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Abstract

We discuss Hamiltonian and Liouvillian learning for analog quantum simulation from
non-equilibrium quench dynamics in the limit of weakly dissipative many-body systems. We
present and compare various methods and strategies to learn the operator content of the
Hamiltonian and the Lindblad operators of the Liouvillian. We compare different ansitze based on
an experimentally accessible ‘learning error’ which we consider as a function of the number of runs
of the experiment. Initially, the learning error decreases with the inverse square root of the number
of runs, as the error in the reconstructed parameters is dominated by shot noise. Eventually the
learning error remains constant, allowing us to recognize missing ansatz terms. A central aspect of
our approaches is to (re-)parametrize ansitze by introducing and varying the dependencies
between parameters. This allows us to identify the relevant parameters of the system, thereby
reducing the complexity of the learning task. Importantly, this (re-)parametrization relies solely on
classical post-processing, which is compelling given the finite amount of data available from
experiments. We illustrate and compare our methods with two experimentally relevant spin
models.

1. Introduction

Controllable quantum many-body systems, when scaled to a large number of particles, hold the potential to
function as quantum computers or quantum simulators, addressing computational problems that are
considered intractable for classical computers [1]. Remarkable progress has been reported recently in
building quantum simulators, as programmable special-purpose quantum devices, to solve quantum
many-body problems efficiently, which finds applications in condensed matter [2], high-energy physics [3],
and quantum chemistry [4], in both equilibrium and non-equilibrium dynamics. Quantum simulation can
be realized as analog or digital quantum simulators. In analog simulation, a target Hamiltonian finds a
natural implementation on a quantum device, exemplified by ultracold bosonic and fermionic atoms in
optical lattices as Hubbard models [5-8], or spin models with trapped ions [9—12], Rydberg tweezer
arrays [13—16], and superconducting qubits [17—-19]. The unique feature of analog quantum simulators is the
scalability to large particle numbers. In contrast, digital quantum simulation [20] represents the time
evolution of a given many-body Hamiltonian using a freely programmable sequence of Trotter steps
implemented via single and multi-qubit entangling quantum gates.

An outstanding challenge in quantum simulation is the ability to predict properties of many-body
observables with controlled error while scaling to a regime of potential quantum advantage [21-24]. Given
the increase of complexity of these systems, methods to characterize, and thus verify, the proper functioning
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of quantum simulators are required [25-27]. This includes verification, that the correct many-body
Hamiltonians are being implemented, and a complete characterization of (weak) decoherence due to
unwanted couplings to an environment or fluctuating external fields. In the present paper, we approach this
goal by studying Hamiltonian and Liouvillian learning for analog quantum simulators. Previous works have
studied various scenarios for Hamiltonian and Liouvillian learning [28—40], for instance, by comparing with
a trusted simulator [28], or based on the preparation of steady states [31-35]. Alternative approaches are
based on dynamics in (long-time) quenches [29, 34-37], the estimation of the time-derivatives of few-qubit
observables from short-time evolution [38, 39], or require additional resources such as intermediate

gates [41, 42].

Here, we will be interested in Hamiltonian and Liouvillian learning from dynamics in long-time
quenches, with only few experimental requirements such as the preparation of product states, and product
measurements. We assume that the dynamics of the experimental quantum simulator is described by a
master equation, where the Hamiltonian acts as a generator of the coherent many-body dynamics, while
Lindbladian terms model the noise. The goal of Hamiltonian and Liouvillian learning is to learn the operator
structure, reminiscent of a principal component analysis [43], of both the many-body Hamiltonian, as one-,
two- or few-body interaction terms including their couplings, and the quantum jump operators in the
dissipative Liouvillian, representing local or non-local (global) quantum and classical noise. The scalability
and efficiency of Hamiltonian and Liouvillian learning are related to the assumption that physical
Hamiltonians and Liouvillians will only involve few-body interactions and quantum jump operators, leading
to a polynomial scaling of the number of terms to be learned with system size.

Our study below discusses and compares various scenarios and strategies of Hamiltonian and Liouvillian
learning, which we illustrate by simulating learning protocols for various model cases. Our work is motivated
by present trapped-ion experiments, where quantum simulators realize 1D interacting weakly dissipative
spin-1/2 chains. This allows quench experiments to be performed, and we will be interested in learning the
Hamiltonian and Liouvillian from experimental quench data observed at various quench times. Learning the
Hamiltonian and Liouvillian requires many experimental runs. In each run projective measurements of spins
are performed in various bases, allowing to measure multi-spin correlation functions up to shot noise. In
addition, learning protocols will prepare many initial states, which in our case can be pure or mixed, thus
resulting in stability against state-preparation errors. A central aspect of our study below will thus be an
investigation of the experimentally measurable learning error of Hamiltonian and Liouvillian, and its scaling
with the number of measurement runs.

The paper is structured as follows. Section 2 outlines the specific scenario we are examining and the core
theoretical concepts involved. Section 2.1 establishes some constraints on the system’s Hamiltonian and
Liouvillian, measurable through simple quench experiments. We then present the main equations that
enable us to infer the Hamiltonian and Liouvillian from experimental data in sections 2.2 and 2.3. The first
approach is based on the equation of motion of the expectation value of general observables, known as
Ehrenfest’s theorem, while the second approach is based on generalized energy conservation. In section 3, we
compare the two methods and showcase learning protocols for various model scenarios through numerical
simulations. We compare different ansitze for the operator content, using an experimentally measurable
quantity, which we identify as a learning error. These ansitze are derived by re-parametrizing our ansatz,
typically involving data recycling and classical post-processing. The learning process can be divided into two
phases as a function of experimental runs Nyyps: in the early phase, the learning error is dominated by
shot-noise and decays NN;ullqé % In the later phase, systematic errors become dominant due to missing terms
in the ansatz, or an insufficient ansatz. This leads to a constant learning error independent of the number of
measurements, indicating the need to extend our ansatz.

2. Hamiltonian and Liouvillian learning of many-body systems

2.1. Background

We consider analog quantum simulation in a regime, where the engineered quantum many-body system of
interest is weakly coupled to a decohering environment. We assume that the system dynamics is described by
a master equation with Lindblad form [44],

o= im o+ 3w ([kedl] + [iooll]) =#(0) + £ (o), )
k

comprising a coherent term H (o) = —i[H, o] with many-body Hamiltonian H and a dissipative term L,
referred to as the Liouvillian. The Lindblad quantum jump operators I, describe dissipative processes
coupling the system to an environment. Here, v > 0 is the physical domain for the corresponding damping
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rates, where the dynamics is described by a completely positive and trace-preserving map [45]. Throughout
this work, we assume that the Hamiltonian and the Liouvillian are time-independent. In typical
experimental settings, the Hamiltonian terms are significantly larger than dissipative processes ||H|| > 7.
Below we will be interested in analog quantum simulation of spin-1/2 systems, as implemented with
trapped ions [9-12], Rydberg tweezer arrays [14—16], or superconducting circuits [17, 19]. An illustrative
example of a two-local spin-Hamiltonian in one spatial dimension, which we have in mind, is given by

N—1 N-2 N N
H= Zﬁ,i+1afaz'z+l + Z]f’iﬂafafﬂ + BxZU? + BZZUf, (2)

i=1 i=1 i=1 i=1

which describes a next-nearest-neighbor Ising model of N spins with longitudinal- and transverse fields.

The Liouvillian, £, in equation (1) is defined by its Lindblad, or quantum jump operators /. Examples of
Lindblad operators that typically appear in experiments include spontaneous emission, described by local
Lindblad operators [y = o, _, or local dephasing, represented by [, = o7. Besides local dissipation, we will be
interested in identifying the presence of collective dissipative effects, for instance, in the form of collective
dephasing caused by globally fluctuating laser fields or effective magnetic fields, leading to a collective
Lindblad operator [ =}, o7.

Before we proceed with the discussion, we need to establish certain conditions on the Hamiltonian and
Liouvillian of the system. For a time-independent observable, O, Ehrenfest’s theorem, in the context of
equation (1), states that

40y = (—i[o,H]) Z’yk (IL[0,5] + [l,{,o] I, (3)

where (X) = tr[Xp], for any state o. In its integral form, this generalized Ehrenfest theorem yields the
following condition for the Hamiltonian and Liouvillian

(O)r — (0 = / ([0, H))dt + ~ Z’yk / (1Ho, 1] + [z,t,o} b db, (4)
0
where (X); = tr[Xexp{t(H + L)} 0(0)]. This condition simplifies if we consider O = H, which leads to
H (L[] + |1, H| L) dr. 4b
(H)p— Z%/ K]+ [k, }k>tt (4b)

It describes generalized energy conservation, including the loss of total energy of the system during a
quench of duration T. If v, = 0 for all k, this equation indicates the conservation of energy. In our
Hamiltonian and Liouvillian learning protocol, equations (4a) and (4b) will play a crucial role. We will
generalize the protocol of [36] for Hamiltonian learning in the absence of dissipation, and present it in a
form particularly suited for learning H and £ in the limit of weak dissipation.

As a final remark, let us elaborate on the experimental procedure that we are considering which can be
used to probe the conditions in equations (4a) and (4b) (see also figure 1 for an illustration). Starting from a
product state, |1)) = [¢)1) ® - - - ® |thn), which can be experimentally prepared with high fidelity, one evolves
the state under the Hamiltonian and Liouvillian for some time . The resulting state, o, = exp[t(H + £)] 0o, is
measured in a product basis, for instance, in the Pauli basis. Clearly, the limiting quantity, here, and in the
following, will be the total number of runs of quench experiments, which we will denote by Nyyns. Given,
however, that many-body Hamiltonians typically consist of a few quasi-local operators, many of the required
measurements can be carried out simultaneously in a single run and using classical post-processing, or via
the randomized measurement toolbox [46].

2.2. Hamiltonian and Liouvillian learning from the generalized Ehrenfest theorem

Often, in an experimental setting, the detailed structure of the Hamiltonian and the Liouvillian are
unknown. We present here a method to learn the operator content of H and £, and the corresponding
parameters from experimental data. For instance, in the context of the spin system in and below

7 The Hamiltonian, H, the dissipation rates, 7, and the Lindblad operators, I, are uniquely determined by the dynamics, if one requires
the following: (i) H is traceless, (ii) the J; are traceless and orthonormal, i.e. tr(}) = 0 and tr(lj,,ln) = 8, and (iii) the 7, are not
degenerate [45].
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Figure 1. A quantum simulation experiment starts with a specific target Hamiltonian H*™ of interest, for instance, spin-models
that we consider in this work. This Hamiltonian finds a natural realization in a quantum simulation platform that aims to
simulate the dynamics of H*™ in a well controlled environment. In practice, however, the precise Hamiltonian such a device is
implementing is unknown and needs to be determined. In addition, the system is typically (weakly) coupled to an environment so
that the the dynamics is well described by a quantum master equation, cf equation (1). Hamiltonian and Liouvillian learning aims
to reconstruct the Hamiltonian and Liouvillian using a finite measurement budget. Here, we consider simple quench experiments
with product states as inputs, and product measurements. Relevant questions that need to be answered include, but are not
limited to, the existence of additional (small) terms in the Hamiltonian, as well as the operator content of the Liouvillian, i.e. the
quantum jump operators and dissipation rates. This information can then be used as a feedback to the experiment, improving the
quantum simulation, or to verify that indeed the correct dynamics has been implemented.

equation (2), identifying the operator content means identifying the Pauli operators that appear in the
decomposition of H and the Lindblad operators Ii.

We start by choosing an ansatz for the operator content for the Hamiltonian and Liouvillian. Specifically,
as an ansatz for H we choose

Ale) =) ghj, (5)
i=1

with parameters ¢ = (cy,...,¢,), and hj traceless and hermitian for all j. As an example, one could choose the
h; to be few-body Pauli operators. As an ansatz for the Liouvillian we choose
1 m
D(d) = Ezdk (|:ak97a£:| + [ak7ga]1;:|) ) (6)
k=1

with Lindblad operators {ay }, and parameterized by the corresponding non-negative dissipation rates,
d=(dy,d,,...,d,). Here, a; is intended to be an ansatz operator for a single Lindblad operator, I;. However,
this does not have to be the case as we will discuss in section 2.3.

Consider the equation of motion of a general observable, O (not necessarily commuting with H), given
by the generalized Ehrenfest theorem in integral form in equation (4a). Inserting the ansatz, A(c) for H, and
D(d) for the Liouvillian, and imposing the resulting constraint for a set of observables {O;}, withi =1,...,p,
one obtains a set of linear equations for ¢ and d. These can be written as a simple matrix equation®;

KHC+KDd: b. (7)

Here, Ky is a p X n matrices, and Kp is a p X m matrix, with entries defined by

T
(KH)ij = _1/0 <[Oi7 h]] >tdta (8)
and
T
(Kp)y = %/ (a,t [Oi,ar] +h.c.),dt, 9)
0

and the vector b is defined by b; = (O;); — (O;),. As these equations hold for any density matrix, o, our
protocol, similar to the Hamiltonian learning protocol in [36], is resistant to state-preparation errors.
Moreover, although we have imposed the above equations for multiple observables, {O;}, and a single input
state, p, one may also consider multiple input states. Note also, that similar constraints have also been used in
[33] to learn Liouvillians from their steady-states.

8 To be more precise, we insert the adjoint DT of the ansatz for the Liouvillian into equation (7). The adjoint is defined by tr[XD(Y)] =
tr[DT (X)Y] for all test operators X, Y. We note, that both superoperators contain the same Lindblad operators and dissipation rates.
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In the discussion above, we have implicitly assumed that our ansatz is chosen such as to contain the
Hamiltonian and Liouvillian, i.e. there exist vectors ¢/, and d”, such that A(c/') = H,and D(d”) = L.
However, in practice we do not expect this to be the case, and we will call such an ansatz insufficient’.
Nevertheless, we can determine the parameters of our ansatz minimizing the violation of equation (7) by
minimizing the squared residuals;

("¢, d"™) = argmin || Kyc + Kpd — b|| (10)
(e,d):d>0

where ||x|| denotes the 2-norm. In case of an insufficient ansatz, the value of the linear optimization problem,
minc gy || Kgze 4+ Kpd — b||, will be strictly bounded away from zero.

2.3. Hamiltonian and Liouvillian learning from generalized energy conservation

Instead of inserting our ansatz into equation (4a), we may also insert the ansatz into the much simpler
generalized energy conservation condition in equation (4b). Imposing the resulting constraint for a set of
initial (product) states {o;}, where i = 1,...,p, leads to the following simple matrix equation;

[My + Mp (d)]c=0. (11)
The matrices My and Mp(d) are p x n matrices defined by
(MH)ij = <hj>i,0 - <hj>i,T’ (12)

and Mp(d) = 1 3, diM®, with

T
() - / (af [y, + [al ] @) dr. (13)
0 :

and (X); , = tr[Xp;(#)]. In contrast to equation (7), where we can impose constraints for multiple input stats
and multiple observables, the observables appearing in equation (11) are fixed by the ansatz. Therefore to
obtain more constraints, one needs to consider more input states. Moreover, as these equations hold for any
state, o, the reconstruction is resistant to state preparation errors.

Similar as above, in the case of an insufficient ansatz that cannot fulfill equation (11), one can reconstruct
those parameters minimizing the violation of generalized energy conservation;

(¢, d*)= argmin ||[Mg+ Mp (d)]c||. (14)
(e,d):lel|=1,d20

Without dissipation, where d = 0, this is a linear optimization problem, while in the presence of dissipation,
i.e. d > 0, equation (14) involves non-linear optimization over ¢ and d. Note, that for a fixed d, the
minimization over ¢ results in the smallest singular value, A, of the constraint matrix My + Mp(d).
Computing the minimum of the cost function in equation (14) then corresponds to finding non-negative
dissipation rates d° for which the smallest singular value, A;, of the constraint matrix My + Mp(d) attains
its minimum. Numerically we find d°° using the ‘Dividing Rectangles’ (DIRECT) algorithm implemented in
SciPy with default settings'’. The corresponding ¢ is then the right-singular vector corresponding to A;. In

the following we will denote the singular values of the constraint matrixby A, > --- > A, > A; > 0.

2.3.1. Learning the overall scale, and conserved quantities
The generalized energy conservation conditions in equation (4b) define the Hamiltonian only up to a scalar
factor since they are linear in H. Additionally, these conditions hold for any operator Q with [Q, H] = 0,
i.e. for all conserved quantities of H. An ansatz, A(c), then may contain the Hamiltonian, H, and other
conserved quantities of H which admit a decomposition in the form of A(c). For instance, if we choose our
ansatz to be k-local, it contains at most k-local conserved quantities, such as the total magnetization,
Q ~ >, 0%, which is a sum of local operators.

So let us assume that an ansatz contains two linearly independent conserved quantities H, and Q,
corresponding to two linearly independent vectors c!?, and ¢? (the generalization is straightforward). Then,

9 As an example, the Hamiltonian may not only contain operators hj, but also additional operators k. not contained in our ansatz. On
the level of equation (11) this would result in a truncation of the matrix M which then contains fewer columns than would be required
in order to reconstruct c*.

10 The lower bound for each dy is set to d = 0, and the upper bound is set proportional to the maximum dissipation rate of the model
AP = kymayx = kmax({~x}). We check convergence for different values of k and different numbers of cost-function evaluations.
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by singular value decomposition, one obtains two right singular vectors {v,v }, which both satisfy
equation (11), and degenerate singular values A\; = A\, = 0. However, the right singular vectors do not
necessarily have to correspond to ¢ and ¢!. Thus, in the presence of conserved quantities, naively solving
equation (14) would in general reconstruct the parameters of a linear combination of conserved quantities.
To distinguish ¢!’ from other conserved quantities, we impose additional constraints that can only be
fulfilled by H, but not by other conserved quantities, including scalar multiples of H. Such a constraint can
be obtained from equation (4a) for a generic observable, O, not commuting with H. We spell out the
modified equations in appendix A. The optimization problem in equation (14) is then modified to

(ehrt) e (enta)

where M(d) = My + Mp(d) is as in equation (14), and M*¢ and b(d) contain additional constraints. The
auxiliary parameter £ controls a penalty that is added for violating the condition determining H. Choosing
this parameter large enough allows us to reconstruct a "¢ ~ cH with the correct overall scale, as a unique
solution of equation (15). We emphasize, that by choosing the appropriate additional constraints,
equation (15) can also be used to learn other conserved quantities of H.

(¢, d") = argmin , (15)

(c,d):d=0

2.3.2. Learning the full Liouvillian

Since we have dissipative dynamics, one expects that accurately learning the Hamiltonian also requires
learning all the individual dissipation rates. This is, however, not necessarily the case. In some cases, different
dissipative processes give the same contribution to equation (4b), and therefore, cannot be distinguished by
these conditions. More specifically, when inserting an ansatz into this condition, the resulting constraint
matrices {M®)} in equation (13), where k labels the different Lindblad operators, become linearly
dependent. Then, the decomposition Mp(d) = >, diM () is not unique. This dependence leads to
symmetries in the cost function in equation (14), such that the Hamiltonian H can be learned exactly, for
different dissipation rates d"*°.

In order to learn the full Liouvillian and resolve individual dissipation rates, one needs to add additional
constraints in the same way as one does for excluding conserved quantities and for learning the overall scale.
This can then be phrased as an optimization problem of the form of equation (15), which we explain in
detail in appendix A. This is a unique feature of equation (11). Below, we will compare Hamiltonian and
Liouvillian learning based on equation (7), which, generically, does not admit such symmetries, and
equation (11), including additional constraints, where we will show how to choose these additional
constraints to learn the full Liouvillian.

3. Numerical case studies

In this section we want to illustrate the Hamiltonian and Liouvillian learning methods developed in the
previous sections in the context of several experimentally relevant spin-Hamiltonians, more specifically the
Ising model in equation (2), and a long-range Hamiltonian with algebraically decaying interactions that is
naturally found in trapped ion experiments [9]. We will study the procedure of learning these Hamiltonians,
in the presence of weak dissipation, using only a finite amount of numerically simulated measurement data.
Moreover, we will aim to learn the Liouvillian, and in particular distinguish local from collective dissipation.
As a preparation for the following discussion let us discuss some details of the learning procedure.

3.1. Preliminaries

To learn the Hamiltonian and Liouvillian of a many-body system, the constraint matrices in equation (7), or
equation (11), are estimated from a finite amount of experimental data. Therefore, we have to solve the
corresponding optimization problem using their noisy estimates, e.g. Ky = Ki + E, where E is an error
matrix with random entries. Crucially, E is experimentally inaccessible. Therefore, as an experimentally
accessible figure of merit to asses the progress of our learning procedure, one may consider the minimum of
the objective function in equation (10), or equation (14), given by the smallest singular value A;. In early
stages of the learning, where shot-noise, represented by the matrix E, is the dominant source of error, one
expects this minimum to decrease NN;:é % as we increase Niuns, see appendix B for details. In this regime, we
will consider the reconstructed parameters ¢* and d"*, for which we compute error bars using
bootstrapping methods. This allows us to identify dominant terms in the Hamiltonian and Liouvillian, thus
learning the dominant operator structure. For a sufficient ansatz, this error will asymptotically converge to
zero, while for an insufficient ansatz the error will be strictly bounded away from zero, i.e. it will plateau in
later stages of the learning, where missing ansatz terms are the dominant source of error. Therefore, when
observing a plateau we need to extend our ansatz by additional terms.

6
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A fundamental tension in Hamiltonian and Liouvillian learning is the tradeoff between the number of
parameters of an ansatz, and the number of measurements that are required to estimate these parameters
from experimental data. While ansétze comprising many parameters allow us to learn many aspects of the
dynamics, they require a large measurement budget to reduce shot noise. In contrast, in the case of a limited
measurement budget, it is quite useful to reduce the number of parameters to just a few relevant ones. This is
also physically justified as many experimentally relevant Hamiltonians can be effectively characterized by
only a few parameters, which may not even increase with system size. [llustrative examples include
translationally invariant systems, or systems exhibiting algebraically decaying interactions. While ansitze
with few parameters only require a small measurement budget, they might be insufficient in the limit of an
infinite number of measurements. However, as long as these insufficiencies are small, learning will be limited
by shot noise. Therefore, our goal in the following is to find an ansatz comprising only few parameters and
the dominant terms of the Hamiltonian and Liouvillian, which do not show any insufficiencies given our
limited measurement budget.

To find this ansatz, we compare different ansitze by varying their operator content as well as their
parametrization, i.e. the dependencies between parameters. We emphasize that reparametrization can be
done solely by classical post-processing of the data. More specifically, by transforming the vector of
parameters, c, via a pammetrization matrix G to a new vector of parameters, ¢cg = GTc, where G encodes
dependencies between parameters in ¢. This leads to a transformation of the learning equations in
equations (7) and (11) (see appendix C for technical details). The nature of this reparametrization is best
understood by considering the following simple example. An ansatz A = sz\f:1 cxo; with N independent
parameters is mapped to a translation invariant ansatz via G* = (1,1,...,1)/v/N. Indeed,

A(G'¢) = Ezlk\f:l 0% is translation invariant, with the overall scale ¢ = 1/v/N Zgzl ¢k as the only free
parameter.

We will demonstrate in the following numerical simulations that the ratio of the smallest two singular
values of the constraint matrices, A; /\,, serves as a quantifier for the learning error of an ansatz and a useful
figure of merit to compare different ansatze. This is motivated by the fact that the smallest singular value, A,
quantifies the learning error, e.g. the violation of generalized energy conservation in equation (4b), and that
alarger gap § = )\, tightens the upper bound on |sin(8)|, where 6 = Z(c!!,¢™¢) is the reconstruction error
(see appendix B for details). As we will see below, the gap is typically larger for ansitze with fewer
parameters. Therefore, when comparing different ansitze, we choose the one which minimizes A; / ;. This
results in an ansatz containing only few parameters and small missing terms, i.e. with an early shot-noise
scaling, and a low plateau (see figure 2 for an illustration).

As a final remark, let us note that in case the operators O;, h; and a are Pauli operators, the expectation
values in equations (9) and (13) evaluate to a(h;), where o = 0 if [lt, hj] = 0, and ov = —4 otherwise, and
respectively for O;. Therefore, in case the operators {O;}, {;} are few-body operators these expectation
values as well as the commutator [O;, hj] remain few-body Paulis. Thus, many of the operators commute and
can thus be measured jointly.

Estimating the integrals in equation (A3) requires measuring time-resolved expectation values of the
corresponding operators over the duration of the quench, see figure 2. Here, we use the composite Simpson’s
rule'! which approximates an integral as a series of parabolic segments between N; equally spaced points
tm = m- At,with m € 0,...,N; and distance At = T/N,. In the following, we choose a sufficiently small time
step At to ensure that errors arising from discretizing the integral can be disregarded in comparison to
shot-noise errors .

3.2. Learning from generalized energy conservation

To begin, we illustrate Hamiltonian and Liouvillian learning from generalized energy conservation based on
equation (11). We assume that the analog quantum simulator is governed by a master equation of the
following form

4o ima+ Y 2 (et +he). (16)
k=1

ne{+,—.z}

Here, H is the Ising Hamiltonian of equation (2) and the Lindblad operators o, o_, and o, represent
spontaneous absorption, spontaneous emission, and local dephasing, respectively. In this model case, the

. N, N,/2—
W treads [ (P),de~ At [(Phy + 4007 (P, +2 50007 (P),, + (P)g]-
12 Indeed, for fixed time T one obtains jOT (h),dt = I(At) + KA#*, where I( At) is the integral approximation, and K is a constant. When

expressed in terms of N; this reads I(N;) + K/N*. However, as I(N;) can only be estimated from data, one obtains I(N;) = I(N;) + ¢, only
up to a statistical error €. As I(N;) is linear, the variance of € roughly scales like 1/(N;N5), where N; is the number of shots per time-point.
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Figure 2. Hamiltonian and Liouvillian learning begins by choosing an ansatz for the operator structure of the Hamiltonian and
Liouvillian. Then, one measures time-resolved expectation values of correlation functions, and estimates of their integrals over a
period of total time T. Here, we choose to measure the correlation functions at discrete points and estimate the integral using
Simpson’s rule. The learning progress is assessed by considering the ratio A1/, which can be directly obtained from
experimental data, as a function of Nyups. This allows us to compare different ansitze, and to notice when terms in the ansatz are
missing. changing the ansatz involves reparametrization, which typically can be done by classical post-processing.
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Figure 3. Hamiltonian learning in presence of weak dissipation. (a) The learning error A1 /), as a function of the number of runs,
Niuns, of the simulator for different ansétze described in the main text. The colored triangles indicate the asymptotic values for
Nruns — 00. The dashed line follows the learning procedure described in the main text. (b) Snapshots of the (normalized)
reconstructed Hamiltonian parameters, c;e“, for some of the ansitze described in the main text. The capital letters denote groups
of operators in the ansatz, and within each group the site indices of the coefficients are sorted increasingly from left to right,

e.g. the coefficients in group XY correspond to the operators Ufcf{ ot U{af ., in equation (17), and similarly for all other
groups of operators. Black crosses indicate the true parameters of the model Hamiltonian as defined below. The point at which
these snapshots are taken in terms of Nyyps is also indicated by asterisks in the left panel. All error bars are computed via
bootstrapping as explained in appendix D, using 80 samples. Model parameters: The Hamiltonian parameters in equation (16) are
chosen as B, = 4/5B,. Moreover, the coupling strengths are described by 4-th order polynomials of the form

Jii =B S a -xﬁ;}rl, and i, , = B; S b xf_zjrz where x; j = [(i+j) — (N4 1)]/N. We choose the following
coefficients: a = (6/5,1/20,1/5,0,—2/5) and b= (1/5,1/20,—2/5,0,4/5). The dissipation rates are chosen such that
(Y45,7=,72) = (1,1.5,2) X 1072B* < ||H||. To estimate the integrals in equation (13), we use B;A, = 1/64, i.e. 64 equidistant
times, where at each time we spend only 1/64 of the measurements per basis, compared to the quench times B, T € [0,0.5,1].
Expectation values at t = 0 are calculated exactly from the initial state.

Hamiltonian couplings and dissipation rates are chosen such that the dominant terms are the
nearest-neighbor couplings and fields of the Ising Hamiltonian, while the sub-dominant terms are
next-nearest-neighbor couplings in the Hamiltonian as well as the dissipative processes. Moreover, we
included small spatial variations in the couplings of the Hamiltonian. We summarize the choice of
parameters in the caption of figure 3.
In the following, our goal will be to learn the above-described model Hamiltonian and Liouvillian from
simulated quench experiments. We will limit the total number of simulated runs Nyyns & 10°, which is a
reasonable limit for experiments with trapped ions. We will illustrate how ¢"¢, including its error bars that
we obtain via bootstrapping, and the learning error A/, can be used in this scenario to identify the
operator content and relevant parameters of the model Hamiltonian and Liouvillian.
1. Identifying the dominant terms of the Hamiltonian. In a first step, we seek to identify the dominant terms in
the Hamiltonian H, assuming (prior knowledge) that dissipation is typically weak compared to the
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Hamiltonian. Therefore, in this first step we will only include an ansatz for the Hamiltonian and no ansatz
for the Liouvillian. As, interactions are typically finite range, we generically expect the dominant terms to be
nearest-neighbor terms. Moreover, in quantum simulation of condensed matter models one expects more or
less homogeneous couplings (translational invariance). Therefore, we start with the following ansatz for the
Hamiltonian

N—1 N-1 N N N
Ay = ¢y E OXO% 1 T Cxy E (afazﬁ—l—oi’afﬂ)—k---—i—cx g or+¢ E o} +c; E oy, (17)
k=1 k=1 k=1 k=1 k=1

comprising all nearest-neighbor interactions, i.e. {xx, yy, zz,xy, xz, yz}, with spatially homogeneous
coefficients. As commuting operators can be measured jointly, the operators in A; can be measured by
classically post-processing data obtained from measuring the following nine product operators,
independently of the system size: o2, 02N, 02V, and six operators of the form 0, ® 0, ® 0, @ 7, @ - - -, for
all combinations a # b of distinct Pauli operators.

In figure 3(a) we plot A; /A, for the ansatz A; as function of Ny (blue line). At small Nyyps one expects
to observe a decrease of \; /A, with Ny indicating the errors are dominated by shot noise. As the ansatz A,
is insufficient, i.e. misses terms present in equation (2), one expects a plateau in A; /A, for large N,yns. This
plateau appears beyond our maximum measurement budget at Nyyns & 107 experimental runs, which is
indicated by a blue triangle on the y-axis in figure 3(a). Nevertheless, at Ny,ns & 10 the reconstructed
parameters ¢ in figure 3(b) (blue data) identify the dominant terms in the Hamiltonian, i.e.
nearest-neighbor o, ® o, interactions and fields in o, and o, direction.

At this point, we cannot rule out the presence of the other terms in the operator ansatz A;. However, as
the values of the non-dominant terms are much smaller than the ones of the dominant terms (see
figure 3(b), blue data), we remove all non-dominant terms from the ansatz in the next step. It should be
noted that, in case those terms were present in the Hamiltonian, we would encounter a plateau in A\; /), at a
later stage of the learning process. We will later see that this is, however, not the case (as dissipative terms are
still missing in our ansatz). On the other hand, if the dominant terms identified from ¢ of A; constitute a
good approximation to the Hamiltonian, we expect A; /A, to decrease. This is indeed the case as the
reparametrized ansatz,

N—1 N N
Ay =y g Of0f 4 F e E o;+e; E o (18)
k=1 k=1 k=1

leads to a much smaller value of A /\,. We emphasize that learning with the ansatz A, only requires
measurements of 0~ and ¢ ®N. Therefore, some of the measurements performed for A; can be recycled for
learning the parameters of A,. By further measuring, a plateau in \; /A, starts to emerge at Ny, ~ 3 x 10°,
as shown in figure 3(a) (orange line). At this point we have identified all the dominant terms in H. To
continue the learning process we need to extend the operator ansatz. Therefore, in the next step we want to
learn subdominant terms of H, as well as the Liouvillian.

2. Learning the sub-dominant terms of the Hamiltonian, and learning the Liouvillian. One expects, a priori,
that when learning smaller terms of the Hamiltonian, weak dissipative effects become relevant. Therefore, we
now include an ansatz for the Liouvillian

Do) = Z dz”zN: ([a,?g,a,:”q —|—h.c.) , (19)
ne{+,—,z} k=1

and extend our ansatz for the Hamiltonian by next-nearest neighbor couplings. As before, we choose our
ansatz to be spatially homogeneous, which leads to

N—2 N—2 N-2
_ y_y
Az = Ay + cax E O 0%2 + 1y E 0107 yy T Calz E {0842 (20)
k=1 k=1 k=1

This ansatz for the Hamiltonian and Liouvillian requires measurements of the form oV, " and o 2%,
which means that all of the data taken for A, can be reused for learning the parameters of A;. Note that
including dissipation requires the same measurement bases, but at various times to estimate the integrals in
equation (13).

An ansatz for the dissipation and next-nearest-neighbor terms now leads to a lower plateau of A; /),
compared to A,. However, this plateau appears for Ny,ns > 107, see figure 3(a) (green line), which exceeds
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our assumed measurement budget. Nevertheless, the reconstructed parameters of the Hamiltonian, ¢", at
Nruns & 108, suggest that the next-nearest-neighbor o, ® o, couplings are larger compared to other
next-nearest-neighbor terms, see figure fig:examplel(b) (green data). Therefore, we reparametrize our ansatz
for the Hamiltonian to

N-2

A4 :A2+Czlzzai0i+2. (21)
k=1

Indeed, this leads to a significantly smaller ratio A\, /\, compared to A, and A3, see figure 3(a) (red line).
Moreover, the small error bars in the reconstructed parameters in figure 3(b) (red data) show that

Nyuns = 108 is already sufficient for learning A,. Note that at this point, we have identified all dominant and
subdominant terms. However, so far we have not learned a possible spatial structure of the couplings in H.

3. Learning the spatial variations of the couplings. As can be seen in figure 3(a) (red line), the plateau in A4 is
reached at Nyyps & 107, which again exceeds our available measurement budget. Therefore, we are not
allowed to conclude that ansatz Ay is insufficient to describe the Hamiltonian in equation (2) by only
considering the ratio A; /\,. However, at this point, one can choose to test other ansitze and compare their
corresponding reconstructed parameters, or to see if smaller values of A; /A, are achieved. As one typically
expects small spatial variations in the couplings of H, and A4 was already a good approximation of H, we
want to test for spatial variations on top of the spatially homogeneous ansatz A4. To this end, we simply treat
the parametrization of the ansatz A, as a regularization of the cost function, see appendix C for technical
details. That is, we start with the optimization problem in equation (14), and add a penalty term with control
parameter [ for deviating from a given parametrization. Choosing 5 > 1 imposes the exact parametrization
of A4, and we then successively decrease /3 until one observes the emergence of spatial variations, and the
corresponding error bars, see figure 3(b) (purple data). This ensures that our learning process is dominantly
limited by shot noise, and not by having too few parameters in the ansatz.

With a larger measurement budget one could then successively increase Nyyns while decreasing 3, until
the desired accuracy is reached, which is reminiscent of Bayesian learning [31, 43]. Therefore, we conclude
that we have indeed successfully determined the operator content and parameters of the Hamiltonian and
Liouvillian in our simulated experiment.

As a final step, we may compare the reconstructed parameters of our learning procedure to the ones
obtained from a ‘naive’ ansatz of the form

N—1 N—2 N N
_Z (k) z _z k) _z 2 (k) _x (k) _z
AS - C22 Ot 0k+1 + €120k k42 + Cx 'O + C; 'Ok
k=1 k=1 k=1 k=1

that has a total of 4N — 3 parameters. One notices that our strategy leads to a much more accurate
reconstruction, cf figure 3(b) (brown data).

3.3. Learning from generalized Ehrenfest theorem
In this section, we will learn the Hamiltonian and Liouvillian of a model system from the generalized
Ehrenfest theorem in equation (7). As this method requires the estimation of expectation values of many
observables, {O;}, we will use the randomized measurement toolbox [46] to obtain the necessary data. This
will also allow us to demonstrate Hamiltonian learning in large systems of tens of qubits, and provide
evidence that given a fixed number of shots the reconstruction error is independent of the system size, if the
number of Hamiltonian parameters can be kept constant.

We consider a model system involving long-range spin—spin interactions, as realized in trapped-ion
setups. The effective Hamiltonian is given by [9]

N N
HXY:ZIij (UfccferUfU;/) +ZB1‘U{Z; (22)

i<j i=1
with interaction strengths J;; and site-dependent magnetic field B;. In an idealized description, it is often
assumed that
_ Jo
() —p ()™

where p(i) is the position of the ith ion and with tunable 0 < « < 3. To add features to the model, we assume
that the ions are randomly shifted from their equilibrium positions, i.e. p(i) = i + r;, where each r; is

Jij B; = B, (23)
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Figure 4. Learning collective dissipation using random measurements. (a) The ratio A1/, of the matrix (M, —b) for different
regularization parameters 3. (b), (c) Snapshots of the learned Hamiltonian parameters, G corresponding to the parameters Ji
and B; defined in equation (22). The required measurement budget is also indicated in the left panel. Black crosses correspond to
the parameters of the model Hamiltonian specified below. All error bars are computed via bootstrapping as explained in
appendix D, using 40 samples. The time-traces in equation (13) are evaluated using B,Ar = 1/20, i.e. using 20 time-steps, using
the same amount of random measurements at each time up to a time of B,T = 0.5. Expectation values at t = 0 are calculated
exactly from the initial state. Model parameters: For the Hamiltonian we choose parameters as specified in equation (23) with

B, =100, Jo = 6/5B; and o = 1.5. Moreover, in the Liouvillian, we choose y— = B,/20 in equation (24), as well as

T, = v¢du + To with 'y = B, /40 and ~} = 3Ty in equation (25).

sampled uniformly from [—0.05,0.05]. Models with random ion positions are studied, for example, in the
context of topological defects in the Frenkel-Kontorova model [47, 48].
To account for spontaneous emission of trapped ions, we add the spatially homogeneous Lindblad terms

£ 0=23 ([or oo '] + oo 1]). 20

k=1

Moreover, we consider the presence of dephasing terms originating from the presence of a fluctuating,
classical magnetic field, that leads to shifts of the energy levels of the kth ion proportional to B (#). It can be
shown that in the white-noise limit, i.e. with correlation function (B{(#)BS!(¢')) = I';,6(t — t’), this leads to
Lindblad terms of the form

N
1
2(0) = Z I}, {aigalz -3 (JiJjZQ-F gaioj) } . (25)

k,1=1

In particular, uncorrelated magnetic field fluctuations lead to a diagonal matrix I'}; = 76y, whereas global
fluctuations, with B () = Bl(¢) for all k, lead to a constant matrix ['¥, = Iy. In the present example we will,
for simplicity, only consider uncorrelated and global fluctuations, which lead to a matrix

'Y = Yo +To, (26)

(see also figure 4 for the specific choices of parameters). We note, that in experiments with, for instance, long
ion strings, or local magnetic fields one expects a more complicated structure of the matrix I'};.

1. Hamiltonian and Liouvillian learning using randomized measurements. In section 3.2, we already illustrated
learning of the operator content, and the relevant parameters of the Hamiltonian from minimal
assumptions. Here, we want to focus on distinguishing local from collective dephasing, and analyse the
scaling of the reconstruction error. Therefore, we start with a parametrized ansatz, that already incorporates
the algebraically decaying spin—spin interactions in Hyy, that one would expect to find in a trapped-ion
experiment, as well as a constant magnetic field. We choose as an ansatz for the Hamiltonian

Z|1 |a<ax(7 —|—a )—i—bZak, (27)

1<J
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which depends non-linearly on the parameter «, and hence, will require non-linear minimization of \; over
« as explained in appendix C. As an ansatz for the Liouvillian we choose

- % ZN: ([gk—g, a'k_’q +h.c.) Z & D (o) (28)

k=1 k=1

that includes single-spin spontaneous decay with jump operator o, , and single-spin as well as multi-spin
collective dephasing Df; with operator structure as described in equation (25).

To obtain constraint operators, {O;}, we proceed as follows; we choose a set of random Pauli
measurements, {Po } = {0 ® -+ @ 0™}, with o; € {x,y,z}, which we measure at consecutive times from
t =0 up to t = T, similar as before (see figure 4 for details). From this set of Pauli measurements we extract
all one- and two-qubit operators that are contained in {P,, }, as well as their commutators with the ansatz
operators and jump operators (in case those are contained). For these operators and commutators we extract
expectation values to obtain the data necessary to estimate the constraint matrix in equation (7). Choosing
the set {Pq } large enough ensures that the necessary operators are contained in this set.

The results are presented in figure 4. In figure 4(a) we show the ratio of the two smallest singular values of
the matrix (Kp, Kp, —b), which can be obtained by rewriting equation (7), where Ky, Kp, and b are the
constraint matrices and vector respectively. The quantity A; /A, shows a similar scaling behavior in early and
late stages of the learning procedure as the analog quantity in section 3.2. Moreover, it correctly recognizes
the insufficiency of the translation invariant ansatz (5 = 0.1, blue), as well as the larger number of
parameters of the almost unparametrized ansatz (/5 = 0.001, orange). In figure 4(b) we show the learned
Hamiltonian parameters (top) and dissipation rates (bottom) for both ansitze, and a total measurement
budget of Nyyns = 2.6 X 10, in comparison to the true values (black). For the translation invariant ansatz
(blue) one notices that while the reconstructed parameters of the Hamiltonian roughly resemble the true
parameters, the dissipation rates turn out wrong. We have numerically verified that this artefact does not
disappear for larger measurement budget. However, by lowering the penalty /3 for deviating from translation
inference the solution ¢™¢ correctly accounts for disorder, and the dissipation rates are learned accurately.

2. Comparison between learning form Ehrenfest constraints and energy conservation. To make a fair comparison
between Hamiltonian and Liouvillian learning from energy conservation and the Ehrenfest theorem, we have
learned the same model system using equation (11). This, however, also requires the measurement of
additional constraints to learn the overall scale, and to distinguish local from collective dephasing due to
symmetries of Hyy. The results are discussed in appendix F. One observes, that in a system with conserved
quantity, learning from the Ehrenfest theorem in equation (7) requires less measurements, when compared
to learning from generalized energy conservation in equation (11). For instance, verifying the presence of
collective dephasing using the Ehrenfest theorem requires Nyyns & 10° (cf figure 4), compared to Nyyns & 107
when using energy conservation (cf figure 9 in appendix F).

3. Scaling to larger system sizes. We now want to study the scaling behavior of the reconstruction error of the
Hamiltonian parameters, by varying system size from N = 10 up to N = 60 spins, for a Hamiltonian that is
dominantly described by a constant number of parameters. In order to simplify the presentation and to
reduce the classical computation time needed for simulating the measurements we make the following
modifications to our model system: (i) we set the magnetic field and the dissipation rates to zero. (ii) We
consider a Hamiltonian of the form

Niub

H=Y)" Zh( () (v T Tl sy O (kN+])) (29)
k=1i#j=1

consisting of Ny, non-interacting subsystems of N = 10 spins each, which makes it easy to simulate on a
classical computer.

To learn the Hamiltonian in equation (29) for the different system sizes, we want to compare leaning
without parametrization, where the number of parameters in the ansatz grows with systems size, to learning
using a parametrized ansatz where the number of parameters is kept constant with system size. Therefore, we
choose an ansatz

sub <ub
Z Z |(x( KOkt OO J+k) Z Z Cl( O k0T + 0] 40 ]H)v (30)
k= ll;é]*l ] k#AI=1i#j=1
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Figure 5. Hamiltonian learning with random measurements using a fixed total number of random measurements

Nruns = 1.9 x 10°. The integrals in equation (13) are solved using Ay = T/10, i.e. using 10 equidistant time-steps, where at each
time we use the same amount of measurements of Ny,,ses = 2000 random bases, with a total time of B,T = 0.1 for B; as in figure 8.
Expectation values at t = 0 are calculated exactly from the initial state. (a) The error in the learned parameters as function of
system size for different regularization strengths 3. (b) Learned parameters for different system sizes N € [10,20,40,60] for a
fixed regularization strength 8 = 0.001. Model parameters: We choose the same interaction strengths J;; as in figure 8, but setting
the dissipation to zero and B, = 0.

with a constant number of parameters, and that depends non-linearly on the parameter « similar to
equation (27). As in the previous example the parametrization of this ansatz is not strictly enforced, but
depends on the chosen regularization strength 3 (see appendix C for technical details). We emphasize that
for B = 0 we are learning from an unparametrized ansatz, with an independent parameter for each operator
in the ansatz. In this case, our reconstructed Hamiltonian does not have the subsystem-structure of the true
Hamiltonian in equation (29) inherently built-in; rather, this structure is learned by including all possible
inter-subsystem interaction terms.

We learn the Hamiltonian in equation (29) for N = 10, ..., 60 systems. We choose a total of 2000 random
Pauli measurements for each of a total of 11 time-steps up to T' = 1, leading to a total measurement budget of
Nruns = 1.5 x 10°. For the constraint matrix M and vector b in equation (10) we choose the constraints to be
all possible one- and two-qubit constraint operators, and evaluate the corresponding constraint matrix M
and vector b. We then determine the learned coefficients ¢"* from equation (10).

The result is shown in figure 5. In figure 5(a) we show the relative error of the learned parameters defined

by
Ac= ¢ —™|/||e™| (31)

as a function of the system size N. We find that for weakly, or unparamatrized ansitze, for which the number
of learned parameters grows with system size, the reconstruction error grows only moderately. This is likely
explained by the fact that in larger systems a single round of measurements extracts more information as
more correlation functions can be measured in a single shot. Moreover, for parametrized ansitze with a
system-size independent number of parameters the reconstruction error also remains independent of the
system-size.

4, Conclusion and outlook

In this study, we have devised and compared different methods for learning the Hamiltonian and Liouvillian
in the analog quantum simulation of many-body systems. Our work applies to a scenario where one has
direct access to the quantum device, however, in the literature, other scenarios have been considered, where
one does not have direct access to the quantum device, see, e.g. [25, 49]. Our method is applicable in a regime
of experimental relevance where the dissipation is weak compared to the coherent evolution. Our protocols
are based on quench experiments, where initial product states evolve under coherent and dissipative
dynamics, and the resulting state is measured in a product basis. Hamiltonian and Liouvillian learning can be
understood as a sample efficient process tomography of quantum simulators. The learning methods begin
with an ansatz for the operator structure of the Hamiltonian and Liouvillian. The quality of this ansatz can
be monitored by measuring the learning error. Our strategy encompasses the reparametrization of the
ansatz. This typically allows data recycling from previous measurement runs, but requires additional classical

13



10P Publishing

Quantum Sci. Technol. 10 (2025) 015065 T Olsacher et al

post-processing. This approach enables us to identify step by step first the dominant operator content of the
Hamiltonian and Liouvillian, and successively sub-dominant terms within a limited measurement budget. A
distinctive feature of learning from generalized energy conservation is that we can learn the Hamiltonian
without the necessity to learn the entire Liouvillian, thus reducing the number of parameters to be learned.
However, we demonstrated that additional constraints can be employed to learn the entire Liouvillian and to
ascertain the overall scale of the Hamiltonian. Furthermore, these additional constraints can facilitate the
learning of the Hamiltonian even when there are conserved quantities as operators commuting with the
system Hamiltonian. We demonstrate how randomized measurements [46] can be utilized to learn the
Hamiltonian and Liouvillian from the generalized Ehrenfest theorem, as this requires the estimation of many
different correlation functions. Moreover, this allowed us to numerically demonstrate Hamiltonian learning
for large systems consisting of tens of spins. While the focus of the present paper has been on spin models,
the central ideas of Hamiltonian and Liouvillian learning also carry over to Bose and Fermi Hubbard models.

Extensions of the present work should consider scenarios where the experimental Hamiltonian (and
Liouvillian) involves a large number of small terms, which, e.g. emerge as corrections in effective many-body
spin models in a low-energy description. Such a formulation might involve a statistical description as
learning of an ensemble of Hamiltonians. Along similar lines, Hamiltonian learning might also account for
slow drifts of experimental Hamiltonians and Liouvillians. Considering alternative viewpoints, Hamiltonian
and Liouvillian learning can also be phrased in the language of Bayesian inference, similar to [31],
establishing an interesting link between techniques of parameter estimation in multi-parameter quantum
metrology, and optimal sensing with finite measurement budgets. Finally, exploring alternative routes should
include using (short-range) entangled states as inputs, which may be easily prepared in experiments.
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Appendix A. Additional constraints

We consider the equation of motion of a general observable, O, not commuting with H, as given in
equation (4a). Inserting the ansatz A(c) for H and D(d) for the Liouvillian one obtains again a simple matrix
equation;

MYe=b(d), (A1)

where

T
MM = /0 (=i[om]), dr, (A2)
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and
bi(d)=<o>i7r— 10— de/ ak O&lk]+hc> dt. (A3)

Note, that similar constraints have also been used in [33] to learn Liouvillians from their steady-states.
Compared to the conditions in equation (11), the constraints above contain additional integrals in

equation (A2) that need to be estimated from experimental data. To obtain the reconstructed parameters we
solve the combined system of equations including the additional constraints, i.e.

e5< () =argmin [ min | (40 ) e (1) || (Ad)

where the parameter & controls the relative weight between the constraints defined by M(d) and M*%, In
analogy to equation (14), solving equation (A4) requires a simultaneous minimization over ¢ and d, while £
serves as a ‘hyper-parameter’ of the optimization. For £ = 0 the vector ¢{(0) may be a linear combination of
the Hamiltonian and additional, linearly independent, conserved quantities due to the degeneracy of the
spectrum of M(d), as discussed in the main text. Then, by choosing the value of £ large enough, one removes
components of conserved quantities from ¢;¢. In a similar way, one can choose additional constraints such
that the solution for the dissipation rates d becomes unique.

Note that the norm of ¢f in equation (A4) depends on £ and becomes exact only in the limit £ — co. A
finite & typically leads to a smaller value for the overall scale of the Hamiltonian. This is because the
homogeneous part of equation (A4) is perfectly solved for ¢ = 0. Nevertheless, one obtains a ¢ o< c. Then,
the correct overall scale s, defined by ¢/ = s - ¢, can be determined solely via the additional constraints

Z]wadd chec _ b (dreC) (A5)

where d° are the optimal dissipation rates determined from equation (A4). Then, averaging over all
additional constraints

p rec
1 bi (d™)
5= p Z (Maddcgec)i (A6)

1=1

yields the correct overall scale.
Appendix B. Effect of shot noise

Here, we discuss in more detail the role of the two smallest singular values of the constraint matrix. As an
example we will consider equation (11), but similar arguments also apply to equation (7).

In case the ansatz for the dynamics is sufficient, the only source of error is shot noise. Therefore, with a
finite measurement budget one obtains a noisy estimate, M(d) = M(d) + E(d), of the true constraint matrix
M(d), with an additive error matrix E(d). One can establish the following bound on the perturbed singular
value \;

A M@ < [M@)] < @), (B1)

where the first inequality holds as d° is the minimum of the cost-function in equation (14), and the second
inequality follows from Weyl’s inequality and the fact that A;[M(d")] = 0 for a sufficient ansatz. Therefore,
in early stages of the learning procedure, one expects A; to decrease ~Nrurl? as we increase the number of
runs, Nyuns, in the experiment. As the ansatz is sufficient A; [M(d"°)] will be zero in the absence of shot noise.
However, if an ansatz is insufficient, A, is strictly bounded away from zero, even in the absence of shot noise.
Thus, for Nyyps sufficiently large, A; will reach a plateau. Here, the dominant source of error will be
systematic errors due to missing terms in our ansatz.

In case of a sufficient ansatz and without degeneracy of the smallest singular values, one can understand
the role of the singular value );. To this end, one considers the angle 6 = Z(c?, ). It is a well known result
in singular subspace perturbation theory, that the stability of a singular vector under perturbation depends
on the gap between the corresponding singular value and the remainder of the spectrum, which is known as
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the Davis—Kahan—Wedin sin(f)-theorem [50, 51]. For the case we consider this theorem establishes the
following upper bound on the angle 6 [51]

|E(d™) + R(Ad)|

)< |
sin (0)| -

(B2)

where R(Ad) =", AdkMg(). Here, 6 = A\, — A9, and A" = 0 for a sufficient ansatz. In case the
elements of E are i.i.d. Gaussian random variables one can establish average bounds on |sin(6)]| [36].
However, we emphasize that the noise will in general be correlated due to the fact that we perform many of
the required measurements in parallel. Moreover, the error matrix E(d) is experimentally inaccessible.
Nevertheless, as we demonstrate in section 3, the ratio A; /A,, which can be directly computed from
experimental data, serves as a quantity to asses an ansatz.

Appendix C. (Re-)Parameterization

We want to discuss here in more detail the different possibilities to reparametrize an ansatz. In general, there
are two possibilities, but we will show that both can be understood in terms of regularization of the cost
function in equation (14). Note, that the same holds for equation (10).

In the first reparametrization the vector of parameters, c, is mapped via a parametrization matrix G to a
new vector of parameters, cg = G c. Here, the matrix G is a n X 7 matrix, with n > 7, encoding the
dependencies between the n parameters in ¢, and the 11 parameters in ¢g. Moreover, one requires that
G =(8;;---,8)> with orthonormal columns (g; |g;) = ;. One can easily verify that G'G = 1;x;, and

GG' = Z?:l |g;) (g:|, which is a projector onto the support of G', and thus G is an isometry. In particular
cases G can also depend on non-linear parameters, i.e.

G=G(a)= (g (a),....g(a)). (CD
In either case, the new ansatz is given by Ag(cg) = A(Gcg). This also transforms the constraint matrices via
Mg =M"G, Mg (d) =M"(d)G, (C2)

where the columns of the new constraint matrices are obtained as linear combinations of the columns of the
old constraint matrices. The parametrized reconstructed parameters can be obtained as solutions of

cheC — argmin HIIHH [Mg+Mg (d):l CGH 7 (CS)
chHCGHZI a0

and similarly for equation (A4). In the case where G depends on non-linear parameters c, the above
optimization also includes a minimization over cc. Numerically, the optimal o« can be found similarly to the
optimal dissipation rates d° in equation (14), using the DIRECT algorithm in SciPy.

We wish to emphasize that by using this way of parametrizing an ansatz, one obtains reconstructed
parameters, where the dependencies, encoded in the matrix G, are exactly fulfilled. Examples for such a
reparametrization include, for instance, disregarding operators from the operator content of A(c). This can
be understood as a reparametrization, where (g,)x = 0, for all i € [0,7], and k € [0,#] for which we want to
remove the corresponding operator hy, from the operator content of A(c).

Instead of imposing an exact parametrization on an ansatz, one may only impose it approximately. In
practice, this may be very useful as parametrizations are almost never exactly fulfilled, but only to a very
good approximation. To this end, one adds a penalty term to the cost function in equation (14), which acts as
a regularizing term, giving preference to solutions approximately admitting a certain parametrization. In case
of a parametrization G, as defined above, the corresponding optimization problem reads

¢ (8) = argmin rggH[MHJrMD (d)]c|| + 8| (1 — GG") ||| , (C4)
clel=1 L9=

where 3 € [0,00) is the regularization strength. For § = 0 this corresponds to the original unconstrained (i.e.
unparametrized) problem in equation (14). For non-zero 3 the last term adds a penalty, whenever ¢ has a
component outside of the range of GGT, where the parametrization implied by G is exactly fulfilled. The
larger /3, the more ¢™ is constrained by the parametrization G. In the limit 8 — oo the parametrization G is
fulfilled exactly, and the optimization problem corresponds to the one in equation (C3). This can be seen as
follows; the objective function in equation (C3) can be rewritten as ||[My + Mp(d)|GG"¢c||, where the
feasible region consists of all ¢ for which ¢ = GG"¢. This in turn can be written as an unconstrained problem
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Figure 6. Singular value spectrum of M(/3) defined in equation (C6) as a function of the regularization strength 3 for the
model introduced in section 3.3 in the main text. Increasing 3 opens a gap between the image of the parametrization matrix G
introduced in appendix C and the rest of the spectrum. Within this subspace, A(c"¢), defined in equation (C7), follows the
best approximation to the Hamiltonian of the system (dashed line).

in equation (C4), where 8 — oc. Note, that solving the minimization problem in equation (C4) is equivalent
to solving the linear problem

()]

& (ﬁ) = argmin [min B (]l _ GGT)

cllefj=1 L4>0

Finally, one notices that given that GGTc = ¢l f.e. the parametrization does not render an ansatz
insufficient, the bound in equation (B2) can only tighten. To see this, one observes that
A [Mg(d)] = M [M(d)], and ||E(d)G|| < |E(d)]||||G|| = ||E(d)|| for any isometry G. Therefore, reducing the
number of parameters in general increases the gap 6 = A, of the constraint matrix M(d).

We now want to study the effect of 3 on the singular value spectrum of the matrix

My + Mp (drec)) (C6)

Mg (B) = ( B (1 -GG

for the model system in section 3.3 (see figure 6(a)). As expected, in the limit 5 — 0, the spectrum converges
to the spectrum of the unparametrized constraint matrix M(d"*"). Here, the gap between the lowest singular
values and the rest of the spectrum becomes very small, resulting in an unstable solution. Then, when
increasing f3, all singular values, whose corresponding right-singular vectors are incompatible with the
regularization increase with 3, opening a gap to the subspace spanned by the regularization, i.e. the image of
G, which in the case of the ansatz in equation (27) is two-dimensional. Note, that the Hamiltonian in
equation (22) only approximately lies in the image of G. Therefore, also the lowest singular values initially
increase with (, until they reach a constant value, that corresponds to an exactly enforced parametrization.
Along this path, we can monitor the minimum of the cost function in equation (C5) defined via

i)

B(1—GG") ’ €7)

which follows the singular value that corresponds to the best approximation of the Hamiltonian.
Appendix D. Bootstrapping

To obtain error bars from data we use the Bootstrapping method, which we will introduce below. Assume we
are given a single realization xy, ..., x, of a set of independent and identically distributed random variables
Xi,...,X, with unknown distribution function. We are interested in estimating the variance of a given
function T(Xj,...,X,). To do so we draw n times with replacement from x;, ..., x,, yielding a sample
x*,...,x%, and then evaluate t = T(x},...,x"). We repeat this procedure r times obtaining ), ..., #"), and
then estimate the variance of T from the sample variance of t!), ..., ("),

In our case the X, ..., X, are the individual measurements in a given basis for fixed initial state and
simulation time. One can also think of Xj,..., X, to be individual measurements of a given observable for
fixed initial state and simulation time, in the case where the measurements of different observables are
independent. Then the quantities of interest T(X7,...,X,) are, e.g. the learned parameters ¢", or the ratio of
singular values \; /\,. The number of samples r is chosen the minimum possible integer, such that the error
bars do not significantly change anymore when further increasing r.
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Figure 7. Comparison of A; /A, (experimentally accessible), and |sin(#)| (not experimentally accessible), as a function of the
number of runs, Nyuns. The different ansitze are defined in section 3.2 in the main text. Error bars are computed via bootstrapping
as described in appendix D, using 80 samples. The colored triangles indicate the asymptotic values in the limit Nyuns — 00. Both
quantities show a similar behaviour which supports using A; /A, to asses the quality or learning error of an ansatz.

Appendix E. Comparison between \; /\, and | sin(0) |

In figure 7 we provide a comparison between the experimentally measurable quantity A, /\,, which we use to
asses the quality of an ansatz, and the experimentally non-accessible angle between the reconstructed
parameters, ¢, and the Hamiltonian parameters, cH, and a function of the number of runs, Ny,ns. One
observes that both quantities show a very similar behaviour over almost the entire range of Nys considered
here. In particular, in the limit Nyyns — 00 a larger value of A; /A, corresponds to larger |sin(#)[, and vice
versa. This supports our idea to use \; /), as an experimentally accessible quantity to asses the quality and
learning error of a given ansatz.

Appendix F. Learning from generalized energy conservation and additional constraints

In the following we compare the learning based on the generalized Ehrenfest theorem, presented in
section 3.3 in the main text, to the leaning based on energy conservation. We consider the same model
systems comprising the long-range Hamiltonian Hyy as well as local and collective dissipation, introduced in
section 3.3 in the main text.

We will use equation (27) as an ansatz for the Hamiltonian. As we also want to learn the dissipative
processes, we will start with an ansatz for the Liouvillian, comprising single-qubit Lindblad operators that
typically appear in the context of trapped-ion experiments, i.e.

D¢ (o) = Z dznZN: ({agg,ag’q —|—h.c.) . (F1)
k=1

ne{+,—.z}

Note that this ansatz does not include collective dissipation as given by the off-diagonal elements of I'}; in the
model Liouvillian. Nevertheless, we will find, that the ansatz in equation (F1) is sufficient for learning the
Hamiltonian, and we will discuss in detail why this is the case.

Firstly, one notices that the ansatz A contains the total magnetization defined by

Q=BY of, (F2)
k

which commutes with Hxy for any B € R. Therefore, Q is a conserved quantity of L. This leads to a
degeneracy of the singular value spectrum of the constraint matrix M(d), i.e. we observe, that A\; &~ X,. In
particular, this means that the reconstructed parameters ¢ will be a linear combination of the parameters of
Hyxy and Q. To reconstruct the parameters of the Hamiltonian, including its overall-scale, we need to exclude
Q, as well as scalar multiples of the Hamiltonian, v - Hxy, as possible solutions for ¢**. This is achieved by
imposing additional constraints as discussed in section 2.3. To this end, we choose a set of operators,

O = {o%,07,0%}, where some operators do not commute with Q, while others do not commute with Hyy.
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Figure 8. Hamiltonian learning in presence of collective dissipation. (a) The ratio Y / X, after excluding the conserved quantity Q
for different regularization parameters 3. The colored triangles describe the asymptotic values at Nyuns — 00. The dashed line
follows the learning procedure described in the main text. (b) Snapshots of the learned Hamiltonian parameters, G

corresponding to the parameters Ji; and B; defined in equation (22). The required measurement budget is also indicated in the
left panel. Black crosses correspond to the parameters of the model Hamiltonian specified below. All error bars are computed via
bootstrapping as explained in appendix D, using 10 samples. (13) are evaluated using B,Ar = 1/128, i.e. using 128 time-steps,
where at each time we use only a fraction of 1/128 number of measurements per basis, compared to the quench times

B,T € [0,0.5, 1]. Expectation values at t = 0 are calculated exactly from the initial state. The auxiliary parameter £ for the
additional constraints as introduced in equation (15) is set to £ = 1000.

Here, one could in principle also choose random operators. This leads to a combined linear optimization as
in equation (15) [see also appendix A for the detailed structure of the additional constraints]. Moreover, one
can define a projected constraint matrix with non-degenerate spectrum 5\1 < 5\2 <..., where ¢ = ¢ is the
right-singular vector corresponding to ;. Then, A; /), becomes the analog of A; /A, *

In figure 8(a) we monitor A / ), as a function of Ny, for the ansatz A, and for different values of the
regularization parameter 8. One starts with a large value of the regularization parameter, here, 8 = 100,
which strongly imposes the parametrization of A, leading to reconstructed parameters without spatial
disorder, see figure 8(b) for Nyyns = 2.1 x 10° (blue data). Then further increasing Ny, reduces the size of
the error bars in ¢, as is also shown in figure 8(b) for Nyyns = 1.7 x 10° (blue data). However, an ansatz
with 8 =100 cannot account for disorder in the coupling terms in Hy, which is shown by the plateau in
5\1 / ;\2, here, starting at around Ny & 107 (blue line), which, again, is above our measurement budget.
Nevertheless, we decrease the regularization parameter 3, which leads to larger error bars, but also allows to
learn some of the spatial disorder in Hyy, as is shown in figure 8(b) for 8 =2 and Nyyns = 1.7 x 10° (orange
data). Note that already before reaching a plateau for 5 =2 in figure 8(a) (orange line) the error bars of ¢"
become very small, which can be seen in figure 8(b) for 3 =2 and Ny, = 6.6 x 10° (orange data). This
suggest to further reduce /3. Ultimately, this process of subsequently reducing 5 and increasing Ny allows
us to learn Hyy up to statistical errors, and leads to A / Ay ~ N;Lé % for the entire range of Nyyns.

So far we have used an ansatz for the Liouvillian which does not include the collective dephasing terms in
equation (25). Nevertheless, we can learn the Hamiltonian to a high accuracy, which constitutes a useful
feature of our approach. To see why this is the case, we evaluate the matrix Mp(d) by summing equation (13)
over all Lindblad operators, yielding

[Mp ()], ) = del[

where  labels input states. Here, we only include the interaction terms, hjj = o707 + ol ij , of the
Hamiltonian Hyy, since the contribution of the collective dissipation in equation (25) vanishes for the field

= / del o [hj, 0| +hc),_ dt, (F3)
)] o

5(1

13 In the case of two linearly independent conserved quantities our figure of merit A\; /X, & 1 independent of Nyuns. Nevertheless, we
can define a new matrix M(d), by projecting the kernel of M(d), spanned by all vectors ¢ that belong to conserved quantities of H, onto
the vector of reconstructed parameters of the Hamiltonian ¢"°. The spectrum A< <. of M (d) is gapped, and by / X2 becomes the
analogue of A1 /A,. For more than two linearly independent conserved quantities one proceeds similarly.
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terms o;. Considering the sum over operators appearing in the expectation value in equation (F3), we can
split this sum into

N N
> di (0f [y, 0f] +hc) + > dy(of [hj,07] +h.c)
k=1 k£l

N N
=—4 Z di. (ki + 0rj) hij + 4 Z da (6ki65 + ki) hij,
k=1 Py

which vanishes for dy; = dy. Therefore, the constraint matrix in equation (11) and hence also the
reconstructed parameters of the Hamiltonian are not affected by including collective dissipation into our
ansatz. However, this will change if we include additional constraints, as we demonstrate in the following.

E.1. Learning collective dissipation
To discover the collective dissipation given by equation (25) we choose the following ansatz for the
Liouvillian

d -
Dcol( 7 ; ([Uk Q’Uk } —|—h C. ) + klZ:l (dzfskl + d§01 (1 - (Skl)) Dil(9)7 (F4)

s

that includes single-qubit spontaneous decay with jump operator o, , and single-qubit as well as collective
dephasing D7, with operator structure as described in equation (25). Learning collective dissipation requires
the set of constraint operators to also include two-qubit terms. This is because single-qubit operators are not
affected by the multi-qubit Lindblad operators in equation (25). Therefore, we may choose the following set
of constraint operators

y y J Y
0= {01,01,01,02,02,0270102,0102,0 05,0107

Note that we included here the local operators despite the fact that they cannot help to learn the collective
dissipation. This is due to the facts that their expectation values can be obtained from post-processing the
data obtained from measuring the two-body operators and that they can be used to better learn the overall
scale and the local dissipation rates, as discussed above. Let us emphasize, that the ratio A; /A, is not affected
by taking collective dissipation in the ansatz into account. Therefore, we instead use

Aadd HMadd rec (dl’EC) Ha (F5)

as a measure of how well the additional constraints are fulfilled. In case an ansatz for the Liouvillian is
insufficient, not any possible additional constraint can be exactly fulfilled. In such a case, A4 will be
bounded away from zero in the limit Ny,,s — 00. However, in practice, with only a few additional
constraints, e.g. the local Pauli operators discussed above, this is not necessarily the case.

In figure 9(a) we monitor A4 35 a function of Ny, for the Hamiltonian ansatz in equation (27) with
B =2, for different ansitze for the Liouvillian. For an ansatz that does not include dissipation (blue line in
figure 9(a)) we observe a plateau of A% already at very early stages of the learning procedure, here at
Niuns 2 10°. On the other hand, we find that the ansitze containing local (orange line) and collective (green
line) dissipation lead to similar values of A% in early states of the learning procedure. Only above
Nruns 2 107 the insufficiency of the local ansatz equation (F1) would become evident from considering Addd)
which is beyond our available measurement budget. Nevertheless, we can study the reconstructed parameters
shown in figure 9(b) and their corresponding error bars. For the ansatz with local dissipation (orange data)
we find that the learned rates converge to the exact values, with a good reconstruction achieved at around
Niuns &~ 10°. Note that here the learned dephasing rate is the sum d, + d§°'. For the ansatz including collective
dissipation (green data) we obtain similarly accurate values for v_. However, the local and global dephasing
rates, d, and d<®' respectively, have larger error bars. Only around Ny, ~ 107 we observe the emergence of
non-zero dissipation rates for collective dephasing. This concludes the learning procedure of the
Hamiltonian and Liouvillian.
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Figure 9. Learning collective dissipation using the additional constraints defined in the main text, and regularization strength

B =2. (a) The error of the additional constraints A% as introduced in equation (F5) for different ansitze for the dissipation as
described the main text. (b) Snapshots of the learned dissipation rates d;*° as indicated by the asterisks in the left panel. Black
crosses indicate the true dissipation rates. All error bars are computed via Bootstrapping as explained in appendix D, using 10
samples. Integrals for dissipation correction are evaluated as for figure 8. We further restrict d—, d,, d®® > 0 and numerically
search for the optimal rates within the bounds.
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