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A symplectic rational cuspidal curve with positive self-intersection
number admits a concave neighborhood, and thus a corresponding
contact manifold on the boundary. In this article, we study sym-
plectic fillings of such contact manifolds, providing a complemen-
tary perspective to our earlier article on symplectic isotopy classes
of rational cuspidal curves. We explore aspects of these symplectic
fillings through Stein handlebodies and rational blow-downs. We
give examples of such contact manifolds which are identifiable as
links of normal surface singularities, other examples which admit
no symplectic fillings, and further examples where the fillings can
be fully classified.
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1110 M. Golla and L. Starkston

1. Introduction

In [GS22], we studied symplectic rational cuspidal curves in closed symplec-
tic 4-manifolds up to equisingular symplectic isotopy (see also [GK22] for
an extensions of those results for curves in CP2). Rational means the geo-
metric genus is zero, and cuspidal means that the singularities are locally
irreducible and modeled on the singularities of complex curves. The link of
a cuspidal singularity is an algebraic knot, and we primarily focus on cases
where the link is a torus knot T (p, q).

In this article we explore the symplectic and contact geometry associated
with rational cuspidal curves from a complementary perspective. Namely
we look at the symplectic fillings found as the complement of a neighbor-
hood of such a curve in some closed symplectic 4-manifold. We showed
in [GS22, Theorem 2.13] that if C is a singular symplectic curve of pos-
itive self-intersection, it has small concave neighborhoods, whose contact
boundary we will denote by (YC , ¿C). Note that this contact structure de-
pends only on the topological types of the singularities, geometric genus,
and self-intersection number of C. In this article, we will study properties
of these contact manifolds and their symplectic fillings for many examples
of (neighborhood germs of) rational curves C, specified by their singular-
ity types and self-intersection number. We describe some situations where
such contact manifolds admit no fillings, and others where the fillings can
be completely classified and described explicitly.

Note that any symplectic filling of (YC , ¿C) can be viewed as the com-
plement of a neighborhood of a symplectic embedding of C in a closed
symplectic 4-manifold (obtained by gluing the concave neighborhood of C
to the filling). Although our prior work gives classification results for em-
beddings for many such rational cuspidal curves and thus yields abstract
classifications of the symplectic fillings of (YC , ¿C), more work is required
to determine concrete diagrammatic presentations for these symplectic fill-
ings and to explore the relations between different fillings. We take on these
problems in this article.

We start with a study of the fillings of (YC , ¿C) where C is a rational
cuspidal curves with a unique singularity modeled on {xa = yb} (whose link
is the torus knot T (a, b)) which embeds into CP2 in the homology class
d[CP1] * H2(CP

2). Note in this case, the corresponding self-intersection
number is d2. According to [Liu14, Theorem 2.3] (see also [BCG16, Re-
mark 6.18]), all such C belong to the list of [FLMN07, Theorem 1.1]; namely,
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Rational cuspidal curves and symplectic fillings 1111

(p, q; d) is one of:

Ap : (p, p+ 1; p+ 1), (Fj22, Fj+2;Fj), E3 : (3, 22; 8),

Bp : (p, 4p2 1; 2p), (F 2
j , F

2
j+2;FjFj+2), E6 : (6, 43; 16).

Here Fi denotes the ith Fibonacci number. The two Fibonacci families cor-
respond to curves C where (YC , ¿C) is either a universally tight lens space
or a connected sum of universally tight lens spaces. In these cases, the
fillings have been previously classified, some of them have been presented
through Stein handle diagrams and Lefschetz fibrations, and their rational
blow-down relations have been established [Hon00, Lis08, LM14, BO16].
We denote the remaining two infinite families with Ap and Bp, corre-
sponding to (a, b) = (p, p+ 1) (and degree p+ 1) and (a, b) = (p, 4p2 1)
(and degree 2p), respectively. The two exceptional cases, corresponding to
(a, b) = (3, 22), (6, 43) (of degrees 8 and 16) are denoted with E3 and E6. We
find presentions for each of the corresponding contact manifolds (YC , ¿C) as
the boundary of a Stein handlebody diagram.

Theorem 1.1. Let C be a rational cuspidal curve in CP2 with one cusp of
torus knot type.

" If C is of type Ap, then the unique minimal symplectic filling of ¿C
has the Stein handlebody diagrams shown in Figure 1, so (YC , ¿C) is
specified by the corresponding contact surgery diagram.

" If C is of type Bp, then the two minimal symplectic fillings are given
by Stein handlebodies in Figures 4 and 5, so (YC , ¿C) is specified by
the corresponding contact surgery diagrams.

" If C is of type E3 or E6, then ¿C is the canonical contact structure on
YC given as the link of a normal complex surface singularity whose
minimal resolution is symplectic deformation equivalent to the Stein
manifolds whose handle diagrams are shown in Figures 9 and 11, thus
yielding contact surgery diagrams for the corresponding contact man-
ifolds.

In the Ap and Bp cases, to prove the Stein handlebodies we present
have contact boundaries agreeing with (YC , ¿C), we use Kirby calculus to
identify the smooth boundary of the handlebody with YC , and an argu-
ment using Gompf’s Γ-invariant [Gom98] of contact structures and results
of Matkovič [Mat18] to identify the contact boundary of the Stein handle-
body with ¿C . The key technical tool is a general computation of Gompf’s
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1112 M. Golla and L. Starkston

Γ-invariant for the contact manifolds (YC , ¿C) when C is an arbitrary ratio-
nal cuspidal curve (Theorem 2.1).

In the E3 and E6 cases, to identify the contact structure as the canonical
structure from a complex surface singularity we use classification results of
Ghiggini [Ghi08, Theorem 1.3] (see also [Tos20] for a more general state-
ment) and Heegaard Floer correction terms.

Next we consider relations between different symplectic fillings of the
same (YC , ¿C). We focus on when such fillings are related by rational blow-
down, a surgery operation introduced by Fintushel and Stern [FS97] and
generalized by Park [Par97] and Stipsicz, Szabó, and Wahl [SSW08]. Be-
cause its effect on Seiberg–Witten invariants has been established, ratio-
nal blow-down has proven a very useful tool to produce small exotic 4-
manifolds (see [Par05, SS05, PSS05, FS06] as a small sample of the many
examples in the literature). When we have multiple symplectic fillings of a
given contact manifold, we can ask whether they are related via a known
rational blow-down operation, or whether the substitution of fillings yields a
new symplectic cut-and-paste operation. In the case of lens spaces with the
canonical contact structure Bhupal and Ozbagci proved that all symplectic
fillings are obtained from a plumbing by a sequence of symplectic rational
blow-downs [BO16]. We prove the analogous result for the cases of (YC , ¿C)
considered above: every minimal symplectic filling can be obtained from the
largest filling by a sequence of symplectic rational blow-downs (where we
include generalized rational blow-downs of [Par97] and [SSW08]).

Theorem 1.2. Let C be a rational unicuspidal curve in CP2 whose singu-
larity link is a torus knot.

" If C is of type Bp, the two fillings of (YC , ¿C) differ by rationally
blowing down a symplectic 24-sphere (or rationally blowing up a La-
grangian RP

2).

" If C is of type E3 or E6, one filling is given by a symplectic plumbing
of spheres and every other filling is obtained from this plumbing by a
sequence of symplectic rational blow-downs.

In the E3 and E6 cases, we specify precisely which pairs of fillings are
related by a rational blow-down. In each case, there are pairs of fillings which
cannot be related by rational blow-downs—instead one must first rationally
blow-up one of the fillings to get to a larger filling and then rationally blow-
down to get to the second filling.
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Rational cuspidal curves and symplectic fillings 1113

Generalizing from the case of unicuspidal C which embed in CP2, we
can consider more general rational cuspidal curves and the corresponding
contact manifolds (YC , ¿C). We specify the curve data determining (YC , ¿C)
through the singularity types of C and the self-intersection number of C.
In this more general setting, we find a large class of such contact structures
which admit no fillings at all. In Section 6 we will define two effectively
computable invariants of cuspidal singularities, M and 3, and we will prove
a slight generalization of the following theorem.

Theorem 1.3. Let C be a rational cuspidal curve with Sing(C) ;= ' such
that (YC , ¿C) is weakly fillable. Then

C · C f
∑

p*Sing(C)

M(p) + 2 min
p*Sing(C)

3(p) + 1.

Equivalently, if C is a singular rational cuspidal curve which embeds into
any closed symplectic 4-manifold, the above bound on its self-intersection
number holds.

Finally, we look at symplectic filling classification results in some low
complexity cases. In a rational cuspidal curve C, each singularity has an
underlying arithmetic genus. This can be thought of as the genus that would
be added to the curve C by smoothing the cusp singularity. Adding up the
arithmetic genus contributions from each singularity gives us the arithmetic
genus of the singular curve C. To give a sample of the filling classifications
for these more general examples (YC , ¿C), we investigate examples where
C has low arithmetic genus and varying the self-intersection C · C within
a certain range that attains the bound of Theorem 1.3. We include these
classification results in Section 7. In some cases, there is a unique minimal
symplectic filling and in others there are multiple minimal symplectic fillings
yielding potentially new symplectic cut-and-paste operations.

Organization. In Section 2, we give Stein handlebodies for the fillings
of (YC , ¿C) in the Ap and Bp cases, and prove the first two items of The-
orem 1.1. Next, in Section 3, we identify (YC , ¿C) with canonical contact
manifolds in the E3 and E6 cases, and provide their Legendrian surgery dia-
grams, thus completing the proof of Theorem 1.1. In Section 4, we provide
a brief summary of background from [GS22] that we will need for the re-
maining sections. In Section 5 we determine which fillings of (YC , ¿C) are
related by rational blow-downs when C is a unicuspidal curve in CP2, prov-
ing Theorem 1.2. Next, we look at more general examples of (YC , ¿C). In
Section 6, we prove Theorem 1.3. In Section 7, we give classifications of
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1114 M. Golla and L. Starkston

fillings of (YC , ¿C) for cases when C has small arithmetic genus. Finally, in
Section 8 we provide some questions and conjectures that build off of the
results we established.

Acknowledgements. Early progress on this project was made during the
BIRS conference in Oaxaca Thirty years of Floer Theory for 3-manifolds,
and the authors appreciate this excellent conference and opportunity to
collaborate. We would like to thank the referee for their careful work and for
their useful comments. MG acknowledges hospitality from UC Davis and LS
is grateful for hospitality from Université de Nantes. We also thank Fabien
Kütle and Bülent Tosun for helpful conversations related to this project. LS
has been supported by NSF grants DMS 1904074 and DMS 2042345 during
this project.

2. Stein handlebodies for fillings in the Ap and Bp families

Our first goal is to explicitly present Stein handlebody diagrams for the
fillings of (YC , ¿C) in the case that C is a rational unicuspidal curve in either
the family Ap or Bp. Such presentations are critical to study properties of
the fillings (such as the types of surfaces they contain) and to compute their
invariants. Additionally, the Stein handlebody induces a Legendrian surgery
diagram for the boundary. These provide explicit ways to understand the
corresponding cuspidal contact structures.

In order to verify that our Stein handlebodies have the correct contact
structure on the boundary, we will use a result of Matkovič [Mat18] which
classifies contact structures on Seifert fibered L-spaces in terms their un-
derlying spinc structure. To encode the spinc structure concretely, we will
utilize Gompf’s Γ-invariant [Gom98]. Gompf provided formulas to compute
this invariant for contact manifolds appearing on the boundary of a Stein
handlebody in terms of the Stein handlebody diagram. We will be inter-
ested in comparing contact structures arising on the boundary of a given
Stein handlebody, with the contact structures (YC , ¿C) induced concavely
on the boundary of a neighborhood of a rational unicuspidal curve. To facil-
itate this comparison, we will compute Gompf’s Γ-invariant for the concavely
induced structure (YC , ¿C).

2.1. Gompf’s Γ-invariants for rational cuspidal contact manifolds

We recall some background on spin and spinc structures. Let Fr(Y ) denote
the SO(3) bundle of oriented orthonormal frames over Y and Spinc(3) be
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Rational cuspidal curves and symplectic fillings 1115

the group Spin(3)× S1/{±1}. Spinc structures on Y are lifts of Fr(Y ) ³ Y
to a Spinc(3) bundle. Spinc structures on Y are affinely in bijection with
H2(Y ;Z) through the corresponding free and transitive action, and they
can be thought of as complex structures on TY · R. From [Tur02, Chapter
XI.1.2], Spinc(Y ) is identified with the set of elements inH2(Fr(Y );Z) whose
restrictions to the SO(3) fibers yield the non-zero element ofH2(SO(3);Z) =
Z/2Z. A choice of trivialization Ç of TY gives an identification of Fr(Y ) with
Y × SO(3), and thus yields an identification of Spinc(Y ) with H2(Y ;Z)
(note this is not canonical as it depends on the trivialization Ç).

Spin structures, on the other hand, are lifts of Fr(Y ) ³ Y to a Spin(3)
bundle over Y , and they are canonically in bijection with trivializations of
TY over the 2-skeleton of Y (with respect to a fixed cellular decomposition
of Y ). When Y is a rational homology 3-sphere, spin structures on Y are in
bijective correspondence with self-conjugate spinc structures on Y . To see
this, following Turaev [Tur02, Chapter XI], first identify spin structures on Y
with the elements of H1(Fr(Y );Z/2Z) whose restrictions to the SO(3) fibers
are the non-trivial element. Then the short exact sequence Z ³ Z ³ Z/2Z
induces the long exact sequence on cohomology

// H1(Fr(Y );Z) // H1(Fr(Y );Z/2Z)
³

// H2(Fr(Y );Z)
×2

// H2(Fr(Y );Z) //

The Bockstein homomorphism ³ : H1(Fr(Y );Z/2Z) ³ H2(Fr(Y );Z) maps
spin structures on Y to spinc structures on Y . Since Y is a rational ho-
mology 3-sphere, H1(Fr(Y );Z) = 0, so this map is injective. The image of
the spin structures is precisely the spinc structures s0 such that 2s0 = 0, or
equivalently s0 = 2s0 (self-conjugate).

Gompf’s Γ-invariant measures the 2-dimensional obstruction to unique-
ness of homotopy classes of oriented 2-plane fields on a 3-manifold. Any
oriented 2-plane field ¿ on a 3-manifold Y determines a spinc structure
on Y (by determining a complex structure on TY · R). Gompf defines
ΓÇ (¿) * H1(Y ;Z) to be the Poincaré dual of the class in H2(Y ;Z) iden-
tified using Ç with the spinc structure determined by ¿. In [Gom98, Propo-
sition 4.1], he proves various properties including that 2ΓÇ (¿) is Poincaré
dual to c1(¿). A trivialization Ç of TY also determines a spin structure on
Y (since a spin structure is a trivialization of the tangent bundle over the
2-skeleton). For each spin structure s on Y , Gompf defines an invariant
Γ(¿, s) * H1(Y ;Z). Proposition 4.8 of [Gom98] proves that if s is the spin
structure determined by a trivialization Ç then ΓÇ (¿) = Γ(¿, s) (i.e. ΓÇ (¿)
only depends on the spin structure induced by Ç).
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1116 M. Golla and L. Starkston

Let N be a standard concave neighborhood of a rational cuspidal curve
C of arithmetic genus g and self-intersection n > 0, with boundary (Y, ¿)
(we will omit the C subscripts for the rest of this section to have cleaner no-
tation). Note, the orientation on Y disagrees with the boundary orientation
from N . Let K denote the connected sum of the links of the singularities of
C (in the Ap and Bp cases, K will be the corresponding torus knot). Then
N is diffeomorphic to the knot trace Xn(K) (the manifold obtained by at-
taching a single 2-handle to a 0-handle along K with framing n). Therefore
2Y has a surgery diagram consisting of the knot K with framing n. Cor-
respondingly Y has a surgery diagram consisting of the mirror knot m(K)
with framing 2n.

A spin structure on a 3-manifold with a given integral surgery diagram
can be encoded by a characteristic sublink of the surgery diagram [Kap79]
(see [GS99, Proposition 5.7.11]). Given an oriented framed link L = L1 *
· · · * L3 ¢ S3, we let lk(Li, Lj) be the linking number between Li and Lj if
i ;= j, and lk(Li, Li) be the framing of the component Li (which we identify
with an integer via the Seifert framing). We extend lk by bilinearity over
links, so that, for instance, lk(Li, ') = 0. In a 3-manifold obtained by integral
surgery on S3 along a framed link L, a sublink L2 ¢ L is characteristic when,
for each component Ki of L, the framing of Ki is congruent modulo 2 to
lk(Ki, L

2). (Note that this is insensitive to the choice of an orientation of
L.) In the surgery diagram for 2Y , which consists of a single component
with framing n the only sublinks are the full link and the empty link. In the
case that n is even, both of these are characteristic and there are two spin
structures on 2Y . In the case that n is odd, only the non-empty sublink
is characteristic and there is a unique spin structure. In either case, let
s0 denote the spin structure on 2Y which corresponds to the non-empty
characteristic sublink.

Theorem 2.1. Let (Y, ¿) = (YC , ¿C), where C is a rational cuspidal curve
of arithmetic genus g and self-intersection n. Let K be the connected sum
of the links of the singularities as above. Consider the surgery diagram for
2Y given by n-surgery on K. Then

Γ(¿, s0) = (12 g)µ * H1(2Y ),

where s0 is the unique spin structure on 2Y represented by the characteristic
sublink K, and µ is the homology class represented by the meridian of K.

Proof. To set notation, we begin with some basic facts about homology and
cohomology. H2(N ;Z) >= Z with intersection form ïnï and is generated by
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Rational cuspidal curves and symplectic fillings 1117

[C]. H2(N ;Z) >= Z and is generated by a class G where ïG, [C]ï = 1. On the
boundary, H2(2Y ;Z) >= H1(2Y ;Z) >= Z/nZ, generated by the meridian µ
of the surgery knot. The restriction map i7 : H2(N ;Z) ³ H2(2Y ;Z) sends
G to the Poincaré dual of µ.

Since spinc structures on a manifold M are affinely identified with
H2(M ;Z), given any two spinc structures s and s

2 on N , their difference
s
2 2 s represents a class in H2(N ;Z). Under this identification, c1(s

2)2
c1(s) = 2(s2 2 s).

We will first fix a reference spinc structure, s0 on N , defined by the
property that

ïc1(s0), [C]ï = n.

One important property of this reference spinc structure is that its restriction
to "N = 2Y is self-conjugate. To see this, observe that

ïc1(s0), [C]ï = 2n,

so ïc1(s0)2 c1(s0), [C]ï = 2n. Therefore s0 2 s0 = nG * H2(N ;Z). Then
i7(s0 2 s0) = nPD(µ) = 0 * H2(2Y ;Z). Therefore, i7(s0) is self-conjugate
so it corresponds to a spin structure s0 on 2Y .

Recall the correspondence described above between spin structures on
2Y and characteristic sublinks of the surgery diagram for 2Y given by n-
surgery on K. To see that the empty sublink does not correspond to s0
when n is even, consider the unique spinc structure t on N which satisfies
ïc1(t), [C]ï = 0. This spinc structure is self-conjugate on all of N , since t2
t = 0 * H2(N ;Z). Therefore t is the image of the unique spin structure on N
under the corresponding Bockstein homomorphism ³ : H1(Fr(N);Z/2Z) ³
H2(Fr(N);Z). Next, observe that ïc1(s0)2 c1(t), [C]ï = n, so s0 2 t = n

2G *
H2(N ;Z), and the restriction to 2Y , i7(s0 2 t) = n

2 PD(µ) * H2(2Y ;Z).
Since n

2 PD(µ) is a non-zero element in H2(2Y ;Z), i7(s0) ;= i7(t). Therefore
these two self-conjugate spinc structures on 2Y correspond to distinct spin
structures on 2Y . Since i7(t) corresponds to the empty sublink (by defini-
tion, the empty sublink of an integral surgery diagram corresponds to the
spin structure which extends over the corresponding 4-manifold described
as that 2-handlebody), s0 must correspond to the non-empty sublink.

Now, we consider two spinc structures on N , our reference spinc struc-
ture s0 and the spinc structure sJ , coming from an almost complex structure
on N compatible with the symplectic structure, such that the complex tan-
gencies of J along Y give the contact structure ¿. The difference of these two
spinc structures corresponds to a class sJ 2 s0 * H2(N ;Z). We know that
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1118 M. Golla and L. Starkston

2(sJ 2 s0) = c1(sJ)2 c1(s0), so since H2(N ;Z) >= Z has no 2-torsion, we can
determine the class sJ 2 s0 uniquely from computing the Chern classes.

By definition, we chose s0 to have c1(s0) = nG (where G is the generator
dual to [C]). We can use the adjunction formula to compute

ïc1(sJ), [C]ï = 22 2g + n.

(This can be seen by replacing C by a curve which smooths its singularities
symplectically, thus increasing the genus of C to its arithmetic genus with-
out changing the homology class it represents. This symplectic smoothing
procedure is surgical and local in nature: any curve singularity in C2 and its
Milnor fiber have the same link, as transverse knots, and so we can remove
the former and glue in the latter symplectically to get rid of one singularity
of a curve.)

Therefore c1(sJ)2 c1(s0) = (22 2g + n2 n)[G], so

sJ 2 s0 = (12 g)G * H2(N ;Z).

Restricting this class to the boundary, "N = 2Y , we have i7(sJ)2
i7(s0) = (12 g) PD(µ).

Now recall the definition of Γ(¿, s0) from the beginning of this sub-
section. Since ¿ is given by the complex tangencies to 2Y under the al-
most complex structure J , sJ restricts to the spinc structure on 2Y deter-
mined by ¿. If Ç is a trivialization that induces the spin structure s0, then
Γ(¿, s0) is the Poincaré dual to the class in H2(2Y ;Z) corresponding to
the spinc structure i7(sJ) (where the correspondence depends on Ç). Note
that under this correspondence the spinc structure i7(s0) corresponds to the
0 element in H2(2Y ;Z). Therefore, Γ(¿, s0) = PD(i7(sJ)2 i7(s0)), and the
result follows. ¥

2.2. Stein handlebodies for fillings

Observe that any symplectic filling of (YC , ¿C) can be capped by a concave
neighborhood of the cuspidal curve C to form a closed symplectic manifold.
Equivalently, every symplectic filling of (YC , ¿C) arises as the complement
of a neighborhood of a symplectic embedding of C into a closed symplectic
manifold. When C is a rational and unicuspidal curve in CP2, we classify such
embeddings in [GS22, Theorem 6.5]. The goal of this section is to turn this
perspective upside down, by translating our understanding of the embedding
of C into a concrete description of the Stein domain in its complement.
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Rational cuspidal curves and symplectic fillings 1119

For smooth handle decompositions, we can literally turn handle diagrams
upside down (negating the Morse function) to obtain handle decompositions
for many complements. However, it is not clear that a given smooth handle
decomposition for a complement will support a Stein structure. Since there
is not a notion of symplectic handle attachment for closed 4-manifolds, the
strategy of turning things upside down does not suffice to identify a Stein
handle structure on the complement, so we will use additional arguments to
show we have identified the correct geometric structure.

We start with the case where C is in the family Ap. In this case C has a

unique singularity whose link is T (p, p+ 1) so its arithmetic genus is p(p21)
2 .

The self-intersection number is (p+ 1)2. Then [GS22, Theorem 6.5] tells us
that the only minimal symplectic embedding of C into a closed symplectic
manifold is into CP2 and that there is a unique symplectic isotopy class
of such an embedding. As a consequence (YC , ¿C) has a unique minimal
symplectic filling, which is diffeomorphic to an affine complex surface after
attaching a cylindrical end. Our aim is to give a Stein handlebody description
of this object.

Theorem 2.2. Fix p > 1, and let C be a curve of type Ap. Then the unique
filling of (YC , ¿C) is the Stein handlebody Whb given by the diagram in Fig-
ure 1 (up to symplectic deformation and symplectomorphism).

Figure 1. Stein handlebody for the filling corresponding to the Ap family.
The framing on the 2-handle is tb2 1 = 1.

That the filling has a handle decomposition with only one 1-handle and
one 2-handle was to be expected from the proof of [GS22, Theorem 6.5].
Indeed, in that proof we show that, letting T be the tangent to the cusp of C,
the configuration C * T is birationally equivalent to the configuration of two
lines in CP2, and in particular its complement is diffeomorphic to S1 ×D3.
The handle decomposition corresponding to adding a neighborhood of T \ C
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1120 M. Golla and L. Starkston

corresponds to attaching a 2-handle. In fact, using this argument one obtains
the (smooth) Kirby diagram underlying Figure 1.

Proof. To simplify notation, we will write (Y, ¿) instead of (YC , ¿C). Since
Y is the boundary of a neighborhood of the rational cuspidal curve of type
Ap (with the orientation reversed), Y = 2S3

(p+1)2(T (p, p+ 1)). It follows,

for instance from [OS12, Lemma 4.4], that Y is a small Seifert fibered space
with Seifert invariants (21; p

p+1 ,
1
p
, 1
p+1) (see Figure 8 for the Seifert fibered

notation).
Since (p2 + p+ 1)-surgery along T (p, p+ 1) is a lens space [Mos71], the

torus knot T (p, p+ 1) is an L-space knot. Since (p+ 1)2 g 2g(T (p, p+ 1))2
1, by [LS04, Proposition 4.1] Y is a Heegaard Floer L-space.

Matkovič proved in [Mat18, Theorem 1.3] that two tight contact struc-
tures on a small Seifert fibered L-space are isotopic if and only if they in-
duce the same spinc structure. We will compute Gompf’s Γ-invariant (with
respect to the same spin structure on Y ) for the contact structure ¿hb de-
scribed by the Stein handlebody of Figure 1 and use Theorem 2.1 to say
that Γ(¿, s0) = Γ(¿hb, s0); that is, ¿hb and ¿ induce the same spinc structure.
Since both ¿hb and ¿ are tight, by Matkovič’s result they are isotopic. Note
that when p+ 1 is odd computing the first Chern class of ¿hb and ¿ would
suffice. However, when p+ 1 is even, H1(Y ) contains 2-torsion, so knowing
that the first Chern classes agree does not suffice to prove that the spinc

structures are the same.
We have one surgery presentation, P0, for 2Y given by (p+ 1)2-surgery

on T (p, p+ 1). In order to compare Γ-invariants, we need to relate this to
the surgery diagram for Y given as the boundary of Whb. Note that in order
to obtain a surgery diagram for Y from the handle diagram for Whb of
Figure 1, we need to switch to dotted circle notation for the 1-handle, and
then replace the dotted circle with a 0-framed circle. The resulting diagram
represents a smooth 4-manifold W 7

hb obtained by surgering out the S1 ×D3

going around the 1-handle and replacing it by S2 ×D2, but its boundary
is unchanged. We will refer to this surgery diagram for Y as P1, and will
denote its two components by K0 and K1 where K0 is 0-framed and K1

is +1-framed. (To see the framing on K1 from Figure 1, calculate tb21
using [Gom98, Equation (1.1)], using the framing convention of [Gom98,
page 634].)

To relate P0 and P1, we first reverse the orientation of P0, and then
perform a sequence of Kirby calculus moves as in Figure 2, in which (a) is
P0 and (b) is obtained from (a) by reversing the orientation. To go from (b)
to (c) we perform an anti-blow-up, which introduces a +1-framed unknot
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(a) (b) (c)

(d) (e) (f)

Figure 2. Kirby calculus moves relating surgery presentation P0 to surgery
presentation P1, where the surgery presentation P1 is induced by the Stein
handlebody in the bottom right.

and adds a full positive twist into the strands of the mirror of T (p, p+ 1)
and changes its framing to 0. This results in a symmetric link, so there is
an isotopy which exchanges the two components, taking us to (d). (e) is
isotopic to (d), and to obtain the final surgery presentation P1 in (f), we
do a zero-dot surgery, which replaces a 0-framed 2-sphere with a 1-handle.
This sequence of Kirby calculus moves provides an explicit diffeomorphism
identifying the two surgery presentations. We can carry the curve in Y given
by the meridian µ of T (p, p+ 1) through the Kirby calculus moves to see
its image under this diffeomorphism. Following Figure 2, we see that µ is
sent to the meridian of K0 in the surgery presentation P1, or equivalently a
curve which passes once through the 1-handle in the boundary of Whb.

In the statement of Theorem 2.1, the spin structure s0 is represented
in the surgery presentation P0 by the non-empty characteristic sublink,
i.e. T (p, p+ 1). We would like to identify this characteristic sublink in the
surgery presentation P0 with a characteristic sublink of the surgery presen-
tation P1. Note that, when p+ 1 is odd, there is a unique characteristic
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1122 M. Golla and L. Starkston

Figure 3. The characteristic sublink in P0 represented by the colored T (p+
1, p) is carried through the Kirby calculus moves. Reversing orientation keeps
the same component in the characteristic sublink. The anti-blow-up adds
the +1-framed component K1 to the characteristic sublink if and only if
lk(K1,K0) = p+ 1 is even.

sublink K0 in the surgery diagram P1. When p+ 1 is even, there are two
characteristic sublinks of P1: K1 and K0 *K1, so we need to determine
which of these corresponds to s0. It is explained in [GS99, Pages 190–191]
how to track the characteristic sublink through Kirby calculus moves, and
specifically through a blow-up. The characteristic sublink during a blow-
up is unchanged except that the new +1-framed unknotted component is
included if and only if it has even linking number with the previous char-
acteristic sublink. Therefore, after we push s0 through the Kirby calculus
moves, it is represented by the sublink K0 *K1 when p+ 1 is even, and by
K0 when p+ 1 is odd. See Figure 3.

Given a Stein handlebody diagram in standard form, Gompf provides a
formula to determine the Γ-invariant for the contact structure induced on
the boundary. Let ¿hb denote the contact structure induced on the boundary
of the Stein handlebodyWhb. Recall that P1 is a handlebody diagram for a 4-
manifold W 7

hb obtained by surgering Whb. The 2-handles attached to K0 and
K1 determine homology classes ³0 and ³1 respectively which form a basis for
H2(W

7

hb;Z) (³i is represented by a surface obtained by capping off a Seifert
surface for Ki). By [Gom98, Theorem 4.12], Γ(¿hb, s0) is Poincaré dual to
the cohomology class j7Ã * H2(Y ;Z), where j : Y ³ W 7

hb is the inclusion
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and Ã * H2(W 7

hb;Z) satisfies:

(2.1)

ù
ú
û

ïÃ, ³0ï =
1
2 lk(K0, L

2 +K0),

ïÃ, ³1ï =
1
2 (rot(K1) + lk(K1, L

2 +K0)) ,

where L2 is the characteristic sublink of W 7

hb corresponding to s0 (namely
if p+ 1 is odd L2 = K0 and if p+ 1 is even L2 = K0 *K1). Note that, as
observed in [Gom98, Section 4], the link L2 +K0 is to be interpreted modulo
2; in particular, if K0 ¢ L2 then L2 +K0 = L2 \K0.

H2(W 7

hb;Z) is Poincaré dual to H2(W
7

hb, Y ;Z), which is generated by the
classes of the meridian disks D0 and D1 to K0 and K1, respectively. Since
ïÃ, ³iï = PD(Ã) · ³i, and Di is a geometric dual of ³i, we have that

PD(Ã) =
1

2
lk(K0, L

2 +K0)[D0] +
1

2

(
rot(K1) + lk(K1, L

2 +K0)
)
[D1].

We also have that PD(j7(Ã)) = "(PD(Ã)) as in the following commuta-
tive diagram:

H2(W 7

hb;Z)
j∗

//

PD
��

H2(Y ;Z)

PD
��

H2(W
7

hb, Y ;Z)
"

// H1(Y ;Z)

The boundary map " : H2(W
7

hb, Y ;Z) ³ H1(Y ;Z) sends [D0] to ["D0] =
µ * H1(Y ;Z). Using the fact that a presentation ofH1(Y ;Z) can be obtained
from the surgery diagram P1, with generators ["D0] and ["D1] and relations

presented by the intersection matrix
(

0 p+1
p+1 1

)
, we see that

["D1] = 2(p+ 1)["D0] = 2(p+ 1)µ and (p+ 1)2µ = 0.

Therefore

Γ(¿hb, s0) = PD(j7Ã) = " PD(Ã)

=
1

2
lk(K0, L

2 +K0)["D0] +
1

2

(
rot(K1) + lk(K1, L

2 +K0)
)
["D1]

=
1

2

(
lk(K0, L

2 +K0)2 (p+ 1)
(
rot(K1) + lk(K1, L

2 +K0)
))

µ.

Finally, by counting the number of downward cusps minus the number
of upward cusps in the Stein handlebody diagram of Figure 1, we see that
rot(K1) = p2 2.
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Let us now look at the two cases, according to the parity of p+ 1.
If p+ 1 is odd, L2 = K0, so we can take the empty link as a mod 2

representative of L2 +K0. Therefore,

Γ(¿hb, s0) =
1

2
(lk(K0, ')2 (p+ 1) (rot(K1) + lk(K1, ')))µ

= 2
(p+ 1)(p2 2)

2
µ =

2p2 + p+ 2

2
µ.

If p+ 1 is even L2 = K0 *K1, so we can take K1 as a mod 2 represen-
tative of L2 +K0. Therefore,

Γ(¿hb, s0) =
1

2
(lk(K0,K1)2 (p+ 1) (rot(K1) + lk(K1,K1)))µ

=
p+ 12 (p+ 1)(p2 2 + 1)

2
µ =

2p2 + p+ 2

2
µ.

Comparing this with the calculation from Proposition 2.1 with g =
p(p21)

2 (the arithmetic genus of the singularity with link T (p, p+ 1)), we
see that

Γ(¿, s0) =

(
12

p(p2 1)

2

)
µ =

2p2 + p+ 2

2
µ = Γ(¿hb, s0).

Therefore, by Matkovič’s result, ¿ and ¿hb are contactomorphic. Since ¿ has a
unique minimal symplectic filling, Whb must be this filling (up to symplectic
deformation and symplectomorphism). ¥

For symplectic curves in the Bp family, we prove in [GS22, Theorem 6.5],
that there are exactly two relatively minimal symplectic embeddings of C
into closed symplectic manifolds up to symplectic isotopy: one embedding
is into CP2 and the other is into S2 × S2. Consequently, there are exactly
two minimal symplectic fillings of (YC , ¿C) (up to symplectic deformation
and symplectomorphism): one is a rational homology ball and the other has
b2 = 1.

Theorem 2.3. Fix p > 1, and let C be the rational cuspidal curve of type
Bp. Then the unique rational homology ball filling of (YC , ¿C) is given by the
Stein handlebody depicted in Figure 4, and the unique filling of (YC , ¿C) with
b2 = 1 is given by the Stein handlebody of Figure 5.

The proof will follow the same method as Theorem 2.2. A heuristic
argument, similar to that we gave for the Ap family, for why the filling has a
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Figure 4. Stein handlebody diagram for the rational homology ball filling
of (YC , ¿C) where C is a Bp-type rational unicuspidal curve. The attaching
curve for the 2-handle passes through the 1-handle 2p times. Observe that
for the Legendrian attaching curve for the 2-handle, tb = 4(p2 1)2 (2p2
3)2 (2p2 3) = 2 and rot = 2p2 3.

Figure 5. Stein handlebody diagram for the b2 = 1 filling of (YC , ¿C) where
C is a Bp-type rational unicuspidal curve. Observe that the blue Legendrian
attaching curve has tb = 21 and rot = p, and the green Legendrian attach-
ing curve has tb = 23 and rot = 2.

decomposition with one 1-handle and one 2-handle is found by considering
C * T , where T is the tangent to C at the cusp.

Proof. The boundary of the handlebody is YC as seen by the sequence of
Kirby calculus moves in Figure 6, which are explained in the caption. The
isotopy from the bottom left diagram to the bottom right one can be thought
of in terms of the following observation. As a link, the diagram on the
bottom left is the obtained from the Hopf link by taking the (2, 1)-cable
of one component and the (p, 1)-cable of the other. Since the link obtained
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by doing the (p, 1)-cable on the Hopf link is symmetric, we can choose to
“discharge” the cabling on the first component, so that cabling the two
components separately is the same as cabling one component twice. One
needs to keep track of the framing, using the writhe, to see that there are
(p2 1) negative twists.

We also track the class µ and the spin structure s0 (represented by
the non-empty characteristic sublink) through these diagrams. Since the
(green) +1-unknot of the blow-up links the (black) knotted component 2p
times, by [GS99, Pages 190–191], the +1-framed unknot is included in the
characteristic sublink corresponding to s0. That is, in the last diagram the
spin structure s0 is represented by the characteristic sublink consisting of
both components of the surgery diagram.

Since the Bp curve has arithmetic genus (p21)(4p22)
2 , using Theorem 2.1,

we see that

Γ(¿C , s0) = (12 (p2 1)(2p2 1))µ = (3p2 2p2)µ.

Let ¿hb be the contact structure represented by the Legendrian surgery
diagram of Figure 4. We compare Γ(¿C , s0) and Γ(¿hb, s0), following the
same computation as in the Ap case.

As in the proof of Theorem 2.2, call W 7

hb the surgery diagram on the
top right of Figure 6 (i.e. the one obtained from doing a zero-dot surgery
on Whb), and call K0 and K1 the components of the link, where K0 is the
0-framed component (black) and K1 is the 1-framed component. With a
slight abuse of notation, we also call K1 the Legendrian attaching curve
of Figure 4, which we orient as going from left to right. We orient K0 so
that lk(K0,K1) = 2p. Once again, we use the conventions from [Gom98]
to compute Thurston–Bennequin and rotation numbers in the presence of
1-handles.

Using these conventions, we compute the classical invariants ofK1. There
are 4(p2 1) positive crossings coming from the 1/pth of twist on the left,
2p2 3 negative crossings coming from the 2-cabling on the right, and 4p2 6
cusps, all of which are downward-pointing. Summing up:

tb(K1) = 4(p2 1)2 (2p2 3)2 (2p2 3) = 2;

rot(K1) =
4p26
2 = 2p2 3.
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Figure 6. A Kirby calculus sequence from the surgery presentation of Y to
a rational homology ball. Along the top, going from the left most figure
to the next corresponds to reversing orientation and performing an isotopy,
then the next figure is related by an anti-blow-up, and the rightmost is
related by an isotopy. The bottom left figure is related by an isotopy and
switching the 0-framed component to a dotted circle, and the bottom right
figure is obtained by an isotopy to put it in standard notation. This bottom
right figure is the same underlying smooth handlebody diagram as Figure 4
(the signed number of crossings between the two strands at the bottom is
22(p2 1) + 1 = 2(2p2 3), and the framing +1 = tb21 for the Legendrian
realization in Figure 4).

Note that tb(K1)2 1 = +1, so that the framing coming from the Legen-
drian surgery picture of Figure 4 agrees with the smooth surgery framing of
Figure 6.
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Call D0 and D1 the co-cores of the handles associated to the surgeries

along K0 and K1, respectively. The intersection matrix of W 7

hb is
(

0 2p
2p 1

)
,

so we have ["D0] = µ * H1(Y ) and ["D1] = 22pµ * H1(Y ).
Recall that s0 corresponds to the characteristic sublink L2 := K0 *K1

containing both components of the link in Figure 6. The same computation
as in the proof of Theorem 2.2 now yields:

Γ(¿hb, s0) = PD(j7Ã) = " PD(Ã)

=
1

2
lk(K0, L

2 +K0)["D0] +
1

2

(
rot(K1) + lk(K1, L

2 +K0)
)
["D1]

=
1

2
lk(K0,K1)µ+

1

2
(rot(K1) + lk(K1,K1))(22p)µ

= pµ2 p(2p2 3 + 1)µ

= (3p2 2p2)µ.

Therefore, we have that Γ(¿hb, s0) = Γ(¿, s0). That is, ¿hb and ¿ in-
duce the same spinc structure on Y . Now, 2Y is obtained as 4p2-surgery
along T (p, 4p2 1), so Y is a small Seifert fibered space. Moreover, since
4p2 > 2g(T (p, 4p2 1))2 2, by [LS04, Proposition 4.1] Y is a also a Heegaard
Floer L-space. Since both ¿ and ¿hb are tight, Matkovič’s result [Mat18, The-
orem 1.3] implies that ¿hb and ¿ are isotopic.

For the filling with b2 = 1, the proof goes similarly, comparing the Γ-
invariant calculation for the Stein handlebody of Figure 5 with that of The-
orem 2.1. We leave this computation to the reader, but provide assistance
with Figure 7, which gives a Kirby calculus sequence between the surgery di-
agram for YC as 2S3

4p2(T (p, 4p2 1)) and one which is equivalent to Figure 5
by an isotopy plus surgering a 0-framed 2-handle to a 1-handle. ¥

3. Canonical contact structures in the exceptional

E3 and E6 cases

In this section, we focus on (YC , ¿C) for the two exceptional cases of rational
cuspidal curves in CP2 with a single T (a, b) cusp, with (a, b) = (3, 22) or
(a, b) = (6, 43). Our goal is to identify the contact manifolds in these two
cases as the canonical contact manifolds arising as links of complex normal
surface singularities. This will complete the proof of Theorem 1.1.

In the proofs, we will make use of the Ozsváth–Szabó contact invari-
ant [OSz05] in Heegaard Floer homology [OSz04]. The relevant properties
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Figure 7. An abbreviated Kirby calculus sequence for YC in the Bp case to
help compare the Γ-invariant for the second filling. The right most diagram
can be isotoped so that after exchanging the 0-framed 2-handle for a dotted
circle and switching to the other 1-handle notation, we get a diagram which
is smoothly equivalent to Figure 5. To get from the center figure to the
left, handle slide all p strands the black curve over the blue curve, and then
cancel the blue and green curves. To get from the center figure to the right,
handle slide the green curve once over the blue curve. The spin structure
represented by the non-empty characteristic sublink on the left corresponds
to the spin structure represented by the characteristic sublink in the center
and right diagrams which consists of the black component only when p is
even, and the black and blue components when p is odd.

of the theory are the non-vanishing of the contact invariant for fillable con-
tact structures [OSz05, Theorem 1.5], the fact that large surgeries on torus
knots are L-spaces (i.e. they have the smallest possible Heegaard Floer ho-
mology) [LS04, Proposition 4.1], and the absolute grading on Heegaard Floer
homology [OSz03].

We first consider the contact 3-manifold (YC , ¿C) associated to the
curve E3, which is associated to the triple (3, 22; 8). Then topologically,
YC = 2S3

64(T (3, 22)). In particular, it is a small Seifert fibered manifolds
with Seifert parameters (22; 1/2, 1/3, 15/22); see Figure 8 for an explana-
tion of the notation.

Expanding the rational surgeries with their continued fraction expan-
sions, we see that YC is smoothly the boundary of the following plumbing
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e0

2 1
r1

2 1
r2

2 1
r3

Figure 8. A surgery description for the small Seifert fibered manifold with
parameters (e0; r1, r2, r3).

graph.

(3.1)

" " " " "

"

22

23

22 22 22 28

The canonical contact structure of a Seifert fibered space is the one
arising as convex boundary of a plumbing of symplectic spheres according
to a negative definite graph. Equivalently, it is the contact structure that
arises as the link of a complex surface singularity whose minimal normal
crossing resolution is that plumbing. Note that the graph (3.1) does have a
negative definite intersection form.

Proposition 3.1. When C is the rational cuspidal curve with a single
T (3, 22) cusp and self-intersection number 64, the contact manifold (YC , ¿C)
is contactomorphic to the canonical contact structure on YC associated with
the plumbing (3.1). It can be presented as a Legendrian surgery diagram as
in Figure 9.

Proof. Tosun [Tos20, Theorem 1.1(b)] classified tight contact structures on
small Seifert fibered spaces with e0 = 22 and r1 + r2 + r3 < 2, showing that
all such tight contact structures all arise from a Legendrian surgery picture
associated to the plumbing (3.1), as in Figure 10. Since (YC , ¿C) is fillable, ¿C
is tight [EG91]. As explained above YC is the small Seifert fibered space with
(e0; r1, r2, r3) = (22; 1/2, 1/3, 15/22). Since, r1 + r2 + r3 =

50
33 < 2, Tosun’s

classification result applies.
We will prove that the canonical contact structure is the unique tight

contact structure (on the Seifert fibered space at hand) whose associated
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Figure 9. Stein handlebody for the plumbing inducing the canonical contact
structure on its boundary.

Figure 10. Allowing some number of the stabilizations of unknotted compo-
nents of Figure 9 to be negative provides Legendrian surgery diagrams for
all other tight contact structures on this 3-manifold by a result of Tosun.

spinc structure t extends to a rational homology ball. We do this by com-
puting the Heegaard Floer correction term associated to the spinc classes of
all tight contact structures, using Tosun’s classification.

We begin by observing that, since (YC , ¿C) has a rational homology ball
filling, then the correction term d(YC , t) vanishes. We set out to prove that
this characterises the canonical contact structure (up to conjugation).

Since torus knots are L-space knots (in fact, lens space knots [Mos71]),
and the surgery coefficient is 64, which is larger than 2g(T (3, 22))2 2 =
40, Y is an L-space [LS04, Proposition 4.1]. (Now we could use Ghiggini’s
classification result from [Ghi08] instead of Tosun’s, as mentioned in the
introduction.)

Since every tight contact structure on YC arises as the boundary of a
Stein handlebody as in Figure 10, we can use this Stein filling to compute the
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degree of the contact invariant for each contact structure. The contact in-
variant is also the generator of the associated tower in HF+(Y ), so its degree
is the correction term associated to the corresponding contact structure.

The possible realizations of the link L are distinguished by the rotation
numbers s, t of the components with framing 23 and 28: these can take
values ±1 and ±6, ±4, ±2, or 0, respectively. All other rotation numbers
vanish, since the framing is 22. Moreover, reversing both signs corresponds
to conjugation. Let Js,t be the complex structure on the Stein plumbing P
associated to Legendrian realization of the link with rotation numbers s and
t, and ¿s,t the associated contact structure on YC .

Since c1(Js,t) evaluates on a sphere in the plumbing as the rotation
number of the corresponding unlink, we can compute c21(Js,t) from the in-
tersection matrix Q of the plumbing P . Q and its inverse Q21 are:

Q =

û
üüüüüüý

22 1 1 1 0 0
1 22 0 0 0 0
1 0 23 0 0 0
1 0 0 22 1 0
0 0 0 1 22 1
0 0 0 0 1 28

þ
ÿÿÿÿÿÿø

,

Q21 = 2
1

64

û
üüüüüüý

132 66 44 90 48 6
66 65 22 45 24 3
44 22 36 30 16 2
90 45 30 105 56 7
48 24 16 56 64 8
6 3 2 7 8 9

þ
ÿÿÿÿÿÿø

.

Then c21(Js,t) = vQ21vt, where v = (0, 0, s, 0, 0, t).
For convenience, call P 7 = P \B4, a cobordism from S3 to Y . Then,

c21(Js,t)2 2Ç(P 7)2 3Ã(P 7)

4
=

3842 36s2 2 4st2 9t2

256
,

and it is easily verified that the minimum of this function, with s = ±1 and
t * {0,±2,±4,±6} is 0, attained only at (s, t) = ±(1, 6); that is, only at the
canonical contact structure and its conjugate. ¥

Remark 3.2. We note that when understanding symplectic fillings, identi-
fying a contact structure up to contactomorphism and conjugation suffices.
This is because, for every symplectic filling of a contact manifold, the same
filling with the conjugate almost complex structure (negating the symplectic
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Figure 11. Stein handlebody for the plumbing inducing the canonical con-
tact structure on its boundary.

form) gives a symplectic filling of the conjugate contact manifold. Therefore
the fillings of a contact manifold and its conjugate are in bijective corre-
spondence.

Next, we consider the second exceptional case, where C has a unique sin-
gularity of type (6, 43) and self-intersection number 162 = 256. In this case,
YC = 2S3

256(T (6, 43)), so YC is a small Seifert fibered space with Seifert pa-
rameters (22; 1/2, 1/6, 36/43). A negative definite plumbing with boundary
YC is the following.

(3.2)

" " " " " " " "

"

22

26

22 22 22 22 22 22 28

Proposition 3.3. When C is the rational cuspidal curve with a single
T (6, 43) cusp and self-intersection number 256, the contact manifold (YC , ¿C)
is contactomorphic to the canonical contact structure on YC associated with
the plumbing (3.2). It can be presented as a Legendrian surgery diagram as
in Figure 11.

Proof. Since the proof is very similar to that of Proposition 3.1, we omit the
details that would be repeated and only include the calculations where the
two cases differ.
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Again, in this case we have r1 + r2 + r3 =
194
129 < 2, so Tosun’s classifica-

tion result still applies. Moreover, the surgery coefficient is again sufficiently
large, so YC is again an L-space.

In the plumbing graph there are still only two rotation numbers s and t
that vary, corresponding to the vertices of weight 26 and 28, respectively.
s takes values in {±2, 0}, while t takes values in {±4,±2, 0}.

The intersection matrix Q associated to the plumbing is:

Q =

û
üüüüüüüüüüüüý

22 1 1 1 0 0 0 0 0
1 22 0 0 0 0 0 0 0
1 0 26 0 0 0 0 0 0
1 0 0 22 1 0 0 0 0
0 0 0 1 22 1 0 0 0
0 0 0 0 1 22 1 0 0
0 0 0 0 0 1 22 1 0
0 0 0 0 0 0 1 22 1
0 0 0 0 0 0 0 1 28

þ
ÿÿÿÿÿÿÿÿÿÿÿÿø

,

and its inverse is

Q21 = 2
1

256

û
üüüüüüüüüüüüý

516 258 86 432 348 264 180 96 12
258 257 43 216 174 132 90 48 6
86 43 57 72 58 44 30 16 2
432 216 72 576 464 352 240 128 16
348 174 58 464 580 440 300 160 20
264 132 44 352 440 528 360 192 24
180 90 30 240 300 360 420 224 28
96 48 16 128 160 192 224 256 32
12 6 2 16 20 24 28 32 36

þ
ÿÿÿÿÿÿÿÿÿÿÿÿø

.

Therefore, in the same notation as in the proof of Proposition 3.1,

c21(Js,t)2 2Ç(P 7)2 3Ã(P 7)

4
=

23042 57s2 2 4st2 36t2

256
,

and the minimum of this function as s and t vary in the corresponding ranges
is 0, attained only at (s, t) = ±(4, 6); that is, only at the canonical contact
structure and its conjugate. ¥
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4. Background on symplectic configuration of curves

We will briefly collect some background related to rational cuspidal curves
and embedding classifications that we will use repeatedly in the remaining
sections of the paper. For further details, see [GS22, Sections 2 and 3] (see
also [Lis08]).

By [Wal04], every complex plane curve singularity can be resolved by
blowing up (sufficiently many times), and the diffeomorphism type of the link
determines the topology of the resolution. There are two natural stopping
points when resolving a singularity: the minimal resolution is the smallest
resolution such that the proper transform C̃ of C is smooth; the normal
crossing resolution is the smallest resolution such that the total transform
C of C is a normal crossing divisor, i.e. all singularities are double points.

The multiplicity mp of a singular point p of a curve C is the minimal
intersection of a germ of a divisor D at p with C. In terms of the resolution,
mp is the algebraic intersection number of the exceptional divisor and the

proper transform after blowing up at p, and we have [C̃] = [C]2mp[E].
The multiplicity sequence of a singularity p is defined as the sequence of
multiplicities of the curve at p and each of its proper transforms in the
sequence of blow-ups leading to the minimal resolution of the singularity.

Recall that an isolated singularity of a curve at q can be smoothed to its
Milnor fiber. Let µ(q) denote the first Betti number of the Milnor fiber. If q
has r local branches, define ·(q) by 2·(q) = µ(q) + r 2 1. If q is a cusp, then
·(q) is the genus of its Milnor fiber. It follows from the adjunction formula
that for a singularity with multiplicity sequence [m1, . . . ,mn]

(4.1) ·(p) =
1

2

∑
mj(mj 2 1).

There are two different types of notions of the genus of a singular curve C:
the geometric genus and the arithmetic genus. The geometric genus pg(C) is
the genus of the proper transform of the curve in the minimal resolution; by
definition, rational curves have geometric genus zero. The arithmetic genus
pa(C) is given by

(4.2) pa(C) := pg(C) +
∑

p*Sing(C)

·(p)

Next, we will state various results about embedded surfaces in symplectic
4-manifolds that we used heavily in our embedding classification results
in [GS22], beginning with the following important result of McDuff.
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1136 M. Golla and L. Starkston

Theorem 4.1 ([McD90]). If (X,Ë) is a closed symplectic 4-manifold
and C0 ¢ X is a smooth symplectic sphere of self-intersection number +1,
then there is a symplectomorphism of (X,Ë) to a symplectic blow up of
(CP2, »ËFS) for some » > 0, such that C0 is identified with CP1.

This theorem motivates our focus on surfaces embedded in CP2#NCP2.
We will use the standard basis h, e1, . . . , eN for H2(CP

2#NCP2) with h2 = 1
and e2i = 21. The following is a useful lemma to find embedded exceptional
spheres which intersect a given collection of symplectic surfaces positively.

Lemma 4.2 ([McD90], [GS22, Lemma 3.5]). Suppose C is a config-
uration of positively intersecting symplectic surfaces in CP2#NCP2. Let
ei1 , . . . , ei3 be exceptional classes which have non-negative algebraic inter-
sections with each of the symplectic surfaces in the configuration C. Then
there exist disjoint exceptional spheres Ei1 , . . . , Ei3 representing the classes
ei1 , . . . , ei3 respectively such that any geometric intersections of E with C are
positive.

Using the previous lemma, information about an embedding of surfaces
in CP2#NCP2 can be reduced to symplectic isotopy classes of curve con-
figurations in CP2 together with the information of the homology classes
represented by the surface components. Using the adjunction formula, we
have the following restrictions on the homology classes that can represent a
symplectic sphere in CP2#NCP2.

Lemma 4.3 ([GS22, Lemma 3.7]). Suppose Σ is a smooth symplectic
sphere in CP2#NCP2 intersecting CP1 non-negatively. Then writing [Σ] =
ah+ a0e0 + · · ·+ aN21eN21 (so a g 0), we have:

1)
∑

(a2i + ai) = 2 + a2 2 3a.

2) If a = 0, there is one i0 such that ai0 = 1 and all other ai * {0,21}.

3) If a ;= 0, then for all i, ai f 0.

Some particular cases which we will use often are:

4) If a = 1 or a = 2, ai * {0,21} for all i.

5) If a = 3, then there exists a unique i0 such that ai0 = 22, and ai *
{0,21} for all other i.

The self-intersection number of Σ can be used to compute how many ai have
coefficient 0 versus 21.
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In the following lemmas from [GS22], Ci and Cj are smooth symplec-
tic spheres in CP2#NCP2 such that [Ci] · h = [Cj ] · h = 0 and [Ci] · [Cj ] g 0
whenever i ;= j. These are easy consequences of Lemma 4.3 and the hypoth-
esized intersection relations.

Lemma 4.4 ([GS22, Lemmas 3.8 and 3.10]). If [Ci] · [Cj ] = 1 (and
[Ci] · h = [Cj ] · h = 0), there is exactly one exceptional class ei which appears
with non-zero coefficient in both [Ci] and [Cj ]. The coefficient of ei is +1 in
one of [Ci], [Cj ] and 21 in the other.

If [Ci] · [Cj ] = 0, then either there is no exceptional class which appears
with non-zero coefficients in both, or there are exactly two exceptional classes
em and en appearing with non-zero coefficients in both. One of these classes
em has coefficient 21 in both [Ci] and [Cj ] and the other en appears with
coefficient +1 in one of [Ci] or [Cj ] and coefficient 21 in the other.

Lemma 4.5 ([GS22, Lemma 3.9]). If em appears with coefficient +1 in
[Ci] then it does not appear with coefficient +1 in [Cj ].

Lemma 4.6 ([GS22, Lemmas 3.11 and 3.12]). Suppose C1, . . . , Ck are
a linear chain of symplectic spheres of self-intersection 22 disjoint from
CP1 in CP2#NCP2 ([Ci] · [Cj ] = 1 |i2 j| = 1 and 0 otherwise). Then the
homology classes are given by one of the following two options up to re-
indexing the exceptional classes:

(A) [Ci] = ei 2 ei+1 for i = 1, . . . , k.

(B) [Ci] = ei+1 2 ei for i = 1, . . . , k.

In the homology class of any surface disjoint from the chain, the coefficients
for e1, . . . , ek+1 are equal.

If the chain is attached to another symplectic sphere C0 which does in-
tersect CP1, option (B) can only occur if e2, . . . , ek+1 all appear with coeffi-
cient 21 in [C0]. In particular if [C0] · h = 1, option (B) can only occur if
[C0]

2 f 12 k.

5. Rational blow-down relations for fillings of unicuspidal

contact manifolds

Next we study the relationships between different fillings of contact mani-
folds (YC , ¿C), where C is a symplectic curve in CP2 with a single T (a, b)
cusp. The relationship we will focus on is symplectic rational blow-down
(in its most general sense) which means replacing a plumbing of symplectic
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spheres with a symplectic rational homology ball filling. The first exam-
ples of rational blow-down were introduced by Fintushel and Stern [FS97],
shown to be symplectic operations by Symington [Sym98] and were gener-
alized in [Par97, Sym01, SSW08]. In [BS11], Bhupal and Stipsicz show that
these examples are all the plumbings which can be symplectically rationally
blown down, and explicitly list out all families of non-linear plumbings which
admit symplectic rational blow-downs.

Linear plumbings which can be symplectically rationally blown down
have boundaries which are the lens spaces L(p2, pq 2 1). The associ-
ated plumbing graphs for this family all arise recursively as an iter-
ated “2-expansion” of (24), where a 2-expansion of a linear plumbing
with weights (2a1, . . . ,2an21) can be either (2a1 2 1, . . . ,2an21,22) or
(22,2a1, . . . ,2an21 2 1). This can be understood as starting with a 24-
sphere and a 21-sphere intersecting at two points transversally, and iter-
atively blowing up at one of the two intersection points on a 21-sphere,
and then looking at the linear plumbing that results from removing the 21-
sphere after all of the blow-ups. Observe that “interior” vertices cannot be
changed by 2-expansions. In particular, an interior vertex of square strictly
less than 22 survives after 2-expansions.

Now we proceed to study when different fillings of (YC , ¿C) are related by
sequences of symplectic rational blow-downs. Note that among the curves
in CP2 with a single T (a, b) cusp, the two exceptional cases are the only
cases where the symplectic rational blow-down relations have not already
been established in prior work. In the Ap family, there is a unique mini-
mal symplectic filling so there are no pairs to relate. In the Bp case, there
are two fillings which are related by a single rational blow-down of a 24-
sphere [GS22, Proposition 6.6]. The Fibonacci families have YC a lens space
or connected sum of lens spaces. Symplectic rational blow-down relations be-
tween lens spaces were established in [BO16]. The minimal symplectic fillings
of the connected sum of two lens spaces are all Stein because the contact
manifolds are planar [Wen10]. Thus they are boundary sums of Stein fillings
of the two lens space summands [Eli90], so the results of [BO16] apply in
this case as well.

We begin with the first exceptional case where C has a cusp of type
T (3, 22) and self-intersection number 64. The minimal symplectic fillings of
(YC , ¿C) are each obtained as the complement of a concave neighborhood
of an embedding of C (or any of its resolutions) into a closed symplectic
4-manifold. In [GS22] we classified all relatively minimal symplectic embed-
dings of the minimal resolution of C. The minimal resolution of C in this case
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Rational cuspidal curves and symplectic fillings 1139

is described by the graph below where the triple edge indicates a tangency
of multiplicity three between the +1-sphere and the 21-sphere.

"22 "22 "22 "22 "22 "22"21"+1

In [GS22, Section 6], we prove that there are exactly three symplectic
isotopy classes of relatively minimal embeddings of this minimal resolution
into closed symplectic manifolds. The three isotopy classes are distinguished
by the maps induced by the embeddings on second homology which are
given by the three possibilities below. Note that in each case the embedding
is into a blow-up of CP2 and we use the standard generators h, e0, . . . , eN21 *
H2(CP

2#NCP2;Z) represented by CP1 ¢ CP2 and the exceptional spheres.
The vertices in the graph above correspond to generators of the second
homology of the concave neighborhood of the minimal resolution, and the
three possibilities for their images in H2(CP

2#NCP2;Z) under different
symplectic embeddings are (with N = 13, 8, 7 respectively):

h, 3h2 2e0 2 e1 2 e2 2 e3 2 e4 2 e5 2 e6, e1 2 e7, e7 2 e8, e8 2 e9, e9 2 e10, e10 2 e11, e11 2 e12,

h, 3h2 2e0 2 e1 2 e2 2 e3 2 e4 2 e5 2 e6, e1 2 e7, e2 2 e1, e3 2 e2, e4 2 e3, e5 2 e4, e6 2 e5,

h, 3h2 2e0 2 e1 2 e2 2 e3 2 e4 2 e5 2 e6, e0 2 e1, e1 2 e2, e2 2 e3, e3 2 e4, e4 2 e5, e5 2 e6.

The fillings of (YC , ¿C) are the complements of these embeddings, which
have b2 = N 2 7. Therefore we have three fillings, V6, V1, and V0, where
the indices are chosen so that b2(Vk) = k. As a corollary to Proposition 3.1,
V6 is symplectic deformation equivalent to the negative definite symplectic
plumbing (3.1).

Proposition 5.1. There is a linear symplectic rational blow-down from V6

to V1 and a non-linear symplectic rational blow-down from V6 to V0, but no
rational blow-down from V1 to V0.

Note that any sequence of symplectic rational blow-downs will yield a
sequence of symplectic fillings. Since we have a classification of the fillings of
(YC , ¿C), it suffices to understand when any pair of these symplectic fillings
is related by a single symplectic rational blow-down.

Proof of Proposition 5.1. It is apparent from the plumbing description of V6,
that there is a linear plumbing of symplectic spheres with self-intersections
(28,22,22,22,22). This is one of Fintushel–Stern’s original rational blow-
downs L(p2, p2 1) with p = 6. Rationally blowing down this chain yields a
symplectic filling with b2 = 1, so it is necessarily V1.
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Since V6 itself is a plumbing, its replacement by the rational homology
ball filling V0 is itself a rational blow-down relation, and indeed this plumbing
coincides with the plumbing of Figure 1(f) with q = 2 in [BS11].

We now show that there is no rational blow-down from V1 to V0. There is
a unique plumbing with b2 = 1 which can be rationally blown down which is
a 24-sphere. The non-torsion part of H2(V1) is generated by the orthogonal
complement of the classes in the corresponding embedding, namely 3e0 2
e1 2 · · · 2 e7. Therefore the intersection form of V1 is ï216ï, so no homology
class has self-intersection 24. Thus there can be no rational blow-down from
V1 to V0. ¥

Next we consider the second exceptional case, where C has a singularity
of type (6, 43) and self-intersection number 162. Again, the minimal sym-
plectic fillings of (YC , ¿C) are precisely the complements of the relatively
minimal symplectic embeddings of a given resolution of C into closed sym-
plectic manifolds. We will consider a resolution which is between the minimal
and minimal normal crossing resolution indicated by the graph below. Here
the +1- and 24-spheres intersect tangentially with multiplicity 3, and the
21-sphere intersects these two at the same point transversally.

"22"22"22"22"24"+1 "22 "22

"22"22"21

Again, we have results from [GS22, Section 6] classifying the symplectic
isotopy classes of relatively minimal embeddings of this resolution. In this
case, there are six such embeddings distinguished by the maps they induce
on second homology which are given as follows.

Let W9 denote the filling complementary to the embedding of the reso-
lution into CP2#18CP2 with homology classes:

h2 e0 2 e16, e16 2 e17, e17 2 e18
h, 3h2 2e0 2 e1 2 · · · 2 e9, e1 2 e10, e10 2 e11, e11 2 e12, e12 2 e13, e13 2 e14, e14 2 e15

Let W6 denote the filling complementary to the embedding of the reso-
lution into CP2#16CP2 with homology classes:

h2 e8 2 e9, e8 2 e7, e9 2 e8
h, 3h2 2e0 2 e1 2 · · · 2 e9, e1 2 e10, e10 2 e11, e11 2 e12, e12 2 e13, e13 2 e14, e14 2 e15
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Let Z6 denote the filling complementary to the embedding of the reso-
lution into CP2#16CP2 with homology classes:

h2 e8 2 e9, e8 2 e7, e7 2 e6
h, 3h2 2e0 2 e1 2 · · · 2 e9, e1 2 e10, e10 2 e11, e11 2 e12, e12 2 e13, e13 2 e14, e14 2 e15

Let W4 denote the filling complementary to the embedding of the reso-
lution into CP2#14CP2 with homology classes:

h2 e0 2 e11, e11 2 e12, e12 2 e13
h, 3h2 2e0 2 e1 2 · · · 2 e9, e1 2 e10, e2 2 e1, e3 2 e2, e4 2 e3, e5 2 e4, e6 2 e5

Let W1 denote the filling complementary to the embedding of the reso-
lution into CP2#11CP2 with homology classes:

h2 e8 2 e9, e8 2 e7, e9 2 e8
h, 3h2 2e0 2 e1 2 · · · 2 e9, e1 2 e10, e2 2 e1, e3 2 e2, e4 2 e3, e5 2 e4, e6 2 e5

Let W0 denote the filling complementary to the embedding of the reso-
lution into CP2#10CP2 with homology classes:

h2 e8 2 e9 e8 2 e7 e9 2 e8
h, 3h2 2e0 2 e1 2 · · · 2 e9, e0 2 e1, e1 2 e2, e2 2 e3, e3 2 e4, e4 2 e5, e5 2 e6

Observe that the subscript indicates the second Betti number. A pos-
teriori, due to Proposition 3.3, W9 is the plumbing of symplectic spheres
according to the graph in (3.2).

Proposition 5.2. Let C be the rational cuspidal curve with a single
T (6, 43) singularity and self-intersection number 162. There exists a ratio-
nal blow-down of a connected embedded plumbing of symplectic spheres from
one filling of (YC , ¿C) to another if and only if there is an edge between the
fillings in following graph.

W9

W6 Z6

W4

W1

W0

Proof. First, we observe the existence of the rational blow-downs from W9

to W6 and W4, and from W6 and W4 to W1. Using the fact that W9 is
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necessarily the plumbing (3.2) (by Proposition 3.3), we can visibly see sub-
plumbings of the form (28,22,22,22,22) and (26,22,22). Note that
these symplectic embeddings are not unique, but it is possible to realize dis-
joint embeddings of both the (28,22,22,22,22) and (26,22,22) chains
as disjoint sub-plumbings. Rationally blowing down a (28,22,22,22,22)
chain yields a symplectic filling with b2 = 4 which is necessarily W4. Ra-
tionally blowing down a (26,22,22) chain yields symplectic fillings with
b2 = 6, which must be either W6 or Z6. Rationally blowing down disjoint
plumbings (28,22,22,22,22) and (26,22,22) yields a symplectic filling
with b2 = 1, so it must be W1. Using the homological properties that define
Z6, we will show below that Z6 does not admit any further rational blow-
downs. Therefore, rationally blowing down a (26,22,22) plumbing in W9

which is disjoint from a (28,22,22,22,22) plumbing, necessarily results
in W6. This shows as well that there is a further rational blow-down from
W6 to W1. If we exchange the order of which of the two disjoint plumbings
we rationally blow-down first, we see the sequence of rational blow-downs
from W9 to W4 to W1.

Next, we will show there is a rational blow-down from W9 to Z6. Con-
sider the (26,22,22) chain embedded as a sub-plumbing of W9 given by
turning right instead of left at the 3-valent vertex. This sub-plumbing is
not disjoint from the (28,22,22,22,22) chain, and thus potentially yields
a different result from the rational blow-down of the other embedding of
the (26,22,22) chain (where you turn left at the 3-valent vertex). We will
now verify that rationally blowing down this embedding of the (26,22,22)
plumbing is not W6, and thus must be Z6.

First, we argue that the result of this rational blow-down is simply con-
nected. Since W9 is a tree plumbing of spheres, it is simply connected.
The fundamental group of the rational homology ball which replaces the
(26,22,22) plumbing is normally generated by the meridian of the last
22-sphere in the chain, so it suffices to show this curve is null-homotopic in
the complement of the plumbing in W9. This meridian can be realized as the
equator of the next 22-sphere S in theW9 plumbing, so it bounds a disk (the
other half of the 22-sphere S) in the complement of the (26,22,22) chain.
Consequently the result of this rational blow-down is a simply-connected
filling, and in particular it has trivial H1.

We will next show that W6 necessarily has non-trivial H1. To see this,
consider the long exact sequence of the pair (W6, "W6):

0 = H2("W6) ³ H2(W6) ³ H2(W6, "W6) >= H2(W6) ³ H1("W6) >= Z/256Z
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Here we identify H2(W6, "W6) ³ H2(W6) by Alexander–Lefschetz duality.
Under this identification, the map H2(W6) ³ H2(W6) in the sequence is
described by the intersection form QW6

of W6, by sending a * H2(W6) to
QW6

(a, ·). The size of the cokernel of this map is the determinant of QW6
.

In [GS22, Proof of Theorem 6.6, pp. 1652–1653], we computed the intersec-
tion forms for W6 and Z6, by finding an integral homology basis for the or-
thogonal complement in H2(CP

2#16CP2) of the corresponding embeddings
of the resolutions for W6 and Z6 (which are listed above). We calculated that
det(QW6

) = 64 and det(QZ6
) = 256. (Note, this distinguishes W6 from Z6.)

On the other hand, H1("W6) >= Z/256Z since "W6 = 2S3
256(T (6, 43)). Since

the co-kernel of the map H2(W6) ³ H2(W6) has order 64, the map from
H2(W6) to H1("W6) >= Z/256Z cannot be surjective. Therefore, there are
some elements which are not in the kernel of the map H1("W6) ³ H1(W6),
so H1(W6) ;= 0. This shows that the rational blow-down of this embedding
of the (26,22,22) chain is necessarily Z6.

Finally, the entirety of the W9 plumbing can be rationally blown down
in a non-linear way (this plumbing is [BS11, Figure 1(j)] for q = 4) to W0.

Next, we will show that fillings which are not connected by edges are
not related by a symplectic rational blow-down. Note that because rational
blow-down strictly decreases b2, we only need to obstruct rational blow-
downs from larger fillings to smaller fillings.

We will next show that Z6 cannot be symplectically rationally blown
down to any other filling. To do this, we start by looking at the classes
in H2(Z6) which could be represented by a symplectic sphere. Classes in
H2(Z6) must be in the orthogonal complement of the classes listed above
for the Z6 embedding of the resolution in H2(CP

2#16CP2). Classes in this
orthogonal complement are classes of the form

∑15
i=0 aiei where

a1 = a10 = · · · = a15, a6 = a7 = a8 = 2a9, 2a0 + a1 + · · ·+ a9 = 0

where, using the equalities above, the last equation can equivalently be writ-
ten as

(5.1) 2a0 + a1 + · · ·+ a5 + 2a6 = 0.

If the class represents a symplectic sphere, by Lemma 4.3, there exists an
index i0 * {0, . . . , 15} such that ai0 = 1 and ai * {21, 0} for all i ;= i0. Com-
bining this with the forced equalities of coefficients above, we see that i0 /*
{1, 6, 7, 8, 10, . . . , 15}. Furthermore i0 ;= 9 because if a9 = 1, a6 = a7 = a8 =
21, but then there are no solutions to Equation (5.1) if a0, . . . , a5 * {0,21}.
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Therefore the only possibilities are that i0 * {0, 2, 3, 4, 5}, and we get the fol-
lowing possibilities:

e0 2 e1 2 e10 2 · · · 2 e15 2 ei, 2 f i f 5
e0 2 ei 2 ej , 2 f i < j f 5
ei 2 e1 2 e10 2 · · · 2 e15, 2 f i f 5
ei 2 ej , 2 f i ;= j f 5.

Note that classes of the first type have square 29, the second type have
square 23 and the third type have square 28, and the last have square 22. In
particular, any symplectic plumbing of spheres which embeds in Z6 can only
include spheres with self-intersection numbers in the set {22,23,28,29}.

We start with a general observation: any plumbing of spheres which can
be symplectically rationally blown down contains at least one sphere with
self-intersection strictly less than 23. For linear plumbings this follows from
the fact that they are all obtained as 2-expansions of (24), and for non-
linear plumbings this follows from inspection of the families in [BS11] (note
the parameters p, q, r must be non-negative).

Therefore, the only possible plumbings that may be symplectically ratio-
nally blown down which can embed in Z6 must include at least one sphere of
self-intersection 28 or 29. Because b2(Z6) = 6, any embeddable plumbing
must have b2 f 6. The only 2-expansion of (24) of length f 6 which includes
a 29-sphere is (29,22,22,22,22,22). Those that include a 28-sphere
are (22,28,22,22,22,23) and (28,22,22,22,22). For the non-linear
plumbings in [BS11], we can immediately rule out embeddings of plumb-
ings in Figure 1(a),(e),(h),(i),(j) and 2(a),(b),(c) because they contain ei-
ther 24- or 26-spheres. We rule out 1(b),(c),(d),(g) because any plumbing
in these families has b2 > 6 when self-intersections are restricted to lie in
{22,23,28,29}. Thus the only non-linear plumbing which could be ratio-
nally blown down with b2 f 6, and self-intersection numbers in this class is
the case of [BS11, Figure 1(f) with q = 2], which happens to be the plumb-
ing (3.1). We will rule out these remaining cases now using the pairwise
intersections of these classes (we will freely use the lemmas of Section 4).
If there were an embedding of the linear plumbing (29,22,22,22,22,22)
in Z6, up to permuting the indices {2, 3, 4, 5}, the first sphere in the chain
would represent e0 2 e1 2 e10 2 · · · 2 e15 2 e2, and the next three must rep-
resent e2 2 e3, e3 2 e4, e4 2 e5 (in order for these spheres to have pairwise
intersections according to the linear chain). This leaves no possibility ei 2 ej ,
i, j * {2, 3, 4, 5} for the fourth 22-sphere in the chain which has intersection
0 with the first two 22-spheres and 1 with the third. An embedding of
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(28,22,22,22,22) would necessarily (up to a permutation of {2, 3, 4, 5})
have the first four spheres in homology classes e2 2 e1 2 e10 2 · · · 2 e15,
e3 2 e2, e4 2 e3, e5 2 e4, leaving no possible i, j * {2, 3, 4, 5} such that ei 2 ej
could have intersection +1 with e5 2 e4 and intersection 0 with the first
three classes. Note that the non-linear plumbing (3.1) which is case 1(f)
on the Bhupal–Stipsicz list, contains the linear chain (28,22,22,22,22)
as a sub-plumbing so this non-linear plumbing is also obstructed from
symplectically embedding into Z6. Similarly, an embedding of the linear
chain (22,28,22,22,22,23) would (up to permutation of {2, 3, 4, 5}) have
the first four spheres in classes, e2 2 e3, e3 2 e1 2 e10 2 · · · 2 e15, e4 2 e3,
e5 2 e4, leaving no options for the fifth sphere in the chain with the correct
intersection number. Thus there is no embedding into Z6 of any plumbing
which can be symplectically rationally blown down.

Note at this point, we have established that Z6 cannot be the filling
which results from rationally blowing down the (26,22,22) chain in W9

which is disjoint from the (28,22,22,22,22) chain (since Z6 admits no
further rational blow-downs). Because W6 is the only other symplectic filling
with b2 = 6, W6 is necessarily the result of the rational blow-down of this
disjoint (26,22,22) chain in W9. This establishes that W6 can be rationally
blown down to W1, and gives another way to see that W6 and Z6 are not
symplectomorphic.

Next, we will similarly obstruct rational blow-downs from W6 to W4 and
W0, though the obstruction to a rational blow-down to W0 will be signifi-
cantly more subtle. In this case, the orthogonality relations imply classes in
H2(W6;Z) are precisely those of the form

∑15
i=0 aiei where

a7 = a8 = a9 = 0, a1 = a10 = · · · = a15, 2a0 + a1 + · · ·+ a6 = 0.

Proceeding as before, the classes satisfying these constraints which are rep-
resented by symplectic spheres are

e0 2 e1 2 e10 + · · · 2 e15 2 ei, 2 f i f 6
e0 2 ei 2 ej , 2 f i < j f 6
ei 2 e1 2 e10 + · · · 2 e15, 2 f i f 6
ei 2 ej , 2 f i ;= j f 6.

Note that the squares of these classes are {29,23,28,22}. Since the only
plumbing with b2 = 2 which can be rationally blown down is (25,22)
and there are no symplectic 25-spheres in W6, there can be no symplec-
tic rational blow-down from W6 to W4. We can obstruct the embeddings
into W6 of symplectic linear plumbings of with b2 = 6 as before. The only
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1146 M. Golla and L. Starkston

Figure 12. Embedding into CP2#16CP2 of the resolution complementary
to W6, together with a hypothesized disjoint plumbing with the homology
classes of each component specified, as well as exceptional spheres represent-
ing e7 and e15.

two possibilities are (29,22,22,22,22,22) and (22,28,22,22,22,23).
In the former case, the first five spheres in the chain would necessarily
(up to permuting indices {2, . . . , 6}) represent e0 2 e1 2 e10 2 · · · 2 e15 2 e2,
e2 2 e3, e3 2 e4, e4 2 e5, e5 2 e6, leaving no option for the sixth sphere
in the chain. In the latter case, the chain would need to take the form
e3 2 e2, e2 2 e1 2 e10 2 · · · 2 e15, e4 2 e2, e5 2 e4, e6 2 e5, e0 2 e6 2 ej for
some j * {2, . . . , 5}, but any value of j would result in a non-zero intersec-
tion of the last sphere in the chain with one of the first four spheres.

Next we consider potential non-linear plumbings which can be ratio-
nally blown down. In fact, there is a unique non-linear plumbing from the
Bhupal–Stipsicz list with b2 = 6 which we cannot rule out with homology
classes alone. This is the plumbing [BS11, Figure 1(f)] for q = 2, which hap-
pens to be the plumbing (3.1) (the filling of the other exceptional cuspidal
contact manifold). This consists of a linear chain (28,22,22,22,22) with
an additional 23-sphere intersecting the second to last 22-sphere. Up to
permutation of indices {2, . . . , 6}, the spheres in the linear chain necessarily
represent e2 2 e1 2 e10 2 · · · 2 e15, e3 2 e2, e4 2 e3, e5 2 e4, e6 2 e5 and the
additional 23-sphere would represent e0 2 e5 2 e6. Since all of these classes
could be represented by symplectic spheres in W6, obstructing this rational
blow-down is a little more subtle.

Suppose there exists such a symplectic plumbing in W6. By gluing the
concave neighborhood of the resolution, this is equivalent to assuming that
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Rational cuspidal curves and symplectic fillings 1147

Figure 13. Sequence of blow-downs from CP2#16CP2 to CP2, starting with
the configuration of Figure 12, and tracking the image under the blow-downs,
ending with a cuspidal cubic and two lines (one tangent to order 3 and the
other tangent to order 2 and passing through the inflection point). At each
stage, the thickened curves indicate the curves which are blown down to get
to the next figure in the sequence.
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in CP2#16CP2, there exists an embedding of the resolution configuration
(with homology classes as specified for W6) and a disjoint embedding of
the plumbing (3.1) representing homology classes as described above. Ob-
serve that the classes e7 and e15 intersect all of the components in these two
configurations non-negatively. Therefore, by Lemma 4.2, there exist embed-
ded exceptional spheres representing e7 and e15 which intersect all curve
components in these configurations non-negatively (so the geometric and al-
gebraic intersection numbers match). Consequently, we have an embedding
into CP2#16CP2 of a configuration of curves as in Figure 12. Blowing down
symplectic 21-spheres in this configuration representing ei classes repeat-
edly as in Figure 13, we eventually reach a configuration of curves in CP2

consisting of the following components: a cubic C with a simple cusp at a
point r, a line L which tangentially intersects C at an inflection point p
(with multiplicity 3), and a line T which intersects C and L transversally at
p, and intersects C tangentially (with multiplicity 2) at an additional point
q. (Here r, p, q are all distinct points on C.) In fact, such a configuration of
symplectic curves cannot exist, by the Riemann–Hurwitz formula. We fix
an almost complex structure J such that C, L, and T are J-holomorphic.
Then, using the pencil of J-holomorphic lines through p gives a degree-2
map Ã : CP1 ³ CP1 with at least two ramification points (corresponding to
the inflection line and the cusp respectively). Therefore Riemann–Hurwitz
reads: 2 = 2 · 22

∑
(eÃ(p)2 1), which implies that these are the only two

ramification points, from which we deduce that there is no other tangent
drawn to the cubic from the inflection point. (In fact, this exact argument
appears in [GS22, p. 1652].) Thus, we reach a contradiction, and the plumb-
ing (3.1) cannot embed symplectically in W6, so we conclude there is no
rational blow-down from W6 to W0.

To see there is no rational blow-down from W4 to W0, observe that
H2(W4) consists of classes

∑13
i=0 aiei where

a1 = a2 = a3 = a4 = a5 = a6 = a10,

a11 = a12 = a13 = 2a0, 2a0 + a1 + · · ·+ a9 = 0.

The classes of this form which can be represented by symplectic spheres are

e0 2 ei 2 ej 2 e11 2 e12 2 e13, 7 f i < j f 9
ei 2 ej , 7 f i ;= j f 9.

These classes have squares 26 or 22. The only plumbing with b2 f 4 which
can be symplectically rationally blown down and involves only 26- and 22-
spheres is the linear chain (26,22,22) which connects W4 to W1. There is
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Rational cuspidal curves and symplectic fillings 1149

no such plumbing of length 4 so there is no symplectic rational blow-down
from W4 to W0.

The classes in H2(W1) have the form
∑10

i=0 aiei such that

a1 = a2 = a3 = a4 = a5 = a6 = a10,

a7 = a8 = a9 = 0, 2a0 + a1 + · · ·+ a9 = 0.

These are all integer multiples of 3e0 2 e1 2 · · · 2 e6 2 e10 which has square
216, so there is no 24-sphere in W1 to rationally blow down. ¥

Remark 5.3. Similar computations as seen in the previous proof which
analyze the homology classes represented by symplectic spheres in V6 proves
that there is no linear rational blow-down from V6 to V0 in the case of
E3, thus slightly strengthening the statement of Proposition 5.1. Similarly,
one can obstruct the existence of a linear rational blow-down from W9 to
W0. Such computations show that these non-linear rational blow-downs are
genuinely new symplectic cut-and-paste operations, rather than just hidden
reformulations of the prior known linear rational blow-downs.

6. Bounds on self-intersection numbers of rational

cuspidal curves

In the earlier sections, we discussed symplectic fillings of contact manifolds
(YC , ¿C) arising on the concave boundary of a neighborhood of a rational
cuspidal curve C whose algebraic genus and self-intersection number are
determined by a degree which would allow the curve C to symplectically
embed in CP2. In this section and the next, we study symplectic fillings for
more general contact manifolds (YC , ¿C) where self-intersection need not be
d2 and the arithmetic genus need not be a triangular number 1

2(d2 1)(d2 2).
C will be a singular symplectic curve with positive self-intersection num-

ber (and thus admitting a concave neighborhood). Recall that (YC , ¿C) de-
pends only on the singularity types, geometric genus, and self-intersection
number of C. In this section, we will fix the singularity types for a rational
(geometric genus equal to zero) curve, and vary the self-intersection num-
ber s. The goal is to prove that for certain values of s (depending on the
singularities we fixed), (YC , ¿C) is not symplectically fillable.

We begin with an easy, quite general remark.

Lemma 6.1. Let C and C 2 be singular curves with the same geometric
genus and configuration of singularities (not necessarily cuspidal), and 0 <
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C 2 · C 2 f C · C. If (YC , ¿C) is strongly symplectically fillable, then (YC2 , ¿C2)
is strongly symplectically fillable as well.

Proof. Suppose (YC , ¿C) has a strong symplectic filling W . Let NC de-
note a standard concave neighborhood of C, and let (X,Ë) denote the
closed symplectic manifold which results from symplectically gluing NC to
W along their common contact boundary. Symplectically blow up X at
n := C · C 2 C 2 · C 2 smooth points of C ¢ X. The proper transform of C
yields a symplectic embedding of C 2 in X#nCP2. Since C 2 · C 2 > 0, there ex-
ists a concave neighborhood of C 2 [GS22, Theorem 2.13] in X#nCP2 whose
contact boundary is (YC2 , ¿C2). The complement of this neighborhood is a
strong symplectic filling of (YC2 , ¿C2). ¥

Recall the definitions of the multiplicity sequence and ·(p) from Sec-
tion 4, and that, for a cuspidal point p, 2·(p) is the sum of m(m2 1) over
all elements m in the multiplicity sequence for p. Let M(p) be the sum of the
squares of all terms in the multiplicity sequence of the singularity at p. Let
3(p) denote the last (and smallest) entry in the multiplicity sequence. (Note
that in our convention, 3(p) > 1 because we define the multiplicity sequence
using the minimal resolution rather than the normal crossing resolution.)
Note that M(p) (respectively, M(p) + 3(p)) is the amount by which the
self-intersection decreases when taking the minimal smooth (resp. normal
crossing) resolution of p. For instance, when the singularity at p is of type
Tm,km+1, the multiplicity sequence is [m[k]], so that M(p) = km2, 3(p) = m,
and ·(p) = 1

2km(m2 1).

Proposition 6.2. Suppose that C is a rational curve with cusp singularities
p1, . . . , pµ (µ g 1), and with reducible singularities q1, . . . , q¿ (¿ g 0), and
satisfying

C · C g
∑

M(pi) +
∑

M(qj) + 2min 3(pi) + 2.

Then (YC , ¿C) is not strongly symplectically fillable. If additionally p1, . . . , pµ
are the only singularities of C (i.e. C is cuspidal), then ¿C is not even weakly
symplectically fillable.

Proof. Without loss of generality, suppose that p1 is a singular cusp with
3(p1) = 3 = min 3(pi). By Lemma 6.1 above, it suffices to prove the statement
for C · C =

∑
M(pi) +

∑
M(qi) + 23+ 2.

Let (W,ËW ) be a strong symplectic filling of (YC , ¿C), and (X 2, Ë2) be
the closed symplectic manifold obtained by gluing a standard concave neigh-
borhood of C to (W,ËW ). We now view C as a symplectic curve in X 2.
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Rational cuspidal curves and symplectic fillings 1151

Blow up C at all its singular points until we obtain the minimal smooth
resolution of C, i.e. the proper transform C̃ of C is a smooth sphere of
self-intersection C̃ · C̃ = C · C 2

∑
M(pi)2

∑
M(qj) = 23+ 2. Note that,

by definition, at p1 the last blow-up creates an exceptional divisor that
intersects C̃ at a single point with multiplicity 3.

Blow up 3 more times at p1, so that at p1 we get to the normal cross-
ing resolution of the singularity (C, p1), and then 3+ 1 more times at the
intersection between (the proper transform of) C and the last exceptional
divisor. Let (X,Ë) denote the corresponding blow-up of (X 2, Ë2).

The 4-manifold X contains the following configuration of symplectic
spheres: a +1-sphere C 2, the proper transform of C, an exceptional divisor
intersecting C transversely once, and a string of 22-curves departing from
it; this is depicted in (6.1).
(6.1)

" . . . " " "

"

. . . " " "
22

232 1

22 22 22 22 21 +1

The left leg contains exactly 32 1 vertices of weight 22, while the right leg
contains 3 of them. In total, the chain of 22-vertices has length 23.

By Theorem 4.1, X is symplectomorphic to a blow-up of CP2, and
C 2 can be identified with a line in CP2. Using the standard basis for
H2(CP

2#NCP2), by Lemma 4.3 the 21-sphere adjacent to C 2 is in the
homology class h2 e0 2 e1. Since the chain of 22s is of length 23 > 2, by
Lemma 4.6, up to relabeling the ei, the homology classes in the chain are
e1 2 e2, . . . , e23 2 e23+1. The central vertex in the plumbing is in the homol-
ogy class e3+1 2 e3+2.

The (232 1)-sphere in (6.1) is disjoint from the line C 2, so by Lemma 4.3
its homology class is of the form ei 2 ej1 2 · · · 2 ej3 for some i, j1, . . . , j3. It
is also disjoint from the two halves of the chain of 22s, so the coefficients
appearing in the homology class of the (232 1)-sphere of e1, . . . , e3+1 are
all equal—namely they are either all 0 or all 21. Since the (232 1)-sphere
intersects the class e3+1 2 e3+2 once positively, either i = 3+ 2 or jk = 3+ 1
for some k. The former possibility is ruled out by Lemma 4.5, therefore
e1, . . . , e3+1 must all appear with coefficient 21 in the homology class for
the (232 1)-sphere. However, the self-intersection of this class is at most
232 2, a contradiction. This proves the first assertion.
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Note that when C is a rational cuspidal curve, i.e. if ¿ = 0, the 3-manifold
YC , that is the boundary of a regular neighborhood of C, is a rational ho-
mology sphere; in particular, since every weak symplectic filling of ¿C can be
deformed to a strong symplectic filling [OO99, Lemma 1.1], the last assertion
follows. ¥

In fact we note here that for unicuspidal curves with a singularity of
type (3, 3+ 1) the maximal self-intersection allowed by the proposition is
32 + 23+ 1 = (3+ 1)2, which is exactly the degree of the rational cuspidal
curve {x3+1 2 y3z = 0} of type A3. This shows that the inequality is sharp.

We give a small refinement of the proposition above for curves with more
than one cusp.

Proposition 6.3. Suppose that C is a rational curve with cusp singular-
ities p1, . . . , pµ (µ > 1) such that 3(p1) = 3(p2) = min 3(pi), with reducible
singularities q1, . . . , q¿ (¿ g 0), and self-intersection C · C satisfying

C · C g
∑

M(pi) +
∑

M(qj) + 2min 3(pi) + 1.

Then the associated contact structure ¿C is not strongly symplectically fill-
able. If additionally p1, . . . , pµ are the only singularities of C, then ¿C is not
even weakly symplectically fillable.

Proof. Let 3 = 3(p1) = 3(p2). Again, by Lemma 6.1, we can assume that
s(C) =

∑
M(pi) +

∑
M(qj) + 2min 3(pi) + 1. As above, suppose that there

is a filling (W,ËW ) of (YC , ¿C) and glue it to a standard concave neighbor-
hood of C to obtain the closed manifold (X 2, Ë2).

Blow up C at all its singular points until we obtain the minimal smooth
resolution of C, i.e. the proper transform C̃ of C is a smooth sphere of
self-intersection C̃ · C̃ = C · C 2

∑
M(pi)2

∑
M(qj) = 23+ 2. Note that,

by definition, at p1 and p2 the last blow-up creates an exceptional divisor
that intersects C̃ at a single point with multiplicity 3.

Now blow up 3 times at each of these latter tangency points to get to the
normal crossing divisor resolution at p1 and p2, in the blown-up manifold
(X,Ë). By assumption, the proper transform of C is a symplectic +1-sphere,
and by Theorem 4.1 we can identify it with a line in a blow-up of CP2.
However, in X we see the following configuration.

(6.2) ""

"

"

"

"

"

+121 21

232 1

22

232 1

22

= ""

"

"

"

"

"

he e2

v

w

v2

w2
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By Lemma 4.3 and 4.5, the vertices e, v, and w must be in the homology
classes h2 e1 2 e2, e2 2 e3 2 · · · 2 e3+2, and e1 2 e0, respectively. The class
e2 can either be in the homology class h2 e1 2 ej or in the homology class
h2 e2 2 ej , for some j > 2. In either case, we get a contradiction, because
neither of the classes of v2 or w2 can be in a class e2 2

∑
ek or e1 2

∑
ek,

by Lemma 4.5.
This proves the first assertion. The second assertion follows verbatim as

in the case of Proposition 6.2. ¥

The two propositions we have just proven give an upper bound for
the self-intersection of a curve C with given singularities to exists in some
closed symplectic 4-manifold. In particular, combining either of them with
Lemma 6.1, we obtain that, if we fix the singularity types of a rational curve
C, the set of integers s such that s = C · C for some C in a closed symplectic
4-manifold with those singularities is either empty or an interval (2>, s0].

In the rational and unicuspidal case, the existence of the Puiseux ex-
pansion shows that every singularity type is realized as one singularity of
a rational plane curve, say C0. Blowing up all the other singularities of C0

(except for the desired one), one obtains a rational curve C1 in a blow-up
of CP2 that has one singularity of prescribed type. This shows in particular
that, in the unicuspidal case, we always have an interval (2>, s0] of realized
self-intersections, and Proposition 6.2 gives an upper bound on s0.

Giving explicit lower bounds on s0, however, is less easy. In the case
of singularities of type (p, q), we can find the bound s0 > pq. Indeed, the
curve {xpzq2p 2 yq = 0} has degree q, and two singularities: one of type
(p, q) at (0 : 0 : 1), and the other of type (q 2 p, q) at (1 : 0 : 0). Taking
the minimal smooth resolution of the latter, we obtain a curve C of self-
intersection strictly larger than q2 2 (q 2 p)q = pq (see [GS22, Lemma 2.4]),
whose unique singularity is of type (p, q). Note that the self-intersection
of the proper transform of C in the minimal smooth resolution of its only
singularity, too, is positive (again, by [GS22, Lemma 2.4]).

Remark 6.4. A version of the two obstructions above was already known
in the algebro-geometric context. Indeed, Hartshorne proved in [Har69, The-
orem 4.1] that if an algebraic surface X contains a smooth genus-g curve C 2

of self-intersection at least 4g + 6, then X is ruled, and C 2 is a section. The
analogue result in the symplectic context has been proven by Kütle [Küt21].
For instance, this applies to the case of a rational curve C whose unique
singularity is of type (2, 3), and whose self-intersection is at least 10. To see
this, observe that smoothing the singularity yields a genus-1 curve C 2 satis-
fying the requirements of Hartshorne’s theorem, so C 2 is a section of a ruled
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surface X ³ T 2. Blow up once at the cusp of C and consider the map from
the proper transform of C to T 2 obtained by composing the blow-down with
the projection. This is a degree-1 map from a sphere to T 2, which gives a
contradiction. This specific case was also known in the symplectic context,
by work of Ohta and Ono [OO05].

In general, the bound obtained by applying Hartshorne’s or Kütle’s re-
sult is weaker than the one obtained by applying Proposition 6.2. This can be
seen in the following family of examples: look at rational curves with only one
singularity at p, which is of type (Fk, Fk+1). (As usual, Fk is the k

th Fibonacci
number.) On the one hand, we have 4pg(C) + 5 = 2(Fk 2 1)(Fk+1 2 1) + 5,
so Hartshorne’s bound guarantees that there are no such curves as soon as
the self-intersection s satisfies:

s g 2FkFk+1 2 2Fk 2 2Fk+1 + 7.

On the other hand, the recursive definition of the Fibonacci numbers gives
3(p) = F3 = 2, so our bound implies that there can be no such rational curve
when

s g M(p) + 2 · 2 + 2 =

k∑

h=3

F 2
h + 6 = FkFk+1 + 4,

which is much smaller than the previous bound if k is large. (Here we have
used the remarkable identity

∑k
j=0 F

2
j = FkFk+1.)

7. Rational cuspidal curves of low arithmetic genus

In this section we look at symplectic filling classifications for contact man-
ifolds (YC , ¿C) where C is a rational cuspidal curve with low complexity,
where we take arithmetic genus as our measure of complexity.

Recall from Section 4 that the arithmetic genus of a rational curve is
determined by the multiplicity sequences of its singularities; each entry m
in the sequence(s) contributes 1

2m(m2 1) to the genus. If we restrict to
low genus cases, this significantly restricts the types of singularities that
may arise. We can vary the self-intersection number of the curve, s, freely
(the curve will admit a concave neighborhood if s > 0), however we can
only utilize techniques from [GS22] to classify fillings if s is sufficiently large
to ensure that the proper transform of the curve in the minimal smooth
resolution has positive self-intersection. Using the notation from Section 6,
this means that we need s >

∑
pM(p), where the sum is taken over all

singular points p. Note that when the self-intersection gets sufficiently large
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so that it exceeds the bounds of Proposition 6.2 or 6.3, the corresponding
contact manifold is not fillable.

In this section, we consider all possible rational cuspidal curves C whose
algebraic genus is at most three, with self intersection large enough so that
the proper transform of the curve in the minimal resolution has strictly posi-
tive self-intersection. For each such curve, we classify the minimal symplectic
fillings of the corresponding contact manifold (YC , ¿C).

The reader is encouraged to review techniques and results from [GS22],
as we will use them frequently in this section.

7.1. Genus 1

A rational cuspidal curve of arithmetic genus 1 can only have a single multi-
plicity sequence [2] singularity, which corresponds to type (2, 3), i.e. a simple
cusp. Suppose C is a rational cuspidal curve with a simple cusp as its unique
singularity and self-intersection s := C · C. For convenience, throughout this
subsection we will denote the corresponding contact manifold by (Ys, ¿s)
(though of course the contact manifold depends on the singularities speci-
fied).

The minimal smooth resolution results from a single blow-up at the cusp.
The total transform consists of an exceptional divisor E of self-intersection
21 which is simply tangent to the smooth proper transform of C which has
self-intersection s2 4. Therefore we constrain ourselves to the cases when
s g 5.

Proposition 7.1. Let (Ys, ¿s) be the contact boundary of a concave neigh-
borhood of a rational cuspidal curve with a unique simple cusp, and self-
intersection s.

" When s = 5, 6, 7, 9, (Ys, ¿s) has a unique minimal symplectic filling W
and b2(Ws) = 92 s.

" When s = 8, (Ys, ¿s) has exactly two minimal symplectic fillings WA

and WB, and b2(WA) = b2(WB) = 1.

" When s g 10, (Ys, ¿s) has no symplectic fillings.

Proof. Since the multiplicity sequence for the unique singularity is [2], follow-
ing the notation from Section 6, we have M(p) = 4 and 3(p) = 2. Therefore,
by Proposition 6.2, when s g 10, (Ys, ¿s) has no symplectic fillings.

For any minimal symplectic fillings W of (Ys, ¿s), we can glue W to a
concave neighborhood of C to obtain a closed symplectic manifold X such
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Figure 14. A blow-up of a curve C with a single simple cusp and self-
intersection s, so that the proper transform C̃ has self-intersection +1.

that the pair (X,C) is relatively minimal. Conversely, for any relatively min-
imal symplectic embedding of C into a closed symplectic manifold X, there
is a concave neighborhood of C whose complement is a minimal symplectic
filling of X. Therefore, to analyze the symplectic fillings when 5 f s f 9, we
classify relatively minimal symplectic embeddings of C into a closed sym-
plectic manifold X. If C embeds in X, then we can blow up X, once at the
singular point p to resolve the singularity of C, and s2 5 times at another
point q, so that the resulting proper transform C̃ has self-intersection 1. See
Figure 14.

By Theorem 4.1, there exists a symplectomorphism of X#(s2 4)CP2

to CP2#NCP2 identifying the proper transform C̃, a smooth symplectic
sphere of self-intersection +1 with CP1 ¢ CP2. Using the standard basis
{h, e1, . . . , eN} for H2(CP

2#NCP2), [C] = h. We determine the possible ho-
mology classes for the other components using the lemmas from section 4. By
Lemma 4.3, the tangent exceptional sphere E represents 2h2 e1 2 · · · 2 e5.
When s > 5, there is a chain of s2 5 additional exceptional divisors. The
first sphere in the chain is a 21-sphere intersecting C transversally and dis-
joint from E, and thus represents the class h2 e1 2 e2 (up to relabeling).
By Lemma 4.6, the remaining spheres in the chain represent (a truncation
of) e2 2 e3, e3 2 e4, e4 2 e5 or in the case that s = 8 (so there are exactly
two 22-spheres in the chain) they can represent e2 2 e3, e1 2 e2. In the first
option, by Lemma 4.2, we can blow down disjoint exceptional spheres repre-
senting e1 and ej , . . . , e5 where j is the highest index appearing in the chain,
such that these spheres have only positive intersections with the configura-
tion. After these blow-downs, we can sequentially blow-down proper trans-
forms of spheres in the configuration representing the remaining ei classes.
After blowing down all exceptional classes, the image of the total transform
of C descends to a conic (the image of E) with one tangent line (the image
of C̃), and, when s > 5 another line intersecting the conic transversally in
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two points (one is the image of e2, . . . , e5, and the other is the image of e1)
in CP2.

By [GS22, Proposition 5.1], such a configuration has a unique symplectic
isotopy class in CP2. Therefore there is exactly one relatively minimal sym-
plectic embedding (up to symplectic isotopy) of the total transform of C into
X#(s2 4)CP2 >= CP2#5CP2 for each homological embedding. By deleting
a concave regular neighborhood of the total transform of C, we get exactly
one minimal symplectic filling of (Ys, ¿s) for each homological embedding.
When s = 5, 6, 7, 9, this shows that there is a unique minimal symplectic fill-
ing, corresponding to the unique relatively minimal symplectic embedding of
C into CP2#(52 (s2 4))CP2. Since (Ys, ¿s) is a rational homology sphere,
the Mayer–Vietoris long exact sequence implies the complementary filling
has b2 = 92 s. By additivity of the signature, it is also negative definite.

When s = 8, there is the second homological embedding to consider,
where the final 22-sphere in the chain represents e1 2 e2. Using Lemma 4.2,
we can find disjoint exceptional spheres in classes e3, e4, and e5. After blow-
ing these down, the proper transform of a sphere in the configuration rep-
resents e2. Finally, after blowing down e2, we find the proper transform of
another sphere in the configuration represents e1 and we blow this down.
The resulting configuration is a conic (the image of E) and two distinct
tangent lines (the images of C̃ and of the first exceptional divisor in the
chain, respectively). Again, by [GS22, Proposition 5.1], this configuration
has a unique isotopy class in CP2, so we get a unique corresponding fill-
ing, that we call WB. To see that the two corresponding fillings WA (com-
ing from the first embedding) and WB are different, we look at their in-
tersection forms. The torsion-free part of the former is generated by the
class e1 2 e2 2 e3 2 e4 + 2e5, while that of the latter is generated by the
class e4 2 e5. In particular, the intersection forms of WA and WB are non-
isomorphic, so WA and WB are non-diffeomorphic. ¥

Remark 7.2. Note that in the s = 8 case, the two homological embeddings
of the total transform of C, correspond to two symplectic embeddings of C,
one into CP2#CP2 and the other into S2 × S2. The former embedding is
obtained by blowing up a cuspidal cubic in CP2 at a non-singular point.
The latter is obtained by taking a cuspidal cubic D and a line L meeting
D transversely in three points, blowing up CP2 at two of them, and then
contracting the proper transform of L. In our analyses, this will be a common
source of multiple fillings of the same cuspidal contact manifold with the
same Betti numbers.
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Figure 15. A blow-up of a curve C with a two simple cusps and self-
intersection s, so that the proper transform C̃ has self-intersection +1.

7.2. Genus 2

For a rational cuspidal curve of arithmetic genus 2, there can either be two
simple cusps (each with multiplicity sequence [2]), or a single cusp which is
a cone on a (2, 5)-torus knot (multiplicity sequence [2, 2]). In both cases, the
minimal resolution results from two blow-ups at points of multiplicity 2, so
we can classify symplectic fillings for such curves when the self-intersection
number s g 9.

Proposition 7.3. Let C be a rational cuspidal curve with self-intersection
number s, such that either it has exactly two simple cusps or it has a unique
singularity of type (2, 5), and let (Ys, ¿s) denote the corresponding cuspidal
contact manifold.

" When 9 f s f 11, (Ys, ¿s) has a unique minimal symplectic filling Ws,
and b2(Ws) = 132 s.

" When s = 12, (Ys, ¿s) has exactly two minimal symplectic fillings, WA

and WB, and b2(WA) = b2(WB) = 1.

" When s g 13, (Ys, ¿s) admits no symplectic fillings.

Proof. We proceed with the same methods as used in the genus-1 case. The
resolutions we embed into X#(s2 7)CP2 >= CP2#NCP2 are shown in Fig-
ures 15 and 16 for the two types of singularity configurations. In each case,
we blow up a sufficient number of times so that the proper transform C̃ has
self-intersection 1, thus identifying C̃ with CP1 ¢ CP2 using Theorem 4.1.

In the case of two simple cusps, there are two tangent exceptional divi-
sors of self-intersection 21 representing classes 2h2 e1 2 · · · 2 e4 2 e5 and
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Figure 16. A blow-up of a curve C with a one cusp of type (2, 5) and self-
intersection s, so that the proper transform C̃ has self-intersection +1.

2h2 e1 2 · · · 2 e4 2 e6 by Lemma 4.3. By Lemmas 4.3 and 4.6, the ex-
ceptional divisors in the chain of length s2 9 represent classes h2 e1 2
e2, e2 2 e3, e3 2 e4 (Case 1), or h2 e1 2 e2, e2 2 e3, e1 2 e2 (Case 2) (when
s < 12, the sequence is truncated and there is a unique option). In case 1, by
Lemma 4.2, we can find disjoint exceptional spheres representing e1, e4, e5,
and e6 (also e3 or e3 and e2 if the sequence is truncated sufficiently such that
these classes do not appear with positive coefficient in the configuration).
Subsequently, we blow down spheres in the proper transform sequentially
representing the remaining ei.

Now we analyze the resulting configuration, which will consist of two
conics (the images of E and E2), and two lines (the images of C̃ and the
curve representing h2 e1 2 e2. In the first homological embedding, when
s = 12 the images of the exceptional spheres representing e4, e3, and e2 will
all be the same point (the image of the sphere representing e4 will lie on the
sphere representing e3 and so on). When s = 11, the sphere representing e4
is separated out but e2 and e3 have the same image, and when s = 9, 10,
the spheres representing e2, e3, and e4 are each sent to distinct points. In
all cases, the spheres representing e1, e5, and e6 can be realized disjointly
from each other and all the other exceptional spheres and thus will be sent
to distinct points. Since the two conics have positive intersection with e2,
e3 and e4, in the s = 12 case, their images under the blow-down will have a
tangency of order 3 at the common image of e2, e3, and e4. In the s = 11
case, the images of e2 and e3 will create a simple tangency and e4 will
correspond to a distinct transverse intersection. When s = 9, 10, e2, e3, and
e4 will correspond to three transverse intersections between the conics. In
all cases, the conics will additionally intersect transversally at the image of
e1. The line given by the image of C̃ will be tangent to each of the conics (as
it was before blowing down). The other line will pass transversally through
the two conics at two of their intersection points (the images of e1 and e2).
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Omitting the last line, this configuration is G3, G2, or G1 from [GS22],
which we proved has a unique symplectic isotopy class in [GS22, Propositions
5.5, 5.8, 5.9]. Adding in the last line, which is required to pass through two
specific intersection points, we still have a unique symplectic isotopy class
by [GS22, Proposition 5.1].

Next we consider case 2, (which is only distinct from the first when
s = 12). In this case, we can blow down disjoint spheres representing e3, e4,
e5, and e6 first, and then find sequential proper transforms representing e2
then e1 to blow down. Note that the images of the spheres representing e1,
e2, and e3 will land on the same point, and spheres representing e4, e5 and
e6 will be realized disjointly with distinct image points. The image point of
e1, e2, and e3 will be a tangency of order 3 between the two conics, and
the curve which originally represented h2 e1 2 e2 will be tangent to these
conics at this point. The image of e4 will be a distinct transverse intersection
between the conics. The image of C̃ will be a line which is tangent to each
of the two conics and transverse to the other line (all at points distinct from
the previously specified intersections).

Thus the final configuration is again the G3 configuration with one addi-
tional line which is tangent to the conics at their triple tangency. Since, as
mentioned above, the G3 has a unique symplectic isotopy class, the configu-
ration with the additional tangent line also has a unique symplectic isotopy
class by [GS22, Proposition 5.1].

When 9 f s f 11, the unique relatively minimal symplectic embeddings
correspond to unique minimal symplectic fillings of (Ys, ¿s) and the Betti
number calculation follows from the Mayer–Vietoris long exact sequence and
the fact that Ys is a rational homology sphere. To distinguish the two fillings
when s = 12, we can again look at the intersection form. For the homological
embedding where the last sphere represents e3 2 e4, the generator of the non-
torsion part of the homology of the complement is e1 2 e2 2 e3 2 e4 + 2e5 +
2e6 which has self-intersection 212. For the homological embedding where
the last sphere represents e1 2 e2, the generator of the non-torsion part of
the homology of the complement is e4 2 e5 2 e6 which has self-intersection
23.

We observe that it is not possible to find a homological embedding if
there are more than two 22-spheres in the chain (i.e. when s > 12), since
such a 22-sphere must represent a class ei 2 ej which intersects e3 2 e4 (or
e1 2 e2) once positively, and has intersection zero with all other curves in
the configuration. Therefore, there are no symplectic embeddings of C into a
closed symplectic manifold when s g 13, so (Ys, ¿s) has no symplectic fillings
when s g 13. Note that Proposition 6.2 would only imply this for s g 14.
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In the case of one cusp of type (2, 5), there is one exceptional di-
visor E of self-intersection 21 tangent to the proper transform C̃, and
another exceptional divisor E2 of self-intersection 22 which intersects E
once transversally and is disjoint from all other curves. Up to relabel-
ing, [E] = 2h2 e1 2 · · · 2 e5 and [E2] = e5 2 e6. The exceptional divisors in
the chain of length s2 9 again represent classes h2 e1 2 e2, e2 2 e3, e3 2 e4
(case 1) or h2 e1 2 e2, e2 2 e3, e1 2 e2 (case 2).

In case 1, we can find disjoint exceptional spheres in classes e1, e4, and
e6 by Lemma 4.2 (and also e3 or e3 and e2 if the sequence is sufficiently
truncated). We blow these down and then sequentially blow down proper
transforms of the spheres of the configuration representing the remaining
exceptional classes. The resulting configuration is a single conic with one
tangent line, and another line which intersects generically transversally. In
case 2, we find disjoint exceptional spheres in classes e3, e4 and e6 (with
positive intersections with the configuration) and then after blowing these
down, find sequentially proper transforms representing the other ei and blow
these down. The resulting configuration is a single conic with two distinct
tangent lines. The resulting configurations in both cases have a unique sym-
plectic isotopy class by [GS22, Theorem 1.5]. Thus this yields a unique
symplectic filling when 9 f s f 11. The two symplectic fillings correspond-
ing to the two homological embeddings when s = 12 can be distinguished
by their intersection forms, as their non-torsion homology is generated by
e1 2 e2 2 e3 2 e4 + 2e5 + 2e6 or e4 2 e5 2 e6 respectively as in the previous
case. Similarly, we obtain no possible homological embeddings when there
are more than two 22-spheres in the chain so when s g 13, there are no
symplectic fillings of (Ys, ¿s). ¥

7.3. Genus 3

When we allow the arithmetic genus of the rational cuspidal curve to increase
to 3, there are more options for the types of cusps. The first option is to have
a single cusp of type (3, 4) (multiplicity sequence [3]), where we consider
self-intersection numbers s g 10. The second is to have a single cusp of
type (2, 7) (multiplicity sequence [2, 2, 2]). The third option is to have two
cusps, one a simple cusp (multiplicity sequence [2]) and the other of type
(2, 5) (multiplicity sequence [2, 2]). The fourth option is to have three simple
cusps (each with multiplicity sequence [2]). In the second, third, and fourth
options, we can classify fillings when the self-intersection number satisfies
s g 13.
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Figure 17. A blow-up of a curve C with a one cusp of type (3, 4) and self-
intersection s, so that the proper transform C̃ has self-intersection +1.

Proposition 7.4. Let C be a rational cuspidal curve with self-intersection
s and a cusp of type (3, 4) being the unique singularity, and let (Ys, ¿s) be
the corresponding contact manifold.

" When 10 f s f 16, (Ys, ¿s) has a unique minimal symplectic filling W
and b2(W ) = 162 s.

" When s g 17, (Ys, ¿s) is not symplectically fillable.

Proof. That there are no fillings when s g 17 follows from Proposition 6.2.
For 10 f s f 16, we proceed as in the lower genus cases. Blow up an

embedding of C intoX once at the cusp to get the minimal smooth resolution
so that the exceptional sphere E is tangent with multiplicity 3 to the proper
transform of C. We blow up s2 10 additional times at a different point so
that C̃ has self-intersection 1, yielding a chain of s2 10 exceptional spheres
as in Figure 17. Identifying C̃ with CP1 by Theorem 4.1 so [C̃] = h, by
Lemma 4.3, we see that [E] = 3h2 2e1 2 e2 2 · · · 2 e7, and the chain of s2 8
exceptional spheres represent the classes in (a truncation of) the sequence
h2 e1 2 e2, e2 2 e3, e3 2 e4, e4 2 e5, e5 2 e6, e6 2 e7. By Lemma 4.2, we can
find disjoint exceptional spheres representing e1 and ej , . . . , e7 where j is
the maximal index appearing in the chain, and then sequentially blow down
proper transforms representing the remaining ei. After this, E descends to
a cubic curve with either a node or a cusp, C̃ descends to an inflection line,
and the first divisor in the chain descends to a line passing through the
singular point of the cubic (the image of e1) and one other point (the image
of e2). Without the last line, such a configuration has a unique symplectic
isotopy class by [GS22, Proposition 5.11]. Note that a cusp can be locally
deformed to a node through a symplectic family and after blowing up e1, the
proper transform in the cuspidal case is symplectically isotopic to that of the
nodal case (and the proper transform is what corresponds to the resolution
of C). We get a unique symplectic isotopy class for the configuration which
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Figure 18. A blow-up of a curve C with a one cusp of type (2, 7) and self-
intersection s, so that the proper transform C̃ has self-intersection +1.

Figure 19. A blow-up of a curve C with a one cusp of type (2, 5) and one
of type (2, 3) and self-intersection s, so that the proper transform C̃ has
self-intersection +1.

includes the last line by [GS22, Proposition 5.1]. Thus there is a unique
relatively minimal symplectic embedding of this blow-up of C into a closed
manifold and that manifold must be CP2#7CP2. We conclude that (Ys, ¿s)
has a unique minimal symplectic filling with b2 = 162 s. ¥

Proposition 7.5. Let C be a rational cuspidal curve with self-intersection
s and either a unique (2, 7) cusp, or one (2, 3) cusp and one (2, 5) cusp, and
let (Ys, ¿s) be the corresponding contact manifold.

" When 13 f s f 15, (Ys, ¿s) has two minimal symplectic fillings W and
W 2. b2(W ) = 162 s and b2(W

2) = 172 s.

" When s = 16, (Ys, ¿s) has three minimal symplectic fillings W , W 2 and
W 22. b2(W ) = 162 s and b2(W

2) = b2(W
22) = 172 s.

" When s g 17, (Ys, ¿s) is not symplectically fillable.
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Proof. Proceeding as in prior cases, we blow up an embedding of C to its
minimal resolution, then blow up s2 13 additional times at another point
until C̃ has self-intersection 1 and can be identified with CP1. The three ex-
ceptional divisors from the minimal resolution must have homology classes as
specified by the options shown in Figures 18 and 19 (depending on whether
there are 1 or 2 cusps). Note that in both cases, there are two options for
the homology class of the exceptional divisor E22: e6 2 e7 or e4 2 e5. Also for
both cases, the homology classes of the divisors in the extra chain must rep-
resent either h2 e1 2 e2, e2 2 e3, e3 2 e4 or h2 e1 2 e2, e2 2 e3, e1 2 e2. If
[E22] = e4 2 e5, the chain must take the second option. When [E22] = e6 2 e7,
both options are possible, but note that they only differ when all three com-
ponents are included corresponding to the s = 16 case. Thus, we get three
cases when s = 16 and two cases when 13 f s f 15. We will call the case
when [E22] = e4 2 e5 case 3, case 2 will have the chain ending in e1 2 e2,
and case 1 will be the other option. Note, there are no allowed homological
embeddings if the chain is longer, so (Ys, ¿s) has no fillings when s g 17.

First we look at the configuration coming from a curve with one (2, 7)
cusp, where the resolution with its homological embedding is shown in Fig-
ure 18. For the homological embedding of case 1, we can first disjointly
realize exceptional spheres in classes e1, e4, and e7 (also e3 or e2 and e3 if
the chain is sufficiently truncated), and then sequentially blow down proper
transforms representing the remaining ei. The resulting configuration is a
conic (the image of E) with one tangent line (the image of C̃) and one
generic secant line (the image of the first exceptional divisor in the chain).
In case 2, we can blow down disjoint spheres representing e3, e4, and e7, and
then sequentially blow down proper transforms representing the remaining
ei. In case 3, we blow down disjoint spheres representing e3 and e6 and
then sequentially blow down proper transforms representing the remaining
ei. In both cases 2 and 3, the resulting configuration is a conic with two
distinct tangent lines. In both possible resulting configurations, there is a
unique symplectic isotopy class by [GS22, Proposition 5.1]. Therefore each
homological embedding corresponds to a unique symplectic isotopy class of
embeddings.

Next, we consider the configuration coming from a curve with one (2, 3)
cusp and one (2, 5) cusp. For the homological embedding of case 1, we blow
down disjoint spheres in classes e1, e4, e5, e7 (and e3 or e2 and e3 if sufficiently
truncated), and then blow down proper transforms sequentially. In case 2,
we blow down disjoint spheres in classes e3, e4, e5, e7, and then blow down
proper transforms sequentially. In case 3, we blow down disjoint spheres in
classes e3, e5, e6 and then blow down proper transforms sequentially. The
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configurations resulting from these blow-downs are exactly the same as those
which arose in Propostion 7.3 in the case with two simple cusps, which all
had unique isotopy classes (Case 1 here corresponds to Case 1 in 7.3, and
Cases 2 and 3 here blow down to the same configuration as Case 2 from 7.3).

If [E22] = e6 2 e7, we have a relatively minimal symplectic embedding
into CP2#7CP2. If [E22] = e4 2 e5 the relatively minimal embedding is into
CP2#6CP2. Symplectic fillings complementary an embedding in CP2#7CP2

will have b2 = 172 s, and those which are complementary to an embedding
in CP2#6CP2 will have b2 = 162 s. Thus, when 13 f s f 15, the two fillings
have different b2 so they are clearly not diffeomorphic. When s = 16, there
are two potential fillings with b2 = 172 s. To distinguish these, we look at
the square of the generator for the homology of the complement. In one case
the generator is e1 2 e2 2 e3 2 e4 + 2e5 + 2e6 + 2e7 of square 216 and in the
other case the generator is e4 2 e5 2 e6 2 e7 of square 24. ¥

Remark 7.6. When s = 16, in the minimal symplectic filling with b2 =
172 s = 1 where the homology class of E22 agrees with the option for the
filling with b2 = 162 s = 0, we see that there is a symplectic 24-sphere
in this filling representing the class e4 2 e5 2 e6 2 e7. Rationally blowing
down this 24-sphere will yield another filling which is necessarily the unique
rational homology ball filling. The other minimal symplectic filling with b2 =
172 s = 1 cannot be rationally blown-down (since there is no 24-sphere in
a manifold with intersection form ï216ï).

Proposition 7.7. Let C be a rational cuspidal curve with self-intersection
s and three simple cusps, and let (Ys, ¿s) be the corresponding contact man-
ifold.

" When 13 f s f 16, (Ys, ¿s) has a unique minimal symplectic filling W
and b2(W ) = 162 s.

" When s g 17, (Ys, ¿s) is not symplectically fillable.

Proof. The determination of homological embeddings has a similar classi-
fication to the previous case. What is different in this situation is that
not all of these homological embeddings correspond to actual geometric
embeddings, and we need to prove a symplectic isotopy result for the
ones which do. The possible homological embeddings are shown in Fig-
ure 20, where the additional chain of s2 13 exceptional divisors represent
classes h2 e1 2 e2, e2 2 e3, and either e3 2 e4 or e1 2 e2. Note that when
[E22] = 2h2 e1 2 e2 2 e3 2 e5 2 e6, and s = 16, the last divisor in the chain
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Figure 20. A blow-up of a curve C with a three cusps of type (2, 3) and
self-intersection s, so that the proper transform C̃ has self-intersection +1.

must represent e1 2 e2 to be disjoint from E22. Therefore we have three ho-
mological embeddings.

For the two homological embeddings where [E22] = 2h2 e1 2 · · · 2 e4 2
e7, if we suppose this can be realized symplectically in CP2#7CP2, then we
can blow down exceptional spheres so that the image in CP2 of the resolution
becomes three symplectic conics in a pencil (the pencil points being the
images of the exceptional spheres representing e1, e2, e3, and e4). When s =
16, one of the pencil points is a triple tangency of the conics and the other is
a transverse intersection. When s = 15, one of the pencil points is a simple
tangency and there are two other transverse pencil intersections. When s =
13, 14, there are four transverse pencil intersection points. Additionally, there
is a symplectic line tangent to all three conics. When the pencil intersection
points are all transverse, this is obstructed by [GS22, Proposition 5.22]. In
the other two types of pencils, we can make a similar obstruction argument
as follows.

In the case that there is a common simple tangency of the three conics
in the pencil and two common transverse intersections, we obstruct this
configuration as follows. Blow up once at each of the three pencil points
where the conics intersect. The resulting proper transforms of the conics will
intersect transversally at one common point, and will have self-intersection
number +1. Thus we can identify one of them with a line in CP2. The other
two necessarily represent the same homology class h (and thus are symplectic
lines). The image of the line which was tangent to the three conics will
represent 2h2 e1 2 e2 2 e3. (There will also be three exceptional divisors
representing homology classes h2 e1 2 e2, h2 e1 2 e3, and h2 e2 2 e3, but
we will not actually need these for the obstruction.) Now, realize disjoint
exceptional spheres representing e1, e2, and e3, and blow them down. The
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result is a configuration which includes a conic with three tangent lines that
intersect at a common intersection point, which is the configuration G which
is obstructed by [GS22, Proposition 5.21].

In the case that there is a triple tangency of the conics in the pencil,
we obstruct this configuration similarly as follows. Blow up twice at the
triple tangency of the conics and once at the transverse intersection. The
proper transforms of the conics then have self-intersection +1 so we can
identify them with lines in the homology class h, which intersect at a com-
mon point. Under this identification, what was originally a line will now be
in homology class 2h2 e1 2 e2 2 e3, and the exceptional spheres will repre-
sent h2 e1 2 e2, h2 e1 2 e3, and e1 2 e3. Blowing down exceptional spheres
representing e1, e2, and e3 would yield a configuration with one conic and
five lines. Three of these lines (the images of the original conics in the pen-
cil) intersect the conic tangentially and intersect each other concurrently
at a single point. Therefore this has a subconfiguration of type G which
is obstructed by [GS22, Proposition 5.21]. Therefore these homological em-
beddings cannot be symplectically realized, so there are no corresponding
symplectic fillings.

Now we consider the last remaining homological embedding where
[E22] = 2h2 e1 2 e2 2 e3 2 e5 2 e6 and the chain represents a (truncation
of) h2 e1 2 e2, e2 2 e3, e1 2 e2. We realize disjoint exceptional spheres in
classes e3, e4, e5, and e6 and blow them down (if the chain is truncated we
can also realize e1 or e1 and e2 disjointly). The resulting configuration in
CP2 consists of three symplectic conics C1, C2, C3, and two symplectic lines
L1, and L2. When s = 16, the images of the spheres representing e1, e2, and
e3 all coincide, so C1, C2, and C3 intersect at one common triple tangency
point p3 (the image of e1, e2, and e3) and a transverse double point for each
of the three pairs (the images of e4, e5, e6). In this case L2 is tangent to the
three conics at p3. When s = 15, the images of e2 and e3 agree, so C1, C2,
and C3 intersect at one common simple tangency and one common (pencil)
transverse intersection (along with the three double points for e4, e5, e6). In
this case L2 intersects the conics transversally once at their common tan-
gential intersection and once at their common transverse intersection. When
s = 13, 14, the conics have three distinct common (pencil type) intersection
points, and three pairwise double intersection points. In this case, L2 passes
through two of the common pencil intersection points. In all cases, L1 is
tangent to all three conics at other points.

First we consider the case when the conics have a common tangency of
order 3. We will show this configuration is birationally equivalent to a conic
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with four generic tangent lines. The conic with any number of generic tan-
gent lines has a unique symplectic isotopy class by [GS22, Proposition 5.1].
Thus, demonstrating this birational equivalence suffices to prove this con-
figuration has a unique symplectic isotopy class. To obtain the birational
equivalence, blow up three times at the common triple tangency point p
of the three conics. This creates three exceptional divisors in a chain with
self-intersection numbers 21,22,22. The 21-curve intersects each of the
proper transforms of the conics transversally once at distinct points, and
the 22-curves are disjoint from the proper transforms of the conics. The
line which was tangent to the conics at p will have proper transform of self-
intersection number 21. It will intersect the 22-exceptional curve in the
middle of the chain at one point transversally. It intersects the other line
once transversally and is disjoint from the other curves. Thus we can blow
down this 21-curve coming from the proper transform of L2. The image of
the 22-exceptional divisor from the middle of the chain after this blow-down
becomes itself a 21-curve that we can blow down. After blowing it down, the
other 22-exceptional divisor becomes a 21-curve that can be blown down.
The resulting configuration is a conic (the image of L1) with four tangent
lines (three are the image of C1, C2, C3 and the fourth is the image of the
last exceptional divisor). See Figure 21.

Next we consider the case when the conics have a common tangency of
order 2. To verify this configuration has a unique symplectic isotopy class
in CP2, we add a symplectic line L3 which is tangent to the three conics
at their common tangential intersection—this does not change the sym-
plectic isotopy classification by [GS22, Proposition 5.1]. We will show this
configuration is birationally equivalent to a conic with four tangent lines
and one additional line that passes transversally through the point where
the fourth line is tangent to the conic (and otherwise has generic transverse
double point intersections). This configuration has a unique symplectic iso-
topy class by [GS22, Proposition 5.1], so after we demonstrate the birational
equivalence we will have verified the configuration we are interested in has a
unique symplectic isotopy class. To see this birational equivalence, blow up
once at the transverse pencil point of the conics and twice at the tangential
pencil point. The images of L2 and L3 will be 21-spheres that we can blow
down. After blowing these down, one additional exceptional divisor will rep-
resent a 21-sphere that can be blown down, and the resulting configuration
is as claimed. See Figure 22.

Finally consider the case when the conics intersect transversally at three
pencil points plus three double points. To verify this configuration has a
unique symplectic isotopy class in CP2, we add two symplectic lines L3,
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Figure 21. Birational equivalence from A (top) to B (bottom) where A
consists of three conics intersecting at a common order 3 tangency at p,
together with their tangent line at p, and another line which is tangent to
all three conics and B consists of one conic with four generic tangent lines.

and L4 pass through the other two pairs of pencil points (L2 already passes
through one of the three pairs). This does not change the symplectic isotopy
classification by [GS22, Proposition 5.1]. We will show this configuration
is birationally equivalent to a configuration with one conic, three tangent
lines (forming a circumscribing triangle), and three more lines forming an
inscribed triangle (i.e. the pairwise intersections of these three lines lie on
the conic). Such a configuration can be built from the conic by iteratively
adding a line satisfying the hypotheses of [GS22, Proposition 5.1], so it has
a unique symplectic isotopy class. To see the birational equivalence, blow
up at the three pencil points. The images of L2, L3, and L4 become 21-
spheres which can be blown down, resulting in the specified configuration.
See Figure 23.

In conclusion, in each case, an embedding representing this homologi-
cal configuration blows down to a configuration with a unique symplectic
isotopy class. Thus there is a unique symplectic embedding of the cap with

For the author's personal use only.

For the author's personal use only.



1170 M. Golla and L. Starkston

Figure 22. Birational equivalence starting with a configuration of three con-
ics C1, C2, C3 intersecting at one common simple tangency, one common
transverse point, and three double points, together with three lines L1, L2,
L3 with tangencies and intersection data as shown in the top left. The end-
ing configuration on the bottom right consists of one conic (the image of L1)
with five lines, four of which are tangent to the conic and the fifth passing
transversally through one of the tangential intersections.

this homological data, corresponding to a unique symplectic filling in the
complement. ¥

8. Further speculations and questions

We collect in this section some ideas and questions for further investigation.

8.1. Handlebodies

In Section 2 we gave explicit Stein handlebody descriptions for all rational
homology ball fillings of the cuspidal contact structures associated to the
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Figure 23. Birational equivalence between two configurations. The first con-
figuration consists of three conics intersecting at three transverse pencil
points and three double points, together with a line L1 tangent to all three
conics and three lines through the three pairs of pencil points. The final con-
figuration consists of one conic, three tangent lines, and three lines whose
pairwise intersections lie on the conic.

Ap and Bp families. Similar handlebody descriptions are known for ratio-
nal homology balls bounded by lens spaces or by connected sums of lens
spaces [LM14], thus covering also the two Fibonacci families of [FLMN07,
Theorem 1.1] described in the introduction.

Question 8.1. Can one find an explicit Stein handlebody description of
the rational homology ball fillings of E3 and E6?

In [AGLL20], there is a (somewhat non-explicit) handle decomposition
of a topological rational homology ball bounding the corresponding Seifert
fibered spaces. Starting from [AGLL20, Figure 7], one can recover a handle-
body diagram for a rational homology ball bounding the cuspidal manifold
of type E3, as shown in Figure 24. Does this handlebody support a Stein
structure?

Note that it would suffice to Legendrian-realize the attaching curve of the
2-handle so that the contact framing is one less than the topological framing:
that is, we are looking to find a Legendrian realization of the link of Figure 24
where the 2-handle has Thurston–Bennequin invariant 28 (in Gompf’s con-
vention [Gom98]). By the argument of Proposition 3.1, the contact structure
obtained on the boundary would automatically be the canonical one (which
is the cuspidal one, up to conjugation), and by the classification of fillings,
such a diagram would represent the unique rational homology ball filling of
(YC , ¿C) where C is a curve of type E3.
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Figure 24. The handlebody description of a rational homology ball whose
boundary is the cuspidal manifold of type E3. The framing of the 2-handle,
in Gompf’s convention from [Gom98], is 29.

8.2. Lefschetz fibrations and open books

In Sections 2 and 3 we have given explicit Stein handlebody decompositions
for at least one filling for each curve of type Ap, Bp, E3, and E6. For the
Fibonacci families, such descriptions were already known to Honda [Hon00]
and Giroux [Gir00] (see also [LM14]).

Question 8.2. Can one construct explicit Lefschetz fibrations on these
fillings?

As a byproduct, one would also be able to recover an open book decom-
position for the cuspidal contact structures in this case. In fact, we conjecture
that the diagrams in Figures 25 and 26 depict the vanishing cycles of the
fillings in the Ap and Bp cases. We verified that the underlying topology is
the expected one.

Moreover, adding the orange vanishing cycle in Figure 25 (respectively
the orange vanishing cycle on the left of Figure 26) corresponds to attaching
a Weinstein 2-handle along a Legendrian knot in S1 × S2 which is in the
same smooth isotopy class as the Legendrian knot in Figure 1 (respectively
Figure 4). We see this by observing that Lefschetz fibrations without these
orange curves destabilize to the trivial Lefschetz fibration on the annulus.
In the Ap case, the Legendrian represented by the orange vanishing cycle is
stabilized p2 1 times, and the unstabilized version would correspond to the
rational homology ball appearing in the standard rational blow-down cor-
responding to a daisy relation. Starting from a Stein handlebody diagram
of this standard rational blow-down, it is not clear whether the Lefschetz
fibration depicted represents positive or negative stabilizations of the Leg-
endrian in that diagram, so there is some ambiguity remaining on whether
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this is the correct Lefschetz fibration. Similar arguments can be made in the
Bp case, and a similar ambuiguity remains.

p-1p+
1

Figure 25. Lefschetz fibration for the filling corresponding to the Ap family.

p-2

p

p-2

p

Figure 26. Lefschetz fibrations for the two fillings corresponding to the Bp

family.

If the proposed open book decompositions do indeed describe the correct
contact structures, we would also obtain that all cuspidal contact structures
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1174 M. Golla and L. Starkston

of types Ap, Bp, or Fibonacci are supported by a planar open book. By
contrast, by [GGP20, Theorem 1.2], we know that in the cases of E3 and E6
the cuspidal contact structures cannot be planar. On the other hand, Etnyre
and Ozbagci have proved that these contact structures are supported by an
open book of genus 1 [EO06].
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topological invariants for closed three-manifolds. Ann. of Math.
(2), 159(3):1027–1158, 2004.
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on CP2#6CP2. Geom. Topol., 9:813–832, 2005.

[SSW08] András I. Stipsicz, Zoltán Szabó, and Jonathan Wahl. Rational
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