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Rational cuspidal curves and
symplectic fillings

MARCO GOLLA AND LAURA STARKSTON

A symplectic rational cuspidal curve with positive self-intersection
number admits a concave neighborhood, and thus a corresponding
contact manifold on the boundary. In this article, we study sym-
plectic fillings of such contact manifolds, providing a complemen-
tary perspective to our earlier article on symplectic isotopy classes
of rational cuspidal curves. We explore aspects of these symplectic
fillings through Stein handlebodies and rational blow-downs. We
give examples of such contact manifolds which are identifiable as
links of normal surface singularities, other examples which admit
no symplectic fillings, and further examples where the fillings can
be fully classified.

1 Introduction

2 Stein handlebodies for fillings in the A, and B, families

3 Canonical contact structures in the exceptional
E3 and &g cases

4 Background on symplectic configuration of curves

5 Rational blow-down relations for fillings of unicuspidal
contact manifolds

6 Bounds on self-intersection numbers of rational
cuspidal curves

7 Rational cuspidal curves of low arithmetic genus

8 Further speculations and questions

References

1109

1110

1114

1128

1135

1137

1149

1154

1170

1174



1110 M. Golla and L. Starkston

1. Introduction

In [GS22], we studied symplectic rational cuspidal curves in closed symplec-
tic 4-manifolds up to equisingular symplectic isotopy (see also [GK22] for
an extensions of those results for curves in CP?). Rational means the geo-
metric genus is zero, and cuspidal means that the singularities are locally
irreducible and modeled on the singularities of complex curves. The link of
a cuspidal singularity is an algebraic knot, and we primarily focus on cases
where the link is a torus knot T'(p, q).

In this article we explore the symplectic and contact geometry associated
with rational cuspidal curves from a complementary perspective. Namely
we look at the symplectic fillings found as the complement of a neighbor-
hood of such a curve in some closed symplectic 4-manifold. We showed
in [GS22, Theorem 2.13] that if C' is a singular symplectic curve of pos-
itive self-intersection, it has small concave neighborhoods, whose contact
boundary we will denote by (Y, &c). Note that this contact structure de-
pends only on the topological types of the singularities, geometric genus,
and self-intersection number of C'. In this article, we will study properties
of these contact manifolds and their symplectic fillings for many examples
of (neighborhood germs of) rational curves C, specified by their singular-
ity types and self-intersection number. We describe some situations where
such contact manifolds admit no fillings, and others where the fillings can
be completely classified and described explicitly.

Note that any symplectic filling of (Y, &c) can be viewed as the com-
plement of a neighborhood of a symplectic embedding of C in a closed
symplectic 4-manifold (obtained by gluing the concave neighborhood of C
to the filling). Although our prior work gives classification results for em-
beddings for many such rational cuspidal curves and thus yields abstract
classifications of the symplectic fillings of (Yo, &¢), more work is required
to determine concrete diagrammatic presentations for these symplectic fill-
ings and to explore the relations between different fillings. We take on these
problems in this article.

We start with a study of the fillings of (Y, &) where C is a rational
cuspidal curves with a unique singularity modeled on {z® = y°} (whose link
is the torus knot T'(a,b)) which embeds into CP? in the homology class
d[CP'] € Hy(CP?). Note in this case, the corresponding self-intersection
number is d?. According to [Liul4, Theorem 2.3] (see also [BCG16, Re-
mark 6.18]), all such C belong to the list of [FLMNO07, Theorem 1.1]; namely,
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(p, q; d) is one of:

"417: (p7p+1,p+1)7 (Fj*27F‘j+2;F’j)7 E"3 : (3a2278)7
B, : (p,4p — 1;2p), (F7,F}\o; FiFj10), Es - (6,43;16).

Here F; denotes the i*® Fibonacci number. The two Fibonacci families cor-
respond to curves C' where (Y, &) is either a universally tight lens space
or a connected sum of universally tight lens spaces. In these cases, the
fillings have been previously classified, some of them have been presented
through Stein handle diagrams and Lefschetz fibrations, and their rational
blow-down relations have been established [Hon00, Lis08, LM14, BO16].
We denote the remaining two infinite families with A, and B,, corre-
sponding to (a,b) = (p,p+1) (and degree p+ 1) and (a,b) = (p,4p — 1)
(and degree 2p), respectively. The two exceptional cases, corresponding to
(a,b) = (3,22),(6,43) (of degrees 8 and 16) are denoted with £ and &. We
find presentions for each of the corresponding contact manifolds (Y¢, £¢) as
the boundary of a Stein handlebody diagram.

Theorem 1.1. Let C be a rational cuspidal curve in CP? with one cusp of
torus knot type.

o If C is of type Ay, then the unique minimal symplectic filling of ¢
has the Stein handlebody diagrams shown in Figure 1, so (Yo, &c) is
specified by the corresponding contact surgery diagram.

o If C is of type By, then the two minimal symplectic fillings are given
by Stein handlebodies in Figures 4 and 5, so (Yo,&c) is specified by
the corresponding contact surgery diagrams.

o If C is of type E3 or &, then ¢ is the canonical contact structure on
Yo given as the link of a normal complexr surface singularity whose
minimal resolution is symplectic deformation equivalent to the Stein
manifolds whose handle diagrams are shown in Figures 9 and 11, thus
yielding contact surgery diagrams for the corresponding contact man-

ifolds.

In the A, and B, cases, to prove the Stein handlebodies we present
have contact boundaries agreeing with (Yo, &c), we use Kirby calculus to
identify the smooth boundary of the handlebody with Yz, and an argu-
ment using Gompf’s '-invariant [Gom98] of contact structures and results
of Matkovi¢ [Mat18] to identify the contact boundary of the Stein handle-
body with £c. The key technical tool is a general computation of Gompf’s
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I-invariant for the contact manifolds (Yo, £¢) when C is an arbitrary ratio-
nal cuspidal curve (Theorem 2.1).

In the & and & cases, to identify the contact structure as the canonical
structure from a complex surface singularity we use classification results of
Ghiggini [Ghi08, Theorem 1.3] (see also [Tos20] for a more general state-
ment) and Heegaard Floer correction terms.

Next we consider relations between different symplectic fillings of the
same (Yo, &c). We focus on when such fillings are related by rational blow-
down, a surgery operation introduced by Fintushel and Stern [FS97] and
generalized by Park [Par97] and Stipsicz, Szabd, and Wahl [SSW08]. Be-
cause its effect on Seiberg—Witten invariants has been established, ratio-
nal blow-down has proven a very useful tool to produce small exotic 4-
manifolds (see [Par05, SS05, PSS05, FS06] as a small sample of the many
examples in the literature). When we have multiple symplectic fillings of a
given contact manifold, we can ask whether they are related via a known
rational blow-down operation, or whether the substitution of fillings yields a
new symplectic cut-and-paste operation. In the case of lens spaces with the
canonical contact structure Bhupal and Ozbagci proved that all symplectic
fillings are obtained from a plumbing by a sequence of symplectic rational
blow-downs [BO16]. We prove the analogous result for the cases of (Y, &¢)
considered above: every minimal symplectic filling can be obtained from the
largest filling by a sequence of symplectic rational blow-downs (where we
include generalized rational blow-downs of [Par97] and [SSWO08]).

Theorem 1.2. Let C be a rational unicuspidal curve in CP? whose singu-
larity link is a torus knot.

o If C is of type By, the two fillings of (Yc,&c) differ by rationally
blowing down a symplectic —4-sphere (or rationally blowing up a La-
grangian RP?).

o If C is of type E3 or &, one filling is given by a symplectic plumbing
of spheres and every other filling is obtained from this plumbing by a
sequence of symplectic rational blow-downs.

In the & and &g cases, we specify precisely which pairs of fillings are
related by a rational blow-down. In each case, there are pairs of fillings which
cannot be related by rational blow-downs—instead one must first rationally
blow-up one of the fillings to get to a larger filling and then rationally blow-
down to get to the second filling.
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Generalizing from the case of unicuspidal C' which embed in CP2, we
can consider more general rational cuspidal curves and the corresponding
contact manifolds (Y, {c). We specify the curve data determining (Ye, £¢)
through the singularity types of C' and the self-intersection number of C.
In this more general setting, we find a large class of such contact structures
which admit no fillings at all. In Section 6 we will define two effectively
computable invariants of cuspidal singularities, M and ¢, and we will prove
a slight generalization of the following theorem.

Theorem 1.3. Let C be a rational cuspidal curve with Sing(C') # () such
that (Yo, &c) is weakly fillable. Then

C-C< M(p) +2 in /(p)+ 1.
< DL M) i £(p)
p€Sing(C)

Equivalently, if C is a singular rational cuspidal curve which embeds into
any closed symplectic 4-manifold, the above bound on its self-intersection
number holds.

Finally, we look at symplectic filling classification results in some low
complexity cases. In a rational cuspidal curve C, each singularity has an
underlying arithmetic genus. This can be thought of as the genus that would
be added to the curve C' by smoothing the cusp singularity. Adding up the
arithmetic genus contributions from each singularity gives us the arithmetic
genus of the singular curve C. To give a sample of the filling classifications
for these more general examples (Yo, &), we investigate examples where
C' has low arithmetic genus and varying the self-intersection C - C' within
a certain range that attains the bound of Theorem 1.3. We include these
classification results in Section 7. In some cases, there is a unique minimal
symplectic filling and in others there are multiple minimal symplectic fillings
yielding potentially new symplectic cut-and-paste operations.

Organization. In Section 2, we give Stein handlebodies for the fillings
of (Yo,&c) in the A, and B, cases, and prove the first two items of The-
orem 1.1. Next, in Section 3, we identify (Yo, &c) with canonical contact
manifolds in the & and & cases, and provide their Legendrian surgery dia-
grams, thus completing the proof of Theorem 1.1. In Section 4, we provide
a brief summary of background from [GS22] that we will need for the re-
maining sections. In Section 5 we determine which fillings of (Y¢,&¢) are
related by rational blow-downs when C' is a unicuspidal curve in CP?, prov-
ing Theorem 1.2. Next, we look at more general examples of (Y, &¢). In
Section 6, we prove Theorem 1.3. In Section 7, we give classifications of
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fillings of (Y, &) for cases when C has small arithmetic genus. Finally, in
Section 8 we provide some questions and conjectures that build off of the
results we established.

Acknowledgements. Early progress on this project was made during the
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and the authors appreciate this excellent conference and opportunity to
collaborate. We would like to thank the referee for their careful work and for
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is grateful for hospitality from Université de Nantes. We also thank Fabien
Kiitle and Biilent Tosun for helpful conversations related to this project. LS
has been supported by NSF grants DMS 1904074 and DMS 2042345 during
this project.

2. Stein handlebodies for fillings in the A, and B, families

Our first goal is to explicitly present Stein handlebody diagrams for the
fillings of (Yo, &c) in the case that C is a rational unicuspidal curve in either
the family A, or B,. Such presentations are critical to study properties of
the fillings (such as the types of surfaces they contain) and to compute their
invariants. Additionally, the Stein handlebody induces a Legendrian surgery
diagram for the boundary. These provide explicit ways to understand the
corresponding cuspidal contact structures.

In order to verify that our Stein handlebodies have the correct contact
structure on the boundary, we will use a result of Matkovi¢ [Mat18] which
classifies contact structures on Seifert fibered L-spaces in terms their un-
derlying spin® structure. To encode the spin® structure concretely, we will
utilize Gompf’s I'-invariant [Gom98]. Gompf provided formulas to compute
this invariant for contact manifolds appearing on the boundary of a Stein
handlebody in terms of the Stein handlebody diagram. We will be inter-
ested in comparing contact structures arising on the boundary of a given
Stein handlebody, with the contact structures (Y¢,&¢) induced concavely
on the boundary of a neighborhood of a rational unicuspidal curve. To facil-
itate this comparison, we will compute Gompf’s I'-invariant for the concavely
induced structure (Yo, &o).

2.1. Gompf’s I'-invariants for rational cuspidal contact manifolds

We recall some background on spin and spin® structures. Let Fr(Y') denote
the SO(3) bundle of oriented orthonormal frames over Y and Spin(3) be
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the group Spin(3) x S'/{£1}. Spin® structures on Y are lifts of Fr(Y) — Y
to a Spin®(3) bundle. Spin® structures on Y are affinely in bijection with
H?(Y;Z) through the corresponding free and transitive action, and they
can be thought of as complex structures on 7Y @ R. From [Tur02, Chapter
XI.1.2], Spin®(Y) is identified with the set of elements in H?(Fr(Y); Z) whose
restrictions to the SO(3) fibers yield the non-zero element of H?(SO(3);Z) =
Z)2Z. A choice of trivialization 7 of T'Y gives an identification of Fr(Y") with
Y x SO(3), and thus yields an identification of Spin®(Y) with H?(Y;Z)
(note this is not canonical as it depends on the trivialization 7).

Spin structures, on the other hand, are lifts of Fr(Y) — Y to a Spin(3)
bundle over Y, and they are canonically in bijection with trivializations of
TY over the 2-skeleton of Y (with respect to a fixed cellular decomposition
of Y). When Y is a rational homology 3-sphere, spin structures on Y are in
bijective correspondence with self-conjugate spin® structures on Y. To see
this, following Turaev [Tur02, Chapter XI], first identify spin structures on Y’
with the elements of H'(Fr(Y');Z/27Z) whose restrictions to the SO(3) fibers
are the non-trivial element. Then the short exact sequence Z — Z — 7 /27
induces the long exact sequence on cohomology

—— HY(Fx(Y); Z) — HY(Fx(Y); Z/27) L H2(Fr(Y); 7Z) 2 H2(Fr(Y);Z) —

The Bockstein homomorphism 3 : H'(Fr(Y); Z/27Z) — H*(Fr(Y);Z) maps
spin structures on Y to spin® structures on Y. Since Y is a rational ho-
mology 3-sphere, H'(Fr(Y);Z) = 0, so this map is injective. The image of
the spin structures is precisely the spin® structures sg such that 2sq = 0, or
equivalently s = —s¢ (self-conjugate).

Gompf’s ['-invariant measures the 2-dimensional obstruction to unique-
ness of homotopy classes of oriented 2-plane fields on a 3-manifold. Any
oriented 2-plane field £ on a 3-manifold Y determines a spin® structure
on Y (by determining a complex structure on TY @ R). Gompf defines
I, (&) € Hi(Y;Z) to be the Poincaré dual of the class in H?(Y;Z) iden-
tified using 7 with the spin® structure determined by £. In [Gom98, Propo-
sition 4.1], he proves various properties including that 2I';(§) is Poincaré
dual to ¢1(€). A trivialization 7 of TY also determines a spin structure on
Y (since a spin structure is a trivialization of the tangent bundle over the
2-skeleton). For each spin structure s on Y, Gompf defines an invariant
I'(¢,s) € Hi(Y;Z). Proposition 4.8 of [Gom98] proves that if s is the spin
structure determined by a trivialization 7 then I'-(§) =T'(§,s) (i.e. ['(€)
only depends on the spin structure induced by 7).
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Let N be a standard concave neighborhood of a rational cuspidal curve
C' of arithmetic genus ¢ and self-intersection n > 0, with boundary (Y, ¢)
(we will omit the C subscripts for the rest of this section to have cleaner no-
tation). Note, the orientation on Y disagrees with the boundary orientation
from N. Let K denote the connected sum of the links of the singularities of
C (in the A, and B), cases, K will be the corresponding torus knot). Then
N is diffeomorphic to the knot trace X, (K) (the manifold obtained by at-
taching a single 2-handle to a 0-handle along K with framing n). Therefore
—Y has a surgery diagram consisting of the knot K with framing n. Cor-
respondingly Y has a surgery diagram consisting of the mirror knot m(K)
with framing —n.

A spin structure on a 3-manifold with a given integral surgery diagram
can be encoded by a characteristic sublink of the surgery diagram [Kap79]
(see [GS99, Proposition 5.7.11]). Given an oriented framed link L = L; U
-++U Ly C S3, we let Ik(L;, Lj) be the linking number between L; and L; if
i # j, and 1k(L;, L;) be the framing of the component L; (which we identify
with an integer via the Seifert framing). We extend lk by bilinearity over
links, so that, for instance, 1k(L;, )) = 0. In a 3-manifold obtained by integral
surgery on S% along a framed link L, a sublink L' C L is characteristic when,
for each component K; of L, the framing of K; is congruent modulo 2 to
Ik(K;, L"). (Note that this is insensitive to the choice of an orientation of
L.) In the surgery diagram for —Y, which consists of a single component
with framing n the only sublinks are the full link and the empty link. In the
case that n is even, both of these are characteristic and there are two spin
structures on —Y. In the case that n is odd, only the non-empty sublink
is characteristic and there is a unique spin structure. In either case, let
so denote the spin structure on —Y which corresponds to the non-empty
characteristic sublink.

Theorem 2.1. Let (Y,&) = (Yo,&c), where C is a rational cuspidal curve
of arithmetic genus g and self-intersection n. Let K be the connected sum
of the links of the singularities as above. Consider the surgery diagram for
—Y given by n-surgery on K. Then

['(€,50) = (1 — g)p € Hi(=Y),

where sq is the unique spin structure on —Y represented by the characteristic
sublink K, and p is the homology class represented by the meridian of K.

Proof. To set notation, we begin with some basic facts about homology and
cohomology. Hy(N;7Z) = 7Z with intersection form (n) and is generated by
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[C]. H*(N;Z) = Z and is generated by a class G where (G, [C]) = 1. On the
boundary, H?(-Y;Z) = Hy(-Y;Z) = Z/nZ, generated by the meridian
of the surgery knot. The restriction map i* : H?>(N;Z) — H?(-Y;Z) sends
G to the Poincaré dual of u.

Since spin® structures on a manifold M are affinely identified with
H?(M;Z), given any two spin® structures s and s’ on N, their difference
s’ — 5 represents a class in H?(N;Z). Under this identification, c1(s") —
c1(s) = 2(s" —s).

We will first fix a reference spin® structure, s on N, defined by the
property that

(c1(s0), [C]) = n.

One important property of this reference spin® structure is that its restriction
to ON = =Y is self-conjugate. To see this, observe that

{c1(%0), [C]) = —n,

so {c1(s0) — c1(50), [C]) = 2n. Therefore sy — 59 = nG € H2(N;Z). Then
i*(s0 — 50) = nPD(u) = 0 € H%(—Y;Z). Therefore, i*(s0) is self-conjugate
so it corresponds to a spin structure sy on —Y.

Recall the correspondence described above between spin structures on
—Y and characteristic sublinks of the surgery diagram for —Y given by n-
surgery on K. To see that the empty sublink does not correspond to sg
when n is even, consider the unique spin® structure t on N which satisfies
(c1(t),[C]) = 0. This spin® structure is self-conjugate on all of N, since t —
t =0 ¢ H?(N;Z). Therefore t is the image of the unique spin structure on N
under the corresponding Bockstein homomorphism 3 : H!(Fr(N); Z/27) —
H?(Fr(N); Z). Next, observe that {c1(so) — c1(t),[C]) =n,s0 80 —t = 3G €
H?(N;Z), and the restriction to —Y, i*(so — t) = 3 PD(u) € H*(-Y;Z).
Since % PD(u) is a non-zero element in H?(—Y'; Z), i*(s9) # i* (). Therefore
these two self-conjugate spin® structures on —Y correspond to distinct spin
structures on —Y. Since i*(t) corresponds to the empty sublink (by defini-
tion, the empty sublink of an integral surgery diagram corresponds to the
spin structure which extends over the corresponding 4-manifold described
as that 2-handlebody), sg must correspond to the non-empty sublink.

Now, we consider two spin® structures on IV, our reference spin® struc-
ture sp and the spin® structure s 7, coming from an almost complex structure
on N compatible with the symplectic structure, such that the complex tan-
gencies of J along Y give the contact structure £. The difference of these two
spin® structures corresponds to a class s; — s9 € H?(N;Z). We know that
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2(s7 — 50) = c1(57) — c1(s0), so since H2(N;Z) = Z has no 2-torsion, we can
determine the class s; — s¢ uniquely from computing the Chern classes.

By definition, we chose s to have ¢1(s9) = nG (where G is the generator
dual to [C]). We can use the adjunction formula to compute

(e1(s9), [C]) =2 — 29 + .

(This can be seen by replacing C' by a curve which smooths its singularities
symplectically, thus increasing the genus of C' to its arithmetic genus with-
out changing the homology class it represents. This symplectic smoothing
procedure is surgical and local in nature: any curve singularity in C? and its
Milnor fiber have the same link, as transverse knots, and so we can remove
the former and glue in the latter symplectically to get rid of one singularity
of a curve.)
Therefore ¢1(s7) — c1(s0) = (2 — 29 + n — n)[G], so

s;—s0=(1—9)G € H*(N;Z).

Restricting this class to the boundary, ON = —Y, we have i*(s;) —
i*(s0) = (1 —g) PD(p).

Now recall the definition of I'(¢,sp) from the beginning of this sub-
section. Since £ is given by the complex tangencies to —Y under the al-
most complex structure J, s restricts to the spin® structure on —Y deter-
mined by £. If 7 is a trivialization that induces the spin structure sg, then
I'(&,50) is the Poincaré dual to the class in H?(—Y;Z) corresponding to
the spin® structure i*(s;) (where the correspondence depends on 7). Note
that under this correspondence the spin® structure i*(sg) corresponds to the
0 element in H2(—Y;Z). Therefore, T'(, s9) = PD(i*(s) — i*(s0)), and the
result follows. O

2.2. Stein handlebodies for fillings

Observe that any symplectic filling of (Y, &) can be capped by a concave
neighborhood of the cuspidal curve C to form a closed symplectic manifold.
Equivalently, every symplectic filling of (Y¢,&c) arises as the complement
of a neighborhood of a symplectic embedding of C' into a closed symplectic
manifold. When C is a rational and unicuspidal curve in CP?, we classify such
embeddings in [GS22, Theorem 6.5]. The goal of this section is to turn this
perspective upside down, by translating our understanding of the embedding
of C into a concrete description of the Stein domain in its complement.
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For smooth handle decompositions, we can literally turn handle diagrams
upside down (negating the Morse function) to obtain handle decompositions
for many complements. However, it is not clear that a given smooth handle
decomposition for a complement will support a Stein structure. Since there
is not a notion of symplectic handle attachment for closed 4-manifolds, the
strategy of turning things upside down does not suffice to identify a Stein
handle structure on the complement, so we will use additional arguments to
show we have identified the correct geometric structure.

We start with the case where C'is in the family A,. In this case C' has a
unique singularity whose link is 7'(p, p + 1) so its arithmetic genus is @.
The self-intersection number is (p + 1)2. Then [GS22, Theorem 6.5] tells us
that the only minimal symplectic embedding of C' into a closed symplectic
manifold is into CP? and that there is a unique symplectic isotopy class
of such an embedding. As a consequence (Y¢,&c) has a unique minimal
symplectic filling, which is diffeomorphic to an affine complex surface after
attaching a cylindrical end. Our aim is to give a Stein handlebody description

of this object.
Theorem 2.2. Fizp > 1, and let C be a curve of type A,. Then the unique

filling of (Yo,&c) is the Stein handlebody Whyy, given by the diagram in Fig-
ure 1 (up to symplectic deformation and symplectomorphism).

Figure 1. Stein handlebody for the filling corresponding to the A, family.
The framing on the 2-handle is tb — 1 = 1.

That the filling has a handle decomposition with only one 1-handle and
one 2-handle was to be expected from the proof of [GS22, Theorem 6.5].
Indeed, in that proof we show that, letting T" be the tangent to the cusp of C,
the configuration C' U T' is birationally equivalent to the configuration of two
lines in CP?, and in particular its complement is diffeomorphic to S' x D3.
The handle decomposition corresponding to adding a neighborhood of 7'\ C'
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corresponds to attaching a 2-handle. In fact, using this argument one obtains
the (smooth) Kirby diagram underlying Figure 1.

Proof. To simplify notation, we will write (Y,&) instead of (Y, &¢). Since
Y is the boundary of a neighborhood of the rational cuspidal curve of type
A, (with the orientation reversed), Y = _S?p+l)2 (T'(p,p+1)). It follows,
for instance from [OS12, Lemma 4.4], that Y is a small Seifert fibered space
with Seifert invariants (—1; I%, %, p_lH) (see Figure 8 for the Seifert fibered
notation).

Since (p? + p + 1)-surgery along T'(p,p + 1) is a lens space [Mos71], the
torus knot T'(p,p + 1) is an L-space knot. Since (p + 1)? > 2¢9(T(p,p + 1)) —
1, by [LS04, Proposition 4.1] Y is a Heegaard Floer L-space.

Matkovi¢ proved in [Mat18, Theorem 1.3] that two tight contact struc-
tures on a small Seifert fibered L-space are isotopic if and only if they in-
duce the same spin® structure. We will compute Gompf’s I'-invariant (with
respect to the same spin structure on Y') for the contact structure &y, de-
scribed by the Stein handlebody of Figure 1 and use Theorem 2.1 to say
that I'(€, so) = I'(&wp, So); that is, &y, and € induce the same spin® structure.
Since both &1, and € are tight, by Matkovi¢’s result they are isotopic. Note
that when p + 1 is odd computing the first Chern class of &y, and ¢ would
suffice. However, when p + 1 is even, Hi(Y) contains 2-torsion, so knowing
that the first Chern classes agree does not suffice to prove that the spin®
structures are the same.

We have one surgery presentation, Py, for —Y given by (p + 1)2-surgery
on T(p,p+1). In order to compare I'-invariants, we need to relate this to
the surgery diagram for Y given as the boundary of Wy,. Note that in order
to obtain a surgery diagram for Y from the handle diagram for Wy, of
Figure 1, we need to switch to dotted circle notation for the 1-handle, and
then replace the dotted circle with a 0-framed circle. The resulting diagram
represents a smooth 4-manifold W}, obtained by surgering out the St x D3
going around the 1-handle and replacing it by S? x D?, but its boundary
is unchanged. We will refer to this surgery diagram for Y as P, and will
denote its two components by Ky and K7 where K is O-framed and K3
is +1-framed. (To see the framing on K; from Figure 1, calculate tb —1
using [Gom98, Equation (1.1)], using the framing convention of [Gom98,
page 634].)

To relate Py and P;, we first reverse the orientation of Py, and then
perform a sequence of Kirby calculus moves as in Figure 2, in which (a) is
Py and (b) is obtained from (a) by reversing the orientation. To go from (b)
to (c) we perform an anti-blow-up, which introduces a +1-framed unknot
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P, (+1)?

Figure 2. Kirby calculus moves relating surgery presentation Py to surgery
presentation P;, where the surgery presentation P; is induced by the Stein
handlebody in the bottom right.

and adds a full positive twist into the strands of the mirror of T'(p,p + 1)
and changes its framing to 0. This results in a symmetric link, so there is
an isotopy which exchanges the two components, taking us to (d). (e) is
isotopic to (d), and to obtain the final surgery presentation P in (f), we
do a zero-dot surgery, which replaces a 0-framed 2-sphere with a 1-handle.
This sequence of Kirby calculus moves provides an explicit diffeomorphism
identifying the two surgery presentations. We can carry the curve in Y given
by the meridian p of T'(p,p + 1) through the Kirby calculus moves to see
its image under this diffeomorphism. Following Figure 2, we see that u is
sent to the meridian of K in the surgery presentation Pj, or equivalently a
curve which passes once through the 1-handle in the boundary of Why.

In the statement of Theorem 2.1, the spin structure sy is represented
in the surgery presentation Fy by the non-empty characteristic sublink,
i.e. T(p,p+1). We would like to identify this characteristic sublink in the
surgery presentation Py with a characteristic sublink of the surgery presen-
tation P;. Note that, when p+ 1 is odd, there is a unique characteristic
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P, @+1? ~(p+1)? 0 K,

Figure 3. The characteristic sublink in Py represented by the colored T'(p +
1, p) is carried through the Kirby calculus moves. Reversing orientation keeps
the same component in the characteristic sublink. The anti-blow-up adds
the +1-framed component K; to the characteristic sublink if and only if
Ik(Ky, Ko) =p+11is even.

sublink Ky in the surgery diagram P;. When p + 1 is even, there are two
characteristic sublinks of P;: K7 and KgU K, so we need to determine
which of these corresponds to sg. It is explained in [GS99, Pages 190-191]
how to track the characteristic sublink through Kirby calculus moves, and
specifically through a blow-up. The characteristic sublink during a blow-
up is unchanged except that the new +1-framed unknotted component is
included if and only if it has even linking number with the previous char-
acteristic sublink. Therefore, after we push sg through the Kirby calculus
moves, it is represented by the sublink Ky U K7 when p + 1 is even, and by
Ky when p+ 1 is odd. See Figure 3.

Given a Stein handlebody diagram in standard form, Gompf provides a
formula to determine the I'-invariant for the contact structure induced on
the boundary. Let &1, denote the contact structure induced on the boundary
of the Stein handlebody Wyy,. Recall that P is a handlebody diagram for a 4-
manifold W} obtained by surgering Wyy,. The 2-handles attached to K and
K, determine homology classes ag and «j respectively which form a basis for
Hy(Wi; Z) (ay is represented by a surface obtained by capping off a Seifert
surface for K;). By [Gom98, Theorem 4.12], I'(&pp, So) is Poincaré dual to
the cohomology class j*p € H*(Y;Z), where j: Y — W}, is the inclusion
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and p € H?(W; Z) satisfies:
(2.1)

where L' is the characteristic sublink of Wy} corresponding to sp (namely
if p+1isodd L' =Ky and if p+1 is even L' = Ky U K7). Note that, as
observed in [Gom98, Section 4], the link L' + K is to be interpreted modulo
2; in particular, if Ko C L' then L' + Ko = L' \ K.

H%(W; Z) is Poincaré dual to Ha(Wy,, Y; Z), which is generated by the
classes of the meridian disks Dy and D; to Ky and K7, respectively. Since
(p, ;) = PD(p) - oy, and D; is a geometric dual of a;, we have that

PD(p) = %11{(1(0, L' + Ko)[Do] + % (rot(K1) + Ik(Ky, L' + Ko)) [D1].
We also have that PD(5*(p)) = 9(PD(p)) as in the following commuta-
tive diagram:
HX(W; s Z) —2—= H2(Y, Z)
lPD J(PD
Hy(Wp, Y3 Z) 2 H\ (Y Z)

The boundary map 0: Ho(W},, Y Z) — H1(Y;Z) sends [Dy] to [0Dg] =
p € Hi(Y;Z). Using the fact that a presentation of H;(Y';Z) can be obtained

from the surgery diagram P, with generators S?Do] and [0D;] and relations

0 p+1

presented by the intersection matrix (p +1°1 ), we see that

[0D1] = —(p+1)[0Dg] = —(p+ 1)p and (p+1)*u=0.
Therefore
['(&nn, s0) = PD(j*p) = 9 PD(p)
= %lk(K@, L+ KQ)[@D()] + % (rOt(Kl) + lk(Kl, L'+ Ko)) [8D1]

= % (Ik(Ko, L' + Ko) — (p+ 1) (rot (K1) + Ik(K1, L' + Ko))) p

Finally, by counting the number of downward cusps minus the number
of upward cusps in the Stein handlebody diagram of Figure 1, we see that
rot(Kp) =p—2.
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Let us now look at the two cases, according to the parity of p + 1.
If p+1 is odd, L' = Ky, so we can take the empty link as a mod 2
representative of L' + K. Therefore,

I'(€nb, s0) = 5 (Ik(Ko,0) — (p+ 1) (rot (K1) + 1k(K1, 0))) p

_ (p+Dp—-2)  —p*+p+2
- 2 p=r

N =

If p+1iseven L' = KyU Ky, so we can take K as a mod 2 represen-
tative of L' + K{. Therefore,

I'(&nn, s0) = % (Ik(Ko, K1) = (p+ 1) (rot (K1) +1k(K7, K1)))

p+1—(p+1)(p—2+1)  —p*+p+2

Comparing this with the calculation from Proposition 2.1 with g =
p(p72—1) (the arithmetic genus of the singularity with link T'(p,p + 1)), we

see that

_ 2
rsn) = (1= 22 ) = R (g0

Therefore, by Matkovi¢’s result, £ and &y, are contactomorphic. Since £ has a
unique minimal symplectic filling, Wy, must be this filling (up to symplectic
deformation and symplectomorphism). O

For symplectic curves in the B, family, we prove in [GS22, Theorem 6.5],
that there are exactly two relatively minimal symplectic embeddings of C
into closed symplectic manifolds up to symplectic isotopy: one embedding
is into CP? and the other is into S? x S2. Consequently, there are exactly
two minimal symplectic fillings of (Y&, &c) (up to symplectic deformation
and symplectomorphism): one is a rational homology ball and the other has
by = 1.

Theorem 2.3. Fiz p > 1, and let C be the rational cuspidal curve of type
By. Then the unique rational homology ball filling of (Yo, &c) is given by the
Stein handlebody depicted in Figure 4, and the unique filling of (Yo, &c) with
be = 1 is given by the Stein handlebody of Figure 5.

The proof will follow the same method as Theorem 2.2. A heuristic
argument, similar to that we gave for the A, family, for why the filling has a
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Figure 4. Stein handlebody diagram for the rational homology ball filling
of (Yo, &c) where C' is a By-type rational unicuspidal curve. The attaching
curve for the 2-handle passes through the 1-handle 2p times. Observe that
for the Legendrian attaching curve for the 2-handle, tb =4(p — 1) — (2p —
3) — (2p —3) =2 and rot = 2p — 3.

Figure 5. Stein handlebody diagram for the by = 1 filling of (Y, &¢) where
C' is a By-type rational unicuspidal curve. Observe that the blue Legendrian
attaching curve has tb = —1 and rot = p, and the green Legendrian attach-
ing curve has tb = —3 and rot = 2.

decomposition with one 1-handle and one 2-handle is found by considering
CUT, where T is the tangent to C' at the cusp.

Proof. The boundary of the handlebody is Yo as seen by the sequence of
Kirby calculus moves in Figure 6, which are explained in the caption. The
isotopy from the bottom left diagram to the bottom right one can be thought
of in terms of the following observation. As a link, the diagram on the
bottom left is the obtained from the Hopf link by taking the (2,1)-cable
of one component and the (p, 1)-cable of the other. Since the link obtained
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by doing the (p, 1)-cable on the Hopf link is symmetric, we can choose to
“discharge” the cabling on the first component, so that cabling the two
components separately is the same as cabling one component twice. One
needs to keep track of the framing, using the writhe, to see that there are
(p — 1) negative twists.

We also track the class p and the spin structure sg (represented by
the non-empty characteristic sublink) through these diagrams. Since the
(green) +1-unknot of the blow-up links the (black) knotted component 2p
times, by [GS99, Pages 190-191], the +1-framed unknot is included in the
characteristic sublink corresponding to sg. That is, in the last diagram the
spin structure sg is represented by the characteristic sublink consisting of
both components of the surgery diagram.

Since the B, curve has arithmetic genus
we see that

%, using Theorem 2.1,

I'(éc,s0)=(1—(p—1)(2p—1))p=(3p—2p°)p.

Let &, be the contact structure represented by the Legendrian surgery
diagram of Figure 4. We compare I'({c, s9) and T'(&pp, So), following the
same computation as in the A, case.

As in the proof of Theorem 2.2, call W}, the surgery diagram on the
top right of Figure 6 (i.e. the one obtained from doing a zero-dot surgery
on Wyyp), and call Ky and K; the components of the link, where K is the
O-framed component (black) and K is the 1-framed component. With a
slight abuse of notation, we also call K; the Legendrian attaching curve
of Figure 4, which we orient as going from left to right. We orient Ky so
that 1k(Ko, K1) = 2p. Once again, we use the conventions from [Gom98|
to compute Thurston-Bennequin and rotation numbers in the presence of
1-handles.

Using these conventions, we compute the classical invariants of K7. There
are 4(p — 1) positive crossings coming from the 1/p*® of twist on the left,
2p — 3 negative crossings coming from the 2-cabling on the right, and 4p — 6
cusps, all of which are downward-pointing. Summing up:

th(K1) =4(p—1)—(2p—3) - (2p—3)=2;
rot(Kp) = # =2p—3.
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Figure 6. A Kirby calculus sequence from the surgery presentation of Y to
a rational homology ball. Along the top, going from the left most figure
to the next corresponds to reversing orientation and performing an isotopy,
then the next figure is related by an anti-blow-up, and the rightmost is
related by an isotopy. The bottom left figure is related by an isotopy and
switching the 0-framed component to a dotted circle, and the bottom right
figure is obtained by an isotopy to put it in standard notation. This bottom
right figure is the same underlying smooth handlebody diagram as Figure 4
(the signed number of crossings between the two strands at the bottom is
—2(p—1)+1=—(2p—3), and the framing +1 = tb —1 for the Legendrian
realization in Figure 4).

Note that tb(K;) —1 = +1, so that the framing coming from the Legen-
drian surgery picture of Figure 4 agrees with the smooth surgery framing of
Figure 6.
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Call Dy and D;p the co-cores of the handles associated to the surgeries

along Ky and K7, respectively. The intersection matrix of Wy is (2(; le ),

so we have [0Dy| = p € H1(Y) and [0D1] = —2pp € H1(Y).

Recall that sy corresponds to the characteristic sublink L' := Ko U K3
containing both components of the link in Figure 6. The same computation
as in the proof of Theorem 2.2 now yields:

['(éun, s0) = PD(j*p) = 9 PD(p)

1 1
=5 k(Ko, L' + Kq)[0Do)] + 5 (rot(K1) + 1k(Ky, L' + Ko)) [0D1]

= %lk(KOaKl)N + %(rot(Kl) + (K, K1) (—2p)p

=ppu—p2p—3+1)u
= (3p— 2p°) .

Therefore, we have that I'({wp, s0) = (€, s0). That is, &y, and € in-
duce the same spin® structure on Y. Now, —Y is obtained as 4p?-surgery
along T'(p,4p — 1), so Y is a small Seifert fibered space. Moreover, since
4p? > 29(T(p,4p — 1)) — 2, by [LS04, Proposition 4.1] Y is a also a Heegaard
Floer L-space. Since both £ and &, are tight, Matkovié’s result [Mat18, The-
orem 1.3] implies that &, and £ are isotopic.

For the filling with b, = 1, the proof goes similarly, comparing the I'-
invariant calculation for the Stein handlebody of Figure 5 with that of The-
orem 2.1. We leave this computation to the reader, but provide assistance
with Figure 7, which gives a Kirby calculus sequence between the surgery di-
agram for Yo as —Si’pz (T'(p,4p — 1)) and one which is equivalent to Figure 5
by an isotopy plus surgering a 0-framed 2-handle to a 1-handle. O

3. Canonical contact structures in the exceptional
&3 and &g cases

In this section, we focus on (Y¢, &) for the two exceptional cases of rational
cuspidal curves in CP? with a single T'(a,b) cusp, with (a,b) = (3,22) or
(a,b) = (6,43). Our goal is to identify the contact manifolds in these two
cases as the canonical contact manifolds arising as links of complex normal
surface singularities. This will complete the proof of Theorem 1.1.

In the proofs, we will make use of the Ozsvath—-Szabd contact invari-
ant [0Sz05] in Heegaard Floer homology [0Sz04]. The relevant properties
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_4p—-1—

|
RS

|
<P

Figure 7. An abbreviated Kirby calculus sequence for Y in the B, case to
help compare the I'-invariant for the second filling. The right most diagram
can be isotoped so that after exchanging the 0-framed 2-handle for a dotted
circle and switching to the other 1-handle notation, we get a diagram which
is smoothly equivalent to Figure 5. To get from the center figure to the
left, handle slide all p strands the black curve over the blue curve, and then
cancel the blue and green curves. To get from the center figure to the right,
handle slide the green curve once over the blue curve. The spin structure
represented by the non-empty characteristic sublink on the left corresponds
to the spin structure represented by the characteristic sublink in the center
and right diagrams which consists of the black component only when p is
even, and the black and blue components when p is odd.

of the theory are the non-vanishing of the contact invariant for fillable con-
tact structures [OSz05, Theorem 1.5], the fact that large surgeries on torus
knots are L-spaces (i.e. they have the smallest possible Heegaard Floer ho-
mology) [LS04, Proposition 4.1], and the absolute grading on Heegaard Floer
homology [0Sz03].

We first consider the contact 3-manifold (Y¢o,&¢) associated to the
curve &, which is associated to the triple (3,22;8). Then topologically,
Yo = —83,(T(3,22)). In particular, it is a small Seifert fibered manifolds
with Seifert parameters (—2;1/2,1/3,15/22); see Figure 8 for an explana-
tion of the notation.

Expanding the rational surgeries with their continued fraction expan-
sions, we see that Yo is smoothly the boundary of the following plumbing
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pop)

Figure 8. A surgery description for the small Seifert fibered manifold with
parameters (eg;r1,72,73).

graph.

(3.1)

The canonical contact structure of a Seifert fibered space is the one
arising as convex boundary of a plumbing of symplectic spheres according
to a negative definite graph. Equivalently, it is the contact structure that
arises as the link of a complex surface singularity whose minimal normal
crossing resolution is that plumbing. Note that the graph (3.1) does have a
negative definite intersection form.

Proposition 3.1. When C is the rational cuspidal curve with a single
T'(3,22) cusp and self-intersection number 64, the contact manifold (Yc,éc)
is contactomorphic to the canonical contact structure on Yo associated with
the plumbing (3.1). It can be presented as a Legendrian surgery diagram as
in Figure 9.

Proof. Tosun [Tos20, Theorem 1.1(b)] classified tight contact structures on
small Seifert fibered spaces with eg = —2 and r1 + ro + r3 < 2, showing that
all such tight contact structures all arise from a Legendrian surgery picture
associated to the plumbing (3.1), as in Figure 10. Since (Y¢, &) is fillable, {¢
is tight [EG91]. As explained above Y is the small Seifert fibered space with
(eo;71,7r2,73) = (—2;1/2,1/3,15/22). Since, ri +ry + 13 = % < 2, Tosun’s
classification result applies.

We will prove that the canonical contact structure is the unique tight
contact structure (on the Seifert fibered space at hand) whose associated
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Figure 9. Stein handlebody for the plumbing inducing the canonical contact
structure on its boundary.

kz{v}l—k

Figure 10. Allowing some number of the stabilizations of unknotted compo-
nents of Figure 9 to be negative provides Legendrian surgery diagrams for
all other tight contact structures on this 3-manifold by a result of Tosun.

spin€ structure t extends to a rational homology ball. We do this by com-
puting the Heegaard Floer correction term associated to the spin® classes of
all tight contact structures, using Tosun’s classification.

We begin by observing that, since (Y¢, £¢) has a rational homology ball
filling, then the correction term d(Y¢,t) vanishes. We set out to prove that
this characterises the canonical contact structure (up to conjugation).

Since torus knots are L-space knots (in fact, lens space knots [MosT71]),
and the surgery coefficient is 64, which is larger than 2¢(7'(3,22)) —2 =
40, Y is an L-space [LS04, Proposition 4.1]. (Now we could use Ghiggini’s
classification result from [Ghi0O8] instead of Tosun’s, as mentioned in the
introduction.)

Since every tight contact structure on Yo arises as the boundary of a
Stein handlebody as in Figure 10, we can use this Stein filling to compute the
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degree of the contact invariant for each contact structure. The contact in-
variant is also the generator of the associated tower in HF " (Y), so its degree
is the correction term associated to the corresponding contact structure.

The possible realizations of the link L are distinguished by the rotation
numbers s,t of the components with framing —3 and —8: these can take
values £1 and +6, +4, £2, or 0, respectively. All other rotation numbers
vanish, since the framing is —2. Moreover, reversing both signs corresponds
to conjugation. Let Js; be the complex structure on the Stein plumbing P
associated to Legendrian realization of the link with rotation numbers s and
t, and & the associated contact structure on Y¢.

Since ¢1(Jst) evaluates on a sphere in the plumbing as the rotation
number of the corresponding unlink, we can compute C%(Js,t) from the in-
tersection matrix @ of the plumbing P. @) and its inverse Q! are:

-2 1 1 1 0 0

1 -2 0 0 0 0

1 0 -3 0 0 0
@= 1 0 0 -2 1 0|’

0 0 0 1 -2 1

0 0 0 0 1 -8

132 66 44 90 48
66 65 22 45 24
4 1|4 22 36 30 16
@ ="%19 45 30 105 56
48 24 16 56 64
6 3 2 7 8

© 00 N W

Then ¢2(Js;) = vQ~1vt, where v = (0,0, s,0,0,1).
For convenience, call P* = P\ B*, a cobordism from S® to Y. Then,

A (Jst) — 2x(P*) — 30 (P¥) _ 384 3652 — 4st — 92
4 256 '

and it is easily verified that the minimum of this function, with s = £1 and
t € {0,+2,+4,+6} is 0, attained only at (s,t) = £(1,6); that is, only at the
canonical contact structure and its conjugate. O

Remark 3.2. We note that when understanding symplectic fillings, identi-
fying a contact structure up to contactomorphism and conjugation suffices.
This is because, for every symplectic filling of a contact manifold, the same
filling with the conjugate almost complex structure (negating the symplectic
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Figure 11. Stein handlebody for the plumbing inducing the canonical con-
tact structure on its boundary.

form) gives a symplectic filling of the conjugate contact manifold. Therefore
the fillings of a contact manifold and its conjugate are in bijective corre-
spondence.

Next, we consider the second exceptional case, where C has a unique sin-
gularity of type (6,43) and self-intersection number 162 = 256. In this case,
Yo = —S5:4(T(6,43)), so Y is a small Seifert fibered space with Seifert pa-
rameters (—2;1/2,1/6,36/43). A negative definite plumbing with boundary
Y is the following.

(3.2)

Proposition 3.3. When C is the rational cuspidal curve with a single
T(6,43) cusp and self-intersection number 256, the contact manifold (Yc, éc)
18 contactomorphic to the canonical contact structure on Yo associated with
the plumbing (3.2). It can be presented as a Legendrian surgery diagram as
. Figure 11.

Proof. Since the proof is very similar to that of Proposition 3.1, we omit the
details that would be repeated and only include the calculations where the
two cases differ.
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Again, in this case we have r{ +ro +rg = % < 2, so Tosun’s classifica-
tion result still applies. Moreover, the surgery coeflicient is again sufficiently
large, so Y is again an L-space.

In the plumbing graph there are still only two rotation numbers s and ¢
that vary, corresponding to the vertices of weight —6 and —8, respectively.
s takes values in {£2,0}, while ¢ takes values in {£4, £2,0}.

The intersection matrix ) associated to the plumbing is:

2 1 1 1 0 0 0 0 0
1 -2 0 0 0 0 0 0 0
1 0 -6 0 0 0 0 0 0
1 0 0 -2 1 0 0 0 0

Q=10 o o 1 -2 1 o0 0 o0/,
o 0 0 0 1 -2 1 0 0
o 0 0 0 0 1 -2 1 0
o 0 0 0 0 0 1 -2 1
o 0 0 0 o0 0 0 1 -8

and its inverse is

516 258 86 432 348 264 180 96 12
258 257 43 216 174 132 90 48 6
8 43 57 72 58 44 30 16 2
432 216 72 576 464 352 240 128 16
348 174 58 464 580 440 300 160 20
264 132 44 352 440 528 360 192 24
180 90 30 240 300 360 420 224 28
96 48 16 128 160 192 224 256 32
12 6 2 16 20 24 28 32 36

Therefore, in the same notation as in the proof of Proposition 3.1,

c3(Jst) — 2x(P*) — 30(P*) _ 2304 — 57s% — 4st — 36t>
4 256 ’

and the minimum of this function as s and ¢ vary in the corresponding ranges
is 0, attained only at (s,t) = £(4,6); that is, only at the canonical contact
structure and its conjugate. ([
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4. Background on symplectic configuration of curves

We will briefly collect some background related to rational cuspidal curves
and embedding classifications that we will use repeatedly in the remaining
sections of the paper. For further details, see [GS22, Sections 2 and 3] (see
also [Lis08]).

By [Wal04], every complex plane curve singularity can be resolved by
blowing up (sufficiently many times), and the diffeomorphism type of the link
determines the topology of the resolution. There are two natural stopping
points when resolving a singularity: the minimal resolution is the smallest
resolution such that the proper transform C' of C is smooth; the normal
crossing resolution is the smallest resolution such that the total transform
C of C is a normal crossing divisor, i.e. all singularities are double points.

The multiplicity m,, of a singular point p of a curve C is the minimal
intersection of a germ of a divisor D at p with C'. In terms of the resolution,
m,, is the algebraic intersection number of the exceptional divisor and the
proper transform after blowing up at p, and we have [C] = [C] — mplE].
The multiplicity sequence of a singularity p is defined as the sequence of
multiplicities of the curve at p and each of its proper transforms in the
sequence of blow-ups leading to the minimal resolution of the singularity.

Recall that an isolated singularity of a curve at ¢ can be smoothed to its
Milnor fiber. Let p(gq) denote the first Betti number of the Milnor fiber. If ¢
has r local branches, define §(q) by 26(q) = u(q) + r — 1. If ¢ is a cusp, then
d(q) is the genus of its Milnor fiber. It follows from the adjunction formula
that for a singularity with multiplicity sequence [my,...,m;,]

(4.1) 5(p) = 5 3 mym; — 1),

There are two different types of notions of the genus of a singular curve C":
the geometric genus and the arithmetic genus. The geometric genus py(C') is
the genus of the proper transform of the curve in the minimal resolution; by
definition, rational curves have geometric genus zero. The arithmetic genus
pa(C) is given by

(4.2) Pa(C) :==pg(C)+ D 8(p)

p€eSing(C)

Next, we will state various results about embedded surfaces in symplectic
4-manifolds that we used heavily in our embedding classification results
in [GS22], beginning with the following important result of McDuff.
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Theorem 4.1 ([McD90]). If (X,w) is a closed symplectic 4-manifold
and Cy C X is a smooth symplectic sphere of self-intersection number +1,
then there is a symplectomorphism of (X,w) to a symplectic blow up of
(CP2, A\wrs) for some A > 0, such that Cy is identified with CP*.

This theorem motivates our focus on surfaces embedded in CP?# N CP?.
We will use the standard basis h, e1, .. ., en for Ho(CP2#NCP?) with h? = 1
and e? = —1. The following is a useful lemma to find embedded exceptional
spheres which intersect a given collection of symplectic surfaces positively.

Lemma 4.2 ([McD90], [GS22, Lemma 3.5]). Suppose C is a config-
uration of positively intersecting symplectic surfaces in CP?#NCP2. Let
€y, .-+, €i, be exceptional classes which have non-negative algebraic inter-
sections with each of the symplectic surfaces in the configuration C. Then
there exist disjoint exceptional spheres E; ..., E;, representing the classes
€iyy - - -5 €, Tespectively such that any geometric intersections of E with C are
positive.

Using the previous lemma, information about an embedding of surfaces
in CP?#NCP? can be reduced to symplectic isotopy classes of curve con-
figurations in CP? together with the information of the homology classes
represented by the surface components. Using the adjunction formula, we
have the following restrictions on the homology classes that can represent a
symplectic sphere in CP2# NCP?.

Lemma 4.3 ([GS22, Lemma 3.7]). Suppose ¥ is a smooth symplectic
sphere in CP?#NCP? intersecting CP' non-negatively. Then writing [X] =
ah 4+ apeg+ -+ +any—_1en—1 (so a > 0), we have:

1) Y(a? + a;) = 2+ a® — 3a.
2) If a =0, there is one ig such that a;, = 1 and all other a; € {0,—1}.
3) If a # 0, then for all i, a; < 0.
Some particular cases which we will use often are:
4) Ifa=1ora=2,a; €{0,—1} for alli.

5) If a = 3, then there exists a unique ig such that a;, = —2, and a; €
{0,—1} for all other i.

The self-intersection number of ¥ can be used to compute how many a; have
coefficient 0 versus —1.
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In the following lemmas from [GS22], C; and C; are smooth symplec-
tic spheres in CP?#NCP? such that [C;] - h = [C}] - h =0 and [C;] - [C] > 0
whenever i # j. These are easy consequences of Lemma 4.3 and the hypoth-
esized intersection relations.

Lemma 4.4 ([GS22, Lemmas 3.8 and 3.10]). If [Ci]-[C;] =1 (and
[Ci] - h = [C}] - h=0), there is exactly one exceptional class e; which appears
with non-zero coefficient in both [C;] and [C;]. The coefficient of e; is +1 in
one of [Cy],[C}] and —1 in the other.

If [C;] - [C;] = 0, then either there is no exceptional class which appears
with non-zero coefficients in both, or there are exactly two exceptional classes
em and e, appearing with non-zero coefficients in both. One of these classes
em has coefficient —1 in both [C;] and [C;] and the other e, appears with
coefficient +1 in one of [C;] or [C}] and coefficient —1 in the other.

Lemma 4.5 ([GS22, Lemma 3.9]). If e, appears with coefficient +1 in
[C;] then it does not appear with coefficient +1 in [C;].

Lemma 4.6 ([GS22, Lemmas 3.11 and 3.12]). Suppose C1,...,Cy are
a linear chain of symplectic spheres of self-intersection —2 disjoint from
CP! in CP?*#NCP? ([C;]-[Cj] =1 |i—j| =1 and O otherwise). Then the
homology classes are given by one of the following two options up to re-
indexing the exceptional classes:

(A) [C’i]:ei—eﬂ_l fO?“iZl,...,k.
(B) [Ci]:€i+1—€i fOTiZl,...,k.

In the homology class of any surface disjoint from the chain, the coefficients

forei,... ex11 are equal.
If the chain is attached to another symplectic sphere Cy which does in-
tersect CPY, option (B) can only occur if s, . .., ey all appear with coeffi-

cient —1 in [Col. In particular if [Co] - h =1, option (B) can only occur if
[00]2 <1-—k.

5. Rational blow-down relations for fillings of unicuspidal
contact manifolds

Next we study the relationships between different fillings of contact mani-
folds (Yc,&c), where C is a symplectic curve in CP? with a single T'(a, b)
cusp. The relationship we will focus on is symplectic rational blow-down
(in its most general sense) which means replacing a plumbing of symplectic
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spheres with a symplectic rational homology ball filling. The first exam-
ples of rational blow-down were introduced by Fintushel and Stern [FS97],
shown to be symplectic operations by Symington [Sym98] and were gener-
alized in [Par97, Sym01, SSWO08]. In [BS11], Bhupal and Stipsicz show that
these examples are all the plumbings which can be symplectically rationally
blown down, and explicitly list out all families of non-linear plumbings which
admit symplectic rational blow-downs.

Linear plumbings which can be symplectically rationally blown down
have boundaries which are the lens spaces L(p? pg—1). The associ-
ated plumbing graphs for this family all arise recursively as an iter-
ated “2-expansion” of (—4), where a 2-expansion of a linear plumbing
with weights (—aq,...,—an—1) can be either (—a; —1,...,—ap—1,—2) or
(=2,—aq,...,—ap—1 — 1). This can be understood as starting with a —4-
sphere and a —1-sphere intersecting at two points transversally, and iter-
atively blowing up at one of the two intersection points on a —1-sphere,
and then looking at the linear plumbing that results from removing the —1-
sphere after all of the blow-ups. Observe that “interior” vertices cannot be
changed by 2-expansions. In particular, an interior vertex of square strictly
less than —2 survives after 2-expansions.

Now we proceed to study when different fillings of (Y, {¢) are related by
sequences of symplectic rational blow-downs. Note that among the curves
in CP? with a single T'(a,b) cusp, the two exceptional cases are the only
cases where the symplectic rational blow-down relations have not already
been established in prior work. In the A, family, there is a unique mini-
mal symplectic filling so there are no pairs to relate. In the B, case, there
are two fillings which are related by a single rational blow-down of a —4-
sphere [GS22, Proposition 6.6]. The Fibonacci families have Y a lens space
or connected sum of lens spaces. Symplectic rational blow-down relations be-
tween lens spaces were established in [BO16]. The minimal symplectic fillings
of the connected sum of two lens spaces are all Stein because the contact
manifolds are planar [Wen10]. Thus they are boundary sums of Stein fillings
of the two lens space summands [Eli90], so the results of [BO16] apply in
this case as well.

We begin with the first exceptional case where C' has a cusp of type
T'(3,22) and self-intersection number 64. The minimal symplectic fillings of
(Yo, &c) are each obtained as the complement of a concave neighborhood
of an embedding of C' (or any of its resolutions) into a closed symplectic
4-manifold. In [GS22] we classified all relatively minimal symplectic embed-
dings of the minimal resolution of C'. The minimal resolution of C' in this case
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is described by the graph below where the triple edge indicates a tangency
of multiplicity three between the +1-sphere and the —1-sphere.

ol =6l —02—02—0e2—02—02—0e?

In [GS22, Section 6], we prove that there are exactly three symplectic
isotopy classes of relatively minimal embeddings of this minimal resolution
into closed symplectic manifolds. The three isotopy classes are distinguished
by the maps induced by the embeddings on second homology which are
given by the three possibilities below. Note that in each case the embedding
is into a blow-up of CPP? and we use the standard generators h, e, . ..,en_1 €
Ho(CP?# NCP?; Z) represented by CP! € CP? and the exceptional spheres.
The vertices in the graph above correspond to generators of the second
homology of the concave neighborhood of the minimal resolution, and the
three possibilities for their images in Ho(CP?#NCP?;Z) under different
symplectic embeddings are (with N = 13,8, 7 respectively):

h,3h —2eg —e; — ez —e3 —e4 — €5 — €g,€1 — €7,€7 — €8, €8 — €9, €9 — €10, €10 — €11, €11 — €12,
h,3h —2eg —e1 —ez —e3 —eq4 —e5 — €p,61 — €7,83 — €1,€3 — €2,€4 — €3,€5 — €4, €6 — €5,

h,3h —2eg —e; —ex —e3 —e4 — €5 — €g,60 — €1,€] — €2,€2 — €3,€3 — €4,€4 — €5,65 — €6.

The fillings of (Y¢, &c) are the complements of these embeddings, which
have by = N — 7. Therefore we have three fillings, Vi, Vi, and Vj, where
the indices are chosen so that ba(Vj) = k. As a corollary to Proposition 3.1,
Vs is symplectic deformation equivalent to the negative definite symplectic
plumbing (3.1).

Proposition 5.1. There is a linear symplectic rational blow-down from Vg
to V1 and a non-linear symplectic rational blow-down from Vg to Vi, but no
rational blow-down from Vq to Vj.

Note that any sequence of symplectic rational blow-downs will yield a
sequence of symplectic fillings. Since we have a classification of the fillings of
(Yo, &e), it suffices to understand when any pair of these symplectic fillings
is related by a single symplectic rational blow-down.

Proof of Proposition 5.1. 1t is apparent from the plumbing description of Vg,
that there is a linear plumbing of symplectic spheres with self-intersections
(—8,—2,—2,—2,—2). This is one of Fintushel-Stern’s original rational blow-
downs L(p?,p — 1) with p = 6. Rationally blowing down this chain yields a
symplectic filling with bs = 1, so it is necessarily V.
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Since Vg itself is a plumbing, its replacement by the rational homology
ball filling Vj is itself a rational blow-down relation, and indeed this plumbing
coincides with the plumbing of Figure 1(f) with ¢ = 2 in [BS11].

We now show that there is no rational blow-down from V; to V. There is
a unique plumbing with bo = 1 which can be rationally blown down which is
a —4-sphere. The non-torsion part of Hy(V}) is generated by the orthogonal
complement of the classes in the corresponding embedding, namely 3eq —

e; — -+ - — e7. Therefore the intersection form of V; is (—16), so no homology
class has self-intersection —4. Thus there can be no rational blow-down from
Vi to V. O

Next we consider the second exceptional case, where C has a singularity
of type (6,43) and self-intersection number 162. Again, the minimal sym-
plectic fillings of (Yo, &) are precisely the complements of the relatively
minimal symplectic embeddings of a given resolution of C into closed sym-
plectic manifolds. We will consider a resolution which is between the minimal
and minimal normal crossing resolution indicated by the graph below. Here
the 4+1- and —4-spheres intersect tangentially with multiplicity 3, and the
—1-sphere intersects these two at the same point transversally.

ol — o2 o2
otl =t —0e2—02—02—02—02—092
Again, we have results from [GS22, Section 6] classifying the symplectic
isotopy classes of relatively minimal embeddings of this resolution. In this
case, there are six such embeddings distinguished by the maps they induce
on second homology which are given as follows.

Let Wy denote the filling complementary to the embedding of the reso-
lution into CP2#18CP? with homology classes:

h — ey — eis, €16 — €17, €17 — €18
h, 3h—2ey—e1—--+—eg, e1—e10, €10—€11, €11 — €12, €12 — €13, €13 — €14, €14 — €15

Let Ws denote the filling complementary to the embedding of the reso-
lution into CP2#16CP? with homology classes:

h —es — eg, egs —e7, €9 —eg
h, 3h—2e—e —---—e9, €1 —e10, €10— €11, €11 —€l2, €12 — €13, €13 — €14, €14 — €15
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Let Zg denote the filling complementary to the embedding of the reso-
lution into CP2#16CP? with homology classes:

h —es — ey, es —e7, €7 —¢€g
h, 3h—2e0—e1—---—eg, e1—e€l0, €10~ €11, €11 — €12, €12 — €13, €13 — €14, €14 — €15

Let Wy denote the filling complementary to the embedding of the reso-
lution into CP2#14CP? with homology classes:

h —ep — e, e11 — €12, €12 —e13
h, 3h—2e —e; —---—eg, € —e, €2—€1, €3—€2, €4—€3, €5—C4 €§—Ce5

Let Wy denote the filling complementary to the embedding of the reso-
lution into CP2#11CP? with homology classes:

h —es — eg, es —e7, €9 — €sg
h, 3h—2e—e1 —---—eg, e —el, e€2—e€1, €3—e3, €4—e3, e5—e4 €§—C5

Let Wo denote the filling complementary to the embedding of the reso-
lution into CP2#10CP? with homology classes:

h—€8—€9 €g — €7 €9 — €8
h, 3h—2ey—e —---—eg, eg—e€1, € —e2, €2—e€3, €3—€4 €4—€5 €5— €

Observe that the subscript indicates the second Betti number. A pos-
teriori, due to Proposition 3.3, Wy is the plumbing of symplectic spheres
according to the graph in (3.2).

Proposition 5.2. Let C' be the rational cuspidal curve with a single
T(6,43) singularity and self-intersection number 162. There exists a ratio-
nal blow-down of a connected embedded plumbing of symplectic spheres from
one filling of (Yo, &c) to another if and only if there is an edge between the
fillings in following graph.

/Wﬁ\ze.

Wo

Proof. First, we observe the existence of the rational blow-downs from Wy
to Wg and Wy, and from Wg and Wy to Wi. Using the fact that Wy is
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necessarily the plumbing (3.2) (by Proposition 3.3), we can visibly see sub-
plumbings of the form (—8,—-2,-2,—2,—2) and (—6,—2,—2). Note that
these symplectic embeddings are not unique, but it is possible to realize dis-
joint embeddings of both the (-8, -2, -2, -2, —2) and (—6, —2, —2) chains
as disjoint sub-plumbings. Rationally blowing down a (—8, —2, -2, -2, —2)
chain yields a symplectic filling with by = 4 which is necessarily W,. Ra-
tionally blowing down a (—6,—2,—2) chain yields symplectic fillings with
ba = 6, which must be either Wy or Zg. Rationally blowing down disjoint
plumbings (—8,—2,—2, -2, —2) and (—6, —2, —2) yields a symplectic filling
with bo = 1, so it must be Wj. Using the homological properties that define
Zg, we will show below that Zg does not admit any further rational blow-
downs. Therefore, rationally blowing down a (—6,—2,—2) plumbing in Wy
which is disjoint from a (=8, —2, —2, —2, —2) plumbing, necessarily results
in Wg. This shows as well that there is a further rational blow-down from
Ws to Wy. If we exchange the order of which of the two disjoint plumbings
we rationally blow-down first, we see the sequence of rational blow-downs
from Wg to W4 to Wl.

Next, we will show there is a rational blow-down from Wy to Zgz. Con-
sider the (—6,—2,—2) chain embedded as a sub-plumbing of Wy given by
turning right instead of left at the 3-valent vertex. This sub-plumbing is
not disjoint from the (—8, —2, —2, —2, —2) chain, and thus potentially yields
a different result from the rational blow-down of the other embedding of
the (—6,—2, —2) chain (where you turn left at the 3-valent vertex). We will
now verify that rationally blowing down this embedding of the (-6, —2, —2)
plumbing is not Wy, and thus must be Zg.

First, we argue that the result of this rational blow-down is simply con-
nected. Since Wy is a tree plumbing of spheres, it is simply connected.
The fundamental group of the rational homology ball which replaces the
(—=6,—2,—2) plumbing is normally generated by the meridian of the last
—2-sphere in the chain, so it suffices to show this curve is null-homotopic in
the complement of the plumbing in Wy. This meridian can be realized as the
equator of the next —2-sphere S in the Wy plumbing, so it bounds a disk (the
other half of the —2-sphere S) in the complement of the (—6, —2, —2) chain.
Consequently the result of this rational blow-down is a simply-connected
filling, and in particular it has trivial H;.

We will next show that Ws necessarily has non-trivial Hi. To see this,
consider the long exact sequence of the pair (Ws, 0Ws):

0= H2(8W6) — HQ(W6) — HQ(WG, 8W6) = HZ(WG) — H1<8W6> = Z/256Z



Rational cuspidal curves and symplectic fillings 1143

Here we identify Ho(Wg, 0Ws) — H?(Ws) by Alexander-Lefschetz duality.
Under this identification, the map Hs(Ws) — H?(Ws) in the sequence is
described by the intersection form Qywy, of Ws, by sending a € Ha(Ws) to
Qw,(a,-). The size of the cokernel of this map is the determinant of Qyy,.
In [GS22, Proof of Theorem 6.6, pp. 1652-1653], we computed the intersec-
tion forms for Wy and Zg, by finding an integral homology basis for the or-
thogonal complement in Hy(CP2#16CP?) of the corresponding embeddings
of the resolutions for Wg and Zg (which are listed above). We calculated that
det(Qw,) = 64 and det(Qz,) = 256. (Note, this distinguishes Ws from Zg.)
On the other hand, Hy(0Ws) = Z/2567Z since OWg = —S3-5(T(6,43)). Since
the co-kernel of the map Ha(Ws) — H?(Ws) has order 64, the map from
H?(Wg) to H1(0Ws) = Z/2567 cannot be surjective. Therefore, there are
some elements which are not in the kernel of the map H;(0Ws) — Hi (W),
so Hi(Wg) # 0. This shows that the rational blow-down of this embedding
of the (—6,—2, —2) chain is necessarily Zg.

Finally, the entirety of the Wy plumbing can be rationally blown down
in a non-linear way (this plumbing is [BS11, Figure 1(j)] for ¢ = 4) to Wj.

Next, we will show that fillings which are not connected by edges are
not related by a symplectic rational blow-down. Note that because rational
blow-down strictly decreases by, we only need to obstruct rational blow-
downs from larger fillings to smaller fillings.

We will next show that Zg cannot be symplectically rationally blown
down to any other filling. To do this, we start by looking at the classes
in Ho9(Zg) which could be represented by a symplectic sphere. Classes in
Hy(Zg) must be in the orthogonal complement of the classes listed above
for the Zg embedding of the resolution in Hy(CP?4#16CP?). Classes in this
orthogonal complement are classes of the form Zio a;e; where

ap =ayp =--- = ais, ag = a7 = ag = —ay, 2a0 a1 +---+ag=0

where, using the equalities above, the last equation can equivalently be writ-
ten as

(5.1) 2a0 + a1+ -+ a5 + 2a¢ = 0.

If the class represents a symplectic sphere, by Lemma 4.3, there exists an
index ig € {0,...,15} such that a;, = 1 and a; € {—1,0} for all i # 7. Com-
bining this with the forced equalities of coefficients above, we see that ig ¢
{1,6,7,8,10,...,15}. Furthermore ig # 9 because if ag = 1, ag = a7 = ag =
—1, but then there are no solutions to Equation (5.1) if ag, ..., a5 € {0, —1}.
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Therefore the only possibilities are that ig € {0,2,3,4,5}, and we get the fol-
lowing possibilities:

ep—er—ep—--—€5—€, 2<1<H
€0 — € — €4, 2<1<3<5h
€ — €1 — €10 — - — €15, 2<i<5
€ — €5, 23275]§5

Note that classes of the first type have square —9, the second type have
square —3 and the third type have square —8, and the last have square —2. In
particular, any symplectic plumbing of spheres which embeds in Zg can only
include spheres with self-intersection numbers in the set {—2, -3, —8, —9}.

We start with a general observation: any plumbing of spheres which can
be symplectically rationally blown down contains at least one sphere with
self-intersection strictly less than —3. For linear plumbings this follows from
the fact that they are all obtained as 2-expansions of (—4), and for non-
linear plumbings this follows from inspection of the families in [BS11] (note
the parameters p, g, must be non-negative).

Therefore, the only possible plumbings that may be symplectically ratio-
nally blown down which can embed in Zg must include at least one sphere of
self-intersection —8 or —9. Because by(Zg) = 6, any embeddable plumbing
must have by < 6. The only 2-expansion of (—4) of length < 6 which includes
a —9-sphere is (—9,—2,—-2,—2,—2, —2). Those that include a —8-sphere
are (—2,—8,—-2,—-2,—2,-3) and (—8,—2,—-2,—2,—2). For the non-linear
plumbings in [BS11], we can immediately rule out embeddings of plumb-
ings in Figure 1(a),(e),(h),(i),(j) and 2(a),(b),(c) because they contain ei-
ther —4- or —6-spheres. We rule out 1(b),(c),(d),(g) because any plumbing
in these families has b; > 6 when self-intersections are restricted to lie in
{—2,-3,—8,—9}. Thus the only non-linear plumbing which could be ratio-
nally blown down with by < 6, and self-intersection numbers in this class is
the case of [BS11, Figure 1(f) with ¢ = 2], which happens to be the plumb-
ing (3.1). We will rule out these remaining cases now using the pairwise
intersections of these classes (we will freely use the lemmas of Section 4).
If there were an embedding of the linear plumbing (-9, -2, -2, —2, -2, —2)
in Zs, up to permuting the indices {2, 3,4, 5}, the first sphere in the chain
would represent eg —e; —ejg — - -+ — e15 — €3, and the next three must rep-
resent es — e3, €3 — e4, €4 — e5 (in order for these spheres to have pairwise
intersections according to the linear chain). This leaves no possibility e; — e;,
i,7 € {2,3,4,5} for the fourth —2-sphere in the chain which has intersection
0 with the first two —2-spheres and 1 with the third. An embedding of
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(—8,—2,—2,—2, —2) would necessarily (up to a permutation of {2,3,4,5})
have the first four spheres in homology classes es —e; —ejg— -+ — €15,
e3 — eg, €4 — €3, e5 — €4, leaving no possible i, j € {2, 3,4, 5} such that e; — ¢;
could have intersection +1 with e5 — e4 and intersection 0 with the first
three classes. Note that the non-linear plumbing (3.1) which is case 1(f)
on the Bhupal-Stipsicz list, contains the linear chain (—8,—2,—-2, -2, —2)
as a sub-plumbing so this non-linear plumbing is also obstructed from
symplectically embedding into Zg. Similarly, an embedding of the linear
chain (-2, -8, —2, -2, —2, —3) would (up to permutation of {2, 3,4, 5}) have
the first four spheres in classes, eo —e3, es —e; — ey — - — €15, €4 — €3,
e5 — e4, leaving no options for the fifth sphere in the chain with the correct
intersection number. Thus there is no embedding into Zg of any plumbing
which can be symplectically rationally blown down.

Note at this point, we have established that Zg cannot be the filling
which results from rationally blowing down the (—6,—2, —2) chain in Wy
which is disjoint from the (—8,—2,—2,—2, —2) chain (since Zs admits no
further rational blow-downs). Because Wy is the only other symplectic filling
with by = 6, Wy is necessarily the result of the rational blow-down of this
disjoint (—6, —2, —2) chain in Wy. This establishes that Wy can be rationally
blown down to Wi, and gives another way to see that Wg and Zg are not
symplectomorphic.

Next, we will similarly obstruct rational blow-downs from Wy to Wy and
Wy, though the obstruction to a rational blow-down to Wy will be signifi-
cantly more subtle. In this case, the orthogonality relations imply classes in
Hy(Ws; Z) are precisely those of the form Z}io a;e; where

a7 =ag = ag =0, a; =ap =--- = as, 2a0 + a1 +---+as = 0.

Proceeding as before, the classes satisfying these constraints which are rep-
resented by symplectic spheres are

eg—ep—ept+-r—e5—¢, 2<1<6
€0 — € — €5, 2§i<j§6
ei—er—ept+--—eis, 2<1<6
62‘—6]', 2§Z#]§6

Note that the squares of these classes are {—9, —3, —8, —2}. Since the only
plumbing with by =2 which can be rationally blown down is (—5,—2)
and there are no symplectic —5-spheres in Wg, there can be no symplec-
tic rational blow-down from Wg to Wy. We can obstruct the embeddings
into Wg of symplectic linear plumbings of with by = 6 as before. The only
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3h—2ey—e1— - —eg

e] —ejp_e10 — €11 €11 — €13 €12 — €13 €13 — €14 €14 — €15

Figure 12. Embedding into CP?#16CP? of the resolution complementary
to Wg, together with a hypothesized disjoint plumbing with the homology
classes of each component specified, as well as exceptional spheres represent-
ing e7 and ejs.

two possibilities are (=9, —2, —2, -2, -2, —2) and (-2, -8, -2, -2, -2, —3).
In the former case, the first five spheres in the chain would necessarily
(up to permuting indices {2,...,6}) represent eg — e; — €19 — - -+ — €15 — €2,
eo — €3, €3 — ey, €4 — €5, €5 — €, leaving no option for the sixth sphere
in the chain. In the latter case, the chain would need to take the form
e3 — ez, ex — €] —ejg — - — €15, €4 — €2, €5 — €4, €6 — €5, €9 — € — €; for
some j € {2,...,5}, but any value of j would result in a non-zero intersec-
tion of the last sphere in the chain with one of the first four spheres.

Next we consider potential non-linear plumbings which can be ratio-
nally blown down. In fact, there is a unique non-linear plumbing from the
Bhupal-Stipsicz list with by = 6 which we cannot rule out with homology
classes alone. This is the plumbing [BS11, Figure 1(f)] for ¢ = 2, which hap-
pens to be the plumbing (3.1) (the filling of the other exceptional cuspidal
contact manifold). This consists of a linear chain (-8, —2, -2, —2, —2) with
an additional —3-sphere intersecting the second to last —2-sphere. Up to
permutation of indices {2,...,6}, the spheres in the linear chain necessarily
represent es —e; —ejg — - -+ — €15, €3 — €2, €4 — €3, €5 — €4, €g — €5 and the
additional —3-sphere would represent ey — e5 — eg. Since all of these classes
could be represented by symplectic spheres in Wg, obstructing this rational
blow-down is a little more subtle.

Suppose there exists such a symplectic plumbing in Wg. By gluing the
concave neighborhood of the resolution, this is equivalent to assuming that
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Figure 13. Sequence of blow-downs from CP2#16CP? to CP?, starting with
the configuration of Figure 12, and tracking the image under the blow-downs,
ending with a cuspidal cubic and two lines (one tangent to order 3 and the
other tangent to order 2 and passing through the inflection point). At each
stage, the thickened curves indicate the curves which are blown down to get
to the next figure in the sequence.
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in CP2#16CP?, there exists an embedding of the resolution configuration
(with homology classes as specified for Wg) and a disjoint embedding of
the plumbing (3.1) representing homology classes as described above. Ob-
serve that the classes e7 and eq5 intersect all of the components in these two
configurations non-negatively. Therefore, by Lemma 4.2, there exist embed-
ded exceptional spheres representing e; and ej5 which intersect all curve
components in these configurations non-negatively (so the geometric and al-
gebraic intersection numbers match). Consequently, we have an embedding
into CP2#16CP? of a configuration of curves as in Figure 12. Blowing down
symplectic —1-spheres in this configuration representing e; classes repeat-
edly as in Figure 13, we eventually reach a configuration of curves in CP?
consisting of the following components: a cubic C' with a simple cusp at a
point 7, a line L which tangentially intersects C at an inflection point p
(with multiplicity 3), and a line 7" which intersects C' and L transversally at
p, and intersects C' tangentially (with multiplicity 2) at an additional point
q. (Here r,p, q are all distinct points on C'.) In fact, such a configuration of
symplectic curves cannot exist, by the Riemann—Hurwitz formula. We fix
an almost complex structure J such that C, L, and T" are J-holomorphic.
Then, using the pencil of J-holomorphic lines through p gives a degree-2
map 7: CP! — CP! with at least two ramification points (corresponding to
the inflection line and the cusp respectively). Therefore Riemann—Hurwitz
reads: 2=2-2—> (ex(p) — 1), which implies that these are the only two
ramification points, from which we deduce that there is no other tangent
drawn to the cubic from the inflection point. (In fact, this exact argument
appears in [GS22, p. 1652].) Thus, we reach a contradiction, and the plumb-
ing (3.1) cannot embed symplectically in Wg, so we conclude there is no
rational blow-down from Wgs to Wjy.

To see there is no rational blow-down from Wj; to Wj, observe that
Hy(Wy) consists of classes Zz‘lio a;e; where

a1 = a2 = a3 = a4 = a5 = 4 = 410,

al]p = aljp = a3 = —aop, 2a0+a1+---+a920.
The classes of this form which can be represented by symplectic spheres are

ep—€ —ej—ejp—ep—e3 (<i<j<9
€i — €5, 7§Z§é]§9

These classes have squares —6 or —2. The only plumbing with by < 4 which
can be symplectically rationally blown down and involves only —6- and —2-
spheres is the linear chain (—6, —2, —2) which connects Wy to Wj. There is
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no such plumbing of length 4 so there is no symplectic rational blow-down
from Wy to Wy.
The classes in Hy(W7) have the form }jﬂo a;e; such that

a1 = Gz = a3 = G4 = a5 = A = 410,

ar =ag = ag =0, 200 4+a1+ -+ ag=0.

These are all integer multiples of 3eg — e; — - -+ — eg — e19 which has square
—16, so there is no —4-sphere in Wj to rationally blow down. O

Remark 5.3. Similar computations as seen in the previous proof which
analyze the homology classes represented by symplectic spheres in Vg proves
that there is no linear rational blow-down from Vg to V in the case of
&3, thus slightly strengthening the statement of Proposition 5.1. Similarly,
one can obstruct the existence of a linear rational blow-down from Wy to
Wo. Such computations show that these non-linear rational blow-downs are
genuinely new symplectic cut-and-paste operations, rather than just hidden
reformulations of the prior known linear rational blow-downs.

6. Bounds on self-intersection numbers of rational
cuspidal curves

In the earlier sections, we discussed symplectic fillings of contact manifolds
(Yo, &c) arising on the concave boundary of a neighborhood of a rational
cuspidal curve C' whose algebraic genus and self-intersection number are
determined by a degree which would allow the curve C to symplectically
embed in CP?. In this section and the next, we study symplectic fillings for
more general contact manifolds (Y, {¢) where self-intersection need not be
d? and the arithmetic genus need not be a triangular number (d — 1)(d — 2).

C will be a singular symplectic curve with positive self-intersection num-
ber (and thus admitting a concave neighborhood). Recall that (Y, &¢) de-
pends only on the singularity types, geometric genus, and self-intersection
number of C'. In this section, we will fix the singularity types for a rational
(geometric genus equal to zero) curve, and vary the self-intersection num-
ber s. The goal is to prove that for certain values of s (depending on the
singularities we fixed), (Yo, &c) is not symplectically fillable.

We begin with an easy, quite general remark.

Lemma 6.1. Let C and C' be singular curves with the same geometric
genus and configuration of singularities (not necessarily cuspidal), and 0 <
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C'-C'<C-C. If (Yo,&c) is strongly symplectically fillable, then (Yor,&cr)
is strongly symplectically fillable as well.

Proof. Suppose (Yo,&c) has a strong symplectic filling W. Let N¢ de-
note a standard concave neighborhood of C, and let (X,w) denote the
closed symplectic manifold which results from symplectically gluing N¢ to
W along their common contact boundary. Symplectically blow up X at
n:=C.-C—C"-C'" smooth points of C C X. The proper transform of C
yields a symplectic embedding of C’ in X #nCP2. Since C’ - C' > 0, there ex-
ists a concave neighborhood of C’ [GS22, Theorem 2.13] in X #nCP? whose
contact boundary is (Y¢r,£cv). The complement of this neighborhood is a
strong symplectic filling of (Yo, e ). O

Recall the definitions of the multiplicity sequence and d(p) from Sec-
tion 4, and that, for a cuspidal point p, 20(p) is the sum of m(m — 1) over
all elements m in the multiplicity sequence for p. Let M (p) be the sum of the
squares of all terms in the multiplicity sequence of the singularity at p. Let
{(p) denote the last (and smallest) entry in the multiplicity sequence. (Note
that in our convention, ¢(p) > 1 because we define the multiplicity sequence
using the minimal resolution rather than the normal crossing resolution.)
Note that M (p) (respectively, M(p)+ ¢(p)) is the amount by which the
self-intersection decreases when taking the minimal smooth (resp. normal
crossing) resolution of p. For instance, when the singularity at p is of type
Ton km+1, the multiplicity sequence is [ml¥]], so that M (p) = km?, £(p) = m,
and 6(p) = zkm(m —1).

Proposition 6.2. Suppose that C is a rational curve with cusp singularities
P1y--,Pu (1 >1), and with reducible singularities qi,...,q, (v >0), and
satisfying

C-C=Y M)+ Y M(g)+2minl(p;) + 2.

Then (Yc, c) is not strongly symplectically fillable. If additionally p1, ..., p,
are the only singularities of C (i.e. C is cuspidal), then &c is not even weakly
symplectically fillable.

Proof. Without loss of generality, suppose that p; is a singular cusp with
{(p1) = £ = min{(p;). By Lemma 6.1 above, it suffices to prove the statement
for C-C=> M(p:i)+ > M(q;)+ 20+ 2.

Let (W,ww) be a strong symplectic filling of (Y, &c), and (X', ') be
the closed symplectic manifold obtained by gluing a standard concave neigh-
borhood of C to (W, wy ). We now view C as a symplectic curve in X'.
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Blow up C' at all its singular points until we obtain the minimal smooth
resolution of C, i.e. the proper transform C of C' is a smooth sphere of
self-intersection C-C' =C-C — > M(p;) — > M(qj) = 2¢+ 2. Note that,
by definition, at p; the last blow-up creates an exceptional divisor that
intersects C' at a single point with multiplicity ¢.

Blow up ¢ more times at p;, so that at p; we get to the normal cross-
ing resolution of the singularity (C,p;), and then ¢+ 1 more times at the
intersection between (the proper transform of) C' and the last exceptional
divisor. Let (X,w) denote the corresponding blow-up of (X', w’).

The 4-manifold X contains the following configuration of symplectic
spheres: a +1-sphere C’, the proper transform of C, an exceptional divisor
intersecting C' transversely once, and a string of —2-curves departing from
it; this is depicted in (6.1).

(6.1)
—2 —2 -2 —2 —2 —1 +1

——1

The left leg contains exactly £ — 1 vertices of weight —2, while the right leg
contains ¢ of them. In total, the chain of —2-vertices has length 2¢.

By Theorem 4.1, X is symplectomorphic to a blow-up of CP2?, and
C’ can be identified with a line in CP?. Using the standard basis for
Hy(CP?#NCP?), by Lemma 4.3 the —I-sphere adjacent to C’ is in the
homology class h — ey — e1. Since the chain of —2s is of length 2¢ > 2, by
Lemma 4.6, up to relabeling the e;, the homology classes in the chain are
€] —ea,...,e9 — egrq1. The central vertex in the plumbing is in the homol-
ogy class esr1 — epto.

The (—¢ — 1)-sphere in (6.1) is disjoint from the line C’, so by Lemma 4.3

its homology class is of the form e; —ej, —--- —e;, for some 4, j1,...,j,. It
is also disjoint from the two halves of the chain of —2s, so the coefficients
appearing in the homology class of the (—¢ — 1)-sphere of eq,...,es1 are

all equal—namely they are either all 0 or all —1. Since the (—¢ — 1)-sphere
intersects the class eg11 — egro once positively, either i = ¢+ 2 or jp, =0+ 1
for some k. The former possibility is ruled out by Lemma 4.5, therefore
e1,...,epr1 must all appear with coefficient —1 in the homology class for
the (—¢ — 1)-sphere. However, the self-intersection of this class is at most
—{ — 2, a contradiction. This proves the first assertion.
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Note that when C'is a rational cuspidal curve, i.e. if v = 0, the 3-manifold
Yc, that is the boundary of a regular neighborhood of C| is a rational ho-
mology sphere; in particular, since every weak symplectic filling of £- can be
deformed to a strong symplectic filling [0099, Lemma 1.1}, the last assertion
follows. (]

In fact we note here that for unicuspidal curves with a singularity of
type (¢,£+ 1) the maximal self-intersection allowed by the proposition is
0?2 + 20+ 1= (£+1)2, which is exactly the degree of the rational cuspidal
curve {z‘*t — yfz = 0} of type A, This shows that the inequality is sharp.

We give a small refinement of the proposition above for curves with more
than one cusp.

Proposition 6.3. Suppose that C is a rational curve with cusp singular-
ities p1,...,pu (k> 1) such that {(p1) = £(p2) = min€(p;), with reducible
singularities q1,...,q, (v > 0), and self-intersection C - C satisfying

c-C> ZM(pi)—|—ZM(qj)+2min€(pi)—|—1.

Then the associated contact structure &o is not strongly symplectically fill-
able. If additionally p1,...,p, are the only singularities of C, then {c is not
even weakly symplectically fillable.

Proof. Let £ ={(p1) = ¢(p2). Again, by Lemma 6.1, we can assume that
s(C) =3 M(pi)+ > M(q;) +2minl(p;) + 1. As above, suppose that there
is a filling (W, ww) of (Yo, &c) and glue it to a standard concave neighbor-
hood of C' to obtain the closed manifold (X', w’).

Blow up C' at all its singular points until we obtain the minimal smooth
resolution of C, i.e. the proper transform C' of C is a smooth sphere of
self-intersection C'-C =C-C =Y M(p;) — > M(q;) = 2¢ + 2. Note that,
by definition, at p; and po the last blow-up creates an exceptional divisor
that intersects C' at a single point with multiplicity £.

Now blow up £ times at each of these latter tangency points to get to the
normal crossing divisor resolution at p; and po, in the blown-up manifold
(X,w). By assumption, the proper transform of C'is a symplectic +1-sphere,
and by Theorem 4.1 we can identify it with a line in a blow-up of CP2.
However, in X we see the following configuration.

——-1 ——-1 v !

(6.2) .\—.1 1 —.1/. - .\f e.//'

72/ \7.2 1:}/ \w’

o >




Rational cuspidal curves and symplectic fillings 1153

By Lemma 4.3 and 4.5, the vertices e, v, and w must be in the homology
classes h — ey —eg, ea —e3 — - -- —eyyo, and e; — eg, respectively. The class
e/ can either be in the homology class h — e; — e; or in the homology class
h —e3 — e;, for some j > 2. In either case, we get a contradiction, because
neither of the classes of v/ or w’ can be in a class es — > e, or e; — Y ex,
by Lemma 4.5.

This proves the first assertion. The second assertion follows verbatim as
in the case of Proposition 6.2. 0

The two propositions we have just proven give an upper bound for
the self-intersection of a curve C' with given singularities to exists in some
closed symplectic 4-manifold. In particular, combining either of them with
Lemma 6.1, we obtain that, if we fix the singularity types of a rational curve
C, the set of integers s such that s = C' - C' for some C' in a closed symplectic
4-manifold with those singularities is either empty or an interval (—oo, s¢].

In the rational and unicuspidal case, the existence of the Puiseux ex-
pansion shows that every singularity type is realized as one singularity of
a rational plane curve, say Cy. Blowing up all the other singularities of Cy
(except for the desired one), one obtains a rational curve C; in a blow-up
of CPP? that has one singularity of prescribed type. This shows in particular
that, in the unicuspidal case, we always have an interval (—oo, s¢] of realized
self-intersections, and Proposition 6.2 gives an upper bound on sg.

Giving explicit lower bounds on sy, however, is less easy. In the case
of singularities of type (p,q), we can find the bound sy > pg. Indeed, the
curve {xPz97P — y? =0} has degree ¢, and two singularities: one of type
(p,q) at (0:0:1), and the other of type (¢ —p,q) at (1:0:0). Taking
the minimal smooth resolution of the latter, we obtain a curve C of self-
intersection strictly larger than ¢> — (¢ — p)q = pq (see [GS22, Lemma 2.4]),
whose unique singularity is of type (p,q). Note that the self-intersection
of the proper transform of C' in the minimal smooth resolution of its only
singularity, too, is positive (again, by [GS22, Lemma 2.4)).

Remark 6.4. A version of the two obstructions above was already known
in the algebro-geometric context. Indeed, Hartshorne proved in [Har69, The-
orem 4.1] that if an algebraic surface X contains a smooth genus-g curve C’
of self-intersection at least 4g + 6, then X is ruled, and C’ is a section. The
analogue result in the symplectic context has been proven by Kiitle [Kiit21].
For instance, this applies to the case of a rational curve C' whose unique
singularity is of type (2,3), and whose self-intersection is at least 10. To see
this, observe that smoothing the singularity yields a genus-1 curve C” satis-
fying the requirements of Hartshorne’s theorem, so C’ is a section of a ruled
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surface X — T2. Blow up once at the cusp of C and consider the map from
the proper transform of C' to T obtained by composing the blow-down with
the projection. This is a degree-1 map from a sphere to T2, which gives a
contradiction. This specific case was also known in the symplectic context,
by work of Ohta and Ono [OO05].

In general, the bound obtained by applying Hartshorne’s or Kiitle’s re-
sult is weaker than the one obtained by applying Proposition 6.2. This can be
seen in the following family of examples: look at rational curves with only one
singularity at p, which is of type (Fj, Fx11). (As usual, F}, is the k*" Fibonacci
number.) On the one hand, we have 4p,(C) +5 = 2(Fj, — 1)(Fi41 — 1) + 5,
so Hartshorne’s bound guarantees that there are no such curves as soon as
the self-intersection s satisfies:

S Z 2Fka+1 - 2Fk — 2Fk+1 + 7.

On the other hand, the recursive definition of the Fibonacci numbers gives
{(p) = F3 = 2, so our bound implies that there can be no such rational curve

when
k

s>M(p)+2-242=> F}+6=FFu+4,
h=3
which is much smaller than the previous bound if k is large. (Here we have
used the remarkable identity Z?:o sz = FyFyy1.)

7. Rational cuspidal curves of low arithmetic genus

In this section we look at symplectic filling classifications for contact man-
ifolds (Yo,&c) where C is a rational cuspidal curve with low complexity,
where we take arithmetic genus as our measure of complexity.

Recall from Section 4 that the arithmetic genus of a rational curve is
determined by the multiplicity sequences of its singularities; each entry m
in the sequence(s) contributes im(m — 1) to the genus. If we restrict to
low genus cases, this significantly restricts the types of singularities that
may arise. We can vary the self-intersection number of the curve, s, freely
(the curve will admit a concave neighborhood if s > 0), however we can
only utilize techniques from [GS22] to classify fillings if s is sufficiently large
to ensure that the proper transform of the curve in the minimal smooth
resolution has positive self-intersection. Using the notation from Section 6,
this means that we need s > Zp M (p), where the sum is taken over all
singular points p. Note that when the self-intersection gets sufficiently large
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so that it exceeds the bounds of Proposition 6.2 or 6.3, the corresponding
contact manifold is not fillable.

In this section, we consider all possible rational cuspidal curves C' whose
algebraic genus is at most three, with self intersection large enough so that
the proper transform of the curve in the minimal resolution has strictly posi-
tive self-intersection. For each such curve, we classify the minimal symplectic
fillings of the corresponding contact manifold (Y, &¢).

The reader is encouraged to review techniques and results from [GS22],
as we will use them frequently in this section.

7.1. Genus 1

A rational cuspidal curve of arithmetic genus 1 can only have a single multi-
plicity sequence [2] singularity, which corresponds to type (2, 3), i.e. a simple
cusp. Suppose C'is a rational cuspidal curve with a simple cusp as its unique
singularity and self-intersection s := C' - C. For convenience, throughout this
subsection we will denote the corresponding contact manifold by (Y5, &s)
(though of course the contact manifold depends on the singularities speci-
fied).

The minimal smooth resolution results from a single blow-up at the cusp.
The total transform consists of an exceptional divisor F of self-intersection
—1 which is simply tangent to the smooth proper transform of C' which has
self-intersection s — 4. Therefore we constrain ourselves to the cases when
s> b.

Proposition 7.1. Let (Ys,&s) be the contact boundary of a concave neigh-
borhood of a rational cuspidal curve with a unique simple cusp, and self-
intersection s.

o When s =5,6,7,9, (Ys,&s) has a unique minimal symplectic filling W
and by(Wy) =9 — s.

o When s =38, (Ys,&s) has exactly two minimal symplectic fillings W5
and WB, and bQ(WA) = bQ(WB) =1.

o When s > 10, (Ys,&s) has no symplectic fillings.

Proof. Since the multiplicity sequence for the unique singularity is [2], follow-
ing the notation from Section 6, we have M (p) = 4 and ¢(p) = 2. Therefore,
by Proposition 6.2, when s > 10, (Y5, &s) has no symplectic fillings.

For any minimal symplectic fillings W of (Yj, &), we can glue W to a
concave neighborhood of C' to obtain a closed symplectic manifold X such



1156 M. Golla and L. Starkston

+1

o

s—95H

Figure 14. A blow-up of a curve C with a single simple cusp and self-
intersection s, so that the proper transform C has self-intersection +1.

that the pair (X, C) is relatively minimal. Conversely, for any relatively min-
imal symplectic embedding of C' into a closed symplectic manifold X, there
is a concave neighborhood of C' whose complement is a minimal symplectic
filling of X . Therefore, to analyze the symplectic fillings when 5 < s < 9, we
classify relatively minimal symplectic embeddings of C' into a closed sym-
plectic manifold X. If C embeds in X, then we can blow up X, once at the
singular point p to resolve the singularity of C', and s — 5 times at another
point ¢, so that the resulting proper transform C' has self-intersection 1. See
Figure 14.

By Theorem 4.1, there exists a symplectomorphism of X#(s — 4)CP?
to CP2#NCP? identifying the proper transform C, a smooth symplectic
sphere of self-intersection +1 with CP! ¢ CP?. Using the standard basis
{h,e1,...,en} for Hy(CP?#NCP?), [C] = h. We determine the possible ho-
mology classes for the other components using the lemmas from section 4. By
Lemma 4.3, the tangent exceptional sphere E represents 2h —e; — - - - — e5.
When s > 5, there is a chain of s — 5 additional exceptional divisors. The
first sphere in the chain is a —1-sphere intersecting C' transversally and dis-
joint from F., and thus represents the class h —e; — ea (up to relabeling).
By Lemma 4.6, the remaining spheres in the chain represent (a truncation
of) ea — e3, €3 — ey, €4 — e5 or in the case that s = 8 (so there are exactly
two —2-spheres in the chain) they can represent es — e3, e; — ea. In the first
option, by Lemma 4.2, we can blow down disjoint exceptional spheres repre-
senting e1 and e;, ..., e5 where j is the highest index appearing in the chain,
such that these spheres have only positive intersections with the configura-
tion. After these blow-downs, we can sequentially blow-down proper trans-
forms of spheres in the configuration representing the remaining e; classes.
After blowing down all exceptional classes, the image of the total transform
of C' descends to a conic (the image of F) with one tangent line (the image
of C'), and, when s > 5 another line intersecting the conic transversally in
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two points (one is the image of es, ..., e5, and the other is the image of e;)
in CP?.

By [GS22, Proposition 5.1], such a configuration has a unique symplectic
isotopy class in CP2. Therefore there is exactly one relatively minimal sym-
plectic embedding (up to symplectic isotopy) of the total transform of C' into
X+#(s — 4)CP? = CP?#5CP? for each homological embedding. By deleting
a concave regular neighborhood of the total transform of C', we get exactly
one minimal symplectic filling of (Y5, &) for each homological embedding.
When s = 5,6, 7,9, this shows that there is a unique minimal symplectic fill-
ing, corresponding to the unique relatively minimal symplectic embedding of
C into CP?#(5 — (s — 4))CP?. Since (Y5, &s) is a rational homology sphere,
the Mayer—Vietoris long exact sequence implies the complementary filling
has by = 9 — s. By additivity of the signature, it is also negative definite.

When s =8, there is the second homological embedding to consider,
where the final —2-sphere in the chain represents e; — e2. Using Lemma, 4.2,
we can find disjoint exceptional spheres in classes es, e4, and e5. After blow-
ing these down, the proper transform of a sphere in the configuration rep-
resents es. Finally, after blowing down es, we find the proper transform of
another sphere in the configuration represents e; and we blow this down.
The resulting configuration is a conic (the image of ) and two distinct
tangent lines (the images of C' and of the first exceptional divisor in the
chain, respectively). Again, by [GS22, Proposition 5.1], this configuration
has a unique isotopy class in CP?, so we get a unique corresponding fill-
ing, that we call Wp. To see that the two corresponding fillings Wy (com-
ing from the first embedding) and Wp are different, we look at their in-
tersection forms. The torsion-free part of the former is generated by the
class e; — ea — e3 — eq4 + 2e5, while that of the latter is generated by the
class e4 — e5. In particular, the intersection forms of W, and Wpg are non-
isomorphic, so W4 and Wg are non-diffeomorphic. O

Remark 7.2. Note that in the s = 8 case, the two homological embeddings
of the total transform of C, correspond to two symplectic embeddings of C,
one into CP?#CP? and the other into S? x S2. The former embedding is
obtained by blowing up a cuspidal cubic in CP? at a non-singular point.
The latter is obtained by taking a cuspidal cubic D and a line L meeting
D transversely in three points, blowing up CP? at two of them, and then
contracting the proper transform of L. In our analyses, this will be a common
source of multiple fillings of the same cuspidal contact manifold with the
same Betti numbers.



1158 M. Golla and L. Starkston

2]1—61—“'—84—8(;

Figure 15. A blow-up of a curve C' with a two simple cusps and self-
intersection s, so that the proper transform C has self-intersection +1.

7.2. Genus 2

For a rational cuspidal curve of arithmetic genus 2, there can either be two
simple cusps (each with multiplicity sequence [2]), or a single cusp which is
a cone on a (2, 5)-torus knot (multiplicity sequence [2,2]). In both cases, the
minimal resolution results from two blow-ups at points of multiplicity 2, so
we can classify symplectic fillings for such curves when the self-intersection
number s > 9.

Proposition 7.3. Let C be a rational cuspidal curve with self-intersection
number s, such that either it has exactly two simple cusps or it has a unique
singularity of type (2,5), and let (Ys,&s) denote the corresponding cuspidal
contact manifold.

o When 9 < s <11, (Ys, &) has a unique minimal symplectic filling Wi,
and by(Wy) =13 — s.

o When s =12, (Ys,&s) has exactly two minimal symplectic fillings, Wa
and WB, and b2(WA> = bQ(WB) =1.

o When s > 13, (Y, &) admits no symplectic fillings.

Proof. We proceed with the same methods as used in the genus-1 case. The
resolutions we embed into X# (s — 7)CP? = CP?# NCP? are shown in Fig-
ures 15 and 16 for the two types of singularity configurations. In each case,
we blow up a sufficient number of times so that the proper transform C' has
self-intersection 1, thus identifying C' with CP' c CP? using Theorem 4.1.
In the case of two simple cusps, there are two tangent exceptional divi-
sors of self-intersection —1 representing classes 2h —e; —--- —eq4 — e5 and
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Figure 16. A blow-up of a curve C' with a one cusp of type (2,5) and self-
intersection s, so that the proper transform C' has self-intersection +1.

2h —e1 —---—eq4 —eg by Lemma 4.3. By Lemmas 4.3 and 4.6, the ex-
ceptional divisors in the chain of length s — 9 represent classes h —e; —
eg,e9 — ez, e3 —eyq (Case 1), or h — ey — eg, e — e3, e — ez (Case 2) (when
s < 12, the sequence is truncated and there is a unique option). In case 1, by
Lemma 4.2, we can find disjoint exceptional spheres representing ey, e4, €5,
and eg (also e3 or e3 and ey if the sequence is truncated sufficiently such that
these classes do not appear with positive coefficient in the configuration).
Subsequently, we blow down spheres in the proper transform sequentially
representing the remaining e;.

Now we analyze the resulting configuration, which will consist of two
conics (the images of E and E’), and two lines (the images of C' and the
curve representing h — e; — eo. In the first homological embedding, when
s = 12 the images of the exceptional spheres representing ey, e3, and eo will
all be the same point (the image of the sphere representing e4 will lie on the
sphere representing es and so on). When s = 11, the sphere representing ey
is separated out but ez and es have the same image, and when s =9, 10,
the spheres representing es, e3, and e4 are each sent to distinct points. In
all cases, the spheres representing ej, es, and eg can be realized disjointly
from each other and all the other exceptional spheres and thus will be sent
to distinct points. Since the two conics have positive intersection with eo,
e3 and ey, in the s = 12 case, their images under the blow-down will have a
tangency of order 3 at the common image of es, e3, and e4. In the s = 11
case, the images of ey and e3 will create a simple tangency and eq will
correspond to a distinct transverse intersection. When s = 9, 10, es, e3, and
e4 will correspond to three transverse intersections between the conics. In
all cases, the conics will additionally intersect transversally at the image of
e1. The line given by the image of C' will be tangent to each of the conics (as
it was before blowing down). The other line will pass transversally through
the two conics at two of their intersection points (the images of e; and eg).
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Omitting the last line, this configuration is G3, Ga, or Gy from [GS22],
which we proved has a unique symplectic isotopy class in [GS22, Propositions
5.5, 5.8, 5.9]. Adding in the last line, which is required to pass through two
specific intersection points, we still have a unique symplectic isotopy class
by [GS22, Proposition 5.1].

Next we consider case 2, (which is only distinct from the first when
s = 12). In this case, we can blow down disjoint spheres representing es, ey,
e5, and eg first, and then find sequential proper transforms representing es
then e; to blow down. Note that the images of the spheres representing eq,
e2, and ez will land on the same point, and spheres representing e4, e5 and
eg will be realized disjointly with distinct image points. The image point of
e1, e2, and ez will be a tangency of order 3 between the two conics, and
the curve which originally represented h — e; — eo will be tangent to these
conics at this point. The image of e4 will be a distinct transverse intersection
between the conics. The image of C' will be a line which is tangent to each
of the two conics and transverse to the other line (all at points distinct from
the previously specified intersections).

Thus the final configuration is again the G3 configuration with one addi-
tional line which is tangent to the conics at their triple tangency. Since, as
mentioned above, the G3 has a unique symplectic isotopy class, the configu-
ration with the additional tangent line also has a unique symplectic isotopy
class by [GS22, Proposition 5.1].

When 9 < s < 11, the unique relatively minimal symplectic embeddings
correspond to unique minimal symplectic fillings of (Ys,&s) and the Betti
number calculation follows from the Mayer—Vietoris long exact sequence and
the fact that Y; is a rational homology sphere. To distinguish the two fillings
when s = 12, we can again look at the intersection form. For the homological
embedding where the last sphere represents e3 — ey4, the generator of the non-
torsion part of the homology of the complement is e; — es — e3 — e4 + 2e5 +
2eg which has self-intersection —12. For the homological embedding where
the last sphere represents e; — eo, the generator of the non-torsion part of
the homology of the complement is e4 — e5 — eg which has self-intersection
-3.

We observe that it is not possible to find a homological embedding if
there are more than two —2-spheres in the chain (i.e. when s > 12), since
such a —2-sphere must represent a class e; — e; which intersects ez — e4 (or
e1 — eg) once positively, and has intersection zero with all other curves in
the configuration. Therefore, there are no symplectic embeddings of C into a
closed symplectic manifold when s > 13, so (Y, &) has no symplectic fillings
when s > 13. Note that Proposition 6.2 would only imply this for s > 14.
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In the case of one cusp of type (2,5), there is one exceptional di-
visor E of self-intersection —1 tangent to the proper transform C, and
another exceptional divisor E’ of self-intersection —2 which intersects F
once transversally and is disjoint from all other curves. Up to relabel-
ing, [E] =2h — ey — -+ —e5 and [E'] = e5 — eg. The exceptional divisors in
the chain of length s — 9 again represent classes h — e} — eg,e9 — €3,€3 — €4
(case 1) or h —e; — eg,e9 — €3,€1 — e (case 2).

In case 1, we can find disjoint exceptional spheres in classes e, e4, and
e¢ by Lemma 4.2 (and also eg or ez and ey if the sequence is sufficiently
truncated). We blow these down and then sequentially blow down proper
transforms of the spheres of the configuration representing the remaining
exceptional classes. The resulting configuration is a single conic with one
tangent line, and another line which intersects generically transversally. In
case 2, we find disjoint exceptional spheres in classes e3, e4 and eg (with
positive intersections with the configuration) and then after blowing these
down, find sequentially proper transforms representing the other e; and blow
these down. The resulting configuration is a single conic with two distinct
tangent lines. The resulting configurations in both cases have a unique sym-
plectic isotopy class by [GS22, Theorem 1.5]. Thus this yields a unique
symplectic filling when 9 < s < 11. The two symplectic fillings correspond-
ing to the two homological embeddings when s = 12 can be distinguished
by their intersection forms, as their non-torsion homology is generated by
e1 — ey — ez — eq + 2e5 + 2eg or eq4 — e5 — eg respectively as in the previous
case. Similarly, we obtain no possible homological embeddings when there
are more than two —2-spheres in the chain so when s > 13, there are no
symplectic fillings of (Y, &s). O

7.3. Genus 3

When we allow the arithmetic genus of the rational cuspidal curve to increase
to 3, there are more options for the types of cusps. The first option is to have
a single cusp of type (3,4) (multiplicity sequence [3]), where we consider
self-intersection numbers s > 10. The second is to have a single cusp of
type (2,7) (multiplicity sequence [2,2,2]). The third option is to have two
cusps, one a simple cusp (multiplicity sequence [2]) and the other of type
(2,5) (multiplicity sequence [2,2]). The fourth option is to have three simple
cusps (each with multiplicity sequence [2]). In the second, third, and fourth
options, we can classify fillings when the self-intersection number satisfies
s> 13.
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3h—2e; —eg —---—er
—1

Figure 17. A blow-up of a curve C' with a one cusp of type (3,4) and self-
intersection s, so that the proper transform C has self-intersection +1.

Proposition 7.4. Let C be a rational cuspidal curve with self-intersection
s and a cusp of type (3,4) being the unique singularity, and let (Ys,&s) be
the corresponding contact manifold.

o When 10 < s <16, (Ys,&s) has a unique minimal symplectic filling W
and bay(W) = 16 — s.

o When s > 17, (Ys,&s) is not symplectically fillable.

Proof. That there are no fillings when s > 17 follows from Proposition 6.2.

For 10 < s < 16, we proceed as in the lower genus cases. Blow up an
embedding of C'into X once at the cusp to get the minimal smooth resolution
so that the exceptional sphere FE is tangent with multiplicity 3 to the proper
transform of C'. We blow up s — 10 additional times at a different point so
that C' has self-intersection 1, yielding a chain of s — 10 exceptional spheres
as in Figure 17. Identifying C' with CP! by Theorem 4.1 so [C] = h, by
Lemma 4.3, we see that [F] = 3h — 2e; — ea — - - - — e7, and the chain of s — 8
exceptional spheres represent the classes in (a truncation of) the sequence
h—e1 —eg,e9 —e3,e3 —eq,e4 — €5,65 — €5, 66 — e7. By Lemma 4.2, we can
find disjoint exceptional spheres representing e; and ej,...,er where j is
the maximal index appearing in the chain, and then sequentially blow down
proper transforms representing the remaining e;. After this, £ descends to
a cubic curve with either a node or a cusp, C descends to an inflection line,
and the first divisor in the chain descends to a line passing through the
singular point of the cubic (the image of e1) and one other point (the image
of es). Without the last line, such a configuration has a unique symplectic
isotopy class by [GS22, Proposition 5.11]. Note that a cusp can be locally
deformed to a node through a symplectic family and after blowing up eq, the
proper transform in the cuspidal case is symplectically isotopic to that of the
nodal case (and the proper transform is what corresponds to the resolution
of C'). We get a unique symplectic isotopy class for the configuration which
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Figure 18. A blow-up of a curve C' with a one cusp of type (2,7) and self-
intersection s, so that the proper transform C' has self-intersection +1.

2h—81—"'—€4—85

Figure 19. A blow-up of a curve C with a one cusp of type (2,5) and one
of type (2,3) and self-intersection s, so that the proper transform C has
self-intersection +1.

includes the last line by [GS22, Proposition 5.1|. Thus there is a unique
relatively minimal symplectic embedding of this blow-up of C' into a closed

manifold and that manifold must be CP2#7CP2. We conclude that (Y, &)
has a unique minimal symplectic filling with by = 16 — s. g

Proposition 7.5. Let C be a rational cuspidal curve with self-intersection
s and either a unique (2,7) cusp, or one (2,3) cusp and one (2,5) cusp, and
let (Ys,&s) be the corresponding contact manifold.

o When 13 < s < 15, (Y5, &) has two minimal symplectic fillings W and
W' bey(W) =16 — s and bo(W') = 17 — s.

o When s =16, (Ys,&s) has three minimal symplectic fillings W, W' and
W". ba(W) =16 — s and bo(W') = bo(W") =17 — s.

o When s > 17, (Y5, &s) is not symplectically fillable.
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Proof. Proceeding as in prior cases, we blow up an embedding of C' to its
minimal resolution, then blow up s — 13 additional times at another point
until C has self-intersection 1 and can be identified with CP'. The three ex-
ceptional divisors from the minimal resolution must have homology classes as
specified by the options shown in Figures 18 and 19 (depending on whether
there are 1 or 2 cusps). Note that in both cases, there are two options for
the homology class of the exceptional divisor E”: eg — e7 or e4 — e5. Also for
both cases, the homology classes of the divisors in the extra chain must rep-
resent either h —e; —eg,e0 —e3,e3 —eq or h —e; —eq,e0 —e3,e1 —eg. If
[E"] = e4 — e5, the chain must take the second option. When [E”] = eg — e7,
both options are possible, but note that they only differ when all three com-
ponents are included corresponding to the s = 16 case. Thus, we get three
cases when s = 16 and two cases when 13 < s < 15. We will call the case
when [E”] = e4 — e5 case 3, case 2 will have the chain ending in e; — eg,
and case 1 will be the other option. Note, there are no allowed homological
embeddings if the chain is longer, so (Y5, &s) has no fillings when s > 17.

First we look at the configuration coming from a curve with one (2,7)
cusp, where the resolution with its homological embedding is shown in Fig-
ure 18. For the homological embedding of case 1, we can first disjointly
realize exceptional spheres in classes ej, e4, and e7 (also ez or ey and eg if
the chain is sufficiently truncated), and then sequentially blow down proper
transforms representing the remaining e;. The resulting conﬁgliration is a
conic (the image of E) with one tangent line (the image of C') and one
generic secant line (the image of the first exceptional divisor in the chain).
In case 2, we can blow down disjoint spheres representing es, e4, and ey, and
then sequentially blow down proper transforms representing the remaining
e;. In case 3, we blow down disjoint spheres representing es and eg and
then sequentially blow down proper transforms representing the remaining
e;. In both cases 2 and 3, the resulting configuration is a conic with two
distinct tangent lines. In both possible resulting configurations, there is a
unique symplectic isotopy class by [GS22, Proposition 5.1]. Therefore each
homological embedding corresponds to a unique symplectic isotopy class of
embeddings.

Next, we consider the configuration coming from a curve with one (2, 3)
cusp and one (2,5) cusp. For the homological embedding of case 1, we blow
down disjoint spheres in classes e1, ey4, €5, e7 (and eg or ez and eg if sufficiently
truncated), and then blow down proper transforms sequentially. In case 2,
we blow down disjoint spheres in classes es, e4, e5, e7, and then blow down
proper transforms sequentially. In case 3, we blow down disjoint spheres in
classes es, es, eg and then blow down proper transforms sequentially. The
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configurations resulting from these blow-downs are exactly the same as those
which arose in Propostion 7.3 in the case with two simple cusps, which all
had unique isotopy classes (Case 1 here corresponds to Case 1 in 7.3, and
Cases 2 and 3 here blow down to the same configuration as Case 2 from 7.3).

If [E"] = eg — e7, we have a relatively minimal symplectic embedding
into CP2#7CP2. If [E"] = e4 — e5 the relatively minimal embedding is into
CP2#6CP2. Symplectic fillings complementary an embedding in CP2#7CP?
will have by = 17 — s, and those which are complementary to an embedding
in CP?#6CP? will have by = 16 — s. Thus, when 13 < s < 15, the two fillings
have different by so they are clearly not diffeomorphic. When s = 16, there
are two potential fillings with by = 17 — 5. To distinguish these, we look at
the square of the generator for the homology of the complement. In one case
the generator is ey — es — e3 — e4 + 2e5 + 2e¢ + 2e7 of square —16 and in the
other case the generator is e4 — e5 — eg — e7 of square —4. ]

Remark 7.6. When s = 16, in the minimal symplectic filling with by =
17 — s = 1 where the homology class of E” agrees with the option for the
filling with by = 16 — s = 0, we see that there is a symplectic —4-sphere
in this filling representing the class es — e5 — eg — e7. Rationally blowing
down this —4-sphere will yield another filling which is necessarily the unique
rational homology ball filling. The other minimal symplectic filling with by =
17 — s =1 cannot be rationally blown-down (since there is no —4-sphere in
a manifold with intersection form (—16)).

Proposition 7.7. Let C be a rational cuspidal curve with self-intersection
s and three simple cusps, and let (Ys,&s) be the corresponding contact man-

ifold.

o When 13 < s < 16, (Ys,&s) has a unique minimal symplectic filling W
and bo(W) =16 — s.

e When s > 17, (Y, &s) is not symplectically fillable.

Proof. The determination of homological embeddings has a similar classi-
fication to the previous case. What is different in this situation is that
not all of these homological embeddings correspond to actual geometric
embeddings, and we need to prove a symplectic isotopy result for the
ones which do. The possible homological embeddings are shown in Fig-
ure 20, where the additional chain of s — 13 exceptional divisors represent
classes h — e; — eg, eo — e3, and either e3 — eq4 or e; — eo. Note that when
[E"] = 2h — €1 — ea — e3 — €5 — €5, and s = 16, the last divisor in the chain
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Figure 20. A blow-up of a curve C' with a three cusps of type (2,3) and
self-intersection s, so that the proper transform C' has self-intersection +1.

must represent e; — es to be disjoint from E”. Therefore we have three ho-
mological embeddings.

For the two homological embeddings where [E"] =2h —e; — -+ —eq —
er, if we suppose this can be realized symplectically in CP2#7CP?, then we
can blow down exceptional spheres so that the image in CP? of the resolution
becomes three symplectic conics in a pencil (the pencil points being the
images of the exceptional spheres representing ej, e, e3, and e4). When s =
16, one of the pencil points is a triple tangency of the conics and the other is
a transverse intersection. When s = 15, one of the pencil points is a simple
tangency and there are two other transverse pencil intersections. When s =
13, 14, there are four transverse pencil intersection points. Additionally, there
is a symplectic line tangent to all three conics. When the pencil intersection
points are all transverse, this is obstructed by [GS22, Proposition 5.22]. In
the other two types of pencils, we can make a similar obstruction argument
as follows.

In the case that there is a common simple tangency of the three conics
in the pencil and two common transverse intersections, we obstruct this
configuration as follows. Blow up once at each of the three pencil points
where the conics intersect. The resulting proper transforms of the conics will
intersect transversally at one common point, and will have self-intersection
number +1. Thus we can identify one of them with a line in CPP2. The other
two necessarily represent the same homology class h (and thus are symplectic
lines). The image of the line which was tangent to the three conics will
represent 2h — e; — es — e3. (There will also be three exceptional divisors
representing homology classes h —e; —ea, h —e; — ez, and h — e — ez, but
we will not actually need these for the obstruction.) Now, realize disjoint
exceptional spheres representing e, es, and e3, and blow them down. The
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result is a configuration which includes a conic with three tangent lines that
intersect at a common intersection point, which is the configuration G which
is obstructed by [GS22, Proposition 5.21].

In the case that there is a triple tangency of the conics in the pencil,
we obstruct this configuration similarly as follows. Blow up twice at the
triple tangency of the conics and once at the transverse intersection. The
proper transforms of the conics then have self-intersection +1 so we can
identify them with lines in the homology class h, which intersect at a com-
mon point. Under this identification, what was originally a line will now be
in homology class 2h — e; — es — e3, and the exceptional spheres will repre-
sent h —e; —eg, h — e — e3, and e; — e3. Blowing down exceptional spheres
representing e1, eo, and ez would yield a configuration with one conic and
five lines. Three of these lines (the images of the original conics in the pen-
cil) intersect the conic tangentially and intersect each other concurrently
at a single point. Therefore this has a subconfiguration of type G which
is obstructed by [GS22, Proposition 5.21]. Therefore these homological em-
beddings cannot be symplectically realized, so there are no corresponding
symplectic fillings.

Now we consider the last remaining homological embedding where
[E"] =2h —e; — ez — e3 — e5 — eg and the chain represents a (truncation
of) h —e; — ea, ea — e3, e1 — ea. We realize disjoint exceptional spheres in
classes e3, eq4, e5, and eg and blow them down (if the chain is truncated we
can also realize e; or e; and ey disjointly). The resulting configuration in
CIP? consists of three symplectic conics Cy, Cy, C3, and two symplectic lines
L1, and Ls. When s = 16, the images of the spheres representing ey, es, and
e3 all coincide, so C1, C3, and (3 intersect at one common triple tangency
point p3 (the image of e, e2, and e3) and a transverse double point for each
of the three pairs (the images of ey4, €5, €g). In this case Ly is tangent to the
three conics at p3. When s = 15, the images of eo and e3 agree, so C1, Co,
and (3 intersect at one common simple tangency and one common (pencil)
transverse intersection (along with the three double points for ey, €5, €5). In
this case Lo intersects the conics transversally once at their common tan-
gential intersection and once at their common transverse intersection. When
s = 13,14, the conics have three distinct common (pencil type) intersection
points, and three pairwise double intersection points. In this case, Ly passes
through two of the common pencil intersection points. In all cases, L is
tangent to all three conics at other points.

First we consider the case when the conics have a common tangency of
order 3. We will show this configuration is birationally equivalent to a conic
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with four generic tangent lines. The conic with any number of generic tan-
gent lines has a unique symplectic isotopy class by [GS22, Proposition 5.1].
Thus, demonstrating this birational equivalence suffices to prove this con-
figuration has a unique symplectic isotopy class. To obtain the birational
equivalence, blow up three times at the common triple tangency point p
of the three conics. This creates three exceptional divisors in a chain with
self-intersection numbers —1, —2, —2. The —1-curve intersects each of the
proper transforms of the conics transversally once at distinct points, and
the —2-curves are disjoint from the proper transforms of the conics. The
line which was tangent to the conics at p will have proper transform of self-
intersection number —1. It will intersect the —2-exceptional curve in the
middle of the chain at one point transversally. It intersects the other line
once transversally and is disjoint from the other curves. Thus we can blow
down this —1-curve coming from the proper transform of Lo. The image of
the —2-exceptional divisor from the middle of the chain after this blow-down
becomes itself a —1-curve that we can blow down. After blowing it down, the
other —2-exceptional divisor becomes a —1-curve that can be blown down.
The resulting configuration is a conic (the image of Li) with four tangent
lines (three are the image of Cy,Cy, C3 and the fourth is the image of the
last exceptional divisor). See Figure 21.

Next we consider the case when the conics have a common tangency of
order 2. To verify this configuration has a unique symplectic isotopy class
in CP?, we add a symplectic line L3 which is tangent to the three conics
at their common tangential intersection—this does not change the sym-
plectic isotopy classification by [GS22, Proposition 5.1]. We will show this
configuration is birationally equivalent to a conic with four tangent lines
and one additional line that passes transversally through the point where
the fourth line is tangent to the conic (and otherwise has generic transverse
double point intersections). This configuration has a unique symplectic iso-
topy class by [GS22, Proposition 5.1], so after we demonstrate the birational
equivalence we will have verified the configuration we are interested in has a
unique symplectic isotopy class. To see this birational equivalence, blow up
once at the transverse pencil point of the conics and twice at the tangential
pencil point. The images of Ly and Lg will be —1-spheres that we can blow
down. After blowing these down, one additional exceptional divisor will rep-
resent a —1-sphere that can be blown down, and the resulting configuration
is as claimed. See Figure 22.

Finally consider the case when the conics intersect transversally at three
pencil points plus three double points. To verify this configuration has a
unique symplectic isotopy class in CP?, we add two symplectic lines Ls,



Rational cuspidal curves and symplectic fillings 1169

Figure 21. Birational equivalence from A (top) to B (bottom) where A
consists of three conics intersecting at a common order 3 tangency at p,
together with their tangent line at p, and another line which is tangent to
all three conics and B consists of one conic with four generic tangent lines.

and L pass through the other two pairs of pencil points (Lg already passes
through one of the three pairs). This does not change the symplectic isotopy
classification by [GS22, Proposition 5.1]. We will show this configuration
is birationally equivalent to a configuration with one conic, three tangent
lines (forming a circumscribing triangle), and three more lines forming an
inscribed triangle (i.e. the pairwise intersections of these three lines lie on
the conic). Such a configuration can be built from the conic by iteratively
adding a line satisfying the hypotheses of [GS22, Proposition 5.1], so it has
a unique symplectic isotopy class. To see the birational equivalence, blow
up at the three pencil points. The images of Lo, L3, and L4 become —1-
spheres which can be blown down, resulting in the specified configuration.
See Figure 23.

In conclusion, in each case, an embedding representing this homologi-
cal configuration blows down to a configuration with a unique symplectic
isotopy class. Thus there is a unique symplectic embedding of the cap with
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Figure 22. Birational equivalence starting with a configuration of three con-
ics C1,Cs, (3 intersecting at one common simple tangency, one common
transverse point, and three double points, together with three lines L1, Lo,
L3 with tangencies and intersection data as shown in the top left. The end-
ing configuration on the bottom right consists of one conic (the image of Ly)
with five lines, four of which are tangent to the conic and the fifth passing
transversally through one of the tangential intersections.

this homological data, corresponding to a unique symplectic filling in the
complement. O

8. Further speculations and questions
We collect in this section some ideas and questions for further investigation.

8.1. Handlebodies

In Section 2 we gave explicit Stein handlebody descriptions for all rational
homology ball fillings of the cuspidal contact structures associated to the
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Figure 23. Birational equivalence between two configurations. The first con-
figuration consists of three conics intersecting at three transverse pencil
points and three double points, together with a line L, tangent to all three
conics and three lines through the three pairs of pencil points. The final con-
figuration consists of one conic, three tangent lines, and three lines whose
pairwise intersections lie on the conic.

A, and B, families. Similar handlebody descriptions are known for ratio-
nal homology balls bounded by lens spaces or by connected sums of lens
spaces [LM14], thus covering also the two Fibonacci families of [FLMNO7,
Theorem 1.1] described in the introduction.

Question 8.1. Can one find an explicit Stein handlebody description of
the rational homology ball fillings of &5 and &7

In [AGLL20], there is a (somewhat non-explicit) handle decomposition
of a topological rational homology ball bounding the corresponding Seifert
fibered spaces. Starting from [AGLL20, Figure 7], one can recover a handle-
body diagram for a rational homology ball bounding the cuspidal manifold
of type &3, as shown in Figure 24. Does this handlebody support a Stein
structure?

Note that it would suffice to Legendrian-realize the attaching curve of the
2-handle so that the contact framing is one less than the topological framing:
that is, we are looking to find a Legendrian realization of the link of Figure 24
where the 2-handle has Thurston-Bennequin invariant —8 (in Gompf’s con-
vention [Gom98]). By the argument of Proposition 3.1, the contact structure
obtained on the boundary would automatically be the canonical one (which
is the cuspidal one, up to conjugation), and by the classification of fillings,
such a diagram would represent the unique rational homology ball filling of
(Yo, &c) where C is a curve of type &s.
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Figure 24. The handlebody description of a rational homology ball whose
boundary is the cuspidal manifold of type &£s. The framing of the 2-handle,
in Gompf’s convention from [Gom98], is —9.

8.2. Lefschetz fibrations and open books

In Sections 2 and 3 we have given explicit Stein handlebody decompositions
for at least one filling for each curve of type A,, By, £, and &. For the
Fibonacci families, such descriptions were already known to Honda [Hon00]
and Giroux [Gir00] (see also [LM14)).

Question 8.2. Can one construct explicit Lefschetz fibrations on these
fillings?

As a byproduct, one would also be able to recover an open book decom-
position for the cuspidal contact structures in this case. In fact, we conjecture
that the diagrams in Figures 25 and 26 depict the vanishing cycles of the
fillings in the A, and B, cases. We verified that the underlying topology is
the expected one.

Moreover, adding the orange vanishing cycle in Figure 25 (respectively
the orange vanishing cycle on the left of Figure 26) corresponds to attaching
a Weinstein 2-handle along a Legendrian knot in S' x S? which is in the
same smooth isotopy class as the Legendrian knot in Figure 1 (respectively
Figure 4). We see this by observing that Lefschetz fibrations without these
orange curves destabilize to the trivial Lefschetz fibration on the annulus.
In the A, case, the Legendrian represented by the orange vanishing cycle is
stabilized p — 1 times, and the unstabilized version would correspond to the
rational homology ball appearing in the standard rational blow-down cor-
responding to a daisy relation. Starting from a Stein handlebody diagram
of this standard rational blow-down, it is not clear whether the Lefschetz
fibration depicted represents positive or negative stabilizations of the Leg-
endrian in that diagram, so there is some ambiguity remaining on whether
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this is the correct Lefschetz fibration. Similar arguments can be made in the
B, case, and a similar ambuiguity remains.

Figure 26. Lefschetz fibrations for the two fillings corresponding to the B,
family.

If the proposed open book decompositions do indeed describe the correct
contact structures, we would also obtain that all cuspidal contact structures



1174

M. Golla and L. Starkston

of types Ay, Bp, or Fibonacci are supported by a planar open book. By
contrast, by [GGP20, Theorem 1.2], we know that in the cases of & and &
the cuspidal contact structures cannot be planar. On the other hand, Etnyre
and Ozbagci have proved that these contact structures are supported by an
open book of genus 1 [EO06].
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