A rungs.

The situation changes radically if J; > J, which corre-
sponds to a |—) (]+)) defect where |2) (]0)) should have been,
for which J; = J (J4) and J, = J_ (J)). Topological local-
ization is precluded because the zero-energy edge state has
only support in the B sublattice [67]. However, localized states
appear at the two ends of the spectrum [67], with opposite

SV2h + 2
of these localized states, results in partial localization of the
defect, which oscillates with frequency €2 = E /7 between the
A and B sublattices [67]. This may be intuitively understood
from the case J, < Jp, for which the central A site and the
symmetric superposition of the neighboring B sites form an
isolated two-level system characterized by an oscillatory fre-
quency Q = +/2J,/2h.

Figure 4 shows the time evolution of the singlon defect
probability Ps(j) for n =16 and J, /U = 0.5 [73], for four

energies +FE, with E =~

]. The population
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FIG. 4. Time evolution of the probability of finding the defect
in rung j, Pi(j). The color bar saturates above 0.25. The initial
defect position and state is indicated on top of each panel, with a
blue (brown) box indicating a |—) (|+)) defect. The inset in the
top locates this figure in Fig. 1(c). MPS simulations of the full
Bose-Hubbard Hamiltonian A with 27 sites, n = 16, J, /U = 1/2,
and bond dimension x = 768.

different cases: topological localization in Figs. 4(a) and 4(d),
and nontopological localization in Figs. 4(b) and 4(c). Note
the strikingly distinct dynamics in both cases, with clear os-
cillations between sublattice A and B in the nontopological
case. Although the localization mechanism and the defect
dynamics differ in the two regimes, the localized fraction is in
any case very significant as long as J; and J, are sufficiently
different. Hence, irrespective of the defect created and where
it is produced, if J, /U is sufficiently large, we may expect
strong localization of all singlon defects.

Other interaction-induced terms. The emergent SSH chain
experienced by the defects demands the stability of the
DW for finite U and J; < J; < U. Projecting Hcg on the
manifold of states without singlon defects [74], we ob-
tain an effective model for doubly occupied rungs [67],
HD _ 31\\ Z (deH_l +d]+]d — }’ld jl’ld j+1) with d the
(hard- core boson) anmhllatlon operator of doubly- occupled
rungs, and g ; = djd The hopping terms in Hp corre-
spond to |20) — |02) swaps, which scramble the initial DW.
Interestingly, the relatively strong NN interaction between
doubly-occupied rungs makes the DW stable against those
swaps [67]. Hence, quantum fluctuations of the DW order may
lead for times ¢ > 2U/ 31”2 to the blurring of the background,
but they do not destroy the localization [67]. Furthermore,
being hard-core bosons, singlon defects repel elastically [74].
NN interactions may lead to |+, —) — |—, +) swaps with
a rate J”2 /2U, but these swaps are negligible for low defect
densities [67]. Finally, collisionally assisted next-to-NN hop-
ping is only relevant due to hops |+, 2, 0) — |0, 2, £), which
scramble the DW. These processes occur with a rate —JH2 /2U,
being neglible for t < 2U/J{.

Experimental realization. The emergent SSH chain experi-
enced by each singlon defect is hence to a good approximation
affected neither by the presence of neighboring defects, nor by
quantum fluctuations of the DW or next-to-NN hops. Probing
the regime J; <« J; < U is readily accessible in on-going
experiments [61]. Singlon-defect localization may be
monitored in various ways. Current quantum gas microscopes
[75] can deterministically create and measure |+) and |—)
with single-rung resolution. The dynamics depicted in Fig. 4
can then be observed directly. Even without site-resolved state
preparation, asymmetries in the defect creation between even
and odd rungs can be used to access the localization dynamics.
Under current experimental conditions [61] we expect that
80% of the created singlon defects are in even rungs,
which should have been doubly occupied. One may hence
monitor the imbalance Z = 2N — 1, with Nz the number of
singly-occupied even rungs. For U = oo, defects propagate
ballistically and Z(t) =Z(0)J(2Jyt/h). In contrast,
topological and nontopological localization should result in a
markedly different Z(z), since topologically localized defects
do not oscillate between sublattices, and nontopological
defects oscillate between them with a frequency 2.

Conclusions. Bose-Hubbard ladders initialized in a density
wave provide an unexpected platform for the realization of
an emergent interaction-enabled topological-nontopological
interface of two SSH chains with opposite staggering,
without the necessity of tailored external potentials. As a
result, singlon defects experience two possible localization
mechanisms, one topological and the other nontopological,
characterized by strikingly distinct dynamics. This surprising
link between topology and many-body quantum dynamics
can be probed in ongoing experiments. In a broader context,
our work illustrates how defect dynamics is determined by
the background substrate they move through (here a den-
sity wave). This idea readily generalizes to different static
backgrounds, e.g., a random background may result in lo-
calization without external disorder akin to disorder-free
localization [76], and to dynamically coupled backgrounds,
e.g., in bilayer settings defect motion reconfigures the ini-
tial state pattern and hence the effective tunneling rates.
Our results also open further intriguing perspectives for the
realization of emergent topological behavior in other plat-
forms, in particular in synthetic ladders created using internal
states [18,19,77].
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