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Multisections with divides and Weinstein

4-manifolds

GABRIEL ISLAMBOULI AND LAURA STARKSTON

We introduce a new decomposition of Weinstein 4-manifolds called
multisections with divides and show these can be encoded diagram-
matically by a sequence of cut systems on a surface, together with a
separating collection of curves. We give two algorithms to construct
a multisection with divides for a Weinstein 4-manifold, one starting
with a Kirby-Weinstein handle decomposition and the other start-
ing with a positive, allowable Lefschetz fibration (PALF). Through
the connections with PALFs, we define a monodromy of a mul-
tisection and show how to symplectically carry out monodromy
substitution on multisections with divides.
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1. Introduction

There are various methods to diagrammatically encode a 4-dimensional man-
ifold, each of which is based on a decomposition theorem which breaks
up the manifold into simple pieces such that the diagram encodes the
way these pieces glue together (e.g. handle decompositions, Lefschetz pen-
cils/fibrations). The most recent such method is the development of tri-
sections by Gay and Kirby [6], generalized to multisections in [20]. Sym-
plectic structures have played a key role in 4-dimensional topology, due to
connections with gauge theory. Compatibility between symplectic topology
and handle decompositions arose from Weinstein’s construction [31] and in
the 4-dimensional case was diagrammatically encoded through a Legendrian
surgery diagram by Gompf [14]. Similarly, compatibility between symplectic
manifolds and Lefschetz pencils and fibrations was established [2, 15, 24], so
a symplectic manifold can be encoded by the fiber and base surfaces, pen-
cil points, and ordered vanishing cycles. A notion of compatibility between
trisections and symplectic manifolds was proposed in [22] and shown to ex-
ist in [23], but this compatibility did not yield a simple diagrammatic way
to encode a symplectic structure (rather it was motivated by attempts to
obtain genus bounds). Earlier, Gay gave a construction of a trisection from
a Lefschetz pencil structure [7], but this also did not yield a diagrammatic
characterization (see [7, Remark 9]).

In this article we define a stronger compatibility between a multisection
and a symplectic structure, which can be diagrammatically encoded by col-
lections of curves on a surface. In addition to the diagrammatic data of the
smooth multisection, we keep track of another multi-curve representing the
dividing set of convex surfaces in contact manifolds. Thus, we call our de-
composition of a symplectic manifold a multisection with divides. Our main
result is that every 4-dimensional Weinstein domain admits a multisection
with divides.

Definition 1.1. A multisection with divides of a symplectic filling
(W,w) with contact boundary (0W,¢&) is a decomposition W =W, U---U
W,, such that

o W; =1, St x D3,

o W,NWiy1 = Hipq §thl xD?>fori=1,...,n—1.
e X =Win---NW, = 0H; for all ¢

e Each (W;,w|w,) is a symplectic filling of (W}, &;).
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Figure 1: Left: A schematic of a bisection with divides. Each W; is a 4-
dimensional Weinstein 1-handlebody and each H; is a 3-dimensional 1-
handlebody obtained as a neighbourhood of a Legendrian graph. Right: A
bisection diagram with divides of the unit cotangent bundle on S2. The red,
blue, and green curves represent curves bounding compressing disks in the
respective handlebodies and the purple curves are the dividing set for the
surface.

e H;U H;; is a contact Heegaard splitting of (OW;,&;)
e Hi;UH,; is a contact Heegaard splitting of (OW, &)

e The contact structure on each H; induces the same dividing set on X

A bisection with divides is a multisection with divides with n = 2.

The advantage of using contact Heegaard splittings is that the handle-
bodies each carry a standard positive and a standard negative contact struc-
ture, which are contactomorphic. This is important because for i = 2,...,n,
H; needs a contact structure as a subset of 0W;_1 and OW;, which induce
opposite orientations.

Remark 1.2. In the fourth bullet point of Definition 1.1, we ask for
(Wi, w|w,) to be a symplectic filling. Note that in our setting weak, strong,
Liouville, and Weinstein fillability are all equivalent, because there is a
unique weak symplectic filling of #..5' x S? up to symplectic deformation,
and this filling is actually Weinstein (thus strong and Liouville) [26].

An essential feature of these multisections with divides is that they can
be encoded as a sequence of cut systems together with a fixed dividing set on
a closed surface. An example of such a diagrammatic representation together
with a schematic of what this encodes can be seen in Figure 1.

We are able to encode symplectic geometric data diagrammatically be-
cause our multisection with divides are geometrically restrictive by asking
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each Heegaard splitting to be a contact Heegaard splitting (see section 2.1
for the definition). A typical multisection of a symplectic manifold would be
unlikely to satisfy this condition, even if it were a “Weinstein multisection”
as in [22, 23]. Therefore, it is surprising that these geometrically restric-
tive multisection decompositions actually exist quite generally. Our main
theorem is the following.

Theorem. FEvery compact 4-dimensional Weinstein domain admits a mul-
tisection with divides.

We give two proofs of this theorem each with distinct advantages. Both
proofs also yield algorithmic methods to produce a diagram for the multisec-
tion with divides. The first proof takes as input a Kirby-Weinstein diagram,
and produces a bisection with divides. The disadvantage of this algorithm
is that the core surface will generally have high genus, which is typically
inefficient. On the other hand, the output only has two sectors, instead of
arbitrarily many.

The second proof takes as input a positive allowable Lefschetz fibration
(PALF) and produces a multisection with divides. In this case, the genus is
potentially more controlled, being determined by the topology of the fiber
of the PALF, however there may be many sectors (potentially one for each
Lefschetz singularity). More specifically we prove the following.

Theorem. Let f: W* — D? be a PALF whose regular fiber is a genus g
surface with b boundary components and n singular fibers. Then W* admits
a genus 2g + b — 1 n-section with divides.

One can compare these results and Definition 1.1 to the definition of
Weinstein trisection for closed symplectic manifolds in [22, 23]. The main
difference is that those prior definitions do not require any compatibility
between the contact structure induced on the boundary of each sector and
the Heegaard splitting of the boundary induced by the trisection. As a con-
sequence, there is not easy diagrammatic data that encodes the contact and
symplectic topology in these prior definitions. (The most likely candidate
for such diagrammatic data is a weighted foliation for each handlebody as
n [21], but the data of a weighted foliation is not discrete.) By contrast, in
our more restrictive notion of multisection with divides, the symplectic and
contact geometry can be diagrammatically encoded by a single dividing set
on the core surface.
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Remark 1.3. Smooth multisections are compatible with both closed man-
ifolds and manifolds with boundary. In this article, we have given the defi-
nition of a multisection for divides in the case that our symplectic manifold
has contact boundary, because that is where we can show they exist. How-
ever, by results of Donaldson [1] and Giroux [11, 13], every closed symplectic
4-manifold can be realized as the union of a Weinstein domain with a neigh-
borhood of a surface (“Donaldson divisor”). Therefore, our diagrammatic
encodings of Weinstein 4-manifolds capture the “complicated part” of a
closed symplectic 4-manifold.

The monodromy of a Lefschetz fibration is a product of right-handed
Dehn twists. In general, there can be multiple ways to write the same map-
ping class element as a product of right-handed Dehn twists. Swapping out
one of these with another is called a monodromy substitution. A number
of important symplectic cut and paste operations like rational blow-down
can be seen as a monodromy substitution operation on a Lefschetz fibration
[4] [5]. By tracking the change induced by a monodromy substitution on
a PALF through our algorithm, we are able to realize these cut and paste
operations on multisections with divides. In Figure 17, we demonstrate this
explicitly for the monodromy substitution coming from the lantern relation,
which induces a Cs-rational blowdown.

We conclude the paper with a classification of genus-1 multisections with
divides. The smooth genus-1 multisections with boundary were previously
classified in [19] to only support linear plumbings of 2-spheres. Our require-
ment that the multisections be compatible with genus-1 contact Heegaard
splittings restricts this significantly more, as in the following theorem.

Theorem. Genus-1 n-sections with divides correspond to plumbings of n —
1 disk bundles over 2-spheres, each of Euler number —2.

The organization of this paper is as follows. Section 2 discusses the com-
patibility requirements between contact structures and Heegaard splittings.
Section 3 gives our first proof of our main theorem, showing how to turn a
Kirby-Weinstein handlebody diagram into a multisection with divides. Sec-
tion 4 gives the second proof of our main theorem, showing how to turn a
PALF into a multisection with divides. Section 5 classifies genus-1 multisec-
tions with divides. Section 6 shows how multisection diagrams with divides
can be stabilized to increase the genus of the surface. Finally, in Section 7
we discuss some questions for future research.
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2. Contact geometry and Heegaard splittings

In this section, we explain the compatibility condition between contact struc-
tures and Heegaard splittings which we will require on the boundary of each
sector. We also give a diagrammatic formulation of this compatibility. We
begin with some background on surfaces in contact 3-manifolds.

A surface ¥ embedded in a contact 3-manifold (Y, ¢) is said to be con-
vex if there exists a contact vector field v for (Y, ) such that v is transverse
to 3. The purpose of the contact vector field is to define a collared neigh-
borhood of the surface, which is needed for cut-and-paste constructions.
Convex surfaces are generic, meaning every smoothly embedded surface has
a C'*°-small isotopy to a convex surface [10, 17]. Given a contact vector field
v transverse to ¥ we obtain a multicurve called the dividing set, denoted
I's.. This multicurve is defined by I's, = {z € X|v, C £} and the isotopy class
of this curve is an invariant of the embedding of ¥ up to isotopy through
convex surfaces.

The dividing set captures all of the contact geometric information of X
in a neighbourhood ¥ x [—¢, €] obtained by flowing by the contact vector
field. More precisely we have the Giroux flexibility theorem.

Theorem 2.1. ([10]) Let ¥ be a closed orientable surface, and fo: ¥ —
(Y,€) and g : ¥ — (Y, &) be convex embeddings of 3. Suppose v is a contact
vector field transverse to (Y, €). If the oriented multicurves fal(FfO(E)) and
g_l(Fg(E)) are isotopic, then there exists an isotopy f; fort € [0, 1] such that

¢ n) =9 Elqnm)-

As a consequence, if two contact 3-manifolds with boundary have diffeo-
morphic convex surfaces on their boundary, and (under this diffeomorphism)
the dividing sets are isotopic, the contact manifolds with boundary can be
glued together to a global contact manifold.

Given a handlebody, H, a spine for H is a graph, G, such that H re-
tracts onto G. If H additionally carries a contact structure, then a spine, G,
is said to be a Legendrian spine if each edge is a Legendrian arc or knot.
By combining Darboux’s theorem with the standard neighborhood for Leg-
endrians [9, Theorem 2.5.8], we see that Legendrian spines have a standard
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tight contact neighborhood, determined by the ribbon neighborhood of the
spine tangent to the contact planes.

2.1. Contact Heegaard splittings

Definition 2.2. A contact Heegaard splitting of a contact manifold (Y ¢&)
is a Heegaard splitting Y = H; Uy, Hy such that H; and Hsy are contacto-
morphic to standard neighborhoods of Legendrian spines L1 and Lo.

We will call the handlebodies which are standard neighborhoods of Leg-
endrian graphs standard contact handlebodies. Note that a smooth handle-
body of a given genus typically has multiple different “standard” contact
structures, which are differentiated by the number of components of the di-
viding set on the boundary. The different options come from the fact that
there are generally multiple different surfaces with boundary with the same
Euler characteristic (so F' x I and F’ x I are diffeomorphic). The number
of boundary components of F' suffices to distinguish these from each other.

This notion of contact Heegaard splittings originated with Giroux [12]
and was also developed by Torisu [28], and can be equivalently formulated
as follows.

Lemma 2.3 ([12, 28]). Let Hy Us, Hs be a Heegaard splitting of (Y, &) with
¥ a convez surface with dividing set d splitting the surface as ¥ = X7 Ug X~
The following are equivalent

1) Hy and Hs are standard neighborhoods of Legendrian graphs

2) Hy and Hy are two halves of an open book decomposition supporting

(¥, )

3) For each handlebody H;, there exists a system of compression disks
cutting H; into a ball, such that the intersection of the compression
disk system with ¥ is an arc system (a collection of arcs which cuts
Y+ into a disk).

Though these equivalences are known, we review how to pass between
them. If we start with H; and Hs as standard neighborhoods of Legendrian
graphs, we can see the page F' of the corresponding open book decomposition
as a contact framed ribbon of the Legendrian. The contact planes are tangent
to F' along the Legendrian, so in a standard neighborhood, d« is a positive
area form when restricted to this page. Moreover, in the standard model, we
can identify H; = F x I/ ~ (where (z,t) ~ (z,t') for x € F), such that da
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is positive on each F' x {t}. In this way, we see that the first characterization
gives rise to the second characterization. Conversely, given a supporting
open book decomposition, we can Legendrian realize a spine on two pages.
Restricting the contact structure defined on an abstract open book to half
of the pages, we see that this is a standard neighborhood of this Legendrian
spine. The dividing set on the boundary of a standard neighborhood of a
Legendrian graph is isotopic to the intersection of the contact framed ribbon
with ¥ = 0H;. The meridians of the edges of the graph thus intersect %+
in an arc system. Similarly, if H; and Hy are two halves of an open book
decomposition, the dividing set on > = 0H; = 0H> is the binding of the
open book OF. A system of compressing disks for F' x I/ ~ is given by
a;j x I/ ~ where {a;} is a collection of arcs on F' which cut F' into a disk.
This system intersects ¥ = F' x {1} and ¥~ = F x {0} in the arc systems
{aj x {1}} and {a; x {0}}. Conversely, suppose there is a cut system C
for ¥ where C' N X% is an arc system. Since any two arc systems with the
same boundaries on a surface are related by a diffeomorphism which fixes
the boundary, up to diffeomorphism, we see that C' is the double of an arc
system on ©F. Thus the handlebody is identified with X1 x I/ ~, where the
dividing set is 9X". The contact structure induced by the half open book
with page X1 is one tight contact structure which induces this dividing set
on the boundary. By the following lemma, this is the unique tight contact
structure inducing this dividing set on the boundary.

Lemma 2.4. Let H be a 3-dimensional handlebody with boundary 3. Let d
be a multicurve which separates ¥ into homeomorphic surfaces with boundary
Yt Ug X", Let Dy, ..., Dy be a system of cut disks for H such that|D; Nd| =
2 for all j. Then up to contact isotopy there exists at most one tight contact
structure on H such that the boundary 3 is a convex surface with dividing
set isotopic to d.

Proof. Let £ be a tight contact structure on H. We will show that £ is
uniquely determined. We can cut the handlebody along the disks D; in the
cut system. Since each disk intersects the dividing set in exactly two points,
since £ is tight, there is a unique possible dividing set (up to isotopy) on
each cut disk which is a single arc. This dividing set determines the contact
structure in a neighborhood of each cut disk. After removing the neighbor-
hoods of the D; the result is a ball. We can round corners to determine the
dividing set on the 2-sphere bounding this ball. Since £ is tight, this dividing
set must be connected and there is a unique tight contact structure on the
3-ball filling in this convex 2-sphere [3]. O



Multisections with divides and Weinstein 4-manifolds 231

In particular, if we know H has a tight contact structure with convex
boundary, and there is a system of cut disks intersecting the dividing set
in exactly two points each, then the contact structure must be that of a
standard contact handlebody. However, as pointed out to us by Nickolas
Castro, one can find examples of a surface X, a cut system, and a multicurve
one could propose as a dividing set, such that each cut curve intersects the
dividing set in two points as in Lemma 2.4, but the restriction of the cut
system to X7 or ¥~ fails to be an arc system. In this case, it can happen that
there is no tight contact structure on the handlebody inducing the specified
multicurve as the dividing set. In an explicit example, after cutting along
the compressing disks and rounding corners, one would obtain a dividing
set on the 2-sphere with disconnected dividing set which cannot occur in a
tight contact manifold.

There is a fundamental challenge in obtaining compatibility between a
multisection and a symplectic structure. Each interior 3-dimensional handle-
body in a multisection appears in the boundary of two 4-dimensional sectors,
but the boundary orientations are opposite to each other. Viewing a sector
as a symplectic filling of its boundary induces a contact structure on the
boundary which is a positive contact structure with respect to the boundary
orientation. The sign of a contact structure (with respect to a fixed orien-
tation) is an inherent property of the contact planes which measures the
direction/handedness of the twisting of the contact planes. Note, this is not
the same as the co-orientation of the contact structure which depends only
on the contact form, not the contact structure. Therefore, we cannot have
identical contact structures on a fixed manifold realize both positive and
negative contact structures with respect to a fixed orientation. In general
this suggests that we would need two different contact structures on each
interior H; of a multisection. However, as we show in the following lemma,
there are both positive and negative standard contact handlebodies which
are orientation reversing contactomorphic to each other. Both the positive
and negative contact structures are supported by the same half open book.

Lemma 2.5. Let F be an oriented surface with non-empty boundary, and
let H=F x I/ ~ where (z,t) ~ (x,t') whenever x € OF. Consider the half
open book on H with pages F' x {t}. There exists a positive contact structure
&1 and a negative contact structure €~ on H such that both £+ are supported
by the half open book. Moreover, there is an (orientation-reversing) contac-
tomorphism between (H,ET) and (H,£7).
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Proof. Choose a 1-form n on F' which evaluates positively on the oriented
boundary of F' such that dn is a positive area form on F. (This is always
possible when F' has non-empty boundary.)

Choose an annular collared neighborhood of each boundary component
of F, and coordinates (s, ) € [0,1] x S* on each annular collar, such that
s = 0 corresponds to the boundary of F'. Let p : F' — R be a smooth function
such that

e In each annular collar, p(s, ¢) depends only on s
e In each annular collar, p(s, p) = s? for s € [0,1/2]
e In each annular collar, p, % >0

e p is the constant function 1 outside of the [0,1) x S! open collars.

Define
ot = +pdt +1n
and let £* = ker(a®t). Then

do™ = +dp A dt + dn.

Note that a® and da™ are well-defined on the quotient F x I/ ~. This
is because near each boundary component p(s, ) = s, so pdt = s*dt and
dp A dt = 2sds Adt. Just as r2df and 2rdr A df are a well-defined forms
which extend over the origin when we use (r,6) polar coordinates, so are
s2dt and 2sds A dt well-defined forms on the collars (s, p,t) € I x St x I/ ~
when the ¢ coordinate is collapsed along s = 0.

First we verify that £+ is a & contact structure.

o Adat = +(n Adp A dt+ pdt A dn)

By definition, pdt A dn is a positive volume form except at the boundary of
F where it vanishes. 7 evaluates positively on each boundary component of
F and thus in each (sufficiently small) collared neighborhood, n = fdy +
gds + hdt for some positive function f and some arbitrary functions ¢ and
h. Near OF, dp A\ dt = 2sds A dt, which is a positive area form on I x I/ ~
(convert the (s,t) “polar coordinates” to Cartesian coordinates z = scost,
y = ssint to see sds A dt = dx A dy). Away from OF, dp A\ dt = %ds A dt.
Since the s coordinate points inward in F' along the boundary, n A dp A dt is
a positive volume form near OF and is a non-negative multiple of a volume
form over all of H. Thus nn A dp A dt + pdt A dn is a positive volume form so
a® A da® is a + volume form on H.
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To check that it is supported by the open book, we need to verify that
a¥ evaluates positively on the binding and da™ is a positive area form on the
pages. Indeed if T is a vector positively tangent to OF, o™ (T) = n(T) > 0.
The restriction of da* to a page is dn, which is a positive area form on F
by assumption.

Finally, to see that (H,¢") and (H,£7) are contactomorphic, consider
the diffeomorphism ¥ : H — H which sends t to 1 —¢. Then U*at =a~.

O

+

Remark 2.6. We will implicitly use this lemma throughout this article as
follows. In a multisection, for 2 < ¢ < n each H; is a subset of the boundary
of X;_1 and X;, but with opposite boundary orientations. In a multisection
with divides, 0.X;_1 and 0X; each inherit contact structures which are pos-
itive with respect to the appropriate boundary orientations. Thus, if we fix
an orientation on H;, it will need to support one positive and one negative
contact structure as a subset of the boundaries of X;_; and X;. Lemma 2.5
shows that there exist both positive and negative contact structures com-
patible with the same half open book. Thus (up to contact isotopy), the
two contact structures on H,; are specified by the page F', which in turn is
determined by H; and the dividing set JF.

2.2. Contact Heegaard diagrams

Motivated by the third characterization in Lemma 2.3, we define a diagram-
matic version of contact Heegaard splittings.

Definition 2.7. A contact Heegaard diagram is a quadruple
(2,d, C1,C3) such that:

e Y is a closed oriented surface.

e ( is a multicurve which separates ¥ into two homeomorphic surfaces
with boundary ¥ and ™.

e C;ic{1,2} is a cut system for ¥ such that C; N XF is an arc system
for ¥F.

Given a contact Heegaard diagram, we can reconstruct a contact man-
ifold together with a contact Heegaard splitting. In particular, if ' is X7,
then we endow each of the handlebodies with the standard contact structures
coming from F' x I. This induces an open book with page F' and binding d,
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Figure 2: The two genus-1 convex Heegaard diagrams of S3. The one on the
left is tight whereas the one on the right is overtwisted.

which in turn induces a contact structure. Conversely, every contact Hee-
gaard splitting has a contact Heegaard diagram by characterization (3) of
Lemma 2.3.

This correspondence allows us to give a classification of genus-1 contact
Heegaard splittings of S2. In particular, by Euler characteristic considera-
tions, genus-1 contact Heegaard splittings correspond to open book decom-
positions of S3 with an annular page. The monodromy then consists of a
left-handed or right-handed Dehn twist about the core of this annulus. The
right-handed Dehn twist gives the tight contact structure on S® whereas
the left-handed Dehn twist gives an overtwisted structure. These lead to the
contact Heegaard diagrams shown in Figure 2.

2.3. Dividing sets on standard neighborhoods from Legendrian
front projections

In Section 3, we will be looking at Heegaard splittings of S3, or more gen-
erally #, S x 52 ~where one handlebody is a standard neighborhood of a
Legendrian graph A described via a front projection, and the other handle-
body is the complement. In order to verify that the complement is a standard
contact handlebody, it will be useful to know exactly how to draw the di-
viding set on the boundary of the standard neighborhood of an explicitly
embedded Legendrian graph in terms of the front projection.

We will mainly focus on trivalent Legendrian graphs. Higher valence ver-
tices can be split into trivalent vertices by growing additional Legendrian
edges via a Legendrian deformation which preserves the standard neighbor-
hood and thus, the dividing set on its boundary. Given a front projection
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representing a Legendrian embedding in R3, we can draw the correspond-
ing dividing set on the boundary of a standard neighborhood. Recall that
the dividing set on the boundary of a standard contact handlebody is the
boundary of the page of the compatible open book decomposition. A page
of the open book is given by the contact framed ribbon of the Legendrian
knot. Considering how the contact framing wraps around at left and right
cusps and at left and right trivalent vertices, we obtain the local models for
the dividing set as shown in Figure 3. The first five models cover the generic
front projections of a trivalent Legendrian graph. The last model includes a
Legendrian arc which degenerately projects to a single point, whose two end
points are trivalent vertices. We can isotope this model to a generic front
projection as in Figure 4, and thus derive its local model from the previous
models. We include this last “compound” model for convenience as we will
use it extensively in implementing our algorithm of Section 3.1.

3. Kirby-Weinstein handlebody diagrams and multisections
with divides

In this section we will show how to use a Kirby-Weinstein handlebody di-
agram to produce a bisection with divides. A consequence of our proof is
an algorithm to obtain a multisection diagram with divides (defined in Sec-
tion 3.2) from a Kirby-Weinstein diagram.

3.1. Existence of bisections with divides from Kirby-Weinstein
handlebody diagrams

Theorem 3.1. FEvery compact 4-dimensional Weinstein domain admits a
bisection with divides.

Proof. By definition, a Weinstein 4-manifold has a Weinstein handle struc-
ture. By [14], this handle structure can be represented in a standard form
by a Legendrian front projection with 1-handles (which we will call a Kirby-
Weinstein diagram). We will give an algorithm to convert a Kirby-Weinstein
diagram in Gompf standard form into a multisection diagram with divides.
If we ignore the symplectic and contact structure, the smooth part of this
algorithm agrees with the methods in [6] and [25] used for converting a Kirby
diagram into a trisection.
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[
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A

Figure 3: Left: Local models for a trivalent Legendrian graph. Right: Local
models for the dividing set of the boundary of a regular neighbourhood of
the graph. To obtain the last model from the previous ones, see Figure 4.

The union of the Weinstein 0- and 1-handles will be W7. This is diffeo-
morphic to f, 5! x D3 and with the Weinstein structure of W restricted to
W1, it is a Weinstein filling of its boundary (0W7,&1).

We will construct a contact Heegaard splitting Hy Uy, Ha of (OW71,£&1)
such that the Legendrian attaching spheres for the 2-handles of W are an
embedded subset of the Legendrian spine of Hy. Then we will define W5 to
be a collar of Hy together with the 2-handles of W. Because the attaching
spheres of the 2-handles are a subset of the Legendrian spine of Hs, we
will see that Wy will be diffeomorphic to fz, S x D3. There is a naturally
induced Heegaard splitting of W, given by Hy U H3 where Hj is obtained
from Hs by doing Legendrian surgery on the attaching spheres of the 2-
handles. We will then show that this is also a contact Heegaard splitting,
and that (Wa,w|w,) is a symplectic filling of this contact manifold.
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Let A be the Legendrian attaching link for the 2-handles of W in #, St x
S2. To construct the appropriate contact Heegaard splitting H; U Hy of
(0W1,&1), we will add Legendrian tunnels to A, yielding a Legendrian graph
A containing A. A standard contact neighborhood of A will be Hy and its
complement will be Hy. The first purpose of the tunnels is to ensure that the
complement of the neighborhood of A is a smooth handlebody. Additional
tunnels will be added to ensure this handlebody has a standard contact
structure. _

The construction of A is as follows.

1) Start with A in Gompf standard form.

2) If there is any 1-handle of W whose belt sphere is disjoint from A, add
a Legendrian circle which passes through that 1-handle once.

3) For each 1-handle add Legendrian arcs to connect all the strands that
pass through that 1-handle on the left and right as shown in Figure 8.

4) At each crossing in the diagram, add a Legendrian arc which projects
to the crossing point connecting the over- and under-strands. See Fig-
ure 4 for generic front projections for a Legendrian isotopic graph.

5) If necessary, add Legendrian arcs to connect disconnected components
until the graph is connected.

6) The resulting front projection divides up the plane into regions, such
that the boundary of each region is a Legendrian unknot. Add further
Legendrian arcs to cut up each region as in Figure 5 so that at the end,
each region is bounded by a Legendrian unknot with tb = —1. Namely,
every region in the front projection should have a unique “right cusp”
and a unique “left cusp” where a vertex is a right (resp. left) cusp of a
region if the two edges on the boundary of the region which meet in the
vertex both approach the vertex from the left (resp. right). Note that
here we can treat each crossing as a single vertex by shrinking the Leg-
endrian arc connecting the two strands by a Legendrian deformation
as in the rightmost part of Figure 4.

Now if Hs is a standard contact neighborhood of /~\, and H1 is the comple-
ment, we want to show that H; U Hs is a contact Heegaard splitting. First
we recall why it is a smooth Heegaard splitting. Consider the case where
there are no 1-handles in the Kirby-Weinstein diagram. Observe that Hp is
isotopic to a neighborhood of the diagram of A (since we put tunnels at each
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AKX XA

Figure 4: Adding a tunnel at each crossing which projects to the crossing
point is Legendrian isotopic to the generic front projection shown on the
top row center-right. By shrinking the tunnel to length zero, we obtain a
Legendrian deformation of the graph as shown on the far right. The dividing
set on the boundary of a neighborhood can be determined for the second
graph using the standard models. Isotoping this yields the dividing sets on
the boundaries of the neighborhoods of the other graphs.

Figure 5: To make each region a Legendrian unknot with tb = —1 we add
tunnels to regions with additional cusps.

crossing) and the diagram lies on a disk in S3. The complement of a neigh-
borhood of this disk is a 3-ball, and the complement of the neighborhood
of the knot diagram is obtained from this by attaching a 1-handle for each
bounded planar region in the diagram of A. When there are n 1-handles in
the Kirby-Weinstein diagram, note that there is a standard Heegaard split-
ting for #,S' x S? where each of the handlebodies has one 3-dimensional
1-handles through each of the 4-dimensional 1-handles. As in Figure 6, we
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Figure 6: We may assume our diagram for A is contained in the shaded blue
surface which passes through each of the 1-handles. A thickened neighbor-
hood of this surface gives a handlebody whose complement in #,S" x S? is
also a handlebody.

can arrange this so that the diagram of A lies on a surface with boundary
S such that one of the handlebodies in this standard Heegaard splitting is
S x [—¢,¢e]. To modify this to our chosen Heegaard splitting, where Hs is a
neighborhood of the graph A, for each bounded region D; in the complement
of the diagram we need to cut out {D; x [—¢,¢] from S x [—¢,¢] and add it
into the other handlebody. Each time, this adds a 1-handle to the comple-
mentary handlebody, so H; remains a handlebody. Hs is a standard contact
handlebody by definition, because it is the neighborhood of a Legendrian
graph.

Next, we consider the contact structure on Hi. Since H; is a subset of
#,.ST x S? with its tight contact structure, the contact structure on H; is
tight. By Lemma 2.4, to see that H; has a standard contact structure, it
suffices to show that there is a set of compressing curves for H; on ¥ such
that each curve intersects the dividing set in two points.

Using the models from Figure 3, we can draw the dividing set d on
the boundary ¥ in terms of the front projection. Let {D;} be the bounded
regions of the complement of the front projection of K, andlet D; = D} N Hi.
If there are no 1-handles in the handle diagram for W, then {D;} form a
collection of compressing disks for Hi, which cut Hp into a ball. If there
are 1-handles, there is also a compressing disk as in Figure 7 for each 1-
handle. After performing handleslides over the regions that pass through
the 1-handle, we can realize this compressing curve as in Figure 8 so that it
intersects the dividing set in exactly two points. To see that that boundary
of each D; intersects the dividing set in two points, we use the property
from the last step of the construction of K, that each region is bounded by a
Legendrian unknot with ¢b = —1, meaning there is a unique left cusp (which
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0

Figure 7: A compressing disk for the exterior of A corresponding to a 1-
handle.

may be a vertex) and a unique right cusp (which may be a vertex). Any
other vertices along the boundary of the region have the two edges on the
boundary of this region entering the vertex from different sides. Examining
all of the ways that our local models in Figure 3 may appear as the boundary
of a region, we see that each cusp (either a standard cusp or a vertex cusp)
contributes one intersection point between the dividing set dD;, and the
remaining edges and vertices in the boundary of the region do not contribute
any intersections between the dividing set and dD;. Thus we see that H; is
a standard contact handlebody.

Next, we look at the second sector W5. We need to show that Wy =
0k, S x D3, and that there is a contact structure ¢ on W with a contact
Heegaard splitting Hy Uy, Hs such that (Wa,w|w,) is a symplectic filling of
(OW?2,€). Recall that W3 is obtained from Hy x I by attaching 2-handles
along the Legendrian link A C A with framing (¢t — 1) where ct is the fram-
ing induced by the contact planes. Since A is embedded in A (the spine
of Hy) Wy is smoothly diffeomorphic to f,S' x D3, since each 2-handle
cancels a 1-handle of Hy x I. A natural Heegaard splitting of W5 is given
by Ho Us H3 where H3 = (Ha)(—1)(A) ((ct — 1) surgery of Hj along A).
There is a well-defined tight contact structure obtained by (¢t — 1) Legen-
drian surgery, which agrees with the contact structure on Hy near 0Hsz = X
(since the surgery is performed on the interior). Therefore the dividing set
on OHs = 3 can be viewed as the same as the dividing set on 0Hy = X, but
the compressing curves for Hs change based on the surgery. Namely, for each
component Ay of A, the compressing curve changes from a meridian of Ag to
a (ct — 1)-framed copy of A on 3. Since the dividing set is parallel to the ct
framing of Ay, the (¢t — 1) framing of Ay intersects the dividing set exactly
twice. Therefore, by Lemma 2.4, Hj is a standard contact handlebody with



Multisections with divides and Weinstein 4-manifolds 241

D

Figure 8: Adding tunnels between parallel strands passing through the same
1-handle allows us to locate a curve on the boundary of the neighborhood
of the Legendrian graph A bounding a disk on the exterior coming from the
surgery induced by the 1-handle. Choosing the arcs in precisely the manner
shown ensures that we can find such a curve intersecting the dividing set in
exactly two points. The lower part of the figure shows the relevant portion of
the Heegaard surface with the dividing set (in purple) and the compressing
curve (in red).

the contact structure induced by Legendrian surgery on Hs. Note that Hy
is also a standard contact handlebody, using the negative contact structure
on Hy from Lemma 2.5. Putting these together, we get a contact Heegaard
splitting of OWs.

It suffices to show that (W2, w|w,) is a Weinstein filling of 0Wy where
the contact structure on OWs is given by the contact Heegaard splitting
H, Us, Hs. For this, notice that Hy x I is a 1-handlebody, and if we restrict
w to this subset of Wa, up to shrinking I, the symplectic structure must be
a standard neighborhood of the isotropic spine of Hs. In other words, Ho X
I with the symplectic structure w is symplectomorphic to a Weinstein 1-
handlebody. Moreover, the induced unique tight contact structure on 9(Ha x
I) = #;, 5! x S? is supported by the open book with page F and trivial
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monodromy. This open book with trivial monodromy gives rise exactly to the
contact Heegaard splitting Hy U Hs. Since Wy, (with the contact Heegaard
splitting Ho Us Hs) is obtained from the Weinstein 1-handlebody Ha x I
(with the contact Heegaard splitting Hy Uy, Hs) by attaching Weinstein 2-
handles along Legendrian knots in Hs, we have that W5 is a Weinstein filling
of the contact Heegaard splitting Hy Uy, Hs. O

3.2. Multisection diagrams with divides

A fundamental feature of multisections with divides is that they can be
encoded by curves on a surface. In this section we define these diagrams and
show how the previous proof gives an algorithm for obtaining a bisection
diagram with divides from a Kirby-Weinstein handlebody diagram.

Definition 3.2. A multisection diagram with divides is a closed ori-
entable surface, together with a set of dividing curves d splitting X as
YT Uy X7 and cut systems O, Cs, ..., C,, such that

e Forallic {1,2,...n}, {C;} N £* is an arc system for ©*

e forallie {1,2,....n—1}, (3,d,C;,Ci;+1) is a contact Heegaard split-
ting of the tight contact structure on #;, S x S? for some k; € N.

Remark 3.3. It is fairly straightforward to check whether {C;} N % gives
an arc system. However, it is potentially difficult to check whether the union

of two consecutive contact handlebodies forms the tight contact structure
on #,, St x S2.

The proof of Theorem 3.1 gives an algorithmic method to obtain a mul-
tisection diagram with divides as follows.

Starting from a Kirby-Weinstein handlebody diagram, construct the
Legendrian graph A as in the proof. Use the models from Figure 3 to draw
the dividing set d on ¥ as the boundary of the neighborhood of A (H2) in
terms of the front projection.

We can describe cut systems C; for the handlebodies H; for i =1,2,3
as follows. The cut system C is given by taking the regions of the planar
diagram together with an extra curve for each Weinstein 1-handle, as in
Figure 8-note the curve in this figure intersects the dividing set in two
points. As the regions are diagrams of tb = —1 unknots, each of the curves
given by the boundary of a region intersects the dividing set twice. Since
we know that H; has a tight contact structure, this suffices to check that
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it is a standard contact handlebody, but if we want to check directly that
intersecting C; with X% gives an arc system for £+, we use the following
argument.

Let {D;} be the bounded regions of the complement of the front pro-
jection of K, and let D; = D;- N Hi. If there are no 1-handles in the handle
diagram for W, then {D;} form a collection of compressing disks for Hj,
which cut Hj into a ball. If there are 1-handles, there are also compressing
curves as in Figure 8. For a bounded region, the two cusps yield the end
points of arcs a given by 0D; N Y+, We want to see that this collection of
arcs, {ai} cuts Y* into a disk. We will argue this in the case of %, the
portion of the surface in the lower half of the tubes along the boundaries of
the local models of Figure 3 (the ¥~ case is similar).

Note that ©T is homeomorphic to a contact ribbon neighborhood of the
Legendrian graph A. For each region D;- in the complement of the front
projection, let U; denote the upper portion of the boundary of D; between
the left and right cusp. Let U ]’ denote the edge in the graph A containing Uj.
Choose ji such that the entirety of Uj, is adjacent to the outer (unbounded)
region (this may not be unique, but any choice will do). Let Ay = A\ U’
By Figure 9 which shows X near Uj,, we see that cutting T along a;rl results
in a surface Zf which is homeomorphic to a contact ribbon neighborhood
of Aj. Thus, b1 (27) < by(SH).

We will repeat this procedure, now with 1~\1. We take a jo with all of Uj,
adjacent to the outer region (when considered as a subset of /~X1) Cutting
along aj‘z will then result in a surface ¥ with b1(X3) < b1 (X]). If the
Kirby-Weinstein diagram had no 1-handles, repeating this g times, we will
eventually cut along all the aj, reducing the first Betti number of the surface
each time to reduce by (X1) from g to 0. Thus {a;-L} gives an arc system for
xt.

In the case that the handlebody diagram has 1-handles, we will perform
the same argument as above, for all the bounded regions (bounded after
connecting through the 1-handles), and then at the end, for each 1-handle
cut along the arc corresponding to the cut curve shown in Figure 8. Cutting
along this arc yields a surface homeomorphic to a neighborhood of Ay :=
Ag—1 \ T}, where Ty, is the lowest edge of A that passes through that 1-handle.
The argument for ¥~ is similar, but in this case, one uses the lower portion
of the boundary of D; between the left and right cusp, and orders the regions
starting at the bottom instead of the top (we still cut along the arcs from the
1-handles last, but in the 3~ case in this step, we delete from the Legendrian
graph the highest edge of A that passes through the 1-handle).
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Figure 9: Cutting Zg_l along the red arc aj, results in a surface which
deformation retracts to Kk, so it has strictly smaller b;. The top figure shows
Y near Uj,. The bottom figure shows 2:—1 near Uy, noting that portions of
the boundary of Ez_l may contain arcs which were cut along in an earlier
step.

The cut system Cs is given by taking a meridian of each tunnel together
with a meridian of each knot in the Kirby-Weinstein diagram. Using the
local model at the top of Figure 3 and Figure 10 we see that these curves
are doubles of an arc system for ¥.~. Because (3, C1,Cs,d) represents a
contact Heegaard splitting of the boundary of the 0- and 1-handles of the
Kirby-Weinstein handlebody diagram, it is symplectically fillable and thus
must support the tight contact structure on a connected sum of copies of
St x 82,

To obtain C3, we start by taking a Legendrian push off of each knot
component K; in the diagram. Each such component intersects its chosen
meridian in Cs once and does not intersect the dividing set at all. Cj is
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Figure 10: The meridian of the tunnel at a crossing is the blue curve in the
figure. Note this curve intersects the dividing set at two points.

obtained from Cy by replacing each meridian with K/, the image of the
meridian under a right-handed Dehn twist about K;. Up to isotopy Cy and
O3 intersect ¥~ in the same arc system. In ¥+, C3 N X7 is the image of
these arcs after Dehn twisting along the K. Since the image of an arc system
under a diffeomorphism is still an arc system, C3 N X" is an arc system for
¥ *. The diagram (3, d, Cy, C3) represents a contact Heegaard splitting of a
connected sum of copies of S! x S§? with the tight contact structure (as in
the proof of Theorem 3.1. Therefore (X, d, Cy, Co,C3) is a bisection diagram
with divides of the given manifold.

This algorithm is carried out in Figures 11 and 12 for the result of attach-
ing a Weinstein handle to the max tb right-handed trefoil and in Figures 13
and 14 for a Weinstein domain which is a disk bundle over RP2.

Note that the cut systems Co and C'5 which are output from our al-
gorithm have a very particular form. More specifically, each component
of C3 either agrees with or is dual to a component § of C5. In the latter
case, there exists a curve V in X which is disjoint from the dividing set,
dual to the component § with respect to Co, such that v = 7/(8) where
T4 is a right-handed Dehn twist about A with respect to the orientation
on X induced as the boundary of Hs. Let’s call two cut systems related in
this way standard Weinstein cobordant. By isotoping each V into the Leg-
endrian core of the handlebody Hsa, we find a Legendrian link in Hs such
that the ¢t — 1 framing for this link is represented by the corresponding
curves in C3, (V represents the contact framing, and f is a meridian of the
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)

Figure 11: Adding tunnels to the right-handed Legendrian trefoil on the left
results in the graph on the right. Note that the exterior is a handlebody and
that each bounded region in the diagram is a tb = —1 unknot.

Figure 12: Top: A bisection diagram of the manifold obtained by attaching a
Weinstein handle to the max tb trefoil. On this diagram, many green curves
which are parallel to blue curves are omitted for visual clarity. Bottom: The
dividing set, followed by each of the cut systems in order are drawn out
individually.

surgery torus so Ty () =74 L(V) represents the contact framing —1). Thus
we see that if two cut systems with a dividing set are standard Weinstein
cobordant, the corresponding sector can be endowed with the structure of
a Weinstein cobordism from H; to H;y1 obtained by attaching Weinstein 2-
handles to H; x I. We can always endow the first sector with the structure
of a Weinstein 1-handlebody (since by definition (X, d, C1,Cs) is a contact
Heegaard splitting of #, 51 x S? with the tight (fillable) contact structure).
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Figure 13: Top: A Kirby-Weinstein diagram for a Weinstein 4-manifold with
a single 1-handle and a single 2-handle. Bottom: Following the proof of
Theorem 3.1 we add Legendrian tunnels to the diagram above so that the
exterior of the tunnels drawn is a standard contact handlebody.

Figure 14: Top: A bisection diagram for a disk bundle over RP%. On this
diagram, many green curves which are parallel to blue curves are omitted for
visual clarity. Bottom: The dividing set, followed by each of the cut systems
in order are drawn out individually.

Therefore, we have an (overly strong) condition that ensures a multisection
diagram with divides corresponds to a Weinstein 4-manifold.

Proposition 3.4. Let (X,C1,...,Cy,d) be a multisection diagram with di-
vides such that (C;, Cit1,d) are standard Weinstein cobordant for 1 <i < n.
Then (X,Ch,...,Cy,d) corresponds to a Weinstein 4-manifold.
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In Section 4, we will see another condition that ensures a multisection
diagram with divides corresponds to a Weinstein 4-manifold. A priori, a mul-
tisection with divides may exist on a symplectic 4-manifold which does not
admit any global Weinstein structure. Thus, it is an interesting question to
ask whether there is a general characterization of the multisection diagrams
with divides which correspond to Weinstein 4-manifolds.

4. PALFs, monodromy substitution and multisections with
divides

4.1. PALFS and monodromy factorizations

Fibration structures on symplectic manifolds have a long history of study,
dating to Donaldson’s work in [2] where it was shown that every closed sym-
plectic 4-manifold admits a Lefschetz pencil. Conversely, Gompf proved that
every 4-manifold with a Lefschetz pencil admits a symplectic structure [15].
The corresponding objects in the Weinstein category are positive allowable
Lefschetz fibrations.

Definition 4.1. A Lefschetz fibration on X is a map 7 : X — B to a sur-
face B such that near each critical point of m, there are local orientation
preserving coordinates such that 7 is modeled on (z1, z2) — 2122. A posi-
tive allowable Lefschetz fibration (PALF) is a Lefschetz fibration whose
base B is D? and whose regular fiber is a compact surface with boundary
such that every vanishing cycle is homologically essential (allowable).

Following Loi and Piergallini [24], every Weinstein domain admits a
PALF. Conversely, every PALF supports a Weinstein structure [15].

In this section, we will show how to use the PALF structure to obtain a
decomposition of a Weinstein domain as a multisection with divides. As in
Figure 15, we cut the disk D? into closed subdisks, D1, ..., D, such that

e Each D; contains a unique critical value of m,

e D;N D, is diffeomorphic to an interval for ¢ =1,--- ,n —1,

e 0D?> C X, UX,, and

e Din---NnD,={(0,1),(0,-1)}.

Then let X; = ﬂil(Di), H, = W71(8D2 N Dl), H;, = 7T71(DZ‘_1 N Dz) for
1=2,...,n, Hy11 :F71(8D2ﬂDn). Then H; = X;_1NX,and X:N---N
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X,, = OH; (after quotienting by the D? factor along points in F x D? which
is a Weinstein homotopic domain).

Theorem 4.2. The decomposition (X1,...,X,) is a multisection with di-
vides for X.

Proof. Each H; is a 3-dimensional handlebody since it is diffeomorphic
toFxTand Y :=X1N---NX,=(Fx{0})U(Fx{1})U((OF x D?)/ ~
) so X = 9H, for all i. Thus to check this is a multisection with divides it suf-
fices to check that (1) each X is diffeomorphic to g, ST x D3, (2) (X;,w|x,) a
symplectic filling of its boundary, (3) H; U H; 1 is a contact Heegaard split-
ting of 0X; with the induced tight contact structure, and (4) Hy U Hy 41 is
a contact Heegaard splitting of X with the contact strucure induced as the
boundary of a PALF.

First we look at each X;. We will use F' := 771((0, 1)) as the regular fiber.
The vanishing cycles are curves (cy, . .., ¢,) in F which collapse to the critical
point under parallel transport from (0, 1) to the critical value. The model
for Lefschetz singularities shows that X; is diffeomorphic to the manifold
obtained from H; x I by attaching a 2-handle along ¢; with framing given
by one less than the page framing. H; x I is certainly a 1-handlebody, so
the result will still be a 4-dimensional 1-handlebody if this 2-handle cancels
with one of the 1-handles of H; x I. Thus to see that X; is diffeomorphic
to a 1-handlebody it suffices to check that there is a meridional disk in H;
which intersects ¢; exactly once.

As 7w is a PALF, ¢; C F is homologically essential. Thus, by Poincare-
Lefschetz duality, there exists an arc a; C F' such that |a; N ¢;| = 1. Parallel
transport defines diffeomorphisms W; : F' x I — H; which identify F' x {0}
with F' C H;. Then ¥;(a x I) is a meridional disk of H; which intersects ¢; C
F = U,(F x {0}) at a single point. Thus Xj is a 4-dimensional 1-handlebody.

Since X; = 7! (D;) and D; is a disk, X; has the structure of a Weinstein
manifold induced by the (restricted) PALF. This agrees with the symplectic
structure on X since both are compatible with the Lefschetz fibration. Thus
X, is a symplectic filling of 0.X;.

To see that H; U H; 11 gives a contact Heegaard splitting of 0.X; with the
contact structure induced by the Weinstein structure on X;, we use the open
book construction of contact Heegaard splittings. Restricting 7 to 0X; gives
an open book decomposition of 0.X; which supports the contact structure
induced by the Weinstein structure on X; since the Weinstein structure
comes from the Lefschetz fibration structure. H; and H; 1 are precisely the
two halves of the open book which give a contact Heegaard splitting.
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Similarly, H; U H,+1 gives a contact Heegaard splitting of 0X because
H; and H,; are the two halves of the open book decomposition induced
on the boundary of the PALF on X. O

Remark 4.3. Using the fact that all Weinstein manifolds are supported by
Lefschetz fibrations, Theorem 4.2 gives a similar result to Theorem 3.1. The
main difference is that Theorem 3.1 yields a bisection, whereas Theorem 4.2
will usually have many more than two sectors.

4.2. Multisection diagrams with divides from a PALF

A PALF can be encoded combinatorially through the fiber surface F' and
the ordered set of vanishing cycles (ci,...,c,). In this section we show how
to use the combinatorial data of a PALF to obtain the combinatorial data of
the multisection diagram with divides corresponding to the decomposition
from Theorem 4.2.

The monodromy about a Lefschetz critical value with vanishing cycle ¢
is a right-handed Dehn twist about ¢, which we denote by 7.. Thus a PALF
can equivalently be encoded by an ordered sequence of right-handed Dehn
twists about the vanishing cycles called a monodromy factorization.

The core surface of the multisection 3 is diffeomorphic to the union of
two copies of F' glued together along their boundary. The dividing set on
3. is given by the boundary of F'. More precisely, if ¥, : ' x I — H; is the
diffeomorphism defined by parallel transport, ¥ = U;(F x {0} U F x {1}) =
FUY,;(F x {1}) (note we are suppressing the quotient of the I direction at
points in OF).

To understand a multisection diagram with divides, we want to fix an
identification of %, and then draw cut systems for each handlebody H;. We
will use ¥y to identify ¥ = 0H; as Fy U Fy. Then the restriction of ¥; to
Fy U Iy gives a diffeomorphism from X to 0H,;.

Let {a1,...,ar} be a complete arc system for F' i.e. a collection of prop-
erly embedded arcs which cut F' into a disk. Then {U;(a; x I),..., ¥;(ax %
I)} gives a cut system of disks for H;. We want to see the boundaries of
these disks on our fixed identification of 3. Namely, we want to describe
the curves ¥; '(a; x {0} Ua; x {1}) in Fy U F}. Each ¥, is the identity on
Fjy, and defines parallel transport along the arc from (0,1) to (0,—1) over
which H; lies. Since the ¥; define parallel transport, and we are using Wy
to identify ¥ with Fy U Fy, we see that ¥;(a; x {1}) in ¥ is the image of a;
under the monodromy around the curve which goes from (0,—1) to (0,1)
along the H; curve and then goes from (0,1) to (0,—1) along the H; curve.
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This monodromy is 7c,,...,7.,_,. Thus, the cut system for H; is obtained
from the cut system for H;_; by applying the right-handed Dehn twist 7,_,
where ¢;—1 C F1. Any choice of complete arc system defines a cut system for
H; by gluing together the same arcs on Fy and Fj.

To summarize, given a PALF with fiber F' and ordered vanishing cycles
{c1,...,cn}, the corresponding multisection with divides is given by

e ¥ = Fy Uy Fy where Fy and F} are copies of F' (Fy is oppositely ori-
ented).

e The dividing set d is OF = Fy N Fy.

e The cut system for H; is {a1 Uay,...,ay Uag} where {a1,...,a4} is a
complete arc system for F.

e For ¢ > 1, the cut system for H; is obtained from the cut system for
H; 1 by applying a right-handed Dehn twist about ¢;_1 C F3.

Note that these cut systems intersect ¥~ = F' x {0} in precisely the
arc system {ai,...,aq}, and intersect ¥ in the image of the arc system
{a1,..., a4} under a product of Dehn twists. Since the image of an arc sys-
tem under a diffeomorphism is still an arc system, these cut systems satisfy
the requirement for a multisection diagram with divides. (The tightness
condition is ensured by the fact that each contact Heegaard splitting cor-
responds to an open book whose monodromy is a product of right-handed
Dehn twists.)

Remark 4.4. Note that the output of a PALF yields a slightly more gen-
eral condition which ensures that a multisection with divides corresponds
to a Weinstein manifold. In this case, every consecutive pair of cut systems
differs by a right-handed Dehn twist about a curve which lies entirely in the
Y+ side of the dividing set. Let’s call such (Cy, Ci11,d) generalized standard
Weinstein cobordant (gsWc). (This generalizes the notion of standard We-
instein cobordant from Proposition 3.4.) If consecutive cut systems C; and
Ciq1 are gsWc where the curve defining the Dehn twist relating them is
dual to one of the components of C;, they define a smooth multisection by
Lemma 4.5. Furthermore, whenever we have gsWc cut systems representing
handlebodies H; and H;y; forming the Heegaard splitting on the boundary
of a sector W;, we can again interpret W; as a Weinstein cobordism from H;
to H;11. This is because we can use the Lefschetz fibration interpretation of
W; and then view the Lefschetz critical point as an attachment of a Wein-
stein 2-handle to H; x I. Since H; x I can either be interpreted as a filling
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Figure 15: Decomposing a PALF into pieces containing exactly one Lef-
schetz singularity yields a multisection. The multisection surface is two fiber
surfaces glued along their binding and each handlebody is a product region
between these two surfaces.

or a Weinstein cobordism, the sector W; also supports a Weinstein structure
making it a filling of its boundary, and a Weinstein structure making it a
cobordism from H; to H;;i1. This shows that Proposition 3.4 holds under
the more general assumption that consecutive pairs of cut systems are gsWe,
and the curve defining the Dehn twist for a pair of cut systems is dual to
one of the curves from the first cut system.

The previous construction suggests that multisections can also be en-
coded by a monodromy factorization, and here, we show that this is indeed
the case. Through some care, one can determine a particular monodromy
factorization from a multisection, however for the present paper it will be
sufficient to have a family of possible factorizations.

Fixing a surface 3, a system of cut curves defines a handlebody with
boundary Y. Given a handlebody, we can choose any system of cut curves
which bound disks in the handlebody to encode it. If we specify a diffeomor-
phism @ of 3, we can apply that diffeomorphism to a cut curve system, to
produce a new cut curve system. If the original cut curve system defines a
handlebody H, we let Hp denote the handlebody defined by the image of a
cut-system for H under the map ®. Note this is independent of the choice
of cut-system for H, because two different cut systems {«;} and {a/}} for H
will be related by some sequence of handle slides, and thus {®(«a;)} will be
related to {®(c)} by a sequence of handle slides as well. We begin with a
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lemma which yields a sufficient condition for H and Hg to form a Heegaard
splitting of #9_151 x S? when ® is a Dehn twist.

Lemma 4.5. Let X be a closed genus g surface, ¢ be a simple closed curve
on %, and ¢ be a right or left-handed Dehn twist about a curve c. Let H
be a handlebody with boundary . Suppose there exists a properly embedded
disk D C H whose boundary, 0D = E1, is non-separating on ¥ such that
|E1Ne| =1. Then H Us Hy is a Heegaard splitting of #4-15 x S%.

Proof. We will produce a Heegaard diagram of H Us, Hy which consists of
g — 1 pairs of parallel curves and one pair of geometrically dual curves,
which proves the lemma. Let N be the boundary of a tubular neighborhood
of Fh Uec. Then N bounds a separating disk in H which splits off a genus 1
summand. A cut system for the other summand thus extends F; to a cut
system, E, for H disjoint from N. We may then obtain a Heegaard diagram
for HUs Hy as (X, E,¢(E)). As c is disjoint from all of the curves other
than F; there are g — 1 curves which are unchanged by ¢ and are therefore
parallel. On the other hand F; and ¢(F;) intersect once, providing the
desired Heegaard diagram. O

Using the above lemma, we obtain a sufficient criteria for Dehn twists
on cut systems to yield two sequential handlebodies in a multisection. Con-
versely, the following proposition shows that the sequential handlebodies in
all multisections can be obtained in the fashion.

Proposition 4.6. Let M=XUXy---UX, be a genus-g multisec-

tion with multisection surface %, and with X; =t S* x D3,  Let

HY H?,...,H", H"! be the 3-dimensional handlebodies lying at the bound-

aries of the X;. Then there exist curves
11 1 2 2

2
C1yCs vy Cgfg s €15 Cay e ey C

mn n
G—kyr 1 CTHCy ey C

g_kn

such that H;s = H"™"! where ¢; =T, 07y - 0 Tei s,
Proof. For each handlebody, H*, we will show how to produce the curves
czl...cf ~ki Recall that the handlebodies H; and H;; 1 meet at the multisection
surface ¥ to form a a Heegaard splitting of #%: ST x S2. Consider a Heegaard
diagram of H; U H;;1. By Waldhausen’s theorem [29], after a sequence of
handle slides there is a cut system of curves a1, ... ,a4 for H; and b;...b,
for H; 41 such that a; = b; for 0 < i < k; and |ay, N by, | = 0y, for for kipq <
n,m<g.
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For k; < j <g we let C‘Z = 7y,(a;). Then, 7, (a;) = b;. Moreover, since
cé does not intersect any of the other ay for k # 7, Tc;;(ak) = ay, for k # j.

Then the product H;?;ITC;; (ak) takes a cut system for H; to a cut system for
Hi. ' O

We call the product H?zlﬂg;]f%c; a monodromy factorization for
M. By following through our construction in Theorem 4.2, we can track
the monodromy of a PALF onto the monodromy of a multisection which
immediately yields the following.

Corollary 4.7. Suppose that (X*,w) is a Weinstein manifold which admits
a PALF with fiber surface F' and monodromy factorization P =II}_;7,,.
Then (X*,w) admits an n-section with divides with multisection surface
¥ =FU-F, dividing set OF, and monodromy factorization P’ obtained
by applying the Dehn twists of P to F' C X.

4.3. Monodromy Substitution

In this section we will demonstrate how a monodromy substitution affects
a multisection with divides. We begin with the analogous construction for
PALFs.

Definition 4.8. Let f: M* — D? be a PALF with fiber surface ¥ and
monodromy factorization II? ;7.,. Suppose that for some k,l,m,n and
curves c,,...c;, we have that, as mapping classes, II'_, 7., = 7_,,7e. Then
we may obtain a new Lefschetz fibration with monodromy factorization given

by

k n n
I 7e, Hj:mTC_; Hi:l+1TCi :

We say that the new Lefschetz fibration is obtained by a monodromy
substitution on f.

Monodromy substitution has been used extensively to produce new sym-
plectic manifolds from existing ones. In particular, in [4], the authors show
that the lantern relation, pictured in Figure 16, can be used to perform a
rational blowdown on the configuration Cy (see [16] Section 8.5 for an ex-
position on these operations). This was later generalized in [5] to realize
an infinite family of rational blowdowns as monodromy substitutions using
daisy relations. In general, any monodromy substitution can be thought of
as some symplectic cut-and-paste operation.
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©

Figure 16: The lantern relation in the mapping class group in a 4-holed
sphere states that right-handed Dehn twists about the red curves gives the
same mapping class as the right-handed Dehn twists about the blue curves.

There is an analogous process of monodromy substitution on a multi-
section.

Definition 4.9. Let 9 be a multisection (not necessarily with bound-

ary) starting at the handlebody H with monodromy factorization given

by TI?_,7.,. Let H* be the handlebody H. TeyTeyre, and suppose that

C;€+1,Ck+2, ..., ¢} is a sequence of curves such that for all I € {k+ 1,k +

2,...,j'} we have that ¢ is dual to some disk in Hk (this will
k 1

+
guarantee that the assumptions of Lemma 4.5 hold). Suppose further that

k k

e T, = HY, .., . 5, - Then wemay obtain a new multisection
ktl "Cht2 ot Chz

Mo startmg at the handlebody H and specified by the monodromy factor-
ization H 1TCLH TC;HZ:] .. We call 915 a monodromy substitution

Ofﬂﬁi.

i=k+1

It follows immediately from Corollary 4.7 that we can find monodromy
substitutions by doubling a PALF and a monodromy substitution of that
PALF. Carrying this out for the lantern relation gives us a monodromy
substitution on a multisection with divides yielding the operation outlined
in Figure 17.

5. Genus-1 multisections

In this section we will provide a characterization of genus-1 multisections
with divides. For examples of the diagrams for the unique 2- and 3-sections
with divides, see Figure 18. Smooth genus-1 multisections are well char-
acterized by their diagrams, which consist of sequences (ai,...ay) with
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Figure 17: The three handlebodies on the top row yield a bisection whose
monodromy is the double of the right-handed Dehn twists about the red
curves in Figure 16. Replacing the middle handlebody by the one below it
yields a multisection whose monodromy is the double of the right-handed
Dehn twists about the blue curves in Figure 16. The overall change in a
bisection containing these handlebodies is a Cy rational blowdown.

|a; N vip1] = 1. In [19, Proposition 5.5], the authors show that smooth genus-
1 n-sections with boundary correspond to linear plumbings of (n — 1) disk
bundles over the sphere. Moreover, given the oriented sequence of cut curves
(a1, g, ...) defining a genus-1 multisection diagram, the Euler number of
the it" disk bundle is given by the algebraic intersection (c;_s, ;). Note
that the boundary of such a linear plumbing is a lens space L(p,q) (where
the Euler numbers determine a continued fraction expansion of —p/q).

As long as the Euler numbers of the disk bundles are at most —2, any
such linear plumbing supports Weinstein structures (actually multiple dif-
ferent Weinstein structures when any of the Euler numbers are strictly less
than —2).

Proposition 5.1. There is a unique genus-1 n-section with divides for each
n > 2. These correspond to the linear plumbing of (n — 1) disk bundles of
Euler number —2 over the sphere (T*S?’s).

Proof. First we observe that the linear plumbing of (n — 1) disk bundles of
Euler number —2 supports a PALF structure whose fiber is an annulus with
n vanishing cycles all parallel to the core circle of the annulus. By the algo-
rithm in Theorem 4.2, these Weinstein domains have genus 1 multisections.

Now we show that these are the only genus 1 multisections with divides.

For a contact Heegaard splitting of S3, the dividing set consists of two
parallel curves. Fixing coordinates (a,b) for H1(T?), we may assume, after
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7

=

<\

Figure 18: Left: The unique genus-1 bisection with divides corresponding
to the disk bundle over the sphere of Euler number —2. Right: Adding this
curve to the decomposition yields the unique genus-1 3-section with divides.

an orientation preserving homeomorphism that a3 = (0,1) and ag = (1,0).
The dividing set will be two parallel curves of slope d. Note that «; intersects
the dividing set twice if and only if |a; N d| = 1. Therefore d = (1, £1). Since
d = (1,1) corresponds to a contact Heegaard splitting for an overtwisted
contact structure on S3, we must have d = (1, —1).

We first treat the case n = 2, and then proceed inductively. In this case,
we seek to find the possible slopes for as. As |as Nd| = 1, all curves which
intersect as once are given by Dehn twists of as about d. In addition the
requirement that |ag N d| =1 means that a3z is a single Dehn twist of as
about d. If this Dehn twist is left-handed, then the quadruple (X, d, g, a3)
gives a diagram for the overtwisted S, so the Dehn twist must be right-
handed. Therefore a3 = (1,—2) and by the classification of smooth genus
1 multisections (X, a1, ag, a3, d) gives a bisection with divides of the disk
bundle of Euler number —2 over the sphere.

In general suppose that (aj...c,—1) is a sequence of curves defining a
(n — 1)-section with divides. Then, as in the base case, a;,_1 is a right-
handed Dehn twist of «,,_2 about d and «,, is a right-handed Dehn twist of
ay—1 about d. Therefore, (ay,—2, ay,) = —2 so that we have indeed plumbed
an additional —2-sphere. O

6. Stabilization

Here, we will introduce an operation on multisections with divides which
takes a genus-g n-section and produces a genus-(g + 1) (n + 1)-section. An
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g+l g+l
cs Co
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A

Figure 19: The annulus used to perform a stabilization of a multisection with
divides. The existing cut systems C...C,, each receive a new curve cf“ to
form cut systems C] for i € {1,...,n}. The arc A glues with an arc in the
existing multisection which is disjoint from the dividing set to yield a curve
c. Performing a Dehn twist about ¢ to each curve in the cut system C/, yields
a new handlebody C | so that the sequence of cut systems (C1{,...,C} )

is a new multisection diagram.

explicit example of this process applied to the genus-1 bisection of 7%S? can
be seen in Figure 20.

This stabilization operation can be seen from both the perspective of a
handle decomposition, as in Section 3.1 or from the perspective of a PALF.
We will focus on the second perspective, and we recall the definition of a
stabilization of a PALF.

Definition 6.1. Let f: M* — D? be a PALF with fiber surface ¥ and
monodromy factorization II ;7.,. Let ¥’ is obtained by attaching a 2-
dimensional 1-handle to ¥ and let ¢,11 be a curve on Y’ intersecting the
belt sphere of the attached 1-handle geometrically once. Then a stabiliza-
tion along c,41 of f is the PALF with fiber surface ¥’ and monodromy
factorization I, .

This motivates a definition for a stabilization of a multisection with
divides, by doubling as follows. Let 9t be a diagram for a multisection with
divides given by (%,d,C4,...,Cy) and let C; be made up of components
(cl,...,c?). Let p1 and py be two points on d with neighborhoods N(p;)
and N(p2) and let A’ be an arc in X connecting p; and ps. Let T be the
cylinder shown in Figure 19.
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Let g : 0T — ON(p1) UON (p2) be a gluing map which sends the end-
points of the purple arcs in 7' to the intersection points of d with N (p1)
and ON(p2) and sends the end-points of A to the intersection of A’ with
ON(p1) and ON (p2).

Definition 6.2. The stabilization of 9 along A’ is the diagram Mg =
(¥,d,C1,...,C ) where

o X' =(E\(N(p1) UN(p2)) Uy T,
e ' is the union of d N (X \ (N(p1) U N(p2))) with the purple arcs in T,

e Cl=(c!,...,0 I for 1 <i<mn,and

I )
b C’;L-‘rl - (TC(C711)7 R TC(C%), TC(C%+1)

where ¢ = (A’ \ (N(p1) U N(p2)) U A and ¢/t is a meridian of T.

We next show that, when a multisection diagram with divides represents
a Weinstein domain, its stabilization is a multisection diagram with divides
representing a Weinstein homotopic domain.

Proposition 6.3. Let M be a diagram for a multisection with divides given
by (8,d,Cy, ..., Cy). Let Mg be a stabilization (X', d, C1, ...,C;, ). Then, Mg
s a multisection diagram with divides, and the Weinstein manifolds encoded
by M and Mg are Weinstein homotopic.

Proof. We first verify that g is still a multisection diagram with divides.
That g still represents a multisection smoothly follows from Lemma 4.5.
Next, we check the condition that each cut system intersects each of (¥/)"
and (¥')” in an arc system. Note that as in Figure 19, (X')* is ob-
tained from £ by attaching a single 2-dimensional 1-handle. Furthermore,

cf“, ..., & intersect the + and — 1-handles as co-cores. Thus, since 9
was a multisection diagram with divides, the cut systems C7,...,C! in-

tersect (X/)* as arc systems. For the cut system cl 11, we note that it
is obtained from C], by applying a Dehn twist about a curve ¢ which is
disjoint from the dividing set. Therefore, C/, N ¥* is the image of an arc
system under a diffeomorphism of Y%, and thus is an arc system. Finally,
we need to check that (C},Cj ,d’) represents a contact Heegaard splitting
of the tight contact structure on #4_15' x §2. For i =1,...,n— 1, this
holds because there is a Weinstein cobordism from the contact Heegaard
splitting (Cy, Ciq1,d) to the contact Heegaard splitting (Cj, Cy, ;,d’) built
from attaching a single 1-handle where the attaching S° is {p1,p2}. Thus,
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(Cl,Cl, 4, d') is a contact Heegaard splitting for (Y, &)#(S' x S%, &qa) where
(Y, &) is the contact manifold with contact Heegaard diagram (C;, Ciy1,d),
which is (#£St x 52, &44) by the assumption that 90 is a multisection dia-
gram with divides. That (Cj,, Cj_ 1, d’) reprsents the tight contact structure
follows from the fact that we can obtain this contact Heegaard splitting as
the boundary of a PALF sector as in the proof of Theorem 4.2.

Observe that the manifold represented by (¥',d,CyU C?—H, Co U
c{ﬂ ., ChuU ci“) is related to the manifold represented by
(%,d,C1,Cy, . ..,C,) by attaching a single 1-handle (whose attaching sphere
is an S%). Thus if (X,d, Cy, ..., Cy) represents a Weinstein domain W, then,
since any embedding of S° is isotropic so there exists a unique embedding
of SV up to isotropic isotopy, (¥',d, Cy U C‘({H, CoU c?“ ., ClhuU c{“) rep-
resents a the Weinstein domain WhS' x D3. By Remark 4.4, the new sector
W,, amounts to attaching a Weinstein cobordism to W’ = W{U---UW/_;.
Therefore, the stabilized diagram (X', d,C1,...,C},C) ;) also represents a
Weinstein domain. Furthermore, the Weinstein cobordism from the sector
W, attaches a Weinstein 2-handle which cancels with the added 1-handle,
as the attaching sphere of the 2-handle intersects the belt sphere of the
1-handle in one point. Therefore, in total, we have added a trivial Weinstein
cobordism (one which is Weinstein homotopic to a trivial cobordism).
Namely, if before stabilization, the multisection diagram with divides
represented a Weinstein domain, then after stabilization, the multisection
diagram with divides represents the same Weinstein domain up to Weinstein
homotopy as desired. O

7. Questions

Donaldson [1] and Giroux [11, 13] proved that every symplectic manifold
admits a symplectic divisor such that the complement of a standard neigh-
borhood of the divisor is a Weinstein domain. In search of a diagrammatic
theory for closed symplectic manifolds, one strategy would be to find a suit-
able structure on the neighborhood of the divisor,and glue as in [20] to a
multisection with divides for the Weinstein complement. This leads us to
the following questions.

Question 7.1. Can we construct a generalization of multisections with di-
vides for closed symplectic 4-manifolds or those with concave boundary? Do
we need different diagrammatic information to encode concave boundary?
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Figure 20: This figure gives the process for stabilizing the genus-1 multi-
section diagram for 7*S2. Top: The genus-1 multisection diagram for 752
together with two points on the dividing set and an arc A whose interior is
disjoint from the dividing set. Bottom left: Gluing the stabilizing annulus
in Figure 19 yields the first three cut systems for the stabilization, together
with a curve C. Bottom Right: Dehn twisting the green cut system about
the curve C yields the final cut system for the stabilized multisection.

How do we specify in a multisection diagram how to symplectically glue
convex pieces to concave pieces?

The results of Section 4 primarily consisted of using PALFs to obtain
information about multisections with divides, but in favorable conditions
(see Remark 4.4), this construction can be reversed to obtain a PALF from
a multisection with divides. It is an open question as to whether two PALFs
corresponding to the same Weinstein 4-manifold are related by stabilization,
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Hurwitz equivalence, and an overall conjugation. We have translated the
stabilization move in Section 6, and using a similar approach, the other two
moves can readily be translated into moves on multisections with divides.
Here, techniques used in the stable equivalence of trisections in [6] could
prove fruitful in addressing the following question.

Question 7.2. By passing to the related multisection with divides, can we
show that any two PALFS corresponding to the same Weinstein 4-manifold
are related by stabilization, Hurwitz equivalence, and an overall conjugation?

A preliminary result one would need in order to answer the previous
question would be a uniqueness result for multisections with divides. We note
that the stable uniqueness of trisections [6] could provide a useful outline
for such a result. In addition, the operations turning closed multisections
into trisections (see [20] and [18]) used in proving the stable equivalence of
multisections could be adapted to this setting.

Question 7.3. Let Wy and W5 be multisections with divides for the same
underlying Weinstein manifold W. What is a sufficient set of moves relating
W1 and Whs.

In [8] and [18] the authors show that every multisection with multisection
surface ¥, can be realized as a generic path of smooth real-valued functions
on X4. Much of the data of these functions is discarded in this process, so
that, in the end, the smooth topology is determined by the level sets of the
regular times. By keeping track of more information, it is likely that one
provide an answer to the following question which would link symplectic
topology with the theory of smooth functions on surfaces.

Question 7.4. Which generic paths of smooth functions f : ¥ x [0,1] — R
yield multisections with divides?

In Proposition 3.4 and Remark 4.4, we gave a sufficient condition for a
multisection diagram with divides to correspond to a Weinstein manifold.
This condition is likely not necessary and is, in practice, difficult to check.
We therefore pose the following question.

Question 7.5. Which multisection diagrams with divides correspond to
Weinstein manifolds?

One of the conditions we require for a multisection with divides is that
the contact structure on the boundary of each sector is tight. While check-
ing tightness is generally quite difficult, we are dealing with the restricted
class of connected sums of S' x S? where the problem is possibly more
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tractable. As these Heegaard splittings correspond to open book decompo-
sitions, Wand’s criterion for tightness [30] coming from the monodromy of
an open book could be translated into our context. As an alternative ap-
proach, the non-vanishing of contact invariant in Heegaard-Floer homology
is equivalent to tightness for connected sums of S! x S? [27]. Moreover, the
Heegaard-Floer homology of this manifold is particularly simple. Since each
sector in a multisection has a contact Heegaard splitting on its boundary,
we posit the following question.

Question 7.6. Is there a simple algorithm for computing the contact in-
variant of a contact structure on #5S! x S? from a contact Heegaard dia-
gram?

By analyzing a PALF filling of an open book supporting a contact struc-
ture Oszvath and Szabé show that the contact invariant invariant is non-
vanishing for Weinstein fillable manifolds [27]. A multisection with divides
seems to encode similar information to a PALF, but with Heegaard split-
tings playing the role of open book decompositions. In light of this, it is
possible that one can give a more direct proof of this non-vanishing result.

Question 7.7. Given a multisection with divides, locate the contact el-
ement of the three manifold given by the contact Heegaard splitting of
the boundary. Show that if the multisection consists of standard Weinstein
cobordisms (as in Proposition 3.4 or the generalization in Remark 4.4) this
element is non-vanishing.

References

[1] S. K. Donaldson, Symplectic submanifolds and almost-complex geome-
try, J. Differential Geom. 44 (1996), no. 4, 666-705.

2]

, Lefschetz pencils on symplectic manifolds, J. Differential Geom.
53 (1999), no. 2, 205-236.

[3] Y. Eliashberg, Contact 3-manifolds twenty years since J. Martinet’s
work, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 1-2, 165-192.

[4] H. Endo and Y. Z. Gurtas, Lantern relations and rational blowdowns,
Proc. Amer. Math. Soc. 138 (2010), no. 3, 1131-1142.

[5] H. Endo, T. E. Mark, and J. Van Horn-Morris, Monodromy substitutions
and rational blowdowns, J. Topol. 4 (2011), no. 1, 227-253.



264 G. Islambouli and L. Starkston

[6] D. Gay and R. Kirby, Trisecting 4—manifolds, Geom. Topol. 20 (2016),
no. 6, 3097-3132.

[7] D. T. Gay, Trisections of Lefschetz pencils, Algebr. Geom. Topol. 16
(2016), no. 6, 3523-3531.

8]

, Functions on surfaces and constructions of manifolds in dimen-
sions three, four and five, in Breadth in contemporary topology, Vol.
102 of Proc. Sympos. Pure Math., 79-94, Amer. Math. Soc., Providence,
RI (2019).

[9] H. Geiges, An introduction to contact topology, Vol. 109 of Cambridge
Studies in Advanced Mathematics, Cambridge University Press, Cam-
bridge (2008), ISBN 978-0-521-86585-2.

[10] E. Giroux, Convezité en topologie de contact, Comment. Math. Helv.
66 (1991), no. 4, 637-677.

[11] , Géométrie de contact: de la dimension trois vers les dimensions
supérieures, in Proceedings of the International Congress of Mathemati-

cians, Vol. II (Beijing, 2002), 405-414, Higher Ed. Press, Beijing (2002).
[12]

, Géométrie de contact: de la dimension trois vers les dimensions
supérieures, in Proceedings of the International Congress of Mathemati-
cians, Vol. II (Beijing, 2002), 405-414, Higher Ed. Press, Beijing (2002).

[13]

, Remarks on Donaldson’s symplectic submanifolds, Pure Appl.
Math. Q. 13 (2017), no. 3, 369-388.

[14] R. E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math.
(2) 148 (1998), no. 2, 619-693.

[15] R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Vol. 20
of Graduate Studies in Mathematics, American Mathematical Society,
Providence, RI (1999), ISBN 0-8218-0994-6.

[16] , 4-manifolds and Kirby calculus, Vol. 20 of Graduate Studies in
Mathematics, American Mathematical Society, Providence, RI (1999),

ISBN 0-8218-0994-6.

[17] K. Honda, On the classification of tight contact structures. I, Geom.
Topol. 4 (2000) 309-368.

[18] G. Islambouli, Uniqueness of 4-manifolds described as sequences of 3-d
handlebodies, arXiv:2111.08924, (2021).



Multisections with divides and Weinstein 4-manifolds 265

[19] G. Islambouli, H. Karimi, P. Lambert-Cole, and J. Meier, Toric multi-
sections and curves in rational surfaces, arXiv:2206.04161, (2022).

[20] G. Islambouli and P. Naylor, Multisections of 4-manifolds, arXiv:
2010.03057, (2020).

[21] P. Lambert-Cole, Constructing symplectic forms on trisections (2022).

[22] P. Lambert-Cole and J. Meier, Bridge trisections in rational surfaces,
arXiv:1810.10450, (2018).

[23] P. Lambert-Cole, J. Meier, and L. Starkston, Symplectic 4-manifolds
admit Weinstein trisections, J. Topol. 14 (2021), no. 2, 641-673.

[24] A. Loi and R. Piergallini, Compact Stein surfaces with boundary as
branched covers of B*, Invent. Math. 143 (2001), no. 2, 325-348.

[25] J. Meier, T. Schirmer, and A. Zupan, Classification of trisections and
the generalized property R conjecture, Proc. Amer. Math. Soc. 144
(2016), no. 11, 4983-4997.

[26] K. Niederkriiger and C. Wendl, Weak symplectic fillings and holomor-
phic curves, Ann. Sci. Ec. Norm. Supér. (4) 44 (2011), no. 5, 801-853.

[27] P. Ozsvéth and Z. Szabd, Heegaard Floer homology and contact struc-
tures, Duke Math. J. 129 (2005), no. 1, 39-61.

[28] I. Torisu, Convex contact structures and fibered links in 3-manifolds,
Internat. Math. Res. Notices (2000), no. 9, 441-454.

[29] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphdre, Topology 7 (1968)
195-203.

. Wand, Tightness is preserved by Legendrian surgery, Ann. of Math.
30] A. Wand, Tigh ) d by L dri A f Math
(2) 182 (2015), no. 2, 723-738.

[31] A. Weinstein, Contact surgery and symplectic handlebodies, Hokkaido
Math. J. 20 (1991), no. 2, 241-251.



266 G. Islambouli and L. Starkston

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA
Davis, CA 95616, USA

E-mail address: islambouli@ucdavis.edu

FE-mail address: 1starkston@math.ucdavis.edu

RECEIVED MARCH 2, 2023
ACCEPTED JULY 28, 2023



	Introduction
	Contact geometry and Heegaard splittings
	Kirby-Weinstein handlebody diagrams and multisections with divides
	PALFs, monodromy substitution and multisections with divides
	Genus-1 multisections
	Stabilization
	Questions
	References

