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Quantum simulation and metrology with atoms, ions, and molecules often rely on using light fields to
manipulate their internal states. The absorbed momentum from the light fields can induce spin-orbit
coupling and associated motional-induced (Doppler) dephasing, which may limit the coherence time
available for metrology and simulation. We experimentally demonstrate the suppression of Doppler
dephasing on a strontium optical clock transition by enabling atomic interactions through a shared mode in
a high-finesse optical ring cavity. The interactions create a many-body energy gap that increases with atom
number, suppressing motional dephasing when it surpasses the dephasing energy scale. This collective
approach offers an alternative to traditional methods, like Lamb-Dicke confinement or Mössbauer
spectroscopy, for advancing optical quantum sensors and simulations.
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In many quantum simulation and metrology applica-
tions, it would be ideal to work in pristine conditions where
the motional and internal degrees of freedom of atoms,
ions, or molecules are totally decoupled from each other.
For example, this scenario is particularly advantageous for
atomic clocks or quantum magnetism exploration. How-
ever, when dealing with optical transitions, photons impart
significant momentum when used to manipulate the inter-
nal state of the atoms. This so-called spin-orbit coupling, or
coupling between motion and spin [1,2], can be a resource
when under careful control, but it is just as often a draw-
back that leads to single particle dephasing that limits the
precision and fidelity of both quantum metrology and
simulation experiments.
Suppression of spin-orbit coupling or Doppler dephasing

in fact has been a major driver of experimental efforts in the
atomic physics community, leading to the development of
laser-cooling techniques. Inspired by the pioneering work
of Dicke [3] and Mössbauer [4,5], experiments now use
strong trapping potentials to spatially localize the atoms to
much less than the wavelength of light they absorb and
emit, see Figs. 1(a)–1(c).

However, strong traps can introduce additional de-
coherence mechanisms. For instance, optical traps as used
for neutral atoms can cause ac Stark shifts and light
scattering [6], both of which must be controlled not only
in quantum metrology, but also in state-of-the-art quantum
computing and simulation settings with atoms, ions, and

molecules. Also, new physics searches via precision spec-
troscopy [7] would benefit from relaxing the need for magic
trapping. As such, it is extremely desirable to discover new
and complementary ways to suppress motional dephasing.
In this work, we experimentally demonstrate a novel

collective mechanismwhere an ensemble of strontium atoms
interact via a shared optical mode of a ring cavity leading
to the suppression of motional dephasing, see Figs. 1(b)
and 1(d). The suppression arises from a self-generated many-
body energy gap that creates an energy penalty for evolving
to states of lower symmetry [8]. Such suppression was first
observed recently in a Bragg matter-wave interferometer,
where dressing lasers were used to generate cavity-mediated
momentum-exchange interactions, extending the coherence
time between atomic ground momentum states separated in
energy by only ∼500 kHz [9]. Here we show that cavity-
mediated exchange interactions can suppress Doppler
dephasing for an optical clock transition with states sepa-
rated by 400 THz [Fig. 1(f)], thus providing a new path for
quantum sensing using optical transitions [7].
This new capability is part of the broader goal of under-

standing how to use many-body interactions to enhance
quantum metrology and simulation. While the use of a
many-body gap to prolong coherence between internal states
has been explored in various settings including in standing
wave optical cavities with strontium and rubidium atoms
under tight confinement [10–12], Coulomb interacting ions
[13], and atomic collisions [14–18], to our knowledge this
is the first observation using an optical transition without
single-particle Lamb-Dicke suppression of motional dephas-
ing. This is achieved using a ring cavity with position-
independent atom-cavity coupling, enabling genuine all-to-all
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couplings without spatial inhomogeneities seen in previous
implementations [10,12,15–18].
We also demonstrate a gap protection mechanism in a ring

cavity beyond a two-level system by coupling to multiple
optical excited states. The Hamiltonian of this extended
system connects to models of modified neutrino oscillations
in extreme astrophysical environments [19,20], relativistic
quantum mechanical systems via spin-orbital coupling [21],
or condensed matter systems featuring a Dirac cone disper-
sion such as graphene [22,23], and topological insulators
[24,25] in a regime where interactions dominate, with easily
tunable parameters of the simulated Hamiltonians.
In our experiment, N ¼ 106 88Sr atoms are laser cooled

and trapped in a high-finesse optical ring cavity using a 1D
optical lattice at λl ¼ 813 nm, and with radial temperature of
10 μK [Fig. 1(d) and [26] ]. The lattice serves to position the
atoms within the cavity mode but will be switched off during
subsequent experiments so that atoms can freely move inside
the cavity mode and experience Doppler dephasing.
The cavity’s resonance frequency ωc is red-detuned from

the γ ¼ 2π × 7.5 kHz linewidth transition 3P1-1S0 at fre-
quency ω0 by Δ0

c ¼ ωc − ω0 ¼ −2π × 14 MHz. The three-
mirror cavity has a mode waist size of approximately
83 μm, finesse F ¼ 6.2 × 103, and full-width-half-
maximum (FWHM) linewidth is κ ¼ 2π × 266 kHz at
the transition wavelength of λ ¼ 689 nm for the relevant
p-polarization mode ϵ̂ lying in the plane of the ring cavity.
The magnetic field points downwards. The cavity wave
vector  k and cavity polarization ϵ̂ are at an angle θϵ ¼ 20°
from vertical and horizontal respectively [Fig. 1(d)].

The magnetic field sets the quantization axis and induces
Zeeman splittings between adjacent excited states j3P1; mji
levels by δB ¼ 2π × 1.3 MHz. Under this field, we define
detunings of the cavity relative to each atomic transition
frequency Δ−;0;þ

c ¼ωc− ðω0þmjδBÞ withmj ¼−1;0;þ1.

By orienting the  B field in this way we manage to engineer
a system where all three transitions between ground and
excited mj levels have nonzero coupling to the relevant
cavity mode. The couplings give rise to single-photon Rabi
frequencies 2g0 ¼ 2g sin θϵ and 2g� ¼ 2g cos θϵ=

ffiffiffi
2

p
for

mj ¼ 0;�1 respectively. Here g ¼ 2π × 3.5 kHz.
For simplicity, we will consider the ith atom as initially

being in the ground state j↓ii≡ jg; pii with initial momen-
tum pi along the cavity axis. The values of the pi reflect the
finite temperature of the atoms and are drawn from a 1D
Gaussian distribution with zero mean and rms momentum
spread σp. To determine σp, we perform time-of-flight
expansion measurements after turning off the trapping
lattice [27]. We find that the rms velocity spread along
the cavity axis is σv ¼ 59ð6Þ mm=s corresponding to a
temperature of 38ð8Þ μK.
We first consider the case in which we use a laser at

frequency ωd that is resonant with mj ¼ −1 atomic
transition frequency ω− to resonantly excite this transition
by driving the clockwise cavity mode, with eikZ mode
function [Fig. 1(d)]. The drive is sufficiently large to
establish an intracavity Rabi frequency Ωd to nominally
place each atom in a superposition of ground and excited
states irrespective of initial momentum pi. The state after

(a)

(c)

(d) (e)

(f)(b)

FIG. 1. Experimental setup. (a) Lamb-Dicke suppression of motional dephasing. An array of strontium atoms (dots) is tightly trapped
in an optical lattice (red ovals) with wavelength λl and placed in a superposition of a ground 1S0 and optically excited state 3P1; mj ¼ −1
by a laser field along Ẑ whose spatial phase eikZ is indicated via the color. Since the atoms are localized, the motional state is unchanged,
and the superposition state of atom i at position Zi simply acquires the local phase eikZi indicated by the color of the dot aligning to the
spatial phase of the excitation laser. (b) If atoms are untrapped, we can model each atom as being a delocalized wave packet of
approximately well-defined initial momenta pi, pj, etc. The laser excitation now imprints a spatially varying phase on the superposition
of the ground and excited states. (c) Differences in kinetic energies cause the phases of different atoms to become randomized relative to
each other and thus lead to a loss of collective coherence. Allowing the atoms to exchange photons [red squiggles in (b)] suppresses the
motional dephasing. (d) The exchange of photons is mediated by a ring cavity. The laser drive at 689 nm excites the clockwise mode of
the cavity with linear polarization ϵ̂ and mode function eikZ. A magnetic field  B defines the quantization axis. We detect the optical
power P from the clockwise mode after the laser excitation to measure the collective atomic coherence jS−j2 versus time. (e) The bare
cavity ωc is detuned by Δ−

c from the atomic transition frequency ω− that is inhomogeneously broadened by σD by the atomic motion
(red). (f) Atoms can virtually exchange photons via the cavity, leading to an all-to-all effective spin-exchange interaction χ−ŜþŜ− in
which atoms change both their internal and momentum states.
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the nominal π=2 pulse is jψ0;ii ¼ ð1= ffiffiffi
2

p Þðj↓ii þ j↑iiÞ, but
with the excited state portion of the wave function j↑ii≡
je; pi þ ℏki now displaced by the momentum of the
absorbed photon ℏk due to the spin-orbit coupling [1,2]
during the excitation. Here ℏ is the reduced Planck constant
and k ¼ 2π=λ, see Fig. 1(f). This translates to the position
space as imprinting a phase factor eikZ on the atomic
distribution.
We can describe the i th atom in terms of unitless single-

particle pseudospin raising ŝþi ¼ j↑iih↓ij and lowering
ŝ−i ¼ ðŝþi Þ† operators, along with pseudospin projection
operators ŝzi ¼ 1

2
ðj↑iih↑ij − j↓iih↓ijÞ, ŝxi ¼ 1

2
ðŝþi þ ŝ−i Þ and

ŝyi ¼ ð−i=2Þðŝþi − ŝ−i Þ. Finally we define collective oper-
ators Ŝα ¼

P
N
i¼1 ŝ

α
i with α∈ fx; y; z;þ;−g. In the follow-

ing, we will denote the expectation value of an operator
with A≡ hÂi.
The coupling of the atoms to the cavity is described

by the Tavis-Cummings Hamiltonian in the rotating
frame of the atomic transition frequency ω− as ĤTC ¼
ℏg−ðŜþâþ Ŝ−â†Þ þ ℏΔ−

c â†â. The creation and annihila-
tion operators â† and â describe the cavity mode that
propagates in the same direction in which the initial atomic
drive is applied. The counterclockwise mode is neglected
since the collective coupling to this mode is proportional
to the expectation value of the collective operator
ð1=NÞhPN

i¼1 j↓iihe; pi − ℏkji, which is zero for the ini-
tially prepared state and does not deviate from zero
significantly due to collective or superradiant decay on
the timescale of the experiment. The orthogonal s-polarized
mode is detuned by 600 MHz due to mirror birefringence
and thus can be safely neglected as well.
As experimentally demonstrated in [10,28], in the large

detuning limit jΔ−
c j ≫

ffiffiffiffi
N

p
2g− [29], the cavity mode can

be adiabatically eliminated from the Tavis-Cummings
Hamiltonian and one arrives at a cavity-mediated all-to-
all spin-exchange Hamiltonian

Ĥ ¼ ℏχ−ŜþŜ− þ ℏ
XN

i¼1

ωiŝ
z
i : ð1Þ

The exchange interaction strength is set by the frequency
χ− ¼ ðg−2=Δ−

c Þ=ð1þ ðκ=ð2Δ−
c ÞÞ2Þ ≈ g2−=Δ−

c for the large
detuning we work at j2Δ−

c =κj > 100.
The last term of Eq. (1) captures Doppler broadening

[30] with ℏωi simply the kinetic energy difference between
the ground and excited state portions of the wave function
that is not common to all atoms ℏωi ¼ ℏkpi=m, wherem is
the mass of the atom. The distribution of ωi inherits the
properties of the initial rms spread in momentum σp such
that the frequency distribution is described by a Gaussian
distribution with zero mean and rms σD ¼ kσp=m≈
2π × 87ð9Þ kHz. Ignoring interaction, single-particle
Bloch vectors  si ¼ fsxi ; syi ; szig precess at their own

frequencies, shortening the total Bloch vector norm as a
function of time with jS−ðtÞj2 ¼ jS−ð0Þj2e−t2=τ2D with
τD ¼ 1=σD ¼ 1.8ð2Þ μs, as illustrated in Fig. 2(b).
The all-to-all exchange interaction can be approximated

as ŜþŜ− ≈ ˆ S · ˆ S − Ŝ2z . The first term means that there is an
energy change associated with going to states of lower
symmetry [Fig. 2(a)], with a characteristic energy gap
ℏNχ− between adjacent states of total spin S ¼ N=2 and
S ¼ N=2 − 1. This energy gap then competes with the
single particle dephasing, protecting the spin alignment
when Nχ− ≳ σD by essentially pushing the single particle
motional dephasing off-resonance.
To observe suppression of Doppler dephasing, we load

atoms into the intracavity optical lattice, switch off the
cooling lasers and optical lattice, and wait 10.1 μs for
lattice light to decay such that the atoms are no longer
trapped. We note that radial expansion of the cloud and
gravity can both be safely neglected for the approximate
40 μs duration of the full measurement sequence.
We then apply a nominal π=2 drive pulse on themj ¼ −1

transition. The cavity field adiabatically follows the col-
lective optical dipole moment a ≈ S−ðg=Δ−

c Þ. As a result,
we can infer S− by detecting the very small amount of light
that leaks from the cavity using heterodyne detection.
We emphasize that jS−j=ðN=2Þ indicates the contrast of

(a) (b)

FIG. 2. Many-body gap protection of squared atomic coherence
jS−j2. (a) The cavity-mediated collective exchange interaction
opens an energy gap Nχ− between two initially degenerate states
(dashed lines) jS;mzi of total spin S and projection mz. The
many-body energy gap pushes the single-particle motional
dephasing (modeled by single-particle terms ωiŝ

z
i ) off-resonance

such that the total S remains constant and the atomic coherence is
preserved. (b) The cavity field adiabatically follows atomic
coherence S− (see inset Bloch sphere) such that heterodyne
detection of the weak leakage of field from the cavity allows us to
determine jS−j2 versus time. After the 689 nm drive generates a
π=2 pulse, Doppler dephasing would cause jS−j2 to decay rapidly
as shown by the grey curve. The red curve is the experimentally
observed coherence versus time when atoms are untrapped. The
coherence extends well beyond the predicted Doppler dephasing
based on time-of-flight measurement. The extension of coherence
is achieved by operating at a collective interaction scale
Nχ−=2π ¼ 430ð10Þ kHz. One also sees that the collective
suppression of Doppler dephasing maintains coherence just as
well as when one also imposes conventional single-particle
trapping of the atoms in the Lamb-Dicke regime (blue curve).
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a hypothetical Ramsey fringe if measured after phase
evolution time t. We average between 100 to 1200
repetitions of the experiment with more averaging for
lower atom numbers.
In Fig. 2(b), the gray curve shows the predicted decay of

jS−j2 for Doppler broadening as determined from the time-
of-flight measurements without interaction. The red data
curve shows that the measured coherence extends well
beyond this timescale, directly indicating that Doppler
dephasing is being suppressed by the interaction.
For comparison, we repeat the same experiment as above

but leave the optical lattice on and tightly confine atoms in
the traditional Lamb-Dicke regime suppressing Doppler
dephasing via single-particle physics. The blue data curve
of Fig. 2(b) for this case closely resembles the original
Doppler-sensitive red data curve where, in contrast, the
insensitivity arises from the collective interactions mediated
by the cavity. Both curves decay more quickly than the
excited state single-particle decay time of τ ¼ 1=γ ¼ 21 μs,
indicating that the excess decay primarily appears to arise
from something other than Doppler dephasing.
For Doppler dephasing to be suppressed by the exchange

interaction, the characteristic gap frequency should be
larger than the dephasing frequency scale Nχ− > σD. We
observe this behavior in the data of Fig. 3, where we show
the measured jS−j2 versus time for a range of Nχ−=2π from
130 to 430 kHz. We determine Nχ− by measuring
dispersive shifts of the cavitylike mode at large N and
then using this measurement to calibrate a fluorescence
detection for smaller N [27]. The gap frequency is adjusted
by varying the number of atoms at an earlier laser-cooling
stage to avoid changing the temperature of the atomic
ensemble. The minimum number of atom is limited by
signal to noise in measuring jS−j2 since the detected signal
scales as N2.
For the smallest value of Nχ−=2π ¼ 130ð40Þ kHz, jS−j2

rapidly collapses with 1=e time 0.9ð3Þ μs. However, as
Nχ− increases slightly, the coherence begins to last sub-
stantially longer, with jS−j2 reaching a 1=e value at 10 μs at
the largest value of Nχ−=2π ¼ 430ð10Þ kHz. When the
frequency gap scale approaches the total dephasing fre-
quency (see below) at Nχ−=2π ¼ 170 to 270 kHz, an
oscillation with a frequency comparable to χ−N emerges in
jS−j2. This oscillation can be identified as a damped Higgs-
like oscillation [9,12].
The observed decay of jS−j2 at Nχ−=2π ¼ 130 kHz is

more rapid than that predicted for Doppler dephasing (gray
curves). We believe that the Doppler dephasing prediction
is accurate, and instead assign this to a magnetic field
gradient across the atomic cloud that leads to a dephasing
with rms frequency σB ¼ 2π × 160ð30Þ kHz. Exchange
interaction also suppresses this dephasing as observed
previously [12,31]. This excess dephasing also explains
roughly half the difference in the coherences for the trapped
and untrapped data in Fig. 2(b).

The dashed numerical simulation curves in Fig. 3 agree
relatively well with observations. The simulations use
a mean-field master equation that includes the Hamil-
tonian dynamics of Eq. (1), single-particle spontaneous
emission described by jump operators

ffiffiffiffiffiffiffi
γ=2

p
ŝ−i , and col-

lective decay described by a jump operator
ffiffiffiffiffiffiffiffiffiffi
Γs=2

p
Ŝ−, with

Γs ≈ κðg−=Δ−
c Þ2. For the simulations, the atom number N

was adjusted upwards by 0%, 52%, 37%, 16%, −3%,
respectively from top to bottom, to better describe each data
set. We believe that this discrepancy may arise from an
inaccuracy in the transfer of the calibration of Nχ− per-
formed at the highest atom number but extended to lower
atom number via fluourescence imaging of the atoms.
We can also observe gap protection against Doppler

dephasing when we simultaneously excite mj ¼ �1

[Fig. 4(a)]. In Fig. 4(b), we show the measured cavity
output power versus time. We see rapid oscillations with an
envelope persisting well beyond the timescale for single-
particle Doppler dephasing. Exchange interactions lock
each of the mj ¼ �1 ensembles individually but not
strongly enough to bind them together. This gives rise to
beating in the output power at 2δB. We have seen similar
oscillations in a standing wave cavity with trapped atoms,
emulating phases of BCS superconductors [12,32]. Here,

Spontaneoous deeccaayy

FIG. 3. Emergence of collective gap protection against Doppler
dephasing by varying Nχ− via adjusting the number of atoms
loaded into the cavity. With a small Nχ−, coherence collapses
more rapidly than the spontaneous decay (gray dashed curve), but
increasing the atom number provides full protection against
Doppler dephasing. Faster-than-expected coherence decay at
small Nχ− is attributed to an additional spatial magnetic field
inhomogeneity. The colored dashed curves are the numerical
simulations using a mean-field simulation that includes inter-
actions, dephasing, spontaneous decay, and collective decay. The
colored bands indicate the range of the simulation variation for
changes in N by �10%.
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both ensembles share the same ground state, and the
oscillations are more pronounced and last longer due to
the homogeneous cavity coupling. The power spectrum
[Fig. 4(c)] shows light is being radiated largely independ-
ently from the two mj ¼ �1 levels.
We have experimentally demonstrated that cavity-medi-

ated interactions can suppress Doppler dephasing on a
narrow optical clock transition at 400 THz. Beyond being
of fundamental scientific interest, this provides a poten-
tially new tool for optical metrology and spectroscopy [27],
such as searches for new particles and fields through fast
modulation of an optical atomic transition frequency [7].
The approach here also simultaneously enables measure-
ments at timescales fast compared to the phase evolution
time by detection of light emitted from the cavity.
In the future, exploring quantum simulation in this system

with homogeneous atom-cavity coupling will also be of
great interest, avoiding complications from inhomogeneous
coupling in standing wave cavities. The two directionally
independent cavity modes also provide a controllable
degree of freedom that bears some similarity to tunable
mode-changing collisions in quantum many-body systems.
Additionally, connecting to models for neutrino-neutrino
interactions, which lead to collective effects in flavor
space [19], will be intriguing. By using three atomic levels
to emulate three neutrino flavors, and both clockwise and
counterclockwise cavity modes to controllably emulate
trajectory-dependent interactions, we should be able to
recreate simplified versions of such a model system.
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