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Abstract: The Potts spin glass is a generalization of the Sherrington–Kirkpatrick (SK)
model that allows for spins to take more than two values. Based on a novel synchro-
nization mechanism, Panchenko (Ann Probab 46(2):829–864, 2018) showed that the
limiting free energy is given by a Parisi-type variational formula. The functional order
parameter in this formula is a probability measure on a monotone path in the space of
positive-semidefinite matrices. By comparison, the order parameter for the SK model is
much simpler: a probability measure on the unit interval. Nevertheless, a longstanding
prediction by Elderfield and Sherrington (J Phys C Solid State Phys 16(15):L497–L503,
1983) is that the order parameter for the Potts spin glass can be reduced to that of the
SK model. We prove this prediction for the balanced Potts spin glass, where the model
is constrained so that the fraction of spins taking each value is asymptotically the same.
It is generally believed that the limiting free energy of the balanced model is the same as
that of the unconstrained model, in which case our results reduce the functional order pa-
rameter of Panchenko’s variational formula to probability measures on the unit interval.
The intuitive reason—for both this belief and the Elderfield–Sherrington prediction—is
that no spin value is a priori preferred over another, and the order parameter should re-
flect this inherent symmetry. This paper rigorously demonstrates how symmetry, when
combined with synchronization, acts as the desired reduction mechanism. Our proof
requires that we introduce a generalized Potts spin glass model with mixed higher-order
interactions, which is interesting it its own right. We prove that the Parisi formula for this
model is differentiable with respect to inverse temperatures. This is a key ingredient for
guaranteeing the Ghirlanda–Guerra identities without perturbation, which then allow us
to exploit symmetry and synchronization simultaneously.
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1. Introduction

1.1. The model. The Potts spin glass was introduced by Elderfield and Sherrington
[31] and has been extensively studied in statistical mechanics [12,14,28,32,35,48]. In
dimension κ ≥ 2, the model is defined as follows. At volume N , the configuration
space is the product set �N , where � = {e1, . . . , eκ } is the standard basis in R

κ . Each
configuration σ = (σ1, . . . , σN ) ∈ �N is thought of as a κ × N matrix, and its energy
is given by the Hamiltonian

HN (σ ) := β√
N

N∑

i, j=1

gi, j1{σi = σ j } = β√
N

N∑

i, j=1

gi, j 〈σi , σ j 〉, (1.1)

where (gi, j )Ni, j=1 are independent standard normal random variables, 〈λ, σ 〉 = λTσ is
the inner product of λ, σ ∈ R

κ , and β > 0 is an inverse temperature parameter. The
associated free energy is

FN := 1

N
E logZN , where ZN :=

∑

σ∈�N

exp HN (σ ). (1.2)

For κ = 2, the Hamiltonian (1.1) is equivalent to the classical Sherrington–Kirkpatrick
(SK) model [68] by the mapping σ �→ τ = (τ1, . . . τN ), where

τi =
{

+1 if σi = e1

−1 if σi = e2.
(1.3)

By this transformation, the free energy FN equals the free energy of the SK model up to
rescaling β. In this case, the limiting free energy limN→∞ FN is given by the celebrated
Parisi formula, which is a variational expression predicted by Parisi [60–63] but not
proved until the seminal work of Guerra [36] and Talagrand [70].

The fundamental insight behind the Parisi formula is that the SK free energy can be
understood by keeping track of a single random variable, namely the replica overlap. In
our context, this is the quantity N−1∑N

i=1〈σ 1
i , σ 2

i 〉, where σ 1 and σ 2 are independent
samples from the Gibbs measure GN (σ ) = exp HN (σ )/ZN . This quantity is exactly
the fraction of coordinates at which σ 1 and σ 2 agree. The law of this random variable
is a probability measure on [0, 1], and Parisi’s formula is a minimization problem over
such measures.

For κ ≥ 3, this perspective runs into difficulty because of the additional degrees of
freedom. Namely, the transformation (1.3) does not have a natural generalization, and so
there is no obvious way to relate the free energy of the Potts spin glass to a scalar statistic.
In principle, one needs to keep track of the entire κ × κ matrix N−1σ 1(σ 2)T, whereas
the replica overlap is just the trace. Nevertheless, using an ingenious synchronization
mechanism, Panchenko [58] showed that in the large-N limit, this overlap matrix is some
deterministic map of its trace (Theorem 2.3). This led to a generalized Parisi formula that
optimizes over probability measures on [0, 1] together with so-called synchronization
maps (Theorem 1.1).

The program initiated by this paper is to go even further: there is only one possible
choice for the synchronization map. Theorem 1.3 accomplishes this for the balanced
Potts spin glass and is presented in the next section.
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1.2. Limiting free energy. A crucial fact of synchronization is that it requires the self-
overlap matrix N−1σσT ∈ R

κ×κ to take a fixed value (see (2.11) in Theorem 2.3). But
of course the function σ �→ N−1σσT is not constant over the configuration space �N ;
it can be any diagonal matrix whose entries belong to {0, 1

N , . . . , N−1
N , 1} and sum to

1. Therefore, the strategy of Panchenko [57] is to consider subsets of �N on which
this function is approximately constant, and then derive a Parisi formula for the model
constrained to these subsets. The number of subsets needed grows only polynomially
in N , whereas (1.2) concerns an exponential growth rate. Therefore, classical Gaussian
concentration allows one to determine that the limiting free energy of the unconstrained
model is simply the largest limiting free energy among the constrained models. We now
proceed to make things precise.

Denote the κ-dimensional unit simplex by

D :=
{
d = (d1, . . . , dκ ) ∈ [0, 1]κ :

κ∑

k=1

dk = 1
}
.

An element d ∈ D is called a magnetization of the Potts spin glass. The configuration
space with magnetization d and approximation parameter ε ≥ 0 is

�N (d, ε) :=
{
σ ∈ �N :

∣∣∣
1

N

N∑

i=1

1{σi = ek} − dk
∣∣∣ ≤ ε for each k ∈ {1, . . . , κ}

}
.

(1.4)

The associated constrained free energy is

FN (d, ε) := 1

N
E logZN (d, ε), where ZN (d, ε) :=

∑

σ∈�N (d,ε)

exp HN (σ ).

(1.5)

When ε = 0, we write

�N (d) :=�N (d, 0), ZN (d) :=ZN (d, 0), FN (d) :=FN (d, 0).

This last free energy only makes sense if �N (d) is nonempty, which occurs precisely
when d belongs to the set

DN :=D ∩ (Z/N )κ = {d ∈ D : �N (d) �= ∅}. (1.6)

Next we introduce the order parameter for Panchenko’s variational formula. Define

	κ := {γ ∈ R
κ×κ : γ is symmetric and positive-semidefinite}.

Given d ∈ D, let 	κ(d) be the subset of 	κ consisting of matrices with nonnegative
entires whose row sums are given by d:

	κ(d) :=
{
γ ∈ 	κ ∩ [0, 1]κ×κ :

κ∑

k′=1

γk,k′ = dk for each k ∈ {1, . . . , κ}
}
, d ∈ D.

(1.7)
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We write � for the positive-semidefinite order on symmetric matrices. Then consider
the following collection of paths on 	κ(d):

�d :=
{
π : (0, 1] → 	κ(d) : π is left-continuous, π(s) � π(t) if s ≤ t

}
. (1.8)

To place this definition into context with the previous section: each π ∈ �d is the com-
bination of a probability measure μ on [0, 1] with a synchronization map 
 : [0, 1] →
	κ(d). More specifically, π is the composition 
 ◦ Qμ, where Qμ is the quantile func-
tion of μ. See Remark 1.4 for an important special case, and Sect. 2.1 for the origin of
the map 
.

The following result summarizes the outcome of Panchenko’s synchronization scheme
for the Potts spin glass. The statement below combines the results of two papers. The
Parisi functional P is defined in Sect. 1.4, specifically (1.35) with ξ given in (1.15).

Theorem 1.1. [57,58] There is an explicit functional P : ∪d∈D �d → R such that for
every d ∈ D, the constrained free energy has the following limit:

lim
ε↘0

lim sup
N→∞

FN (d, ε) = lim
ε↘0

lim inf
N→∞ FN (d, ε) = inf

π∈�d
P(π). (1.9)

Furthermore, the limiting unconstrained free energy is given by

lim
N→∞FN = sup

d∈D
inf

π∈�d
P(π). (1.10)

Remark 1.2. In [58], the definition of �d included additional stipulations that π(0) = 0
andπ(1) = diag(d). The first condition is unimportant because the value ofπ(0)plays no
role in determining the value of P(π). Regarding the second condition π(1) = diag(d),
our definition (1.8) only implies π(1) � diag(d), since diag(d) is the maximal element
of 	κ(d) (Lemma A.3). The infimum in (1.9) is not sensitive to this difference because
every π ∈ �d can be approximated by π̃ ∈ �d such that π̃(1) = diag(d), and the
Parisi functional is continuous (Proposition 2.13(b)). On the other hand, our definition
guarantees the existence of a minimizer.

It was further predicted by Elderfield and Sherrington [31] when they introduced the
Potts spin glass model that the variational expression supd∈D infπ∈�d P(π) in (1.10) is
achieved on a restricted set. In our notation, Elderfield and Sherrington [31, Eq. (15)]
predicts the following:

(a) The supremum over d ∈ D is achieved at the balanced case d = dbal, where

dbal := κ−11,

and 1 ∈ R
κ is the vector of all ones. This prediction was echoed in [58, Rmk. 3].

(b) The infimum over π ∈ �dbal is achieved by some π such that for every t ∈ [0, 1],
the matrix π(t) is constant on its diagonal and also constant off its diagonal.

In fact, these predictions were central to analysis of [31] regarding the phase transitions
of the Potts spin glass. See [12, Sec. VI.H.1] for further discussion.

Our main result confirms prediction (b). To this end, let Iκ ∈ R
κ×κ denote the identity

matrix, and consider the following subset of 	κ(dbal):

	� :=
{
γ ∈ 	κ : γ = q

κ
Iκ +

1− q

κ2 11T for some q ∈ [0, 1]
}
. (1.11)
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Then define the corresponding subset of the path space �dbal :

�� := {π : (0, 1] → 	� : π is left-continuous, π(s) � π(t) if s ≤ t
}
. (1.12)

Theorem 1.3. For dbal = κ−11, we have

lim
ε↘0

lim sup
N→∞

FN (dbal, ε) = lim
ε↘0

lim inf
N→∞ FN (dbal, ε) = inf

π∈��
P(π).

Moreover, for any dN ∈ DN converging to dbal as N →∞, we have

lim
N→∞FN (dN ) = inf

π∈��
P(π).

We note that Theorem 1.3 is only interesting when κ ≥ 3 since for κ = 2, we have
�� = �dbal . For κ ≥ 3, however, 	� remains a 1-dimensional space, whereas 	κ(dbal)
has dimension κ(κ−1)

2 . Theorem 1.3 thus shows that when d = dbal, the infimum in
(1.10) can be taken over a much smaller space. In this way Theorem 1.3 can viewed as
a deterministic statement on top of Theorem 1.1, although our proof is probabilistic. In
fact, we will deduce Theorem 1.3 from a more general result, Theorem 1.8, presented
in Sect. 1.3.

One may naively hope to prove Theorem 1.3 by showing that �dbal � π �→ P(π)

is convex, since then the infimum in (1.10) must be achieved at a “symmetric” π , by
which me mean π ∈ ��. But unfortunately this convexity fails when κ ≥ 3, because
of complications in comparing synchronization maps with different images. In fact, a
recurring challenge in settings relying on synchronization—such as multi-species mod-
els or vector spin models—is to extract information about the minimizer of the Parisi
functional without relying on convexity, e.g. [8,9,29]. Theorem 1.3 is a new example of
how to accomplish this, and we anticipate it can actually enable convexity arguments as
in the SK model [4,13,40,50]. This is because the synchronization map is now fixed, as
explained below in Remark 1.4. Indeed, following the initial release of this manuscript,
Chen [16] proved a version of Theorem 1.3 for the model with self-overlap correction,
and the resulting Parisi functional is strictly convex [18].

Remark 1.4. There is a one-to-one correspondence between �� and Prob([0, 1]), the
set of Borel probability measures on [0, 1]. Given μ ∈ Prob([0, 1]), denote its quantile
function by Qμ(t) = inf{q ≥ 0 : μ([0, q]) ≥ t}. Then the correspondence is achieved
through the relation π = 
� ◦ Qμ, where 
�(q) = qκ−1 Iκ + (1 − q)κ−211T. In this
way, the functional order parameter in the balanced Potts spin glass is understood as
an element of Prob([0, 1]). Moreover, if prediction (a) is also true, then Theorems 1.1
and 1.3 together express the unconstrained free energy limN→∞ FN as an infimum over
probability measures on [0, 1], just as for the classical SK model.

Regardless of the status of prediction (a), the balanced Potts spin glass has an impor-
tant application in combinatorial optimization. Namely, denote by MaxCut(G, κ) the
size of the maximum cut of graph G into κ parts, and consider either the sparse Erdős–
Rényi graph GN ∼ G(N , d/N ) or the sparse random regular graph GN ∼ Greg(N , d)

with degree d. It was shown by Sen [67, Sec. 2.2] that for d sufficiently large, the
following asymptotic holds with high probability as N →∞:

MaxCut(GN , κ)

N
= d

2

(
1− 1

κ

)
+ P�(κ)

√
d

2
+ o(

√
d),
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where P�(κ) denotes the ground-state energy of the balanced Potts spin glass model:

P�(κ) := lim
β→∞

1

β
inf

π∈�dbal

P(π;β).

Here we are making explicit the dependence of the Parisi functional on β. Now Theo-
rem 1.3 simplifies this to a lower-dimensional minimization problem:

P�(κ) = lim
β→∞

1

β
inf

π∈��
P(π;β). (1.13)

For κ = 2 (in which case �dbal = ��), numerical studies [27,66] give P�(2) ≈
0.763166. Since �� has no dimensional dependence on κ (unlike �dbal), (1.13) opens
the possibility of numerically computing P�(κ) for κ ≥ 3.

1.3. Potts spin glass with general covariance function. We will obtain Theorem 1.3
from the analogous result for a more general Hamiltonian. But this is not simply for
the sake of generality: our proof of Theorem 1.3 actually requires that we first replace
(1.1) with a Hamiltonian that includes higher-order interactions. Namely, we assume
henceforth that (HN ,ξ (σ ))σ∈�N is a centered Gaussian process with covariance

E[HN ,ξ (σ )HN ,ξ (σ
′)] = Nξ

(σσ ′T

N

)
, σ, σ ′ ∈ �N , (1.14)

where ξ : R
κ×κ → R is any function satisfying assumptions (A1) and (A2) below. The

ordinary Potts spin glass (1.1) is the special case

ξ(R) = β2
κ∑

k,k′=1

R2
k,k′ = β2tr(RTR). (1.15)

To state our more general assumptions, we require some definitions.
Let N = {1, 2, . . .}. Then define the following set of parameters:

� :=
{
(p,m, n1, . . . , nm , w1, . . . , wm) : p,m, n1, . . . , nm ∈ N, w1, . . . , wm ∈ [−1, 1]κ

}
.

(1.16)

For θ ∈ �, define the function ξθ : R
κ×κ → R by

ξθ (R) :=
m∏

j=1

〈R◦pw j , w j 〉n j , (1.17)

where R◦p denotes the pth Hadamard power of the matrix R, i.e. (R◦p)k,k′ = (Rk,k′)p.
The function ξθ is a homogeneous polynomial of degree

deg(θ) := p(n1 + · · · + nm). (1.18)

Then we assume the following about the covariance function ξ : R
κ×κ → R in (1.14):
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(A1) There exists a countable subset �0 ⊂ � and coefficients (αθ )θ∈�0 such that

ξ(R) =
∑

θ∈�0

α2
θ ξθ (R) and

∑

θ∈�0

α2
θ (1 + ε)deg(θ) < ∞ for some ε > 0.

(A2) ξ is convex when restricted to the following set:

Rκ := {R ∈ [0, 1]κ×κ : ‖R‖1 ≤ 1}. (1.19)

Remark 1.5. We always have

‖ξθ (R)‖ ≤ ‖R‖deg(θ)

1 . (1.20)

Therefore, the decay condition on αθ in (A1) ensures that
∑

θ∈�0
α2

θ ξθ (R) converges
uniformly on the set {R ∈ R

κ×κ : ‖R‖1 ≤ 1}. In particular, ξ is smooth on this set.
Outside this set, the sum may diverge, and this is okay because we will only ever need
to apply ξ on the set Rκ defined in (A2). This is because for any σ, σ ′ ∈ �N , we have
N−1σσ ′T ∈ Rκ . Nevertheless, we will continue to write R

κ×κ as the domain of ξ simply
to remind the reader of the ambient matrix space.

Remark 1.6. Comparing (1.15) and (1.17), one sees that the ordinary Potts spin glass (1.1)
corresponds to the case when �0 has a single element: (p = 1,m = 1, n = 2, w = 1).

Extending the notation of (1.5), we write

FN ,ξ (d, ε) = 1

N
E logZN ,ξ (d, ε), where ZN ,ξ (d, ε) =

∑

σ∈�N (d,ε)

exp HN ,ξ (σ ),

(1.21)

and FN ,ξ (d) = FN ,ξ (d, 0) and ZN ,ξ (d) = ZN ,ξ (d, 0) as before. We first generalize
Theorem 1.1 to this setting.

Theorem 1.7. Assume ξ : R
κ×κ → R satisfies (A1) and (A2). Then for any d ∈ D,

lim
ε↘0

lim sup
N→∞

FN ,ξ (d, ε) = lim
ε↘0

lim inf
N→∞ FN ,ξ (d, ε) = inf

π∈�d
Pξ (π), (1.22a)

where the Parisi functionalPξ (π) is defined in (1.35). Moreover, for any dN ∈ DN such
that dN → d as N →∞, we have

lim
N→∞FN ,ξ (d

N ) = inf
π∈�d

Pξ (π). (1.22b)

More importantly, we show that when d = dbal and ξ has a certain symmetry—
which is the case for the usual Potts spin glass (1.15)—the Parisi formula (1.22) can
be reduced to have order parameter π ∈ ��. First we define the symmetry condition.
Let Sκ denote the symmetric group on {1, . . . , κ}. Given a permutation ω ∈ Sκ and a
matrix R ∈ R

κ×κ , let ω • R be the matrix obtained by permuting the rows and columns
according to ω. That is,

(ω • R)k,k′ := Rω−1(k),ω−1(k′), k, k′ ∈ {1, . . . , κ}. (1.23)

We then make the following assumption:

ξ(ω • R) = ξ(R) for every ω ∈ Sκ and R ∈ R
κ×κ . (A3)

The following is our main result: it generalizes Theorem 1.3 to the setting (1.14).
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Theorem 1.8. Assume ξ : R
κ×κ → R satisfies (A1), (A2), (A3). Then for any dN ∈ DN

such that dN → dbal as N →∞, we have

lim
N→∞FN ,ξ (d

N ) = lim
ε↘0

lim sup
N→∞

FN ,ξ (dbal, ε) = lim
ε↘0

lim inf
N→∞ FN ,ξ (dbal, ε) = inf

π∈��
Pξ (π),

(1.24)

where �� is defined in (1.12) and Pξ (π) is defined in (1.35) (see also (1.36)).

We close this section by explaining why Theorem 1.8 only applies to the balanced
case d = dbal. Given a permutation ω ∈ Sκ and a vector u = (u1, . . . , uκ ) ∈ R

κ , let
ω • u be the vector obtained by permuting the coordinates of u:

(ω • u)k = uω−1(k), k ∈ {1, . . . , κ}. (1.25a)

In particular, for any standard basis vector ea , we have ω • ea = eω(a). Now extend this
action to σ = (σ1, . . . , σN ) ∈ �N by

ω • σ = (ω • σ1, . . . , ω • σN ), σ ∈ �N . (1.25b)

The original Potts Hamiltonian (1.1) is clearly unchanged in distribution under any such
action. This fact is generalized by assumption (A3), which implies (see Lemma 6.7(a))

(
HN ,ξ (σ )

)
σ∈�N

law= (HN ,ξ (ω • σ)
)
σ∈�N . (1.26)

Unfortunately this symmetry is not particularly helpful for the constrained model (1.21),
since the constrained configuration space �N (d) from (1.4) is not invariant under these
permutations. But there is one exception: when d = dbal. In this case, the map σ �→ ω • σ

is a bijection �N (dbal) → �N (dbal). The central objective of the paper is to capitalize
on this basic observation. Roughly speaking, Theorem 1.8 is the statement that when
d = dbal, the order parameter π : (0, 1] → 	κ(dbal) in (1.34) must reflect the symmetry
offered by (1.26). That is, π should actually map to the space 	� defined in (1.11),
which is precisely the subset of 	κ(dbal) consisting of those matrices γ which satisfy
ω • γ = γ for every ω ∈ Sκ .

1.4. Parisi functional. In this section we define the Parisi functionalPξ for any ξ satisfy-
ing (A1). We denote the derivative of ξ by∇ξ : R

κ×κ → R
κ×κ , which is a matrix-valued

function with entries given by

[∇ξ(R)]k,k′ := ∂ξ

∂Rk,k′
(R), k, k′ ∈ {1, . . . , κ}.

In addition, define the function ϑξ : R
κ×κ → R by

ϑξ (R) := 〈R,∇ξ(R)〉 − ξ(R), (1.27)

where 〈A, B〉 = tr(ATB) denotes the inner product of two matrices A, B. Under as-
sumption (A1), the functions ξ , ∇ξ , and ϑξ are nondecreasing when restricted to the set
	κ of positive-semidefinite matrices; see Proposition 2.7(b).
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Recall the set of paths �d from (1.8). We first define Pξ (π) for any discrete path π ,
and then extend continuously to general π . By a discrete path we mean an element of
the set

�disc
d := {π ∈ �d : π takes only finitely many values, π(1) = diag(d)}. (1.28)

Thus every π ∈ �disc
d has the form

π(t) = γr for t ∈ (mr−1,mr ], r ∈ {1, . . . , s}, (1.29a)

for some sequence of weights

0 = m0 < m1 < · · · < ms−1 < ms = 1, (1.29b)

and some sequence of matrices

0 = γ0 ≺ γ1 ≺ · · · ≺ γs−1 ≺ γs = diag(d). (1.29c)

Given these sequences, consider independent centered Gaussian random vectors
z0, . . . , zs−1 in R

κ , with covariance structure

E(zr z
T
r ) = ∇ξ(γr+1)−∇ξ(γr )1{r > 0}. (1.30)

Given a parameter λ = (λ1, . . . , λκ) ∈ R
κ which serves as a Lagrange multiplier, define

Xs = log
κ∑

k=1

exp
〈 s−1∑

r=0

zr + λ, ek
〉
.

Using Er to denote expectation with respect to zr , we then define inductively

Xr = 1

mr
log Er exp(mr Xr+1) for r ∈ {1, . . . , s − 1}, and X0 = E0(X1).

We then record the non-random quanity X0 as a function of π and λ:

P(1)
ξ (π, λ) := X0. (1.31)

We show in Lemma 5.1 that �disc
d � π �→ P(1)

ξ (π, λ) is Lipschitz continuous with

respect to the following L1 norm on paths:

π �→
∫ 1

0
‖π(t)‖1 dt. (1.32)

Since �disc
d ⊂ �d is dense with respect to this norm, there is a unique continuous

extension of P(1)
ξ to all of �d . Next define

P(2)
ξ (π) := 1

2

∫ 1

0
ϑξ (π(t)) dt − 1

2
ϑξ (diag(d)), π ∈ �d , (1.33)

and set

Pξ (π, λ) :=P(1)
ξ (π, λ) + P(2)

ξ (π). (1.34)

Finally, the Parisi functional is defined as

Pξ (π) := inf
λ∈Rκ

[Pξ (π, λ)− 〈λ, d〉], π ∈ �d . (1.35)
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Remark 1.9. The reason for the Lagrange multiplier λ and the infimum in (1.35) is later
explained in Remark 3.8. It is straightforward to check that Pξ (π, λ) =Pξ (π, λ + c1)
holds for any c ∈ R. Therefore, one could fix the last coordinate λκ = 0 so that the
infimum in (1.35) is over R

κ−1; this was done in [58]. More importantly, we show in
Lemma 5.4 that for π ∈ �� and ξ satisfying the symmetry condition (A3), the infimum
is achieved at λ = 0:

Pξ (π) =Pξ (π, 0) for any π ∈ ��. (1.36)

Consequently, Theorem 1.8 shows that the Lagrange parameter λ is not needed for
symmetric models, although it remains necessary for the proof.

1.5. Related literature. The Potts spin glass model is closely related to the max κ-cut
problem on random graphs. As mentioned after Remark 1.4, the balanced case addressed
in this paper corresponds to sparse Erdős–Rényi graphs or random regular graphs [67],
both of which have distributional symmetry analogous to (A3). An unbalanced version
(with κ = 2) was studied in [39], corresponding to the generalized SK model introduced
in [49]. Motivated by the max κ-cut problem on inhomogeneous random graphs, Jagan-
nath et al. [38] introduced a vector version of multi-species SK model and combined
approaches from [56,58] to obtain a Parisi formula for the limiting free energy. As in
this paper, a key technical component was the synchronization mechanism discussed in
Sect. 1.1.

The synchronization technique was first introduced by Panchenko [56] to study the
multi-species SK model. More specifically, synchronization enabled a free energy lower
bound that matched the upper bound obtained in [7] via Guerra’s replica symmetry break-
ing interpolation [36]. These methods were generalized in [58] to obtain the variational
formula (1.10), which is a special case of the mixed vector spin model considered in [57].
Synchronization has since been used in a variety of generalized spin glasses, including
a multi-scale SK model [26], the quantum SK model [1], spherical spin glasses with
constrained overlaps [42], and multi-species spherical models [10]. These generalized
models are related to a number of problems in statistical inference and combinatorial
optimization, such as spiked random tensors [22,23], principal submatrix recovery [33],
and the �p–Gaussian–Grothendieck problem [25,30].

Synchronization also been used in conjunction with a strategy initiated by Mourrat
[43,45] that identifies the Parisi formula as a solution to a Hamilton–Jacobi equation.
This program has also led to results on spin glasses enriched by a certain magnetic field
[47], non-convex models such as the bipartite SK model [44], and vector spin models
[20,46]. Building on these developments, Chen [19] recently showed that by introducing
a self-overlap correction term in the free energy, one can remove the supremum over
magnetizations in (1.10). Moreover, the self-overlap concentrates in that setting, thereby
softly enforcing a balanced constraint [17].

For spherical vector spin glasses, Ko [41] obtained the Crisanti–Sommers variational
formula for the limiting free energy. Various properties of the minimizer to this formula
were obtained by Auffinger and Zhou [6], who also extended the formula to zero temper-
ature. In the SK case, the limiting free energy was computed earlier by Panchenko and
Talagrand [59, Thm. 2]. More recently, Husson and Ko [37] gave an alternative proof
using spherical integrals, even allowing κ to grow sublinearly with N .
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1.6. Organization of the paper. The paper’s format is meant to prioritize new and cen-
tral ideas, by postponing certain technical aspects that could be otherwise distracting.
Section 2 contains the proof of our main result, Theorem 1.8. The proof invokes various
inputs that are introduced in Sect. 2 but proved later in the paper. Section 3 establishes
some notation involving the Parisi functional and Ruelle probability cascades that will
be needed in all subsequent parts. Section 4 concerns the differentiability of the Parisi
functional with respect to certain inverse temperatures, while Sect. 5 contains various
continuity properties of the Parisi functional. Section 6 unites these ingredients with
symmetry to complete the lower bound portion of Theorem 1.8.

Several intermediate results are either standard or very similar to previous works. For
some of these results, the proofs can be read essentially verbatim elsewhere and are thus
omitted. For others, we defer the proofs to one of several appendices. These include the
existence of certain Gaussian processes (“Appendix A”), proof of the Aizenman–Sims–
Starr scheme (“Appendix B”), checking various lemmas involving Ruelle probability
cascades (“Appendix C”), generalizing a variational argument from [58] related to the
infimum in (1.35) (“Appendix D”), and finally verification of the upper bound via Guerra
interpolation (“Appendix E”).

2. Proof Overview

We introduce a series of intermediate results in Sects. 2.1–2.3, and then use them to
prove Theorem 1.8 (and Theorem 1.3) in Sect. 2.4. The results labeled as propositions
will be proved in the remainder of the paper, while lemmas are argued immediately.
Meanwhile, Theorem 1.7 is proved using the same strategy as in [58], and so we will
not focus on it here. Instead a review of the proof is provided in “Appendix E”.

Toward our goal of Theorem 1.8, we first observe that the upper bound

lim
ε↘0

lim sup
N→∞

FN ,ξ (dbal, ε) ≤ inf
π∈��

Pξ (π)

is immediate from Theorem 1.7, since �� is a subset of �dbal . What requires novel
justification is the lower bound, which amounts to showing

lim inf
N→∞ FκN ,ξ (dbal) ≥ Pξ (π) for some π ∈ ��. (2.1)

The factor κ in κN is to guarantee that �κN (dbal) is nonempty.
The standard approach for proving a Parisi formula lower bound such as (2.1) is the

Aizenman–Sims–Starr (A.S.S.) scheme [2,3]. Indeed, this method is what yields the
lower bound portion of Theorem 1.7. The shortcoming is that this implementation alone
yields a minimizer π belonging to �dbal , whereas we want more specific information,
namely that π can be found in ��. So we will actually use the A.S.S. scheme a second
time, but with some interventions that preserve the symmetry needed to infer Theorem 1.8
from Theorem 1.7. The next three sections explain how this is accomplished.

2.1. Synchronized overlap arrays. The main characters in the A.S.S. scheme are overlap
arrays. Given any σ 1, σ 2, . . . ∈ �N , we can define an array R = (R�,�′)�,�′≥1, where
R�,�′ is the κ × κ overlap matrix associated to σ� and σ�′ :

R�,�′ = R(σ �, σ �′) := σ�(σ �′)T

N
= 1

N

N∑

i=1

σ�
i (σ �′

i )T ∈ R
κ×κ . (2.2)
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In other words, the (k, k′) entry of R(σ, σ ′) is the fraction of columns i that satisfy
σi = ek and σ ′i = ek′ :

R(σ, σ ′)k,k′ = 1

N

N∑

i=1

1{σi = ek}1{σ ′i = ek′ }. (2.3)

The case of interest is when (σ �)�≥1 are independent samples from the Gibbs measure
GκN ,ξ associated to the Hamiltonian HκN ,ξ from (1.14):

GκN ,ξ (σ ) ∝ exp HκN ,ξ (σ ), σ ∈ �κN (dbal). (2.4)

This measure is random depending on the Gaussian process HκN ,ξ . Therefore, the array
R is generated by first fixing the realization of GκN ,ξ , and then drawing i.i.d. samples
(σ �)�≥1 from GκN ,ξ . We denote the resulting distribution by Law(R;E(G⊗∞κN ,ξ )). This

is a probability measure on the space (Rκ×κ)N×N equipped with the usual product σ -
algebra. Its properties generalize those of classical Gram–de Finetti arrays, as captured
by the following definition. Recall that R◦p denotes the pth Hadamard power of matrix
R, and the permutation action R �→ ω • R from (1.23).

Definition 2.1. A κ-dimensional Gram–de Finetti array is a random array of κ × κ

matrices R = (R�,�′)�,�′≥1 such that for every positive integer p and w ∈ R
κ , the

array Q = (〈R◦p
�,�′w,w〉)�,�′≥1 is a (1-dimensional) Gram–de Finetti array. That is, Q

is almost surely symmetric and positive-semidefinite, and is exchangeable under any
finite permutation applied to its rows and columns simultaneously. In this case, we say
Law(R) is a Gram–de Finetti law.

Roughly speaking, the A.S.S. scheme works by identifying a functional �ξ on Gram–
de Finetti laws (see Sect. 3.1) such that

FκN ,ξ + o(1) ≥ �ξ

(
Law(R;E(G⊗∞κN ,ξ ))

)
. (2.5)

As a first step to go from (2.5) to (2.1), one assumes (by passing to a subsequence) that

Law(R;E(G⊗∞κN ,ξ )) converges weakly as N →∞ to some L. (2.6)

By continuity of �ξ (see Corollary 3.3), this results in

lim inf
N→∞ FκN ,ξ (dbal) ≥ �ξ(L). (2.7)

But this limiting law L is now divorced from the representation (2.2). There is not
necessarily any way of realizing L by sampling from a Gibbs measure, unless L satisfies
a certain family of identities introduced in [58] and recalled in the following definition.

Definition 2.2. A Gram–de Finetti lawL = Law(R) is said to satisfy the (κ-dimensional)
Ghirlanda–Guerra (G.G.) identities if the following holds for every p ≥ 1, m ≥ 1,
w1, . . . , wm ∈ [−1, 1]κ , and bounded measurable function ϕ : R

m → R. Define the
scalar array

A�,�′ :=ϕ
(〈R◦p

�,�′w1, w1〉, . . . , 〈R◦p
�,�′wm, wm〉

)
. (2.8)

Then for any n ≥ 1 and any bounded measurable function f of the finite subarray
R(n) = (R�,�′)1≤�,�′≤n , we have

E[ f (R(n))A1,n+1] = 1

n
E[ f (R(n))]E[A1,2] +

1

n

n∑

�=2

E[ f (R(n))A1,�]. (2.9)
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The theorem quoted below clarifies the role of these identities: to guarantee synchro-
nization. In fact, they also guarantee that each matrix in the array is positive-semidefinite.
The condition (2.11) is why the Gibbs measure in (2.4) is restricted to �κN (dbal). This
restriction ensures that the array in (2.2) satisfies

R�,� = diag(dbal) = κ−1 Iκ for every �. (2.10)

Theorem 2.3. [57, Thm. 4] Assume Law(R) is a Gram–de Finetti law in the sense of
Definition 2.1 and satisfies the Ghirlanda–Guerra identities in Definition 2.2. Suppose
further that there is some deterministic D ∈ 	κ with tr(D) = 1 such that

R�,� = D for all � ≥ 1, with probability one. (2.11)

Then there exists a map 
 : [0, 1] → 	κ such that with probability one,

R�,�′ = 

(
tr(R�,�′)

)
for every �, �′ ≥ 1.

Furthermore, this map can be taken to be nondecreasing,


(q) � 
(q ′) for q ≤ q ′,

and Lipschitz continuous,

‖
(q)−
(q ′)‖1 ≤ Cκ |q − q ′|,
for some constant Cκ depending only on κ .

So when the κ-dimensional G.G. identities are satisfied, the matrix array (R�,�′)�,�′≥1
is simply a function of the scalar array (tr(R�,�′))�,�′≥1. Moreover, this scalar array
satisfies the 1-dimensional (or canonical) G.G. identities (see Lemma 6.6). In turn,
the 1-dimensional G.G. identities [34] are known to yield the following existence and
uniqueness result via ultrametricity [53]. We use Q and L̄ (instead of R and L) as
notational cues that we are speaking of 1-dimensional Gram–de Finetti arrays.

Theorem 2.4. [54, Thm. 2.13, 2.16, and 2.17] Let μ be a probability measure on [0, 1].
There is exactly one Gram–de Finetti law L̄μ = Law(Q) that has all three of the
following properties: (i) L̄μ satisfies the 1-dimensionalG.G. identities; (ii)Law(Q1,2) =
μ; and (iii) Q�,� = 1 with probability one, for every � ≥ 1. Furthermore, the map
μ �→ L̄μ is continuous with respect to weak convergence.

In summary, every Gram–de Finetti law L = Law(R) satisfying the κ-dimensional
G.G. identities can be described by a pair (
,μ), where 
 is the synchronization map
from Theorem 2.3, and μ = Law(tr(R1,2)). This pair induces a path π = 
◦Qμ, where
Qμ is the quantile function of μ. There is thus a correspondence L↔ π , and under this
correspondence one checks that �ξ(L) = Pξ (π) (see Lemma 3.9). In our case, the L of
interest satisfies (2.10), which means 
 maps into 	κ(dbal), and thus π ∈ �dbal . Hence
(2.7) leads to

lim inf
N→∞ FκN ,ξ (dbal) ≥ Pξ (π) for some π ∈ �dbal . (2.12)

To go further and say π belongs to the smaller set �� from (1.12), we make a simple but
important observation stated in Lemma 2.6 below. We preface the result with a definition.
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Definition 2.5. For an array of κ × κ matrices R = (R�,�′)�,�′≥1 and a permutation
ω ∈ Sκ , we write ω •R to denote the array (ω •R�,�′)�,�′≥1, where ω •R�,�′ is defined
in (1.23). When R is a random array, we say that Law(R) is symmetric if Law(R) =
Law(ω •R) for every ω ∈ Sκ .

The following result shows that once this symmetry condition is added to the hy-
potheses of Theorem 2.3, each matrix in the array has all of its diagonal entries equal,
and all of its off-diagonal entries equal. In the statement below, Rk,k′

�,�′ denotes the (k, k′)
entry of R�,�′ .

Lemma 2.6. Assume Law(R) satisfies the hypotheses of Theorem 2.3 and is symmetric
in the sense of Definition 2.5. Then for all k1 �= k′1 and k2 �= k′2 and all �, �′ ≥ 1,

Rk1,k1
�,�′ = Rk2,k2

�,�′ and Rk1,k′1
�,�′ = Rk2,k′2

�,�′ a.s. (2.13)

In particular, ifR�,�′ ∈ 	κ(dbal) almost surely, then R�,�′ ∈ 	� almost surely.

Proof. Consider any k, k′ ∈ {1, . . . , κ}, �, �′ ≥ 1, and ω ∈ Sκ . Since R�,�′
law= ω •R�,�′

by assumption, it follows that

(Rk,k′
�,�′ , tr(R�,�′)

) law= (Rω−1(k),ω−1(k′)
�,�′ , tr(R�,�′)

)
,

where we used the fact that tr(R�,�′) = tr(ω • R�,�′) holds for any ω ∈ Sκ . In particular,

E

[
Rk,k′

�,�′
∣∣∣ tr(R�,�′)

]
= E

[
Rω−1(k),ω−1(k′)

�,�′
∣∣∣ tr(R�,�′)

]
a.s.

On the other hand, by Theorem 2.3, R�,�′ is measurable with respect to tr(R�,�′). Hence

Rk,k′
�,�′ = E

[
Rk,k′

�,�′
∣∣∣ tr(R�,�′)

]
= E

[
Rω−1(k),ω−1(k′)

�,�′
∣∣∣ tr(R�,�′)

]
= Rω−1(k),ω−1(k′)

�,�′ a.s.

As this holds for any permutation ω ∈ Sκ , (2.13) follows.
To justify the final sentence in the proposition, recall from definition (1.11) that 	�

is precisely the subset of 	κ(dbal) consisting of matrices that are constant both on the
diagonal and off the diagonal. ��

Under the condition of symmetry, Lemma 2.6 specifies exactly what the synchro-
nization map in Theorem 2.3 must be:


�(q) = q

κ
Iκ +

1− q

κ2 11T, q ∈ [0, 1].

This suggests that under the assumption (A3), the previous lower bound (2.12) can be
improved to (2.1). Indeed, (1.26) implies that Law(R;E(G⊗∞N ,ξ )) is symmetric in the
sense of Definition 2.5 (see Lemma 6.7(b)), and this symmetry trivially passes to the
limit law L in (2.6). The crucial detail is that L must also satisfy the G.G. identities for
us to obtain (2.12) in the first place, but there is a major obstacle: the G.G. identities are
not known to hold!

There are two natural options for moving forward, both of which run into difficulty:
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(I) The standard approach for obtaining the G.G. identities is to perturb the Hamiltonian
by lower-order terms with random coefficients, and then average over these coef-
ficients [34,72]. Indeed, this strategy was used in [57,58] to obtain Theorem 1.1.
Because the perturbations do not change the limiting free energy, one can obtain a
law L satisfying both (2.7) and the G.G. identities, but it would not necessarily be
equal to the limit in (2.6). Instead, the Gibbs measure GκN ,ξ would be replaced by
one corresponding to the perturbed Hamiltonian, whose covariance function only
satisfies the symmetry condition (A3) asymptotically. Since Gibbs measures in spin
glass theory are known to exhibit temperature chaos [11,24], this is not enough to
ensure L is still symmetric in the sense of Definition 2.5. Without this property,
Lemma 2.6 is not applicable.

(II) One could instead try to obtain the G.G. identities directly, without any perturbation.
This would allow symmetry to be preserved, but the task of proving the G.G. iden-
tities (or some version thereof) remains a major open problem even for SK model
[71]. Therefore, this approach does not presently seem viable.

It would thus appear that the G.G. identities needed for the existence of a synchro-
nization are at odds with the symmetry needed to say more about the map itself. We
thus employ a different strategy: we introduce a generic version of the Potts spin glass
for which we can obtain the G.G. identities via differentiability, without averaging over
perturbations.

Inspired by [52] and [54, Sec. 3.7], the generic model works by augmenting the co-
variance function ξ with countably many polynomials of the form ξθ from (1.17). If these
polynomials are selected so that they span a dense subset of all continuous functions, and
if the array (ξθ (R�,�′))�,�′≥1 satisfies the 1-dimensional G.G. identities for each θ , then
(R�,�′)�,�′≥1 will satisfy the κ-dimensional G.G. identities. The same principle underlies
approach (I), but here the new terms added to the Hamiltonian will be of the same order
as the Hamiltonian itself. Therefore, the limiting free energy of the augmented model
will be different from the original, but still fall under the purview of Theorem 1.7. Each
new term in the Hamiltonian will be modulated by an inverse temperature parameter βθ

which is fixed and does not require averaging. We will ultimately choose these param-
eters to be sufficiently small, but all nonzero, and preserve symmetry of ξ in (A3). The
next section defines this generic model.

2.2. The generic model and differentiability. Recall the set � in (1.16) and the function
ξθ : R

κ×κ → R in (1.17). Specializing the notation from (1.27), we denote

ϑθ (R) :=ϑξθ (R) = 〈R,∇ξθ (R)〉 − ξθ (R). (2.14)

The following result provides several important properties of the functions ξθ , ∇ξθ , ϑξ .
Under assumption (A1), parts (b), (c), and (d) obviously remain true when ξθ is replaced
by ξ .

Proposition 2.7. For any θ ∈ � and N ≥ 1, the following hold.

(a) ϑθ = (deg(θ)− 1)ξθ .
(b) For any Q, R ∈ 	κ such that Q � R, we have

0 ≤ ξθ (Q) ≤ ξθ (R), 0 � ∇ξθ (Q) � ∇ξθ (R), 0 ≤ ϑθ (Q) ≤ ϑθ (R). (2.15)
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(c) There exists a centered Gaussian process HN ,θ : �N → R with covariance

E[HN ,θ (σ )HN ,θ (σ
′)] = Nξθ

(σσ ′T

N

)
. (2.16)

(d) There exist centered Gaussian processes ZN ,θ : �N → R
κ and YN ,θ : �N → R

with covariances

E

[
ZN ,θ (σ )ZN ,θ (σ

′)T
]
= ∇ξθ

(σσ ′T

N

)
, E[YN ,θ (σ )YN ,θ (σ

′)] = ϑθ

(σσ ′T

N

)
.

The proof of Proposition 2.7 is given in “Appendix A”. Note that part (b) was used
in (1.30) to define the Parisi functional Pξ . Part (c) guarantees the existence of the
Gaussian process

(
HN ,ξ (σ )

)
σ∈�N in (1.14), under assumption (A1). Finally, part (d)

will be needed for the A.S.S. scheme in Sect. 6.1.
While (A1) allows the covariance function ξ = ∑θ∈�0

α2
θ ξθ to use any countable

subset �0 of the parameter space �, here we consider a particular countable subset:

�Q =
{
(p,m, n1, . . . , nm, w1, . . . , wm) : p,m, n1, . . . , nm ≥ 1, w1, . . . ,

wm ∈
(
Q ∩ [−1, 1])κ

}
.

Given ξ and a family of parameters β = (βθ )θ∈�Q
, we define the modified covariance

function ξβ : R
κ×κ → R by

ξβ(R) := ξ(R) +
∑

θ∈�Q

β2
θ ξθ (R). (2.17)

As in Remark 1.5, the following decay condition on (βθ )θ∈�Q
guarantees that ξβ is

smooth on the set {R ∈ R
κ×κ : ‖R‖∞ ≤ 1}

∑

θ∈�Q

β2
θ (1 + ε)deg(θ) < ∞ for some ε > 0. (B1)

Nevertheless, the modified function ξβ may fail to be convex even if ξ is convex, in
which case Theorem 1.7 would not apply to ξβ . To avoid this scenario, we impose an
additional decay condition on (βθ )θ∈�Q

as follows.
For twice continuously differentiable f : R

κ×κ → R, denote the Hessian of f at R
by

∇2 f (R) :=
( ∂2 f

∂Rk1,k′1∂Rk2,k′2
(R)
)

(k1,k′1),(k2,k′2)∈{1,...,κ}2 .

Thinking of ∇2 f (R) as a (self-adjoint) linear operator R
κ×κ → R

κ×κ , we can speak of
its minimum eigenvalue

λmin(∇2 f (R)) := min‖Q‖2=1
〈∇2 f (R)Q, Q〉,

and its spectral radius

‖∇2 f (R)‖op := max‖Q‖2=1

∣∣〈∇2 f (R)Q, Q〉∣∣.
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Now define the following constant for each θ ∈ �:

Cθ := sup
‖R‖1≤1

{‖∇ξθ (R)‖∞ ∨ ‖∇2ξθ (R)‖op
}
, (2.18)

which is finite by Remark 1.5. Convexity assumption (A2) means λmin(∇2ξ(R)) ≥ 0
for all R ∈ Rκ . The following lemma shows how this condition can be maintained after
modification (2.17) provided we assume a strict inequality for the original covariance
function ξ .

Lemma 2.8. Assume ξ satisfies (A1) and

inf
R∈Rκ

λmin(∇2ξ(R)) > 0. (A2’)

Assume β satisfies (B1) and
∑

θ∈�Q

β2
θCθ < inf

R∈Rκ

λmin(∇2ξ(R)). (B2)

Then ξβ defined in (2.17) satisfies (A1) and (A2).

Proof. That ξβ satisfies (A1) is immediate from (B1). For (A2), we simply observe that
for any R ∈ Rκ ,

λmin
(∇2ξβ(R)

) ≥ λmin
(∇2ξ(R)

)−
∑

θ∈�Q

β2
θ ‖∇2ξθ (R)‖op

(B2)≥ 0.

Hence ξβ is convex on the set Rκ . ��
The following result is the reason for introducing the modified model (2.17). It is

proved in Sect. 4.

Proposition 2.9. Assume ξ satisfies (A1), (A2’), and β satisfies (B1), (B2). Then for
any d ∈ D and θ ∈ �Q, when only the value of βθ is varied, the function βθ �→
infπ∈�d Pξβ

(π) is differentiable on an open interval.

To see the utility of Proposition 2.9, let us consider a Hamiltonian corresponding to
the modified covariance function ξβ from (2.17). Namely,

HN ,ξβ
(σ ) = HN ,ξ (σ ) +

∑

θ∈�Q

βθ HN ,θ (σ ), (2.19)

where HN ,ξ is as in (1.14), and each HN ,θ is an independent Gaussian process satisfying
(2.16). It is well-known [5,15,51] that the differentiability of the Parisi formula guaran-
tees the concentration of HN ,θ (σ ) under the Gibbs measure. This concentration in turn
leads to the G.G. identities in Definition 2.2, provided that βθ �= 0 for each θ ∈ �Q. In
this way we will be able to obtain synchronization from Theorem 2.3 without any per-
turbation. The tradeoff is that we need the model to have a generic covariance function
ξβ , instead of the original function ξ whose symmetry (A3) was meant to enable the
crucial Lemma 2.6. But as the next section explains, this symmetry can be preserved by
selecting β in a special way.
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2.3. Parisi formula for symmetric generic models. Section 2.1 outlined how to obtain
the desired lower bound (2.1) under two assumptions:

(i) in the large N -large limit, the array of overlap matrices satisfies the G.G. identities;
(ii) each matrix in that array is invariant (in distribution) under permutation of its rows

and columns.

Section 2.2 described how to secure assumption (i) for the generic model (2.17) with
parameters β = (βθ )θ∈�Q

satisfying βθ �= 0 for every θ . Now we address assumption (ii)
for the generic model.

Given a permutation ω ∈ Sκ and a vector w = (w(k))κk=1 ∈ R
κ , define the permuted

vector ω •w := (w(ω−1(k)))κk=1. We now extend this action to the parameter space �:

for θ = (p,m, n1, . . . , nm, w1, . . . , wm) ∈ �,

define ω • θ = (p,m, n1, . . . , nm, ω •w1, . . . , ω •wm) ∈ �.
(2.20)

We are then interested in β satisfying the following symmetry condition:

βθ = βω • θ for every θ ∈ � and ω ∈ Sκ . (B3)

Lemma 2.10. If ξ satisfies (A3) and β satisfies (B3), then ξβ satisfies (A3).

Proof. For any given θ = (p,m, n1, . . . , nm, w1, . . . , wm), we have

ξθ (ω • R)
(1.17),(1.23)=

m∏

j=1

( κ∑

k,k′=1

Rp
ω−1(k),ω−1(k′)w j (k)w j (k

′)
)n j

=
m∏

j=1

( κ∑

k,k′=1

Rp
k,k′w j (ω(k))w j (ω(k′))

)n j (1.17),(2.20)= ξω−1 • θ (R).

The assumption (B3) means βθ = βω−1 • θ no matter the choice of ω, hence
∑

θ∈�Q

β2
θ ξθ (ω • R) =

∑

θ∈�Q

β2
ω−1 • θ

ξω−1 • θ (R) =
∑

θ∈�Q

β2
θ ξθ (R).

Since ξ(ω • R) = ξ(R) by assumption, we have now shown that the same is true for the
sum ξβ = ξ +

∑
θ∈�Q

β2
θ ξθ . ��

By implementing the strategy discussed after Proposition 2.9, we will prove the
following result in Sect. 6. Note that Pξβ

(π, 0) is the Parisi functional (1.34) without
the Lagrange multiplier λ (see Remark 1.9 for further discussion).

Proposition 2.11. Assume ξ satisfies (A1), (A2’), (A3), and β satisfies (B1), (B2), (B3).
Provided βθ �= 0 for every θ ∈ �Q, there exists π ∈ �� such that

lim inf
N→∞ FκN ,ξβ

(dbal) ≥Pξβ
(π, 0). (2.21)

From here the end goal (2.1) is not too much further. There are just two missing
items:

1. Construct β that satisfies the hypotheses of Proposition 2.11.
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2. Justify sending β → 0.

Item 1. is taken care of by the following lemma. Recall the constant Cθ defined in (2.18).

Lemma 2.12. For any ε > 0, there exists β = (βθ )θ∈�Q
satisfying (B1), (B3), βθ �= 0

for every θ ∈ �Q, and
∑

θ∈�Q

β2
θ (Cθ ∨ 1) ≤ ε. (2.22)

Proof. The operation (ω, θ) �→ ω • θ defined in (2.20) is a group action by the symmetric
group Sκ on �Q. Since �Q is countable, we can enumerate the orbits of �Q under this
action: O1, O2, and so on. Both the constant Cθ in (2.18) and the degree in (1.18) are
invariant under the action, and so we can write Ci = Cθ and deg(Oi ) = deg(θ) for any
θ ∈ Oi . Given ε > 0, define

βi :=
√

1

2i (1 + ε)deg(Oi )
∧
√

ε

2i k!(Ci ∨ 1)
> 0, (2.23)

and then set βθ = βi for all θ ∈ Oi . The collection β = (βθ )θ∈�Q
satisfies (B3) by

construction. Inequality (B1) holds because of the first term on the right-hand side of
(2.23), while (2.22) holds because of the second term and the fact |Oi | ≤ κ!. ��

Meanwhile, item 2. will be possible thanks to the following proposition, which shows
that both sides of (2.21) are continuous with respect to the covariance function ξ .

Proposition 2.13. Assume ξ and ξ̃ satisfy (A1). Then the following statements hold.

(a) For any d ∈ DN , we have
∣∣FN ,ξ (d)− FN ,ξ̃ (d)

∣∣ ≤ sup
‖R‖1≤1

∣∣ξ(R)− ξ̃ (R)
∣∣.

(b) For any d ∈ D and any π, π̃ ∈ �d , we have

|Pξ (π)− Pξ̃ (π̃ )| ≤ 2 sup
‖R‖1≤1

∥∥∇ξ(R)− ∇ ξ̃ (R)
∥∥∞

+ sup
‖R‖1≤1

∥∥∇2ξ(R)
∥∥∞
∫ 1

0
‖π(t)− π̃(t)‖1 dt.

(2.24)

Proposition 2.13 is proved in Sect. 5.1.

2.4. Proofs of main results. Finally, we prove our main theorems.

Proof of Theorem 1.8. Consider any dN ∈ DN such that dN → dbal as N → ∞. We
wish to establish (1.24). Since �� is a subset of �dbal , Theorem 1.7 provides an upper
bound:

lim
N→∞FN ,ξ (d

N ) = lim
ε↘0

lim sup
N→∞

FN ,ξ (dbal, ε) = lim
ε↘0

lim inf
N→∞ FN ,ξ (dbal, ε)

= inf
π∈�dbal

Pξ (π)

≤ inf
π∈��

Pξ (π).

(2.25)
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Since the first line of (2.25) is entirely equalities, the matching lower bound only needs
to be established along a subsequence. More specifically, we will prove (2.1).

The covariance function ξ is assumed to satisfy weak convexity (A2). To upgrade to
strong convexity, we add a small multiple of the usual Potts Hamiltonian: for ε > 0,
define

ξε(R) := ξ(R) + ε · tr(RTR)/2. (2.26)

Let us note three properties of ξε. First, by Remark 1.6, ξε satisfies (A1) provided ξ

satisfies (A1). Second, by assumption (A2) for ξ , the new function ξε satisfies (A2’)
with

λmin(∇2ξε(R)) ≥ ε for every R ∈ Rκ . (2.27)

Third and finally, since ξ is assumed to satisfy the symmetry condition (A3) and the
map R �→ tr(RTR) does as well (the expression in (1.15) is clearly invariant under any
permutation of the row and column indices), the function ξε satisfies (A3). Therefore,
Lemma 2.12 guarantees the existence of β = (βθ )θ∈�Q

such that (B1) and (B3) hold,
βθ �= 0 for every θ ∈ �Q, and

∑

θ∈�Q

β2
θ (Cθ ∨ 1) ≤ ε. (2.28)

Applying the modification (2.17) to ξε in place of ξ , we obtain ξε
β
= ξε +

∑
θ∈�Q

β2
θ ξθ .

The combination of (2.27) and (2.28) shows that (B2) is satisfied with ξε in place of ξ .
We can thus apply Proposition 2.11 to determine that

lim inf
N→∞ FκN ,ξε

β
(dbal) ≥Pξε

β
(π, 0)

(1.35)≥ inf
π∈��

Pξε
β
(π). (2.29)

The remainder of the proof is to justify sending ε and β to zero.
We first address the left-hand side of (2.29). By Proposition 2.13(a), we have

∣∣FκN ,ξ (dbal)− FκN ,ξε
β
(dbal)

∣∣ ≤ sup
‖R‖1≤1

∣∣ξ(R)− ξε
β(R)

∣∣.

Whenever ‖R‖1 ≤ 1, we have
∣∣ξ(R)− ξε

β(R)
∣∣ ≤ ∣∣ξ(R)− ξε(R)

∣∣ +
∣∣ξε(R)− ξε

β(R)
∣∣

(2.26),(2.17),(1.20)≤ ε

2
+
∑

θ∈�Q

β2
θ

(2.28)≤ 3ε

2
.

The two previous displays together show
∣∣FκN ,ξ (dbal)− FκN ,ξε

β
(dbal)

∣∣ ≤ 3ε/2. (2.30)

Meanwhile, regarding the right-hand side of (2.29), Proposition 2.13(b) gives
∣∣∣ inf
π∈��

Pξ (π)− inf
π∈��

Pξε
β
(π)

∣∣∣ ≤ 2 sup
‖R‖1≤1

∥∥∇ξ(R)−∇ξε
β(R)

∥∥∞.
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Whenever ‖R‖1 ≤ 1, another application of the triangle inequality leads to
∥∥∇ξ(R)−∇ξε

β(R)
∥∥∞ ≤ ∥∥∇ξ(R)− ∇ξε(R)

∥∥∞ +
∥∥∇ξε(R)−∇ξε

β(R)
∥∥∞

(2.26),(2.18)≤ ε +
∑

θ∈�Q

β2
θCθ

(2.28)≤ 2ε.

Putting the two previous displays together, we have
∣∣∣ inf
π∈��

Pξ (π)− inf
π∈��

Pξε
β
(π)

∣∣∣ ≤ 4ε. (2.31)

Finally, the combination of (2.29), (2.30), and (2.31) yields

lim inf
N→∞ FκN ,ξ (dbal) ≥ inf

π∈��
Pξ (π)− 6ε.

Letting ε↘0 completes the proof. ��
Proof of Theorem 1.3. This is immediate from Theorem 1.8 since the associated covari-
ance function ξ(R) = β2tr(RTR) from (1.15) satisfies (A1), (A2), (A3). ��

3. Parisi Functional Preliminaries

3.1. Prelimit of the Parisi functional. In this section we define the functional �ξ that
appears in (2.5). More precisely, there is a family of functionals (�ξ,N )N≥1 that arise
naturally in the A.S.S. scheme (Proposition 6.2). These can be thought of as prelimiting
versions of the Parisi functional Pξ . Understanding their behavior as N → ∞ is an
important step in proving that the Parisi formula is a lower bound for the limiting free
energy.

Our definition requires three steps:

1. Give a abstract notion of an overlap map R which generalizes (2.2).
2. Using this map and a random measure from which to sample, generate a random

array of overlap matrices.
3. Define a functional L �→ �ξ,N (L), where L is the law of the random array.

3.1.1. Allowable overlap maps Recall from (1.19) that Rκ denotes the set of κ × κ

matrices whose entries are nonnegative and have sum at most 1. Fix d ∈ D and a
positive integer N .

Assumption 3.1. (X ,F) is a measurable space, and R : X × X → Rκ is a map with
the following properties.

(i) R is measurable.
(ii) For every x ∈ X , R(x, x) = diag(d).

(iii) There exist centered Gaussian processes Z : X → R
κ and Y : X → R with covari-

ances

E[Z(x)Z(x ′)T] = ∇ξ(R(x, x ′))
E[Y (x)Y (x ′)] = ϑξ (R(x, x ′))

for x, x ′ ∈ X . (3.1)

Furthermore, these processes are almost surely measurable functions on X .
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3.1.2. The overlap array Given a random probability measure G on (X ,F) which is
independent of the processes from (3.1), let (x�)�≥1 be i.i.d. samples from G. Apply R
to each pair of samples, and set

R�,�′ = R(x�, x�′) + 1{�=�′}(diag(d)− R(x�, x�′)).

This defines a random array R = (R�,�′)�,�′≥1. Denote the law of R under E(G⊗∞) by
Law(R;E(G⊗∞)), where the dependence on the map R is implicit.

3.1.3. The functional Given a nonempty subset S ⊆ �N , we now define a functional
L �→ �N ,ξ (L; S) that accepts as input any law L = Law(R;E(G⊗∞)) realized as
above.

Let Z1, . . . , ZN be independent copies of the process Z from (3.1). Let Y be as in
(3.1). Let 〈·〉G denote expectation with respect to G. Finally, let E(·) denote expectation
over both realizations ofG and the Gaussian processes from Assumption 3.1. Now define

�
(1)
N ,ξ (L; d, S) := 1

N
E log

∑

σ∈S

〈
exp
( N∑

i=1

〈
Zi (x), σi

〉)〉

G, (3.2a)

�
(2)
N ,ξ (L; d) := 1

N
E log

〈
exp
(√

N Y (x)
)〉
G, (3.2b)

and then the functional of interest is given by

�N ,ξ (L; S) :=�
(1)
N ,ξ (L; S)−�

(2)
N ,ξ (L). (3.3)

Especially important is the fact that L �→ �N ,ξ (L; S) is continuous. To state this
precisely, we need to introduce some notation. Given any law L = Law(R;G) realized
as above, let L(n) denote the law of the finite subarray R(n) = (R�,�′)1≤�,�′≤n ; this
is a Borel probability measure on n × n arrays whose elements belong to Rκ . Let
Prob((Rκ)n×n) denote the set of all Borel probability measures on this space. Because
Rκ is compact, one can metrize the topology of weak convergence on Prob((Rκ)n×n)
by, say, a Wasserstein distance with respect to the norm ‖R(n)‖ := ∑n

�,�′=1 ‖R�,�′ ‖1.
We can thus speak of continuity with respect to weak convergence.

Proposition 3.2. Assume ξ satisfies (A1). For any ε > 0, there is n large enough and
some continuous function φN : Prob((Rκ)n×n) → R such that

|�N ,ξ (L; S)− φN (L(n))| ≤ ε whenever �N ,ξ (L; S) is defined.

It follows from this proposition that L �→ �N ,ξ (L; S) is continuous. In the state-
ment below, weak convergence is understood in the product sense: a sequence (Lm)m≥1

converges weakly to L if for every n, (L(n)
m )m≥1 converges weakly to L(n).

Corollary 3.3. Assume ξ satisfies (A1). If (L j ) j≥1 is a weakly convergent sequence of
laws such that �N ,ξ (L j ; S) is defined for every j , then lim j→∞�N ,ξ (L j ; S) exists and
depends only on the limit of (L j ) j≥1.

A proof of Corollary 3.3 can be found in [10, Cor. 2.7]. Proposition 3.2 follows
from a standard truncation argument that relies only on the compactness of Rκ and the
continuity of ∇ξ and ϑ . Examples of this argument can be found in [55, Lem. 3], [54,
Thm. 1.3], and [10, Prop. 2.6]. Therefore, we omit the proof.
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3.2. Ruelle probability cascades. In this section we restrict the functional �N ,ξ from
(3.3) to overlap arrays generated by a Ruelle probability cascade (RPC). The RPCs are
a certain class of random probability measures with ultrametric support. Each RPC is
associated to a partition of the unit interval:

0 = m0 < m1 < · · · < ms−1 < ms = 1. (3.4)

For concreteness, we take the support of the RPC to be the countable set N
s−1, which

can be regarded as the leaf set of a tree of depth s − 1:

• The root vertex is the empty sequence ∅, and by convention N
0 = {∅}.

• Each α = (α1, . . . , αr ) ∈ N
r is said to have depth |α| = r and has children

{(α1, . . . , αr , a) : a ∈ N} at depth r + 1.
• The path to a given leaf α = (α1, . . . , αs−1) ∈ N

s−1 is the set

p(α) = {∅, α1, (α1, α2), . . . , (α1, . . . , αs−1)}.
Given two leaves α = (α1, . . . , αs−1) and α′ = (α′1, . . . , α′s−1) in N

s−1, let r(α, α′)
denote the smallest depth at which their ancestral paths disagree:

r(α, α′) :=
{

inf{r : αr �= α′r } if α �= α′
s if α = α′.

The RPCs are characterized by the following fact.

Theorem 3.4. [69, Thm. 15.2.1] For any sequence of the form (3.4), there is a random
measure ν on N

s−1 with the following property. Given any sequence 0 ≤ q1 ≤ · · · ≤
qs = 1, define the measure μ = ∑s

r=1(mr − mr−1)δqr . If (α1, α2, . . . ) ∼ E(ν⊗∞),
then the law of the array (qr(α�,α�′ ))�,�′≥1 is equal to L̄μ from Theorem 2.4.

The measure ν is called the RPC associated to (3.4), and we denote its probability
mass function by (να)α∈Ns−1 . We will now use RPCs to give a different formulation of
the Parisi functional from Sect. 1.4.

Let ξ satisfy (A1). Consider any d ∈ D and any discrete path π ∈ �disc
d , meaning

there is a partition of the form (3.4) and a sequence in 	κ(d),

0 � γ1 � · · · � γs−1 � γs = diag(d), (3.5a)

such that

π(t) = γr for t ∈ (mr−1,mr ], r ∈ {1, . . . , s}. (3.5b)

Let Z1, . . . , ZN : N
s−1 → R

κ and Y : N
s−1 → R be independent centered Gaussian

processes with covariances

E[Zi (α)Zi (α
′)T] = ∇ξ(γr(α,α′))

E[Y (α)Y (α′)] = ϑξ (γr(α,α′))
for α, α′ ∈ N

s−1. (3.6)

We assume these processes are also independent of the weights (να)α∈Ns−1 ; their exis-
tence is addressed in Remark 3.9. Now define, for λ ∈ R

κ and nonempty S ⊆ �N , the
quantity

P(1)
N ,ξ (π, λ; S) := 1

N
E log

∑

α∈Ns−1

∑

σ∈S
να exp

( N∑

i=1

〈
Zi (α) + λ, σi

〉)
. (3.7)
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Also recall the following quantity from (1.33):

P(2)
ξ (π) = 1

2

∫ 1

0
ϑξ (π(t)) dt − 1

2
ϑξ (diag(d)), π ∈ �d . (3.8)

Apart from the Lagrange multiplier λ ∈ R
κ in (3.7), the functionals P(1)

N ,ξ and P(2)
N ,ξ

are simply �
(1)
N ,ξ and �

(2)
N ,ξ from (3.2) applied to the RPC setting. This is captured by

the following lemma, which is proved in “Appendix C”.

Lemma 3.5. Assume ξ satisfies (A1). Let ν be the RPC associated to (3.4). With π ∈
�disc

d given by (3.5), let L denote the law of the array (γr(α�,α�′ ))�,�′≥1 under E(ν⊗∞).
Then

P(1)
N ,ξ (π, 0; S) = �

(1)
N ,ξ (L; S), (3.9a)

P(2)
ξ (π) = −�

(2)
N ,ξ (L). (3.9b)

In particular, P(1)
N ,ξ (π, 0; S) + P(2)

ξ (π) = �N ,ξ (L; S).

Remark 3.6. Because (3.5a) allows for equalities, the representation (3.5b) of the path π

is not unique. For instance, one could insert duplicate copies of some γr and then refine
the partition (3.4). Consequently, it is not immediately clear that P(1)

N ,ξ is well-defined,
but this actually follows from Lemma 3.5. Indeed, no matter the representation of π , the
following measure remains the same:

μ =
s∑

r=1

(mr − mr−1)δqr , where qr = sup{t ∈ (0, 1] : π(t) = γr }.

Under this definition of qr , we always have π(qr ) = γr by left-continuity of π , and so
the array (γr(α�,α�′ ))�,�′≥1 in Lemma 3.5 is equal to (π(qr(α�,α�′ )))�,�′≥1. Since the law of

(qr(α�,α�′ ))�,�′≥1 is equal to L̄μ by Theorem 3.4, it follows that the law L in Lemma 3.5
does not depend on the representation of π .

Notice that the left-hand side of (3.9b) does not depend on N . Our next lemma
shows the same is true of (3.9a) when S is the entire product set �N . More importantly,
the functional P(1)

ξ from (1.31) is recovered. Once again, the proof is postponed to
“Appendix C”.

Lemma 3.7. Assume ξ satisfies (A1). For any N ≥ 1, π ∈ �disc
d , and λ ∈ R

κ , we have

P(1)
N ,ξ (π, λ;�N ) =P(1)

ξ (π, λ). (3.10)

Remark 3.8. It would appear from Lemmas 3.5 and 3.7 that the functional �N ,ξ from
(3.3) is easily related to Pξ from (1.34). The complication is that the A.S.S. scheme
presented in Sect. 6.1 will require we evaluate L �→ �N ,ξ (L; S) using the constrained
set S = �N (dN ) for some dN ∈ DN . In contrast, the identity (3.10) only holds in
unconstrained case S = �N . This gap can only be bridged once N →∞, for then the
constraintdN can be replaced by an optimization over the dual variable λ; see Lemma 5.2.
The tradeoff is that an additional optimization must be performed over λ, as in (1.35).
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Remark 3.9. In order for the quantities in (3.9) to be defined, we need the existence
of processes Z1, . . . , ZN , Y satisfying (3.6). Fortunately, it is easy to construct them.
Indeed, let (ηi,α : i ≥ 1, α ∈ N

0 ∪ · · · ∪N
s−1) be i.i.d. standard normal random vectors

in R
κ , and then define

Zi (α) =
s−1∑

r=0

√∇ξ(γr+1)−∇ξ(γr )1{r > 0} ηi,(α1,...,αr ). (3.11)

Here we are using (2.15) to ensure that the matrix inside the square root is positive-
semidefinite and thus admits a square root. Since (α1, . . . , αr ) = (α′1, . . . , α′r ) if and
only if r < r(α, α′), we have

E[Zi (α)Zi (α
′)T] =

r(α,α′)−1∑

r=0

[∇ξ(γr+1)−∇ξ(γr )1{r > 0}] = ∇ξ(γr(α,α′)).

Similarly, let (ηα : α ∈ N
0 ∪ · · · ∪ N

s−1) be i.i.d. standard normal random variables,
and then

Y (α) =
s−1∑

r=0

√
ϑξ (γr+1)− ϑξ (γr ) η(α1,...,αr ). (3.12)

The same kind of telescoping calculation as above yields E[Y (α)Y (α′)] = ϑξ (γr(α,α′)).

4. Differentiability of the Parisi Formula

In this section, we prove Proposition 2.9. The following lemma provides the key estimate.
Recall the functional Pξ from (1.34).

Lemma 4.1. Assume ξ satisfies (A1) and β = (βθ )θ∈�Q
satisfies (B1). For any θ ∈ �Q,

there exists a constant C depending only on θ and κ , such that
∣∣∣
( ∂

∂βθ

)2
Pξβ

(π, λ)

∣∣∣ ≤ C(1 + β2
θ ) for any π ∈ �disc

d , d ∈ D, λ ∈ R
κ .

Proof. During the proof, the value of C may change from line to line, but it will only
depend on θ and κ . Assume π is given by (1.29). Since Pξβ

(π, λ) = P(1)
ξβ

(π, λ) +

P(2)
ξβ

(π), it suffices to prove the desired differential inequality for each term on the
right-hand side. We begin with the second term.

Recalling the definition of P(2)
ξβ

from (1.33), we have

P(2)
ξβ

(π) = 1

2

s∑

r=1

(mr − mr−1)ϑξβ
(γr )− 1

2
ϑξβ

(diag(d)).

The right-hand side can be rewritten using summation by parts. Since m0 = 0, ms = 1,
and γs = diag(d), this results in

P(2)
ξβ

(π) = −1

2

s∑

r=2

mr−1[ϑξβ
(γr )− ϑξβ

(γr−1)].
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Now recall from (1.27) thatϑξβ
(R) = 〈R,∇ξβ(R)〉−ξβ(R), where ξβ = ξ+

∑
θ∈�Q

β2
θ ξθ

as in (2.17). We thus have

( ∂

∂βθ

)2
ϑξβ

(R) = 2〈R,∇ξθ (R)〉 − 2ξθ (R)
(2.14)= 2ϑθ (R)

Prop. 2.7(a)= 2(deg(θ)− 1)ξθ (R).

Recall from Proposition 2.7(b) that ξθ (γr ) ≥ ξθ (γr−1) ≥ 0 for each r . Therefore, the
two previous displays together yield

∣∣∣
( ∂

∂βθ

)2
P(2)

ξβ
(π)

∣∣∣ ≤ (deg(θ)− 1)

s∑

r=2

[ξθ (γr )− ξθ (γr−1)]

≤ (deg(θ)− 1)ξθ (γs) ≤ (deg(θ)− 1) sup
‖R‖1≤1

|ξθ (R)| ≤ C.

(4.1)

Next we consider the quantity P(1)
ξβ

(π, λ) from (1.31). By Lemma 3.7 with N = 1,

P(1)
ξβ

(π, λ) = E log
∑

α∈Ns−1

∑

σ∈�

να exp
〈
Zξβ

(α) + λ, σ
〉
, (4.2)

where (να)α∈Ns−1 is the probability mass function of the Ruelle probability cascade
associated to (3.4), and Zξβ

: N
s−1 → R

κ is an independent centered Gaussian process
with covariance

E[Zξβ
(α)Zξβ

(α′)T] = ∇ξβ(γr(α,α′)).

We can realize this process as Zξβ
(α) = Zξ (α) +

∑
θ∈�Q

βθ Zθ (α), where all the pro-
cesses on the right-hand side are independent and centered, with covariances

E[Zξ (α)Zξ (α
′)T] = ∇ξ(γr(α,α′)), E[Zθ (α)Zθ (α

′)T] = ∇ξθ (γr(α,α′)). (4.3)

These processes exist by Remark 3.9. Then consider the following probability measure
on N

s−1 ×�:

G(α, σ ) ∝ να exp
〈
Zξβ

(α) + λ, σ
〉
.

In what follows, we will write
(
(α�, σ �)

)
�≥1 to denote i.i.d. samples from G, and 〈·〉G

to denote expectation with respect to G⊗∞. Differentiating (4.2) with respect to βθ , we
have

∂

∂βθ

P(1)
ξβ

(π, λ) = E
〈
g1
〉
G , where g� =

〈
Zθ (α

�), σ �
〉
.

By Gaussian integration by parts [54, Lem. 1.1], this can be rewritten as

∂

∂βθ

P(1)
ξβ

(π, λ) = βθE
〈
f1,1 − f1,2

〉
G, (4.4)

where f�,�′ = C((α�, σ �), (α�′ , σ �′)
)
, and C : (Ns−1 ×�)2 → R is given by

C((α, σ ), (α′, σ ′)
) = E

[〈
Zθ (α), σ

〉 · 〈Zθ (α
′), σ ′

〉] (4.3)= 〈∇ξθ (γr(α,α′))σ, σ ′〉.



Parisi Formula for Balanced Potts Page 27 of 68   228 

Because σ, σ ′ ∈ � are both standard basis vectors, we have

|〈∇ξθ (γr(α,α′))σ, σ ′〉| ≤ ‖∇ξθ (γr(α,α′))‖∞ ≤ sup
‖R‖1≤1

‖∇ξθ (R)‖∞ ≤ C.

Therefore, for any �, �′ ≥ 1 we have

| f�,�′ | ≤ C.

By differentiating (4.4) using the product rule, we obtain
( ∂

∂βθ

)2
P(1)

ξβ
(π, λ) = E

〈
f1,1 − f1,2

〉
G + βθ

∂

∂βθ

E
〈
f1,1 − f1,2

〉
G .

Observe that f�,�′ has no dependence on βθ , and so direct calculation yields

∂

∂βθ

E
〈
f1,1
〉
G = E

〈
f1,1 · (g1 − g2)

〉
G ,

∂

∂βθ

E
〈
f1,2
〉
G = E

〈
f1,2 · (g1 + g2 − 2g3)

〉
G = 2E

〈
f1,2 · (g1 − g3)

〉
G .

Applying Gaussian integration by parts once more (this time using [54, Lem. 1.2]), we
have

E
〈
f1,1 · g1

〉
G = βθE

〈
f1,1 · ( f1,1 − f1,2)

〉
G,

E
〈
f1,1 · g2

〉
G = βθE

〈
f1,1 · ( f2,1 + f2,2 − 2 f2,3)

〉
G ,

E
〈
f1,2 · g1

〉
G = βθE

〈
f1,2 · ( f1,1 + f1,2 − 2 f1,3)

〉
G,

E
〈
f1,2 · g3

〉
G = βθE

〈
f1,2 · ( f3,1 + f3,2 + f3,3 − 3 f3,4)

〉
G .

The four previous displays together show
∣∣∣
( ∂

∂βθ

)2
P(1)

ξβ
(π, λ)

∣∣∣ ≤ C(1 + β2
θ ). (4.5)

The combination of (4.1) and (4.5) yields the desired inequality. ��
Lemma 4.2. Assume ξ satisfies (A1), (A2’), and β satisfies (B1), (B2). Then for any
d ∈ D, the following statements hold.

(a) infπ∈�d Pξβ
(π) ≥ 0.

(b) For any θ ∈ �Q, the function βθ �→ infπ∈�d Pξβ
(π) is convex on an open interval.

Proof. By Theorem 1.7 we have

f lim
ε↘0

lim sup
N→∞

FN ,ξβ
(d, ε) = inf

π∈�d
Pξβ

(π). (4.6)

Given any ε > 0, the set �N (d, ε) from (1.4) is nonempty for all large N . For any
σ ∈ �N (d, ε), we have the trivial lower bound

FN ,ξβ
(d, ε) ≥ 1

N
EHN ,ξβ

(σ ) = 0. (4.7)

Part (a) now follows from (4.6) and (4.7).
For part (b), note that (4.6) remains true for all βθ in some open interval, since (B1)

and (B2) remain true for all βθ in some open interval. From the decomposition (2.19), a
standard application of Hölder’s inequality shows that whenever �N (d, ε) is nonempty,
the map βθ �→ FN ,ξβ

(d, ε) is convex for any θ ∈ �Q. Therefore, βθ �→ infπ∈�d Pξβ
(π)

is a limit of convex functions (via (4.6)) and hence convex. ��



  228 Page 28 of 68 E. Bates, Y. Sohn

Finally, we show that Lemmas 4.1 and 4.2 imply Proposition 2.9.

Proof of Proposition 2.9. Fix θ ∈ �Q and d ∈ D.
For clarity, we make the dependence of Pξβ

(π, λ) on βθ explicit by writing
Fπ,λ(βθ ) :=Pξβ

(π, λ), as well as

F(βθ ) := inf
π∈�d

Pξβ
(π) = inf

π∈�d ,λ∈Rκ
Fπ,λ(βθ ).

By Lemma 4.2(a), F(βθ ) is a finite number. So for any ε > 0, there exist πε ∈ �d
and λε ∈ R

κ such that

Fπε,λε (βθ ) ≤ F(βθ ) + ε. (4.8)

Since βθ �→ F(βθ ) is convex by Lemma 4.2(b), the differentiability we seek is equivalent
to the subdifferential ∂F(βθ ) consisting of a single point. So consider x ∈ ∂F(βθ ). For
all small enough h > 0, we have

x ≤ F(βθ + h)− F(βθ )

h
. (4.9)

Combining (4.8) and (4.9) with the trivial inequality F(βθ + h) ≤ Fπε,λε (βθ + h), we
see

x ≤ Fπε,λε (βθ + h)− Fπε,λε (βθ ) + ε

h
≤ ∂

∂βθ

Fπε,λε (βθ ) + Ch
(
1 + (|βθ | + h)2) +

ε

h
,

(4.10)

where the second inequality follows from Taylor’s theorem together with Lemma 4.1.
By analogous reasoning,

x ≥ ∂

∂βθ

Fπε,λε (βθ )− Ch
(
1 + (|βθ | + h)2)− ε

h
. (4.11)

Finally, take h = √
ε and send ε → 0. The inequalities (4.10) and (4.11) together show

that x can take at most one value. ��

5. Continuity and Duality

The purpose of this section is threefold. First we prove Proposition 2.13, part (b) of
which gives Lipschitz continuity of the Parisi functional. Next we use this continuity
in the proof of a duality statement (Lemma 5.3) that is needed in Sect. 6 to relate the
functional appearing the Aizenman–Sims–Starr Scheme to the Parisi functional. Finally,
we solve this duality in the balanced case (Lemma 5.4), thereby eliminating the infimum
appearing in (1.35) and fulfilling the promise of Remark 1.9.
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5.1. Continuity of free energy and the Parisi functional. Both parts of Proposition 2.13
follow from interpolation arguments. We begin with part (a).

Proof of Proposition 2.13(a). For t ∈ [0, 1], define the following interpolating free en-
ergy:

φ(t) = 1

N
E log

∑

σ∈�N (d)

expHt (σ ), where Ht (σ ) = √
t HN ,ξ (σ ) +

√
1− t HN ,ξ̃ (σ ).

We assume HN ,ξ is independent of HN ,ξ̃ . Let 〈·〉t denote expectation with respect to

the Gibbs measure Gt (σ ) ∝ expHt (σ ) on �N (d). By differentiating the expression for
φ(t) with respect to t , we have

φ′(t) = 1

N
E

〈∂Ht (σ )

∂t

〉

t
.

By Gaussian integration by parts [54, Lem. 1.1], this can be rewritten as

φ′(t) = N−1
E
〈C(σ 1, σ 1)− C(σ 1, σ 2)

〉
t ,

where σ 1, σ 2 denote independent samples from Gt , and C : �N (d) × �N (d) → R is
given by

C(σ, σ ′) = E

[∂Ht

∂t
(σ )Ht (σ

′)
]

(1.14)= 1

2

[
ξ
(σσ ′T

N

)
− ξ̃
(σσ ′T

N

)]
.

Since ‖σσ ′T‖1 ≤ N for any σ, σ ′ ∈ �N , we deduce that

sup
t∈(0,1)

|φ′(t)| ≤ sup
‖R‖1≤1

|ξ(R)− ξ̃ (R)|.

In summary,

∣∣FN ,ξ − FN ,ξ̃

∣∣ = |φ(1)− φ(0)
∣∣ ≤ sup

‖R‖1≤1
|ξ(R)− ξ̃ (R)|.

��
We now turn our attention to Proposition 2.13(b), which will be an easy consequence

of the following lemma. In fact, this lemma is what allows the Parisi functional to be
extended to arbitrary paths in the first place.

Lemma 5.1. Assume ξ and ξ̃ satisfy (A1). Then for any d ∈ D, discrete paths π, π̃ ∈
�disc

d , λ ∈ R
κ , and nonempty S ⊆ �N , we have

|P(1)
N ,ξ (π, λ; S)−P(1)

N ,ξ̃
(π̃ , λ; S)|

≤ sup
‖R‖1≤1

‖∇ξ(R)−∇ ξ̃ (R)‖∞ +
1

2
sup

‖R‖1≤1
‖∇2ξ(R)‖∞

∫ 1

0
‖π(t)− π̃(t)‖1 dt.

(5.1)
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Similarly,

|P(2)
ξ (π)−P(2)

ξ̃
(π̃)|

≤ sup
‖R‖1≤1

‖∇ξ(R)− ∇ ξ̃ (R)‖∞ +
1

2
sup

‖R‖1≤1
‖∇2ξ(R)‖∞

∫ 1

0
‖π(t)− π̃(t)‖1 dt.

(5.2)

Proof. As in (3.5), we assume π and π̃ are of the form

π(t) = γr and π̃(t) = γ̃r for t ∈ (mr−1,mr ], r ∈ {1, . . . , s}.
There is no loss of generality in using the same partition 0 = m0 < m1 < · · · < ms = 1
for both paths, thanks to Remark 3.6.

First we prove (5.1). Let (Z̃i (α))1≤i≤N ,α∈Ns−1 be an independent copy of the process
(Zi (α))1≤i≤N ,α∈Ns−1 from (3.6). We assume both processes are independent of the RPC
weights (να)α∈Ns−1 . Then define an interpolating process

Ht (α, σ ) =
N∑

i=1

(√
t
〈
Zi (α), σi

〉
+
√

1− t 〈Z̃i (α), σi 〉 + 〈λ, σi 〉
)
, t ∈ [0, 1], (5.3)

as well as the corresponding energy

φ(t) = 1

N
E log

∑

α∈Ns−1

∑

σ∈S
να expHt (α, σ ). (5.4)

We then have φ(1) = P(1)
N ,ξ (π, λ; S) while φ(0) = P(1)

N ,ξ̃
(π̃ , λ; S), and so we seek

an upper bound on |φ(1)− φ(0)|. For (5.1) it suffices to show a uniform bound on the
derivative of φ:

sup
t∈(0,1)

|φ′(t)| ≤ R.H.S. of (5.1). (5.5)

To this end, let 〈·〉t denote expectation with respect to the probability measureGt (α, σ ) ∝
να expHt (α, σ ) on N

s−1 × S. By differentiating (5.4) with respect to t , we have

φ′(t) = 1

N
E

〈∂Ht (α, σ )

∂t

〉

t
. (5.6)

Define C : (Ns−1 × S)2 → R by

C((α, σ ), (α′, σ ′)
) = 1

N
E

[∂Ht (α, σ )

∂t
Ht (α

′, σ ′)
]

(5.3)= 1

2N

N∑

i=1

E
[〈
Zi (α), σi

〉〈
Zi (α

′), σ ′i
〉− 〈Z̃i (α), σi 〉〈Z̃i (α

′), σ ′i 〉
]

(3.6)= 1

2N

N∑

i=1

[〈∇ξ(γr(α,α′))σi , σ
′
i 〉 − 〈∇ ξ̃ (γ̃r(α,α′))σi , σ

′
i 〉
]
,

(5.7)
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Then Gaussian integration by parts [54, Lem. 1.1] transforms (5.6) to

φ′(t) = E

〈
C((α1, σ 1), (α1, σ 1)

)− C((α1, σ 1), (α2, σ 2)
)〉

t
, (5.8)

where (α1, σ 1), (α2, σ 2) denote independent samples from Gt . Since both σi and σ ′i are
standard basis vectors, it follows from (5.7) that

|C((α, σ ), (α′, σ ′)
)| ≤ 1

2
‖∇ξ(γr(α,α′))− ∇ ξ̃ (γ̃r(α,α′))‖∞

≤ 1

2

(‖∇ξ(γr(α,α′))− ∇ξ(γ̃r(α,α′))‖∞ + ‖∇ξ(γ̃r(α,α′))−∇ ξ̃ (γ̃r(α,α′))‖∞
)

≤ 1

2

(
sup

‖R‖1≤1
‖∇2ξ(R)‖∞ · ‖γr(α,α′) − γ̃r(α,α′)‖1 + sup

‖R‖1≤1
‖∇ξ(R)− ∇ ξ̃ (R)‖∞

)
.

(5.9)

In the special case α = α′, we can use the assumption that both π and π̃ belong to �disc
d

in order to conclude that

γr(α,α) = γs = γ̃s = diag(d).

That is, the first term in the final line of (5.9) vanishes when α = α′. Therefore, using
(5.9) in (5.8) leads to

|φ′(t)|≤ sup
‖R‖1≤1

‖∇ξ(R)−∇ ξ̃ (R)‖∞+
1

2
sup

‖R‖1≤1
‖∇2ξ(R)‖∞E

〈‖γr(α1,α2)−γ̃r(α1,α2)‖1
〉
t .

By [54, Thm. 4.4], the marginal of r(α1, α2) under E(G⊗2
t ) is the same with the marginal

of r(α1, α2) under E(ν⊗2), where ν is the RPC from Theorem 3.4. In particular,

E
〈‖γr(α1,α2) − γ̃r(α1,α2)‖1

〉
t =

s∑

r=1

‖γr − γ̃r‖1(mr − mr−1) =
∫ 1

0
‖π(t)− π̃(t)‖1 dt.

Using this calculation in the previous inequality yields (5.5).
Now we turn to proving (5.2). Since π and π̃ both belong to �d , we have

|P(2)
ξ (π)−P(2)

ξ̃
(π̃)| (1.33)≤ 1

2

∫ 1

0
|ϑξ (π(t))− ϑξ̃ (π̃(t))| dt. (5.10)

For any γ and γ̃ , the triangle inequality gives

|ϑξ (γ )− ϑξ̃ (γ̃ )| ≤ |ϑξ (γ )− ϑξ (γ̃ )| + |ϑξ (γ̃ )− ϑξ̃ (γ̃ )|. (5.11)

When ‖γ ‖1, ‖γ̃ ‖1 ≤ 1, the first term on the right-hand side of (5.11) obeys the upper
bound

|ϑξ (γ )− ϑξ (γ̃ )| ≤ sup
‖R‖1≤1

‖∇ϑξ (R)‖∞ · ‖γ − γ̃ ‖1. (5.12)

Now recall from (1.27) that ϑξ (R) = 〈R,∇ξ(R)〉−ξ(R). It follows that the (a, b) entry
of ∇ϑξ (R) is

∂ϑ

∂Ra,b
= Ra,b

κ∑

k,k′=1

∂2ξ

∂Ra,b∂Rk,k′
,
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and thus ‖∇ϑξ (R)‖∞ ≤ ‖R‖1 · ‖∇2ξ(R)‖∞. Using this in (5.12) results in

|ϑξ (γ )− ϑξ (γ̃ )| ≤ sup
‖R‖1≤1

‖∇2ξ(R)‖∞ · ‖γ − γ̃ ‖1. (5.13)

Meanwhile, the second term on the right-hand side of (5.11) satisfies

|ϑξ (γ̃ )− ϑξ̃ (γ̃ )| ≤ |〈γ̃ ,∇ξ(γ̃ )− ∇ ξ̃ (γ̃ )〉| + |ξ(γ̃ )− ξ̃ (γ̃ )|
≤ sup
‖R‖1≤1

‖∇ξ(R)− ∇ ξ̃ (R)‖∞ + sup
‖R‖1≤1

|ξ(R)− ξ̃ (R)|. (5.14)

Since ξ(0) = ξ̃ (0) = 0 by (A1), the second supremum above can be further controlled
as

sup
‖R‖1≤1

|ξ(R)− ξ̃ (R)| ≤ sup
‖R‖1≤1

‖∇ξ(R)−∇ ξ̃ (R)‖∞.

Therefore, (5.14) can be rewritten as

|ϑξ (γ̃ )− ϑξ̃ (γ̃ )| ≤ 2 sup
‖R‖1≤1

‖∇ξ(R)−∇ ξ̃ (R)‖∞. (5.15)

Applying both (5.13) and (5.15) in (5.11) results in

|ϑξ (γ )− ϑξ̃ (γ̃ )| ≤ 2 sup
‖R‖1≤1

‖∇ξ(R)− ∇ ξ̃ (R)‖∞ + sup
‖R‖1≤1

‖∇2ξ(R)‖∞ · ‖γ − γ̃ ‖1.

Applying this uniform bound to the integrand in (5.10) yields (5.2) as desired. ��
A key consequence of Lemma 5.1 is that the map �disc

d � π �→ P(1)
N ,ξ (π, λ; S)

has a unique continuous extension to all of �d . We continue to write P(1)
N ,ξ for this

extension, including the special case P(1)
ξ (π, λ) = P(1)

1,ξ (π, λ;�) used in (1.31). Of
course, these extensions admit the same estimates (5.1) and (5.2) for any π, π̃ ∈ �d . We
now record how these estimates lead to the continuity of Parisi functional, as claimed in
Proposition 2.13(b).

Proof of Proposition 2.13(b). Recall the definition of the Parisi functional from (1.35):

Pξ (π) = inf
λ∈Rκ

[
P(1)

ξ (π, λ) + P(2)
ξ (π, λ)− 〈λ, d〉]

(3.10)= inf
λ∈Rκ

[
P(1)

1,ξ (π, λ;�) + P(2)
ξ (π, λ)− 〈λ, d〉].

By combining (5.1) and (5.2), we have
∣∣P(1)

1,ξ (π, λ;�) + P(2)
ξ (π, λ)−P(1)

1,ξ̃
(π̃ , λ;�)−P(2)

ξ̃
(π̃ , λ)

∣∣

≤ 2 sup
‖R‖1≤1

‖∇ξ(R)− ∇ ξ̃ (R)‖∞ + sup
‖R‖1≤1

‖∇2ξ(R)‖∞
∫ 1

0
‖π(t)− π̃(t)‖1 dt.

(5.16)

Since the right-hand side of (5.16) does not depend on λ, it follows that

|Pξ (π)− Pξ̃ (π̃ )| ≤ R.H.S. of (5.16).

This is exactly what was claimed in (2.24). ��
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5.2. Duality of magnetization with Lagrange multiplier. The following lemma makes
precise the discussion in Remark 3.8. It is a generalization of [58, Lem. 2] and is proved
similarly. The proof is included in “Appendix D” for completeness.

Lemma 5.2. Assume ξ satisfies (A1). AssumedN ∈ DN converges to d ∈ D as N →∞.
Then for any d ′ ∈ D and π ∈ �disc

d ′ , we have

lim
N→∞P(1)

N ,ξ (π, 0;�N (dN )) = inf
λ∈Rκ

[
P(1)

ξ (π, λ)− 〈λ, d〉]. (5.17)

On a technical note, we point out that d ′ does not need to be related to d. We will,
however, only need the case d ′ = d. Now we bootstrap to a stronger statement.

Lemma 5.3. Assume ξ satisfies (A1). AssumedN ∈ DN converges to d ∈ D as N →∞.
Let π ∈ �d ′ where d ′ ∈ D is arbitrary, and consider any sequence (πN )N≥1 in �d ′
satisfying

lim
N→∞

∫ 1

0
‖πN (t)− π(t)‖1 dt = 0, (5.18)

We then have

lim
N→∞P(1)

N ,ξ (πN , 0;�N (dN )) = inf
λ∈Rκ

[
P(1)

ξ (π, λ)− 〈λ, d〉]. (5.19)

Proof. Our goal is to extend (5.17) to general paths π ∈ �d ′ and to allow for π on the
left-hand side of (5.17) to be replaced with an approximating sequence (πN )N≥1. To
this end, take any π̃ ∈ �disc

d ′ and observe that

∣∣∣P(1)
N ,ξ (πN , 0;�N (dN ))− inf

λ∈Rκ

[
P(1)

ξ (π, λ)− 〈λ, d〉]
∣∣∣

≤∣∣P(1)
N ,ξ (πN , 0;�N (dN ))−P(1)

N ,ξ (π̃ , 0;�N (dN ))
∣∣

+
∣∣∣P(1)

N ,ξ (π̃ , 0;�N (dN ))− inf
λ∈Rκ

[
P(1)

ξ (π̃ , λ)− 〈λ, d〉]
∣∣∣

+
∣∣∣ inf
λ∈Rκ

[
P(1)

ξ (π̃ , λ)− 〈λ, d〉]− inf
λ∈Rκ

[
P(1)

ξ (π, λ)− 〈λ, d〉]
∣∣∣

(5.1),(5.17)≤ o(1) + sup
‖R‖1≤1

‖∇2ξ(R)‖∞
∫ 1

0

(‖πN (t)− π̃(t)‖1 + ‖π̃(t)− π(t)‖1
)

dt

(5.18)≤ o(1) + sup
‖R‖1≤1

‖∇2ξ(R)‖∞
∫ 1

0
2‖π̃(t)− π(t)‖1 dt.

(5.20)

Since �disc
d ′ is dense in �d ′ (with respect to the norm (1.32)), we can choose π̃ to make

the integral on the final line of (5.20) arbitrarily small. The claim (5.19) follows. ��
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5.3. Duality in the balanced case. When d = dbal, we can solve the infimum on the
right-hand side of (5.19), at least for paths π belonging to the set �� from (1.12). Namely,
the infimum is achieved at λ = 0.

Lemma 5.4. Assume ξ satisfies (A1) and (A3). Then for any π ∈ ��, we have

inf
λ∈Rκ

[
P(1)

ξ (π, λ)− 〈λ, dbal〉
] =P(1)

ξ (π, 0). (5.21)

In what follows, it is necessary to recall the permutation action R �→ ω • R from
(1.23). Namely, the (k, k′) entry of R is equal to the (ω(k), ω(k′)) entry of ω • R.

Lemma 5.5. Assume ξ satisfies (A1) and (A3). Then for any permutation ω ∈ Sκ ,

ω • ∇ξ(R) = ∇ξ(ω • R) for all R ∈ R
κ×κ . (5.22)

Proof. First make a general observation not requiring symmetry: if we define the function
ξω(R) = ξ(ω • R), then

(k, k′) entry of ∇ξω(R) = (ω(k), ω(k′)) entry of ∇ξ(ω • R). (5.23)

The assumption that ξ is symmetric means ξω(R) = ξ(R). In this case, we can now
chase definitions from the left-hand side of (5.22) to the right-hand side of (5.22):

(k, k′) entry of ω • ∇ξ(R)
(1.23)= (ω−1(k), ω−1(k′)) entry of ∇ξ(R)

(5.23)= (k, k′) entry of ∇ξ(ω • R).

��
Proof of Lemma 5.4. It suffices to verify (5.21) for discrete paths π ∈ �disc

d , since such
paths are dense in �d , and both sides of (5.21) are continuous in π thanks to (5.1). So let
us assume π ∈ �disc

d is given by (3.5). It follows from [58, Lem. 6] that λ �→P(1)
ξ (π, λ)

is convex. This implies λ �→P(1)
ξ (π, λ)−〈λ, dbal〉 is convex and thus achieves a global

minimum wherever its gradient is zero. Therefore, it suffices to show

∂P(1)
ξ (π, λ)

∂λk

∣∣∣
λ=0

= ∂

∂λk
〈λ, dbal〉 for each k ∈ {1, . . . , κ}.

Since dbal = κ−11, this amounts to showing

∂P(1)
ξ (π, λ)

∂λk

∣∣∣
λ=0

= 1

κ
for each k ∈ {1, . . . , κ}. (5.24)

With (να)α∈Ns−1 denoting the RPC associated to (3.4), we have

P(1)
ξ (π, λ)

(3.10)= P(1)
1,ξ (π, λ;�)

(3.7)= E log
∑

α∈Ns−1

κ∑

k=1

να exp
〈
Z(α) + λ, ek

〉
, (5.25)

where (Z(α))α∈Ns−1 is a centered R
κ -valued Gaussian process with covariance structure

E[Z(α)Z(α′)T] = ∇ξ(γr(α,α′)), α, α′ ∈ N
s−1. (5.26)
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Now differentiate (5.25) with respect to λk and evaluate at λ = 0:

∂P(1)
ξ (π, λ)

∂λk

∣∣∣
λ=0

= E

[ ∑
α∈Ns−1 να exp

〈
Z(α), ek

〉
∑

α∈Ns−1
∑κ

k′=1 να exp
〈
Z(α), ek′

〉
]
. (5.27)

If we sum over k, then the numerators on the right-hand side add up to the denominator:

κ∑

k=1

∂P(1)
ξ (π, λ)

∂λk

∣∣∣
λ=0

= 1. (5.28)

On the other hand, we make the following claim.

Claim 5.6. (
〈
Z(α), ek

〉
)α∈Ns−1,1≤k≤κ is exchangeable in k.

Proof. For any permutation ω ∈ Sκ , we have

E[〈Z(α), eω(k)
〉〈
Z(α′), eω(k′)

〉] (5.26)= 〈∇ξ(γr(α,α′))eω(k), eω(k′)〉
(1.23)= 〈(ω−1 • ∇ξ(γr(α,α′)))ek, ek′ 〉
(5.22)= 〈(∇ξ(ω−1 • γr(α,α′)))ek, ek′ 〉.

Since π ∈ ��, the matrix γr(α,α′) has identical diagonal entries and identical off-diagonal
entries. In particular, it is invariant under the group action (1.23): ω−1 • γr(α,α′) =
γr(α,α′). Therefore, the previous display shows

E[〈Z(α), eω(k)
〉〈
Z(α′), eω(k′)

〉] = E[〈Z(α), ek
〉〈
Z(α′), ek′

〉].
Since (

〈
Z(α), ek

〉
)α∈Ns−1,1≤k≤κ is a centered Gaussian process, this equivalence of co-

variances is enough to establish exchangeability. � (Claim)

Recall that (Z(α))α∈Ns−1 is independent of the RPC weights (να)α∈Ns−1 . Conse-
quently, it follows from Claim 5.6 that the right-hand side of (5.27) does not depend on
k. In light of (5.28), this forces (5.24). ��

6. Lower Bound

In this section we prove Proposition 2.11. The A.S.S. scheme is presented in Sect. 6.1,
and the G.G. identities are proved in Sect. 6.2. These two inputs are then combined with
symmetry to prove the proposition in Sect. 6.3.

Since the A.S.S. scheme is based on the cavity method, we must work with a cav-
ity Hamiltonian (HN ,M,ξ (σ ))σ∈�N . Lemma 6.1 stated below guarantees its existence.
Throughout Sect. 6, we will write GN ,M,ξ for the associated Gibbs measure. More pre-
cisely, given some dN ∈ DN , GN ,M,ξ is the probability measure on �N (dN ) defined
by

GN ,M,ξ (σ ) := exp HN ,M,ξ (σ )

ZN ,M,ξ (dN )
where ZN ,M,ξ (d

N ) :=
∑

σ∈�N (dN )

exp HN ,M,ξ (σ ).

(6.1)
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We will write Law
(R;E(G⊗∞N ,M,ξ )

)
to denote the law of the array R = (R�,�′)�,�′≥1,

where

R�,�′ = σ�(σ �′)T

N
, (σ 1, σ 2, . . . ) ∼ E(G⊗∞N ,M,ξ ).

Lemma 6.1. Assume ξ satisfies (A1). Then for any positive integers N and M, there
exists a centered Gaussian process (HN ,M,ξ (σ ))σ∈�N with covariance

E[HN ,M,ξ (σ )HN ,M,ξ (σ
′)] = (N + M)ξ

( σσ ′T

N + M

)
. (6.2)

Proof. By the decomposition in (A1), it suffices to prove the following for each θ in the
parameter set� from (1.16): there exists a centered Gaussian processes (HN ,M,θ (σ ))σ∈�N

such that

E[HN ,M,θ (σ )HN ,M,θ (σ
′)] = (N + M)ξθ

( σσ ′T

N + M

)
, (6.3)

where ξθ is defined in (1.17). To this end, let (HN ,θ (σ ))σ∈�N be the Gaussian process
from Proposition 2.7(c), and then set

HN ,M,θ (σ ) =
( N

N + M

)(deg(θ)−1)/2
HN ,θ (σ ),

where deg(θ) is defined in (1.18). This trivially leads to

E[HN ,M,θ (σ )HN ,M,θ (σ
′)] =

( N

N + M

)deg(θ)−1
E[HN ,θ (σ )HN ,θ (σ

′)]
(2.16)=

( N

N + M

)deg(θ)−1
Nξθ

(σσ ′T

N

)
.

Then, by the fact that ξθ is a homogeneous polynomial, we achieve (6.3):

E[HN ,M,θ (σ )HN ,M,θ (σ
′)] = (N + M)

( N

N + M

)deg(θ)

ξθ

(σσ ′T

N

)

= (N + M)ξθ

( σσ ′T

N + M

)
. (6.4)

��

6.1. Aizenman–Sims–Starr scheme. The A.S.S. scheme relates ratios of partition func-
tions to the functional �N ,ξ from (3.3). In what follows, we use the following notation:

f = O∇2ξ (g) means that | f | ≤ g · C sup
‖R‖1≤1

‖∇2ξ(R)‖∞, (6.5)

where C is some universal constant.
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Proposition 6.2. (A.S.S. scheme) Assume ξ and ξ̃ satisfy (A1). Let M be a positive
integer, and suppose dN ∈ DN , dN+M ∈ DN+M, δM ∈ DM satisfy

NdN + MδM = (N + M)dN+M . (6.6)

Let LN ,M = Law(R;E(G⊗∞N ,M,ξ )). We then have

E log
ZN+M,ξ̃ (d

N+M )

ZN ,ξ (dN )
+ O∇2ξ

( M2

N + M

)
+
N + M

2
sup

‖R‖1≤1
|ξ(R)− ξ̃ (R)|

≥ M�M,ξ (LN ,M ; dN , �M (δM )).

(6.7)

Proposition 6.2 follows from a standard application of Aizenman–Sims–Starr Scheme
[2,21]. The proof is included in “Appendix B” for completeness. In order to prove
Proposition 2.11, we will take N , M to be a multiple of κ and use Proposition 6.2 with
dN = dN+M = δM = dbal.

Remark 6.3. For the right-hand side of (6.7) to make sense, it is essential that the Gibbs
measureGN ,M,ξ in (6.1) is restricted to the space �N (dN ), so that N−1σσT = diag(dN )

for all σ in the support of GN ,M,ξ . This allows for Assumption 3.1(ii) to hold with

(X , R, d) = (�N (dN ), (σ, σ ′) �→ N−1σ(σ ′)T, dN ).

In this setting, Assumption 3.1(i) is obvious, and 3.1(iii) follows from Proposition 2.7(d).

6.2. Ghirlanda–Guerra identities for generic models. In this section we prove that dif-
ferentiability of the Parisi formula leads to the G.G. identities for generic models, thus
fulfilling the outcomes discussed after Proposition 2.9. But in order to discuss the G.G.
identies, we must first check that the relevant arrays are symmetric and positive semi-
definite.

Lemma 6.4. Given σ 1, . . . , σ n ∈ �N , denote R�,�′ = N−1σ�(σ �′)T. Then for any
w ∈ R

κ and positive integer p, the array (Q�,�′)1≤�,�′≤n given by Q�,�′ = 〈R◦p
�,�′w,w〉

is symmetric and positive-semidefinite.

Proof. Fix p ≥ 1 and w ∈ R
κ . Consider the parameter θ = (p, 1, 1, w) ∈ �, for which

(1.17) becomes ξθ (R) = 〈R◦pw,w〉. By Proposition 2.7(c), there exists a centered
Gaussian process H : �N → R with covariance

E[H(σ )H(σ ′)] = ξθ

(σσ ′T

N

)
= N 〈R(σ, σ ′)◦pw,w〉,

where R(σ, σ ′) = N−1σσ ′T. It follows that (σ, σ ′) �→ 〈R(σ, σ ′)◦pw,w〉 is a symmetric
and positive-semidefinite map �N ×�N → R. ��
Proposition 6.5. Assume ξ satisfies (A1), (A2’), and β = (βθ )θ∈�Q

satisfies (B1), (B2).
Provided βθ �= 0 for every θ ∈ �Q, the following holds for any positive integer M. Let
LN ,M = Law(R;E(G⊗∞N ,M,ξβ

)). Then any subsequential weak limit ofLN ,M as N →∞
satisfies the κ-dimensional Ghirlanda–Guerra identities in Definition 2.2.



  228 Page 38 of 68 E. Bates, Y. Sohn

Proof. To simplify notation, let us assume LN ,M converges weakly as N → ∞. Even
if this convergence occurs only along a subsequence, the argument we give below can
be restricted to that subsequence. Under the assumption that LN ,M converges, we must
have that dN converges to some d ∈ D, since at volume N the self-overlap matrix
R�,� = N−1σ�(σ �)T is equal to diag(dN ) with probability one under G⊗∞N ,M,ξβ

.
We divide the remainder of the proof into five steps. In the first four steps, we consider

a fixed θ ∈ �Q.
Step 1. Isolate the role of θ in the Hamiltonian.

Similar to (2.19), we can realize HN ,M,ξβ
as a sum:

HN ,M,ξβ
(σ ) = HN ,M,ξ (σ ) +

∑

θ ′∈�Q

βθ ′HN ,M,θ ′(σ ), (6.8)

where HN ,M,ξ is as in (6.2), HN ,M,θ ′ is as in (6.3), and all Gaussian processes on the
right-hand side of (6.8) are independent. We also consider the Hamiltonian without the
contribution of HN ,M,θ , as follows. Define β− = (β−

θ ′ )θ ′∈�Q
by

β−
θ ′ :=

{
βθ ′ if θ ′ �= θ

0 if θ ′ = θ.

We then have

HN ,M,ξβ− (σ ) = HN ,M,ξ (σ ) +
∑

θ ′∈�Q

θ ′ �=θ

βθ ′HN ,M,θ ′(σ ) = HN ,M,ξβ
(σ )− βθ HN ,M,θ (σ ).

(6.9)

From our definitions,

GN ,M,ξβ
(σ )

(6.1)= exp HN ,M,ξβ
(σ )

ZN ,M,ξβ
(dN )

(6.9)= exp(βθ HN ,M,θ (σ ))

ZN ,M,ξβ
(dN )/ZN ,M,ξβ− (dN )

·
exp HN ,M,ξβ− (σ )

ZN ,M,ξβ− (dN )

(6.1)= exp(βθ HN ,M,θ (σ ))

ZN ,M,ξβ
(dN )/ZN ,M,ξβ− (dN )

GN ,M,ξβ− (σ ).

(6.10)

Note that HN ,M,ξβ− (σ ) in independent of HN ,M,θ . Therefore, (6.10) expresses the mea-
sure of interest GN ,M,ξβ

as the Gibbs measure associated to βθ HN ,M,θ with respect to
the independent reference measure GN ,M,ξβ− . We thus write

ZN ,M,θ (βθ ) :=
ZN ,M,ξβ

(dN )

ZN ,M,ξβ− (dN )
and FN ,M,θ (βθ ) := 1

N
E logZN ,M,θ (βθ ). (6.11)

We think of these as functions of just βθ , keeping βθ ′ fixed for every θ ′ �= θ .
Step 2. Show that FN ,M,θ (βθ ) converges as N →∞.

Upon defining ξ̃β : R
κ×κ → R by

ξ̃β(R) = N + M

N
ξβ

( N

N + M
R
)
, (6.12)
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we can rewrite (6.2) for ξβ as

E[HN ,M,ξβ
(σ )HN ,M,ξβ

(σ ′)] = N ξ̃β

(σσ ′T

N

)
. (6.13)

We can then use the notation of (1.21) to write

1

N
E logZN ,M,ξβ

(dN ) = FN ,ξ̃β
(dN ).

By Proposition 2.13(a), we have
∣∣FN ,ξβ

(dN )− FN ,ξ̃β
(dN )

∣∣ ≤ sup
‖R‖1≤1

|ξβ(R)− ξ̃β(R)|.

Assuming ‖R‖1 ≤ 1, we now recall (6.12) and apply the triangle inequality to obtain

|ξβ(R)− ξ̃β(R)| ≤
∣∣∣ξβ(R)− ξβ

( N

N + M
R
)∣∣∣ +

M

N

∣∣∣ξ(β)
( N

N + M
R
)∣∣∣

≤ M

N + M
sup

‖Q‖1≤1
‖∇ξβ(Q)‖∞ +

M

N
sup

‖Q‖1≤1
|ξβ(Q)|.

Since M is fixed, we conclude from the two previous displays that

lim
N→∞

∣∣FN ,ξβ
(dN )− FN ,ξ̃β

(dN )
∣∣ = 0.

Hence Theorem 1.7 gives

lim
N→∞

1

N
E logZN ,M,ξβ

(dN ) = inf
π∈�d

Pξβ
(π).

By the same argument (just replacing β with β−, which still satisfies (B1) and (B2)),

lim
N→∞

1

N
E logZN ,M,ξβ− (dN ) = inf

π∈�d
Pξβ− (π).

In light of definition (6.11), the two previous displays together yield

lim
N→∞FN ,M,θ (βθ ) = inf

π∈�d
Pξβ

(π)− inf
π∈�d

Pξβ− (π). (6.14)

Step 3. Show that ZN ,M,θ (βθ ) concentrates.
By (6.13) we have

E[HN ,M,ξβ
(σ )2] = N ξ̃β(diag(dN )) for all σ ∈ �N (dN ).

Hence Gaussian concentration (see [54, Thm. 1.2]) implies that for all x ≥ 0,

P

(∣∣∣
logZN ,M,ξβ

(dN )

N
− E logZN ,M,ξβ

(dN )

N

∣∣∣ ≥ x
)
≤ 2 exp

( −x2N

4ξ̃β(diag(dN ))

)
.

In particular, we have the following limit:

lim
N→∞E

∣∣∣
logZN ,M,ξβ

(dN )

N
− E logZN ,M,ξβ

(dN )

N

∣∣∣ = 0.
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By the same argument (but replacing β with β−),

lim
N→∞E

∣∣∣
logZN ,M,ξβ− (dN )

N
−

E logZN ,M,ξβ− (dN )

N

∣∣∣ = 0.

In light of the definition (6.11), the two previous displays together yield

lim
N→∞E

∣∣∣
logZN ,M,θ (βθ )

N
− E logZN ,M,θ (βθ )

N

∣∣∣ = 0. (6.15)

Step 4. Conclude that HN ,M,θ (σ ) from (6.8) concentrates around E〈HN ,M,θ (σ )〉N ,
where 〈·〉N denotes expectation with respect to G⊗∞N ,M,ξβ

.

Since (B1) and (B2) remain true if βθ is varied slightly, the limits (6.14) and (6.15)
remain true for all choices of βθ in some open interval. Furthermore, by Proposition 2.9,
the right-hand side of (6.14) is differentiable with respect to βθ . Therefore, by applying
the result of [52] (see the remark after Thm. 1) to the representation (6.10), we have

lim
N→∞

1

N
E
〈∣∣HN ,M,θ (σ )− E〈HN ,M,θ (σ )〉N

∣∣〉
N = 0. (6.16)

Step 5. Conclude that the Ghirlanda–Guerra identities are satisfied in the large-N limit.
Given any positive integer n, consider any bounded measurable function f of the

finite subarray R(n) = (R�,�′)1≤�,�′≤n . With 〈·〉N denoting expectation with respect to
G⊗∞N ,M,ξβ

, we have the following for any θ ∈ �Q:

∣∣∣E
〈
f ·
(
HN ,M,θ (σ 1)− E〈HN ,M,θ (σ 1)〉N

)〉

N

∣∣∣ ≤ ‖ f ‖∞
〈∣∣HN ,M,θ (σ 1)− E〈HN ,M,θ (σ 1)〉N

∣∣〉
N .

The right-hand side is o(N ) by (6.16), and so the left-hand side is o(N ) as well:

lim
N→∞

1

N

∣∣∣E
〈
f ·
(
HN ,M,θ (σ

1)− E〈HN ,M,θ (σ
1)〉N
)〉

N

∣∣∣ = 0. (6.17)

On the other hand, Gaussian integration by parts [54, Lem. 1.2] gives

E

〈
f · HN ,M,θ (σ

1)
〉

N
= βθE

〈
f ·
( n∑

�=1

C(σ 1, σ �)− nC(σ 1, σ n+1)
)〉

N
, (6.18)

where C : �N (dN )×�N (dN ) → R is given by

C(σ, σ ′) = E[HN ,M,θ (σ )HN ,M,θ (σ
′)] (6.4)= (N + M)

( N

N + M

)deg(θ)

ξθ

(σσ ′T

N

)
.

Hence (6.18) can be rewritten as

1

N
E

〈
f · HN ,M,θ (σ

1)
〉

N
= βθ

( N

N + M

)deg(θ)−1
E

〈
f ·
( n∑

�=1

ξθ (R1,�)− nξθ (R1,n+1)
)〉

N
.
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Since R1,1 = diag(dN ) with probability one under GN ,M,ξβ
, we can further rewrite the

right-hand side to obtain

1

N
E

〈
f · HN ,M,θ (σ

1)
〉

N
= βθ

( N

N + M

)deg(θ)−1
[
E〈 f 〉N · ξθ (diag(dN ))

+ E

〈
f ·
( n∑

�=2

ξθ (R1,�)− nξθ (R1,n+1)
)〉

N

]
.

(6.19)

In the special case of the constant function f ≡ 1, we have

E〈HN ,M,θ (σ 1)〉N
N

= βθ

( N

N + M

)deg(θ)−1[
ξθ (diag(dN )) + E

〈 n∑

�=2

ξθ (R1,�)− nξθ (R1,n+1)
〉

N

]

= βθ

( N

N + M

)deg(θ)−1[
ξθ (diag(dN ))− E〈ξθ (R1,2)〉N

]
.

Upon multiplying this last equation by E〈 f 〉N , we obtain

1

N
E

〈
f · E〈HN ,M,θ (σ

1)〉N
〉

N

= βθ

( N

N + M

)deg(θ)−1[
E〈 f 〉N · ξθ (diag(dN ))− E〈 f 〉N · E〈ξθ (R1,2)〉N

]
.

(6.20)

Subtracting (6.20) from (6.19) results in

1

N
E

〈
f ·
(
HN ,M,θ (σ 1)− E〈HN ,M,θ (σ 1)〉N

)〉

N

= βθ

( N

N + M

)deg(θ)−1[
E

〈
f ·
( n∑

�=2

ξθ (R1,�)− nξθ (R1,n+1)
)〉

N
+ E〈 f 〉N · E〈ξθ (R1,2)〉N

]
.

By (6.17), the left-hand side of this identity tends to 0 as N → ∞. By our crucial
assumption that βθ �= 0, it follows that

lim
N→∞

∣∣∣∣E
〈
f · ξθ (R1,n+1)

〉
N −

1

n
E〈 f 〉N · E〈ξθ (R1,2)〉N − 1

n

n∑

�=2

E
〈
f · ξθ (R1,�)

〉
N

∣∣∣∣ = 0.

Now let L denote the weak limit of LN ,M as N →∞. The previous display means that
when the array R is distributed according to L, we have

E[ f (R(n)) · ξθ (R1,n+1)] = 1

n
E[ f (Rn)] · Eξθ (R1,2) +

1

n

n∑

�=2

E[ f (Rn) · ξθ (R1,�)].
(6.21)

This is a special case of the G.G. identity (2.9). All that remains is to argue that this
special case implies the general case.

Recall that ξθ (R) = ∏m
j=1〈R◦pw j , w j 〉n j , where p,m, n1, . . . , nm ≥ 1 and

w1, . . . , wm ∈ [−1, 1]κ are the parameters defining θ . Since (Q ∩ [−1, 1])κ is dense
in [−1, 1]κ , and (6.21) holds for every θ ∈ �Q, it follows that (6.21) holds for every
θ ∈ �. That is, (2.9) holds whenever the function ϕ in (2.8) is a polynomial of the
form ϕ(x1, . . . , xm) = ∏m

j=1 x
n j
j . By approximating continuous functions with linear
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combinations of such polynomials (together with constant functions, for which (2.9) is
trivial), we deduce the same statement for any bounded continuous ϕ : R

m → R. Fi-
nally, by approximating bounded measurable functions with bounded continuous func-
tions (e.g. using Lusin’s theorem [65, Thm. 2.24]), we obtain the identity (2.9) for any
bounded measurable ϕ. Note that these approximations are over compact domains, since
every overlap matrix R�,�′ almost surely belongs to the compact set Rκ from (1.19). ��

Before we can make use of Proposition 6.5 in the next section, we need one more
basic fact about the G.G. identities.

Lemma 6.6. Assume L = Law(R) is a Gram–de Finetti law that satisfies the κ-
dimensional Ghirlanda–Guerra identities in Definition 2.2. Then the scalar array Q =
(Q�,�′)�,�′≥1 given by Q�,�′ = tr(R�,�′) satisfies the 1-dimensional Ghirlanda–Guerra
identities. That is, for any bounded measurable function f of the finite subarrayQ(n) =
(Q�,�′)1≤�,�′≤n, and any bounded measurable ψ : R → R, we have

E[ f (Q(n))ψ(Q1,n+1)] = 1

n
E[ f (Q(n))]E[ψ(Q1,2)] +

1

n

n∑

�=2

E[ f (Q(n))ψ(Q1,�)].

(6.22)

Proof. Define ϕ : R
κ → R by ϕ(x1, . . . , xκ ) = ψ(x1 + · · · + xκ). We then have

ψ(tr(R)) = ϕ(〈Re1, e1〉, . . . , 〈Reκ , eκ 〉),
and so (6.22) is a special case of (2.9). ��

6.3. Proof of lower bound from symmetry. From here to the end of Sect. 6, we always
assume dN = dbal. Recall that �N (dbal) is nonempty if and only if N is a multiple of κ ,
and so we will frequently replace N with κN so that N continues to be a generic positive
integer. For instance, we will write GκN ,M,ξ as in (6.1), but now with the understanding
that dκN = dbal.

Lemma 6.7. Assume ξ satisfies (A1) and (A3). Then the following statements hold.

(a) For any permutation ω ∈ Sκ , we have

(
HN ,M,ξ (σ )

)
σ∈�N

law= (HN ,M,ξ (ω • σ)
)
σ∈�N .

(b) If dκN = dbal, then Law
(R;E(G⊗∞κN ,M,ξ )

)
is symmetric in the sense of Definition 2.5.

Proof. For k ∈ {1, . . . , κ} and σ = (σ1, . . . , σN ) ∈ �N , we isolate the kth coordinates
in σ by writing σ(k) = (σ1(k), . . . , σN (k))T ∈ R

N . Recall the overlap map R(σ, σ ′) =
N−1σσ ′T from (2.2). That is, the (k, k′) entry of R(σ, σ ′) is given by an inner product:

R(σ, σ )k,k′ = N−1〈σ(k), σ ′(k′)〉. (6.23)

For any ω ∈ Sκ and σ, σ ′ ∈ �N , we claim that

ω • R(σ, σ ′) = R(ω • σ, ω • σ ′). (6.24)
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The action by ω on the left-hand side of (6.24) is defined in (1.23), whereas the action
on the right-hand side is defined in (1.25). For any k, k′ ∈ {1, . . . , κ}, we have

(k, k′) entry of ω • R(σ, σ ′) (1.23)= (ω−1(k), ω−1(k′)) entry of R(σ, σ ′)
(6.23)= 〈σ(ω−1(k)), σ ′(ω−1(k′))〉
(1.25)= 〈[ω • σ ](k), [ω • σ ′](k′)〉
(6.23)= (k, k′) entry of R(ω • σ, ω • σ ′).

This verifies (6.24). We can now write

E[HN ,M,ξ (ω • σ)HN ,M,ξ (ω • σ)] (6.2)= (N + M)ξ
( N

κN + M
R(ω • σ, ω • σ ′)

)

(6.24)= (N + M)ξ
( N

N + M

(
ω • R(σ, σ ′)

))

(A3)= (N + M)ξ
( N

N + M
R(σ, σ ′)

)

(6.2)= E[HN ,M,ξ (σ )HN ,M,ξ (σ )].
This proves part (a).

For part (b), consider the following Gibbs measure:

Gω
κN ,M,ξ (σ ) := exp HκN ,M,ξ (ω

−1 • σ)∑
σ ′∈�κN (dbal)

exp HκN ,M,ξ (ω−1 • σ ′)
, σ ∈ �κN (dbal). (6.25)

Part (a) implies E(G⊗∞κN ,M,ξ ) = E((Gω
κN ,M,ξ )

⊗∞). In particular,

Law
(R;E(G⊗∞κN ,M,ξ )

) = Law
(R;E((Gω

κN ,M,ξ )
⊗∞)
)
. (6.26)

But notice that σ ′ �→ ω−1 • σ ′ is a bijection on �κN (dbal) since ω • diag(dbal) =
diag(dbal). Therefore, the denominator in (6.25) can be rewritten to give

Gω
κN ,M,ξ (σ ) = exp HκN ,M,ξ (ω

−1 • σ)∑
σ ′∈�κN (dbal)

exp HκN ,M,ξ (σ ′)
.

Drawing from Gω
κN ,M,ξ is thus equivalent to sampling from GκN ,M,ξ and then applying

ω to the sample. Consequently,

Law
(R;E((Gω

κN ,M,ξ )
⊗∞)
) = Law

(Rω;E(G⊗∞κN ,M,ξ )
)
, (6.27)

where Rω = (Rω
�,�′)�,�′≥1 is the array given by Rω

�,�′ = R(ω • σ�, ω • σ�′). On the other
hand, (6.24) says that Rω = ω •R, hence

Law
(Rω;E(G⊗∞κN ,M,ξ )

)=Law
(
ω •R;E(G⊗∞κN ,M,ξ )

)
. (6.28)

Chaining together (6.26)–(6.28) yields Law
(R;E(G⊗∞κN ,M,ξ )

) = Law
(
ω •R;

E(G⊗∞κN ,M,ξ )
)
. ��
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We are now ready to complete the main objective of this section.

Proof of Proposition 2.11. It is an elementary fact that for any real-valued sequence
(aN )N≥1 and an integer M ≥ 1,

lim inf
N→∞

aN
N
≥ 1

M
lim inf
N→∞ (aN+M − aN ).

Applying this observation to aN = κ−1
E logZκN ,ξβ

(dbal) and replacing M by κM
results in

lim inf
N→∞ FκN ,ξβ

(dbal) ≥ 1

κM
lim inf
N→∞ E log

Zκ(N+M),ξβ
(dbal)

ZκN ,ξβ
(dbal)

.

Now apply Proposition 6.2 with dκN = dκ(N+M) = δκM = dbal, so that (6.7) yields

lim inf
N→∞ FκN ,ξβ

(dbal) ≥ lim inf
N→∞ �κM,ξβ

(
Law
(R;E(G⊗∞κN ,κM,ξβ

)
);�κM (dbal)

)
.

(6.29)

Note that because GκNk ,κM,ξβ
is supported on �κNk (dbal), we trivially have

R�,� = R(σ �, σ �) = diag(dbal) for all �, �′ ≥ 1, with probability one. (6.30)

By Lemma 6.4, we know

Law
(R;E(G⊗∞κN ,κM,ξβ

)
)

is Gram–de Finetti (Definition 2.1). (6.31)

By Lemma 2.10, ξβ satisfies the symmetry condition (A3). So by Lemma 6.7(b), we
know

Law
(R;E(G⊗∞κN ,κM,ξβ

)
)

is symmetric (Definition 2.5). (6.32)

Now pass to a subsequence (N j ) j≥1 that achieves the infimum on the right-hand side of
(6.29):

lim inf
N→∞ FκN ,ξβ

(dbal) ≥ lim
j→∞�κM,ξβ

(
Law
(R;E(G⊗∞κN j ,κM,ξβ

)
);�κM (dbal)

)
. (6.33)

By passing to a further subsequence, we may also assume there is some Gram–de Finetti
law LM such that

Law
(R;E(G⊗∞κN j ,κM,ξβ

)
)

converges weakly to LM as j →∞. (6.34)

Let us check that LM satisfies the hypotheses of Lemma 2.6. First, (6.30) obviously
remains true under LM . Second, LM must be a Gram–de Finetti law by (6.31), because
R �→ (〈R◦p

�,�′w,w〉)�,�′≥1 is a continuous operation on arrays for any p ≥ 1 and w ∈ R
κ .

Similarly,LM inherits symmetry from (6.32), sinceR �→ ω •R is a continuous operation
on arrays for any ω ∈ Sκ . Finally, according to Proposition 6.5, the κ-dimensional G.G.
identities are satisfied by LM .

We can now invoke Lemma 2.6: if LM = Law(R), then almost surely

R�,�′ = 
�
(
tr(R�,�′)

)
, where 
�(q) = q

κ
Iκ +

1− q

κ2 11T. (6.35)
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In other words, if we denote the array of traces by Q = (Q�,�′)�,�′≥1 = (tr(R�,�′))�,�′≥1

and define L̄M = Law(Q), then LM is the pushforward1 of L̄M under 
�:

LM = L̄M ◦ (
�)−1. (6.36)

Furthermore, L̄M satisfies the 1-dimensional G.G. identities by Lemma 6.6. Therefore,
Theorem 2.4 says that L̄M = L̄μM , where μM = Law(tr(R1,2)). This is a probability
measure on [0, 1], and we consider its quantile function

QμM (t) := inf{q ≥ 0 : μ([0, q]) ≥ t}, t ∈ (0, 1].
Then define πM : (0, 1] → 	� by πM (t) = 
�(QμM (t)). Since QμM is left-continuous
and 
� is continuous, this πM is an element of the path space �� defined in (1.12).

Now let (μM, j ) j≥1 be a sequence of probability measures on [0, 1] such that

(i) μM, j is supported on finitely many points.
(ii) μM, j ({1}) > 0.

(iii) μM, j converges weakly to μM as j →∞.

Then define πM, j : (0, 1] → 	� by πM, j (t) = 
�(QμM, j (t)). By properties (i) and (ii),

this πM, j is an element of the path space �disc
dbal

from (1.28). Meanwhile, property (iii)
implies

lim
j→∞

∫ 1

0
|QμM (t)− QμM, j (t)| dt = 0. (6.37a)

As 
� is Lipschitz and πM (t) − πM, j (t) = 
�(QμM (t)) − 
�(QμM, j (t)), this limit
implies

lim
j→∞

∫ 1

0
‖πM (t)− πM, j (t)‖1 dt = 0. (6.37b)

From this convergence and Lemma 5.1, it follows that

lim
j→∞P(1)

κM,ξβ
(πM, j , 0;�κM (dbal)) =PκM,ξβ

(πM , 0;�κM (dbal)),

and lim
j→∞P(2)

ξβ
(πM, j ) =P(2)

ξβ
(πM ).

(6.38)

On the other hand, we claim the following equality:

P(1)
κM,ξβ

(πM, j , 0;�κM (dbal)) + P(2)
ξβ

(πM, j ) = �κM,ξβ
(L̄μM, j ◦ (
�)−1;�κM (dbal)),

(6.39)

where L̄μM, j is the 1-dimensional Gram–de Finetti law from Theorem 2.4. Indeed,
suppose πM, j has the form

πM, j (t) = γr for t ∈ (mr−1,mr ], r ∈ {1, . . . , s},
1 Here there is a slight abuse of notation: in (6.35), 
� is a map [0, 1] → R

κ×κ , whereas in (6.36), 
� is
thought of as a map [0, 1]N×N → (Rκ×κ )N×N defined by performing (6.35) to every element in an array.
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where 0 = m0 < m1 < · · · < ms = 1 and 0 � γ1 ≺ · · · ≺ γs = diag(dbal). This
means μM, j has the form

μM, j =
s∑

r=1

(mr − mr−1)δqr , where 
�(qr ) = γr .

Now let ν be the RPC from Theorem 3.4, so that when (α1, α2, . . . ) is sampled from
E(ν⊗∞), the induced array (qr(α�,α�′ ))�,�′≥1 has law L̄μM, j . Applying 
� to every entry,

we obtain an array of matrices (γr(α�,α�′ ))�,�′≥1 whose law is L̄μM, j ◦ (
�)−1. Then
(6.39) follows from Lemma 3.5.

By Property (iii) and the final statement in Theorem 2.4, L̄μM, j converges weakly to
L̄μM as j →∞. Since 
� is continuous, it follows that

L̄μM, j ◦ (
�)−1 converges weakly to L̄μM ◦ (
�)−1 (6.36)= LM as j →∞. (6.40)

Since (6.40) and (6.34) have the same limit, Corollary 3.3 implies

lim
j→∞�κM,ξβ

(
Law
(R;E(G⊗∞κN j ,κM,ξβ

)
);�κM (dbal)

)

= lim
j→∞�κM,ξβ

(L̄μM, j ◦ (
�)−1;�κM (dbal)).
(6.41)

Now we put our various observations together:

lim inf
N→∞ FκN ,ξβ

(dbal)
(6.33)≥ lim

j→∞�κM,ξβ

(
Law
(R;E(G⊗∞κN j ,κM,ξβ

)
);�κM (dbal)

)

(6.41)= lim
j→∞�κM,ξβ

(L̄M, j ◦ (
�)−1;�κM (dbal))

(6.39)= lim
j→∞

[
P(1)

κM,ξβ
(πM, j , 0;�κM (dbal)) + P(2)

ξβ
(πM, j )

]

(6.38)= PκM,ξβ
(πM , 0;�κM (dbal)) + P(2)

ξβ
(πM ).

Finally, we must send M →∞.
By passing to a subsequence, we may assume μM converges weakly as M →∞ to

some probability measure μ on [0, 1]. Define π : (0, 1] → 	� by π(t) = 
�(Qμ(t)). As
before, π belongs to �� because of the left-continuity of Qμ together with the continuity
of 
�. Using the same logic as in (6.37), we must have πM → π in the L1 norm (1.32).
Hence Lemmas 5.3 and 5.4 give

lim
M→∞P(1)

κM,ξβ
(πM , 0;�κM (dbal))

(5.19)= inf
λ∈Rκ

[P(1)
ξβ

(π, λ)− 〈λ, dbal〉] (5.21)= P(1)
ξβ

(π, 0).

Applying Lemma 5.1 once more, we also have

lim
M→∞P(2)

ξβ
(πM ) =P(2)

ξβ
(π).

Combining the three previous displays, we obtain

lim inf
N→∞ FκN ,ξβ

(dbal) ≥P(1)
ξβ

(π, 0) + P(2)
ξβ

(π)
(1.34)= Pξβ

(π, 0).

��
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Appendix A. Gaussian Processes for Generic Model

Here we prove Proposition 2.7. We fix θ = (p,m, n1, . . . , nm, w1, . . . , wm) ∈ �

throughout this appendix and denote the coordinates of w j ∈ [−1, 1]κ by w j =(
w j (k)

)κ
k=1. We first establish two lemmas.

Lemma A.1. For Q, R ∈ 	κ such that Q � R, we have

0 ≤ ξθ (Q) ≤ ξθ (R), 0 � ∇ξθ (Q) � ∇ξθ (R).

Furthermore, ϑθ (R) = (deg(θ)− 1)ξθ (R) for any R ∈ R
κ×κ .

Proof. First we make an elementary claim about Hadamard products:

0 � Q � R, 0 � Q′ � R′ $⇒ 0 � Q ◦ Q′ � R ◦ R′. (A.1)

Indeed, we have the decomposition

R ◦ R′ − Q ◦ Q′ = R ◦ (R′ − Q′) + Q′ ◦ (R − Q),

and the Schur product theorem tells us that both R ◦ (R′ − Q′) and Q′ ◦ (R − Q) are
positive-semidefinite. Hence (A.1) holds.

By repeatedly applying (A.1) with Q′ = Q and R′ = R, we see that

0 � Q � R $⇒ 0 ≤ 〈Q◦pu, u〉 ≤ 〈R◦pu, u〉 for any p ≥ 1 and u ∈ R
κ .

In light of the definition of ξθ in (1.17), it follows that 0 ≤ ξθ (Q) ≤ ξθ (R).
Next we argue 0 � ∇ξθ (Q) � ∇ξθ (R). By differentiating (1.17) with respect to

Rk,k′ , we compute the (k, k′) entry of ∇ξθ (R) to be

∇ξθ (R)k,k′ =
m∑

j=1

[∏

� �= j

〈R◦pw�,w�〉n�

]
n j 〈R◦pw j , w j 〉n j−1 · pRp−1

k,k′ w j (k)w j (k
′).

(A.2)

If we write Wj = diag(w j ), then (A.2) says

∇ξθ (R) = p
m∑

j=1

n jξθ j (R) ·Wj R
◦(p−1)Wj , (A.3)
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where θ j ∈ � is obtained from θ = (p,m, n1, . . . , nm, w1, . . . , wm) by modifying
n j to n j − 1. For each j we have 0 ≤ ξθ j (Q) ≤ ξθ j (R) by the argument of the
previous paragraph. In addition, (A.1) gives 0 � Q◦(p−1) � R◦(p−1), and so 0 �
WQ◦(p−1)W � WR◦(p−1)W for any diagaonal matrix W . It is thus apparent from
(A.3) that 0 � ∇ξθ (Q) � ∇ξθ (R).

To see the final assertion of the lemma, insert (A.2) into the definition of ϑθ (R) =
〈R,∇ξθ (R)〉 − ξθ (R). This results in

ϑθ (R) = p
m∑

j=1

n j

[∏

� �= j

〈R◦pw�,w�〉n�

]
〈R◦pw j , w j 〉n j

− ξθ (R)
(1.17)= p

m∑

j=1

n jξθ (R)− ξθ (R),

which is exactly as desired. ��
In the next lemma, we follow the construction in [57, Sec. 5]. Our HN ,θ is equal to√
N hN ,θ in the notation of [57].

Lemma A.2. For each N ≥ 1, there exist a centeredGaussianprocess
(
HN ,θ (σ )

)
σ∈Rκ×N

with covariance

E
[
HN ,θ (σ )HN ,θ (σ

′)
] = Nξθ

(σσ ′T

N

)
, (A.4)

and a centered κ-dimensional Gaussian process
(
ZN ,θ (σ )

)
σ∈Rκ×N with covariance

E

[
ZN ,θ (σ )ZN ,θ (σ

′)T
]
= ∇ξθ

(σσ ′T

N

)
. (A.5)

Proof. For any p-tuple of indices I = (i1, . . . , i p) ∈ {1, . . . , N }p, let us write

σI = (σi1 , . . . , σi p ) ∈ (Rκ)p for σ ∈ (Rκ)N .

Furthermore, for any n-tuple of p-tuples I = (I1, . . . , In) ∈ ({1, . . . , N }p)n , we will
write

σI = (σI1 , . . . , σIn ) ∈ ((Rκ)p)n for σ ∈ (Rκ)N .

Given such I and some w = (w(k)
)

1≤k≤κ
∈ R

κ , define the following polynomial:

Sw(σI) := Sw(σI1) . . . Sw(σIn ), where Sw(σi1 , . . . σi p ) :=
κ∑

k=1

w(k)σi1(k) . . . σi p (k).

Finally, we sum over all choices of I1, . . . , Im with I j ∈ ({1, . . . , N }p)n j :

HN ,θ (σ ) := 1

N (deg(θ)−1)/2

∑

I1,...,Im
gI1,...,Im Sw1(σI1) . . . Swm (σIm ),
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where each gI1,...,Im is an independent standard normal random variable. Recall that
deg(θ) = p

∑m
j=1 n j . The covariance of the Gaussian process

(
HN ,θ (σ )

)
σ∈Rκ×N is

then

E
[
HN ,θ (σ )HN ,θ (σ

′)
] = N

m∏

j=1

[
1

N pn j

∑

I j

Sw j (σI j )Sw j (σ
′
I j

)

]

= N
m∏

j=1

(
1

N p

∑

I∈{1,...,N }p
Sw j (σI )Sw j (σ

′
I )

)n j

.

If we write R for the matrix R(σ, σ ′) = σσ ′T/N , then

1

N p

∑

I∈{1,...,N }p
Sw j (σI )Sw j (σ

′
I ) =

κ∑

k,k′=1

w j (k)w j (k
′)
(

1

N

N∑

i=1

σi (k)σ
′
i (k

′)
)p

= 〈R◦pw j , w j 〉.
By combining the two previous displays and recalling the definition of ξθ from (1.17),
we obtain (A.4).

To prove the existence of the Gaussian process ZN ,θ , we first claim that for any
p ≥ 1, there exists a κ-dimensional centered Gaussian process

(
zN ,p(σ )

)
σ∈Rκ×N with

covariance

E

[
zN ,p(σ )zN ,p(σ

′)T
]
=
(σσ ′T

N

)◦(p−1)

. (A.6)

If p = 1, then the right-hand side of (A.6) is interpreted as the κ×κ identity matrix, and
so it suffices to take zN ,p(σ ) equal to a standard normal random vector not depending
on σ . If p ≥ 2, then we make the following construction. For k ∈ {1, . . . , κ} define

zN ,p,k(σ ) = 1

N p−1

N∑

i1,...i p−1=1

gi1,...,i p−1σi1(k) . . . σi p−1(k),

where each gi1,...,i p−1 is an independent standard normal random variable. By setting
zN ,p(σ ) = (zN ,p,k(σ )

)κ
k=1, we obtain a κ-dimensional Gaussian process satisfying

(A.6).
Now let z1

N ,p, . . . , z
m
N ,p be independent copies of zN ,p . As in the proof of Lemma A.1,

let θ j ∈ � be obtained from θ = (p,m, n1, . . . , nm, w1, . . . , wm) by modifying n j to
n j −1. From (A.4), consider centered Gaussian processes HN ,θ1 , . . . , HN ,θm , which we
assume are independent of each other and of each z1

N ,p, . . . , z
m
N ,p. Finally, recalling the

notation Wj = diag(w j ), we define

ZN ,θ (σ ) := p1/2
m∑

j=1

n1/2
j N−1/2HN ,θ j (σ ) ·Wj z

j
N ,p(σ ).

It follows from (A.3) and (A.6) that the covariance of
(
ZN ,θ (σ )

)
σ∈Rκ×N is given by

(A.5). ��
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Proof of Proposition 2.7. Parts (a) and (b) follow immediately from Lemma A.1. Part (c)
follows from Lemma A.2. Finally, part (d) follows from combining Lemmas A.1 and A.2
since we can set YN ,θ (σ ) = ( deg(θ)−1

N

)1/2
HN ,θ (σ ). ��

The following lemma was used in Remark 1.2.

Lemma A.3. For any d ∈ D and any γ belonging to the set 	κ(d) from (1.7), we have
γ � diag(d).

Proof. For any u = (u1, . . . , uκ) ∈ R
κ , we have

〈diag(d)u, u〉 − 〈γ u, u〉 =
κ∑

k=1

dku
2
k −

κ∑

k,k′=1

γk,k′ukuk′

(1.7)=
κ∑

k,k′=1

γk,k′(u
2
k − ukuk′)

=
∑

k<k′
γk,k′(u

2
k + u2

k′ − 2ukuk′) =
∑

k<k′
γk,k′(uk − uk′)

2 ≥ 0,

where the final inequality uses the fact that every entry γk,k′ is nonnegative. ��

Appendix B. Proof of the Aizenman–Sims–Starr Scheme

In this appendix, we prove Proposition 6.2. To begin, we deduce from (6.6) the inclusion

�N+M (dN+M ) ⊇ �N (dN )×�M (δM ). (B.1)

Indeed, for σ = (σ1, . . . , σN ) ∈ �N (dN ) and τ = (τ1, . . . , τM ) ∈ �M (δM ), let us
write (σ, τ ) for the κ × (N + M) matrix whose first N columns are σ1, . . . , σN and
whose last M columns are τ1, . . . , τM . In this notation, we have

(σ, τ )(σ, τ )T = σσT + ττT = Ndiag(dN ) + Mdiag(δM )
(6.6)= (N + M)diag(dN+M ),

which by definition means (σ, τ ) ∈ �N+M (dN+M ). From (B.1), it immediately follows
that

ZN+M,ξ̃ (d
N+M ) ≥

∑

σ∈�N (dN )

∑

τ∈�M (δM )

exp HN+M,ξ̃ (σ, τ ). (B.2)

Recall from (1.14) that

E[HN+M,ξ̃ (σ, τ )HN+M,ξ̃ (σ
′, τ ′)] = (N + M)ξ̃

( (σ, τ )(σ ′, τ ′)T

N + M

)

= (N + M)ξ̃
(σσ ′T + ττ ′T

N + M

)
.

Replacing ξ̃ with ξ on the right-hand side incurs an error:

∣∣∣E[HN+M,ξ̃ (σ, τ )HN+M,ξ̃ (σ
′, τ ′)] − (N + M)ξ

(σσ ′T + ττ ′T

N + M

)∣∣∣

≤ (N + M) sup
‖R‖1≤1

|ξ(R)− ξ̃ (R)|. (B.3)
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By smoothness (see Remark 1.5), we have the following linearization about (σσ ′T)/(N+
M):

ξ
(σσ ′T + ττ ′T

N + M

)
= ξ
( σσ ′T

N + M

)
+
〈
∇ξ
( σσ ′T

N + M

)
,

ττ ′T

N + M

〉
+ O∇2ξ

(( M

N + M

)2)
,

where we are using the notation from (6.5). Furthermore, we have the approximation

∇ξ
( σσ ′T

N + M

)
= ∇ξ

(σσ ′T

N

)
+ O∇2ξ

( M

N + M

)
.

Combining the two previous displays, we arrive to

(N + M)ξ
(σσ ′T + ττ ′T

N + M

)
= (N + M)ξ

( σσ ′T

N + M

)
+
〈
∇ξ
(σσ ′T

N

)
, ττ ′T

〉

+ O∇2ξ

( M2

N + M

)
.

(B.4)

Regarding the first term on the right-hand side, we have the further linearization

(N + M)ξ
( σσ ′T

N + M

)

= (N + M)
[
ξ
(σσ ′T

N

)
−
〈
∇ξ
(σσ ′T

N

)
,

Mσσ ′T

N (N + M)

〉
+ O∇2ξ

(( M

N + M

)2)]

= Nξ
(σσ ′T

N

)
− M

[〈
∇ξ
(σσ ′T

N

)
,
σσ ′T

N

〉
− ξ
(σσ ′T

N

)]
+ O∇2ξ

( M2

N + M

)
.

The term being subtracted on the final line is simply Mϑξ

(
σσ ′T
N

)
. Moving this term to

the left-hand side, we arrive to

(N + M)ξ
( σσ ′T

N + M

)
+ Mϑξ

(σσ ′T

N

)
= Nξ

(σσ ′T

N

)
+ O∇2ξ

( M2

N + M

)
. (B.5)

Equipped with the approximations (B.4) and (B.5), we resume our probabilistic argu-
ment.

Let HN ,M,ξ be the cavity Hamiltonian from (6.2). Let Z1, . . . , ZM : �N → R
κ and

Y : �N → R be centered Gaussian processes with covariances

E

[
Zi (σ )Zi (σ

′)T
]
= ∇ξ

(σσ ′T

N

)
, E[Y (σ )Y (σ ′)] = ϑξ

(σσ ′T

N

)
. (B.6)

Such processes exist by Proposition 2.7(d) and assumption (A1). We assume all these
processes are independent of each other and of HN ,M,ξ . Now write

ZN+M,ξ̃ (d
N+M )

ZN ,ξ (dN )

(B.2)≥
∑

σ∈�N (dN )

∑
τ∈�M (δM ) exp HN+M,ξ̃ (σ, τ )

∑
σ∈�N (dN ) exp HN ,ξ (σ )

= Q1Qerr
1

Q2Qerr
2

,

(B.7)
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where Q1, Qerr
1 , Q2, Qerr

2 are the following quotients:

Q1 :=
∑

σ∈�N (dN )

∑
τ∈�M (δM ) exp(HN ,M,ξ (σ ) +

∑M
j=1

〈
Z j (σ ), τ j

〉
)

∑
σ∈�N (dN ) exp HN ,M,ξ (σ )

,

Qerr
1 :=

∑
σ∈�N (dN )

∑
τ∈�M (δM ) exp HN+M,ξ̃ (σ, τ )

∑
σ∈�N (dN )

∑
τ∈�M (δM ) exp(HN ,M,ξ (σ ) +

∑M
j=1

〈
Z j (σ ), τ j

〉
)
, (B.8)

Q2 :=
∑

σ∈�N (dN ) exp(HN ,M,ξ (σ ) +
√
M Y (σ ))

∑
σ∈�N (dN ) exp HN ,M,ξ (σ )

,

Qerr
2 :=

∑
σ∈�N (dN ) exp HN ,ξ (σ )

∑
σ∈�N (dN ) exp(HN ,M,ξ (σ ) +

√
M Y (σ ))

. (B.9)

Observe that Q1 and Q2 have the desired form for realizing the functional �M,ξ from
(3.3). Namely, if 〈·〉N enotes expectation with respect to the measure GN ,M,ξ from (6.1),
then

E log Q1 = E log
∑

τ∈�M (δM )

〈
exp
( M∑

j=1

〈
Z j (σ ), τ j

〉)〉

N

(3.2a)= M�
(1)
M,ξ

(LN ,M ; dN , �M (δM )),

while E log Q2 = E log
〈
exp(

√
M Y (σ ))

〉
N

(3.2b)= M�
(2)
M,ξ

(LN ,M ).

(B.10)

Therefore, the remainder of the proof is to show that

|E log Qerr
1 | ≤ O∇2ξ

( M2

N + M

)
+
N + M

2
sup

‖R‖1≤1
|ξ(R)− ξ̃ (R)|, (B.11a)

and E log Qerr
2 = O∇2ξ

( M2

N + M

)
. (B.11b)

Indeed, the claim (6.7) follows from using (B.10) and (B.11) in the initial inequality
(B.7).

We now argue each estimate in (B.11) separately, although the two arguments are
very similar. Since the one for Qerr

2 is slightly simpler, we begin there.
Control of Qerr

2 . Define an interpolating Hamiltonian on �N (dN ):

Ht (σ ) = √
t HN ,ξ (σ ) +

√
1− t

(
HN ,M,ξ (σ ) +

√
M Y (σ )

)
, t ∈ [0, 1]. (B.12)

Consider the free energy associated to Ht :

φ(t) = E log
∑

σ∈�N (dN )

expHt (σ ). (B.13)

Recalling the definition of Qerr
2 from (B.9), we see that

E log Qerr
2 = φ(1)− φ(0). (B.14)
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We control this difference by studying the derivative of (B.13) with respect to t , which
is easily computed to be

φ′(t) = E

〈 ∂
∂t

Ht (σ, τ )
〉

t
,

where 〈·〉t denotes expectation with respect to the Gibbs measure Gt (σ ) ∝ expHt (σ )

on �N (dN ). Thanks to Gaussian integration by parts [54, Lem. 1.1], we can rewrite this
as

φ′(t) = E
〈C(σ 1, σ 1)− C(σ 1, σ 2)

〉
t ,

where σ 1, σ 2 denote independent samples from Gt , and C : �N (dN )×�N (dN ) → R

is defined by

C(σ, σ ′) = E

[∂Ht (σ )

∂t
Ht (σ

′)
]
. (B.15)

Since the Gaussian processes on the right-hand side of (B.12) are independent and
centered, the right-hand side of (B.15) reduces to a linear combination of their respective
covariances:

C(σ, σ ′) (B.12)= 1

2
E[HN ,ξ (σ )HN ,ξ (σ

′)] − 1

2
E[HN ,M,ξ (σ )HN ,M,ξ (σ

′)]

− M

2
E[Y (σ )Y (σ ′)]

(1.14),(6.2),(B.6)= 1

2

[
Nξ
(σσ ′T

N

)
− (N + M)ξ

( σσ ′T

N + M

)
− Mϑξ

(σσ ′T

N

)]

(B.5)= O∇2ξ

( M2

N + M

)
.

Reading the three previous displays together, we have established the following estimate:

sup
t∈(0,1)

|φ′(t)| = O∇2ξ

( M2

N + M

)
.

Therefore, (B.14) leads to (B.11b).
Control of Qerr

1 . Define an interpolating Hamiltonian on �N (dN )×�M (δM ):

Ht (σ, τ ) = √
t HN+M (σ, τ ) +

√
1− t

(
HN ,M,ξ (σ ) +

M∑

j=1

〈
Z j (σ ), τ j

〉)
, t ∈ [0, 1].

(B.16)

From (B.6), one can calculate the covariance of the final term on the right-hand side:

E

[ M∑

j=1

〈
Z j (σ ), τ j

〉〈
Z j (σ

′), τ ′j
〉] =

〈
∇ξ
(σσ ′T

N

)
, ττ ′T

〉
. (B.17)
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Now consider the free energy associated to Ht :

φ(t) = E log
∑

σ∈�N (dN )

∑

τ∈�M (δM )

expHt (σ, τ ).

Recalling the definition of Qerr
1 from (B.8), we see that

E log Qerr
1 = φ(1)− φ(0). (B.18)

We control this difference by studying the derivative of (B.13) with respect to t , which
is easily computed to be

φ′(t) = E

〈 ∂
∂t

Ht (σ, τ )
〉

t
,

where 〈·〉t denotes expectation with respect to the Gibbs measureGt (σ, τ ) ∝ expHt (σ, τ )

on �N (dN )×�M (δM ). By Gaussian integration by parts [54, Lem. 1.1], we can rewrite
this as

φ′(t) = E

〈
C((σ 1, τ 1), (σ 1, τ 1)

)− C((σ 1, τ 1), (σ 2, τ 2)
)〉

t
,

where (σ 1, τ 1), (σ 2, τ 2) denote independent samples from Gt , and C : (�N (dN ) ×
�M (δM ))2 → R is defined by

C((σ, τ ), (σ ′, τ ′)
) = E

[∂Ht (σ, τ )

∂t
Ht (σ

′, τ ′)
]
. (B.19)

Since the Gaussian processes on the right-hand side of (B.16) are independent and
centered, the right-hand side of (B.19) reduces to a linear combination of their respective
covariances:
∣∣∣∣E
[∂Ht (σ, τ )

∂t
Ht (σ

′, τ ′)
]∣∣∣∣

(B.16)=
∣∣∣∣
1

2
E[HN+M,ξ̃ (σ, τ )HN+M,ξ̃ (σ

′, τ ′)]

− 1

2
E[HN ,M,ξ (σ )HN ,M,ξ (σ

′)] − 1

2
E

[ M∑

j=1

〈
Z j (σ ), τ j

〉〈
Z j (σ

′), τ ′j
〉]∣∣∣∣

(B.3),(6.2),(B.17)≤ N + M

2
sup

‖R‖1≤1
|ξ(R)− ξ̃ (R)| +

1

2

∣∣∣∣(N + M)ξ
(σσ ′T + ττ ′T

N + M

)

− (N + M)ξ
( σσ ′T

N + M

)
−
〈
∇ξ
(σσ ′T

N

)
, ττ ′T

〉∣∣∣∣

(B.4)= N + M

2
sup

‖R‖1≤1
|ξ(R)− ξ̃ (R)| + O∇2ξ

( M2

N + M

)
.

Reading the three previous displays together, we have established the following estimate:

sup
t∈(0,1)

|φ′(t)| ≤ O∇2ξ

( M2

N + M

)
+
N + M

2
sup

‖R‖1≤1
|ξ(R)− ξ̃ (R)|.

Therefore, (B.18) leads to (B.11a), which concludes the proof of Proposition 6.2.
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Appendix C. Properties of Ruelle Probability Cascades

This appendix proves Lemmas 3.5 and 3.7. Both proofs rely on the following fact.

Theorem C.1. [72, Thm. 14.2.1] Let η(0), . . . , η(s−1) be independent random variables
taking values in a metric space T . Assume f : T s → R is a deterministic function such
that

E exp f (η(0), η(1), . . . , η(s−1)) < ∞ and E| f (η(0), η(1), . . . , η(s−1))| < ∞.

Let Er denote expectation with respect to η(r). Given the sequence (3.4), inductively
define

Xs := f (η(0), η(1), . . . , η(s−1)),

Xr := 1

mr
log Er exp(mr Xr+1) for r ∈ {1, . . . , s − 1},

X0 :=E0(X1).

(C.1)

On the other hand, let ν be the RPC associated to (3.4). For each r ∈ {0, . . . , s− 1}, let
(ηβ)β∈Nr be i.i.d. copies of η(r) that are independent of ν. We then have

X0 = E log
∑

α∈Ns−1

να exp f (η∅, η(α1), η(α1,α2), . . . , η(α1,...,αs−1)). (C.2)

Proof of Lemma 3.5. The right-hand sides of (3.9) are defined in (3.2) with

X = N
s−1, R(α, α′) = γr(α,α′), G = ν. (C.3)

By inspection, (3.2a) is the same as (3.7) with λ = 0. This proves (3.9a).
Meanwhile, in the setting (C.3), definition (3.2b) becomes

�
(2)
N ,ξ (L; d) = 1

N
E log

∑

α∈Ns−1

να exp
(√

N Y (α)
)
. (C.4a)

Using the representation (3.12) of Y , we can rewrite this as

�
(2)
N ,ξ (L; d) = 1

N
E log

∑

α∈Ns−1

να exp
(√

N
s−1∑

r=0

√
ϑξ (γr+1)− ϑξ (γr ) η(α1,...,αr )

)
.

By (C.2), the right-hand side can be transformed to yield

�
(2)
N ,ξ (L; d) = 1

N
X0, (C.4b)

where X0, X1, . . . , Xs are related inductively as in (C.1), and

Xs =
√
N

s−1∑

r=0

√
ϑξ (γr+1)− ϑξ (γr ) η(r).
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Here η(0), . . . , η(s−1) are i.i.d. standard normal random variables. Therefore, using the
fact that E exp(cη(r)) = 1

2 exp(c2) for any c ∈ R, it is straightforward to calculate

X0 = N

2

s−1∑

r=1

mr
(
ϑξ (γr+1)− ϑξ (γr )

)
.

Rewriting the right-hand side using summation by parts, we obtain

X0 = N

2
ϑξ (γs)− N

2

s∑

r=1

(mr − mr−1)ϑξ (γr )

= N

2
ϑξ (diag(d))− N

2

∫ 1

0
ϑξ (π(t)) dt

(3.8)= −NP(2)
ξ (π).

(C.4c)

Therefore, (C.4b) is exactly the desired statement (3.9b). ��
Proof of Lemma 3.7. Inserting (3.11) into (3.7), we can express P(1)

N ,ξ (π, λ; S) as

1

N
E log

∑

α∈Ns−1

∑

σ∈S
να exp

( N∑

i=1

〈 s−1∑

r=0

√∇ξ(γr+1)− ∇ξ(γr )1{r > 0} ηi,(α1,...,αr ) + λ, σi

〉)
.

By (C.2), we have the alternative representation

P(1)
N ,ξ (π, λ; S) = 1

N
X0(S), (C.5a)

where X0(S), X1(S), . . . , Xs(S) are related inductively as in (C.1), and

Xs(S) = log
∑

σ∈S
exp
( N∑

i=1

〈 s−1∑

r=0

z(r)i + λ, σi

〉)
. (C.5b)

Here each z(r)i is an independent centered Gaussian vector in R
κ with covariance matrix

E[z(r)i (z(r)i )T] = ∇ξ(γr+1)−∇ξ(γr )1{r > 0}. (C.5c)

When S is the entire product set �N , (C.5b) can be rewritten as

Xs(�
N ) = log

∑

σ1,...,σN∈�

N∏

i=1

exp
( s−1∑

r=0

〈z(r)i + λ, σi 〉
)

=
N∑

i=1

log
∑

σ∈�

exp
( s−1∑

r=0

〈z(r)i + λ, σ 〉
)
=

N∑

i=1

X (i)
s (�),

where X (1)
s (�), . . . , X (N )

s (�) are i.i.d. random variables. The inductive procedure (C.1)
can be applied to each one of these variables separately, resulting in i.i.d. random vari-
ables X (1)

r (�), . . . , X (N )
r (�) for each r ∈ {0, 1, . . . , s − 1}. Assuming inductively that
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Xr+1(�
N ) =∑N

i=1 X (i)
r+1(�), we have

Xr (�
N )

(C.1)= 1

mr
log Er exp

(
mr

N∑

i=1

X (i)
r+1(�)

)

= 1

mr
log

N∏

i=1

Er exp(mr X
(i)
r+1(�))

(C.1)=
N∑

i=1

X (i)
r (�),

where the middle equality uses independence. Taking r = 0, we conclude that

P
(1)
N ,ξ (π, λ;�N )

(C.5a)= 1

N
X0(�

N ) = 1

N

N∑

i=1

X (i)
0 (�) = X (1)

0 (�)
(C.5a)= P

(1)
1,ξ (π, λ;�).

(C.6)

Moreover, a comparison of (C.5a) and (1.31) reveals that

P(1)
1,ξ (π, λ;�) =P(1)

ξ (π, λ),

and so (C.6) is exactly (3.10). ��

Appendix D. Duality

In this appendix, we prove Lemma 5.2. We closely follow the proof of [58, Lem. 2].
The key ingredient is the following result. Recall the set �N (d, ε) from (1.4): using the
notation R(σ, σ ′) = σσ ′T/N , we have

�N (d, ε) = {σ ∈ �N : ‖R(σ, σ )− diag(d)‖∞ ≤ ε}. (D.1)

Lemma D.1. Assume ξ satisfies (A1). There exists a constant C depending only on ξ

and κ , such that for every N ≥ 1, d ′ ∈ D, π ∈ �d ′ , λ ∈ R
κ , and ε > 0, we have

sup
d∈DN

∣∣∣P(1)
N ,ξ

(
π, λ;�N (d, ε)

)−P(1)
N ,ξ

(
π, λ;�N (d)

)∣∣∣ ≤ C
√

ε. (D.2)

Proof. We assume without loss of generality that ε ∈ (0, 1/2]. Note for later that there
exists a constant C0 such that

ε log(1/ε) ≤ C0
√

ε for all ε ∈ (0, 1/2]. (D.3)

For any λ ∈ R
κ and S ⊆ �N , the map �d ′ � π �→ P(1)

N ,ξ (π, λ; S) is by definition a

continuous extension of its restriction to the set �disc
d ′ (see the text following the proof

of Lemma 5.1). Therefore, it suffices to verify the lemma for π ∈ �disc
d ′ . We assume π

is given by (1.29), with d ′ replacing d in (1.29c).
Given any d ∈ DN , let P : �N (d, ε) → �N (d) be any projection with respect to

Hamming distance. That is, for each σ ∈ �N (d, ε), we choose some Pσ ∈ �N (d)

that minimizes
∑N

i=1 1{σi �= (Pσ)i }. Changing a single column σi (from one standard
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basis vector to another) moves the self-overlap matrix R(σ, σ ) by distance N−1 in the
�∞ norm. Therefore, σ and Pσ differ in at most εN columns:

N∑

i=1

1{σi �= (Pσ)i } ≤ εN for every σ ∈ �N (d, ε). (D.4)

In particular, if εN < 1, then P is the identity map and so �N (d, ε) = �N (d). The
right-hand side of (D.2) is zero in this case, and so we assume henceforth that εN ≥ 1.

Consider the size of the preimage,

N (σ ) := ∣∣{τ ∈ �N (d, ε) : Pτ = σ }∣∣. (D.5)

If Pτ = σ , then (D.4) says there are at most εN many columns in which τ and σ differ.
Each such column of τ takes one of κ possible values, and so

N (σ ) ≤
(

N

'εN(
)

κεN ≤
(exp(1)N

'εN(
)'εN(

κεN ≤
(exp(1)κ

ε

)εN+1 ≤
(exp(1)κ

ε

)2εN
.

Taking logarithms and dividing by N , we arrive to

1

N
logN (σ ) ≤ 2ε

(
1 + log κ + log(1/ε)

) (D.3)≤ Cκ

√
ε, (D.6)

where Cκ = 2(1 + log κ + C0).
Next let Z1, . . . , ZN , Z̃1, . . . , Z̃N : N

s−1 → R
κ be i.i.d. centered Gaussian processes

with covariance given by (3.6). Define the interpolating process Zt : N
s−1×�N (d, ε) →

R by

Zt (α, σ ) =
N∑

i=1

[√
t
〈
Zi (α) + λ, σi

〉
+
√

1− t
〈
Z̃i (α) + λ, (Pσ)i

〉]
, t ∈ [0, 1]. (D.7)

Upon defining the associated free energy,

φ(t) = 1

N
E log

∑

α∈Ns−1

∑

σ∈�N (d,ε)

να exp Zt (α, σ ), (D.8)

we have

φ(1) =P(1)
N ,ξ

(
π, λ;�N (d, ε)

)
,

φ(0) = 1

N
E log

∑

α∈Ns−1

∑

σ∈�N (d,ε)

exp
( N∑

i=1

〈
Z̃i (α) + λ, (Pσ)i

〉)
.

(D.9)

Note that N (σ ) ≥ 1 since Pσ = σ , and thus

P(1)
N ,ξ

(
π, λ;�N (d)

) (3.7)= 1

N
E log

∑

α∈Ns−1

∑

σ∈�N (d)

να exp
( N∑

i=1

〈
Zi (α) + λ, σi

〉)

≤ 1

N
E log

∑

α∈Ns−1

∑

σ∈�N (d)

N (σ )να exp
( N∑

i=1

〈
Zi (α) + λ, σi

〉) (D.9)= φ(0)

(D.6)≤ P(1)
N ,ξ

(
π, λ;�N (d)

)
+ Cκ

√
ε.

(D.10)
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Putting these observations together and using a triangle inequality, we have

∣∣P(1)
N ,ξ

(
π, λ;�N (d, ε)

)−P(1)
N ,ξ

(
π, λ;�N (d)

)∣∣
(D.9)= ∣∣φ(1)−P(1)

N ,ξ

(
π, λ;�N (d)

)∣∣

≤ |φ(1)− φ(0)| +
∣∣φ(0)−P(1)

N ,ξ

(
π, λ;�N (d)

)∣∣
(D.10)≤ |φ(1)− φ(0)| + Cκ

√
ε.

(D.11)

To control the first term in the last line, we consider the probability measureGt (α, σ ) ∝
να exp Zt (α, σ ) on N

s−1×�N (d, ε), and let 〈·〉t denote expectation with respect to Gt .
Differentiation of (D.8) results in

φ′(t) = 1

N
E

〈∂Zt (α, σ )

∂t

〉

t
.

Applying Gaussian integration by parts [54, Lem. 1.1], we can rewrite this as

φ′(t) = 1

N
E

〈
C((α1, σ 1), (α1, σ 1)

)− C((α1, σ 1), (α1, σ 1)
)〉

t
,

where (α1, σ 1), (α2, σ 2) denote independent samples from Gt , and C : (Ns−1 ×
�N (d, ε))2 → R is given by

C((α, σ ), (α′, σ ′)
)

= E

[∂Zt (α, σ )

∂t
Zt (α

′, σ ′)
]

(D.7)= 1

2

N∑

i=1

E

[〈
Zi (α), σi

〉〈
Zi (α

′), σ ′i
〉− 〈Z̃i (α), (Pσ)i

〉〈
Z̃i (α

′), (Pσ ′)i
〉]

(3.6)= 1

2

N∑

i=1

(
σT
i ∇ξ(γr(α,α′))σ

′
i − (Pσ)Ti ∇ξ(γr(α,α′))(Pσ ′)i

)
.

By (D.4), there are at most 2εN many values of i for which the i th summand on
the final line is nonzero. Since σi , σ

′
i , (Pσ)i , (Pσ ′)i are all standard basis vectors, the

nonzero summands trivially satisfy
∣∣∣σT

i ∇ξ(γr(α,α′))σ
′
i − (Pσ)Ti ∇ξ(γr(α,α′))(Pσ ′)i

∣∣∣ ≤ 2 sup
‖R‖1≤1

‖∇ξ(R)‖∞.

Therefore, the four previous displays together imply

|φ(1)− φ(0)| ≤ sup
t∈(0,1)

∣∣φ′(t)
∣∣ ≤ 4ε sup

‖R‖1≤1
‖∇ξ(R)‖∞.

Inserting this inequality into (D.11) results in

∣∣P(1)
N ,ξ

(
π, λ;�N (d, ε)

)−P(1)
N ,ξ

(
π, λ;�N (d)

)∣∣ ≤ C
√

ε,

where C = 4 sup‖R‖1≤1 ‖∇ξ(R)‖∞ + Cκ . ��
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With Lemma D.1 in hand, the next result follows by the exact same argument as [58,
Lem. 4 and Lem. 5], and thus we omit the proof.

Lemma D.2. Assume ξ satisfies (A1). Fix any d ′ ∈ D, π ∈ �d ′ . Suppose dN ∈ DN
converges to d ∈ D as N → ∞. Then the following limit exists, is finite, and depends
only on d:

f (d) = lim
N→∞P(1)

N ,ξ

(
π, 0;�N (dN )

)
. (D.12)

Furthermore, d �→ f (d) is a continuous concave function.

We are now ready to complete the objective of this appendix. The following proof is
very similar to that of [58, Lem. 6].

Proof of Lemma 5.2. As in the proof of Lemma D.1, let π be given by (1.29), with d ′
replacing d in (1.29c). We will show that

0 ≤P(1)
N ,ξ (π, λ;�N )− max

d∈DN

P(1)
N ,ξ (π, λ;�N (d)) ≤ κ log(N + 1)

m1N
. (D.13)

Before proving (D.13), we use it to prove the desired identity (5.17). For every σ ∈
�N (d), we have

∑n
i=1〈λ, σi 〉 = N 〈λ, d〉. Therefore, when S = �N (d), definition (3.7)

results in

P(1)
N ,ξ (π, λ;�N (d)) =P(1)

N ,ξ (π, 0, �N (d)) + 〈λ, d〉 for d ∈ DN .

Using this identity and P(1)
N ,ξ (π, λ;�N ) = P(1)

ξ (π, λ) from (3.10), we infer from
(D.13) that

P(1)
ξ (π, λ) = lim

N→∞ max
d∈DN

[
P(1)

N ,ξ (π, 0;�N (d)) + 〈λ, d〉]. (D.14)

We then claim that

P(1)
ξ (π, λ) = sup

d∈D
[
f (d) + 〈λ, d〉]. (D.15)

Indeed, let dN ∈ DN be a maximizer in (D.14). By compactness of D, we may assume
(by passing to a subsequence) that dN converges to some d as N →∞. It then follows
that

P(1)
ξ (π, λ)

(D.14)= lim
N→∞

[
P(1)

N ,ξ (π, 0;�N (dN )) + 〈λ, dN 〉] (D.12)= f (d) + 〈λ, d〉.
(D.16)

On the other hand, if we choose any other convergent sequencedN → d, not necessarily a
sequence of maximizers, then the first equality in (D.16) becomes≥, and (D.15) follows.
Finally, since f is concave and continuous by Lemma D.2, the Fenchel–Moreau theorem
(e.g. [64, Thm. 12.2]) implies the following dual version of (D.15):

f (d) = inf
λ∈Rκ

[
P(1)

ξ (π, λ)− 〈λ, d〉].

Once we use (D.12) to rewrite f (d), this identity is exactly (5.17).
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It remains to establish the two inequalities in (D.13). The first inequality is immediate
from definition (3.7), since �N (d) ⊆ �N . For the second inequality, recall the notation
in (C.5). We claim

exp
(
mr Xr (�

N )
) ≤

∑

d∈DN

exp
(
mr Xr

(
�N (d)

))
for each r ∈ {1, . . . , s}. (D.17)

To see this claim, first observe that there is equality when r = s, simply by inspect-
ing (C.5b) together with the fact that ms = 1. Now proceed by downward induction.
Assuming the claim is true in the (r + 1)th case, and noting that mr/mr+1 ≤ 1, we have

exp
(
mr Xr (�

N )
) (C.1)= Er exp

(
mr Xr+1(�

N )
)

= Er

[
exp
(
mr+1Xr+1(�

N )
)mr+1/mr

]

≤ Er

[( ∑

d∈DN

exp
(
mr+1Xr+1

(
�N (d)

)))mr /mr+1
]

≤ Er

[ ∑

d∈DN

exp
(
mr Xr+1

(
�N (d)

))]

(C.1)=
∑

d∈DN

exp
(
mr Xr

(
�N (d)

))
.

With (D.17) established, we use the final r = 1 case:

P(1)
N ,ξ (π, λ;�N )

(C.5a)= 1

N
E0X1(�

N )
(D.17)≤ 1

m1N
E0 log

∑

d∈DN

exp
(
m1X1

(
�N (d)

))
.

By definition of DN in (1.6), each d = (d1, . . . , dκ ) ∈ DN has Ndi ∈ {0, 1, . . . , N } for
each i . Hence |DN | ≤ (N + 1)κ , and so the previous display yields

P(1)
N ,ξ (π, λ;�N ) ≤ κ log(N + 1)

m1N
+ max

d∈DN

1

N
E0X1

(
�N (d)

)

(C.5a)= κ log(N + 1)

m1N
+ max

d∈DN

P(1)
N ,ξ (π, λ;�N (d)).

This completes the proof of (D.13), and so we are done. ��

Appendix E. Parisi Formula for General Model

In this appendix, we prove Theorem 1.7 by generalizing the strategy used by Panchenko
[57,58] for Theorem 1.1. The following upper bound uses Guerra-style interpolation
[36].

Proposition E.1. Assume ξ satisfies (A1) and (A2).
For every d ∈ D, we have

lim
ε↘0

lim sup
N→∞

FN ,ξ (d, ε) ≤ inf
π∈�d

Pξ (π). (E.1)
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Meanwhile, the lower bound does not require the convexity assumption (A2). The
following result follows from the Aizenman–Sims–Starr scheme as in [58, Sec. 7].

Proposition E.2. Assume ξ satisfies (A1). Given d = (dk)κk=1 ∈ D and any constant L,
assume dN ∈ DN is such that

‖dN − d‖∞ ≤ L/N and dN
k = 0 whenever dk = 0. (E.2)

Then

lim inf
N→∞ FN ,ξ (d

N ) ≥ inf
π∈�d

Pξ (π). (E.3)

Although [58] considers only the case ξ(R) = tr(RTR), the argument for Proposi-
tion E.2 proceeds in exactly the same way, and thus we omit the proof. Proposition E.1,
however, is inherently more sensitive to the covariance function ξ , and so we do provide
its proof.

Proof of Proposition E.1. Since �disc
d is a dense subset of �d with respect to the L1

norm (1.32), and π �→ Pξ (π) is continuous by Proposition 2.13(b), we have infπ∈�dPξ (π) = inf
π∈�disc

d
Pξ (π). Therefore, to establish (E.1), it suffices to prove that for any

path π of the form (1.29), we have

lim
ε↘0

lim sup
N→∞

FN ,ξ (d, ε) ≤ Pξ (π). (E.4)

To this end, let Z1, . . . , ZN : N
s−1 → R

κ and Y : N
s−1 → R be independent centered

Gaussian processes with covariances given by (3.6), and define the following process
on N

s−1 ×�N :

Ht (α, σ ) = √
t HN ,ξ (σ ) +

√
1− t

N∑

i=1

〈
Zi (α), σi

〉
+
√
t
√
N Y (α), t ∈ [0, 1]. (E.5)

We assume that HN ,ξ is independent of Z1, . . . , ZN ,Y , and that all of these Gaussian
processes are independent of the RPC weights (να)α∈Ns−1 associated with (1.29b). Given
ε > 0, consider the associated constrained free energy

φN (t) = 1

N
E log

∑

α∈Ns−1

∑

σ∈�N (d,ε)

να expHt (α, σ ). (E.6)

Claim E.3. For any N ≥ 1 and t ∈ (0, 1), the derivative of φN satisfies φ′N (t) ≤ Cε

for some constant C not depending N, d, ε nor t.

Proof. Denote by 〈·〉t the average with respect to the following probability measure on
N
s−1 ×�N (d, ε):

Gt (α, σ ) ∝ να expHt (α, σ ).

Differentiation of (E.6) results in

φ′N (t) = 1

N

〈∂Ht (α, σ )

∂t

〉

t
.
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Applying Gaussian integration by parts [54, Lem. 1.1], we rewrite this as

φ′N (t) = E

〈
C((α1, σ 1), (α1, σ 1)

)− C((α1, σ 1), (α2, σ 2)
)〉

t
, (E.7)

where (α1, σ 1), (α2, σ 2) denote independent samples from Gt , and C : (Ns−1 ×
�N (d, ε))2 → R is defined by

C((α, σ ), (α′, σ ′)
) = 1

N
E

[∂Ht (α, σ )

∂t
Ht (α

′, σ ′)
]
.

To compute this expectation, recall that the three Gaussian processes on the right-hand
side of (E.5) are independent, centered, and have covariances given by (1.14) and (3.6).
Therefore,

C((α1, σ 1), (α2, σ 2)
) = 1

2

(
ξ(R1,2)−

〈∇ξ(γr(α1,α2)),R1,2
〉
+ ϑξ (γr(α1,α2))

)

(1.27)= 1

2

(
ξ(R1,2)− ξ(γr(α1,α2))−

〈∇ξ(γr(α1,α2)),R1,2

− γr(α1,α2)

〉)
,

where R1,2 = R(σ 1, σ 2) as in (2.2). By the convexity assumption (A2),
we have

C((α1, σ 1), (α2, σ 2)
) ≥ 0. (E.8)

In the special case (α1, σ 1) = (α2, σ 2), we have γr(α1,α1) = γs = diag(d) by (1.29c),
and ‖R1,1 − diag(d)‖1 ≤ κε by definition of �N (d, ε) in (D.1). It follows that

C((α1, σ 1), (α1, σ 1)
) ≤ 1

2
sup

‖R‖1≤1
‖∇ξ(R)‖∞ · κε. (E.9)

Combining (E.7), (E.8), and (E.9) concludes the proof. � (Claim)

Claim E.3 implies

φN (1) ≤ φN (0) + Cε. (E.10)

When t = 1, the α and σ terms in (E.6) fully decouple, resulting in

φN (1) = FN ,ξ (d, ε) +
1

N
E log

∑

α∈Ns−1

να exp
(√

N Yα

) (C.4)= FN ,ξ (d, ε)−P(2)
ξ (π).

(E.11)

On the other hand, evaluating (E.6) at t = 0 yields

φN (0) = 1

N
E log

∑

α∈Ns−1

∑

σ∈�N (d,ε)

να exp
( N∑

i=1

〈
Zi (α), σi

〉)
. (E.12)
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For any σ ∈ �N (d, ε) and λ ∈ R
κ , we have

1

N

N∑

i=1

〈λ, σi 〉 = 〈λ, d〉 +
〈
λ,

1

N

N∑

i=1

σi − d
〉 (1.4)≥ 〈λ, d〉 − ε‖λ‖1. (E.13)

Now add and subtract 〈λ, σi 〉 within the exponent appearing in (E.12). Using (E.13)
and the trivial containment �N (d, ε) ⊆ �N , we deduce that

φN (0) ≤ 1

N
E log

∑

α∈Ns−1

∑

σ∈�N

να exp
( N∑

i=1

〈
Zi (α) + λ, σi

〉)− 〈λ, d〉 + ε‖λ‖1

(3.7)= P(1)
N ,ξ (π, λ;�N )− 〈λ, d〉 + ε‖λ‖1

(3.10)= P(1)
ξ (π, λ)− 〈λ, d〉 + ε‖λ‖1.

(E.14)

Inserting (E.11) and (E.14) into (E.10), we arrive to

FN ,ξ (d, ε) ≤ P(1)
ξ (π, λ) + P(2)

ξ (π)− 〈λ, d〉 + (C + ‖λ‖1)ε

(1.34)= Pξ (π, λ)− 〈λ, d〉 + (C + ‖λ‖1)ε.

As this inequality holds for any N , we conclude

lim
ε↘0

lim sup
N→∞

FN ,ξ (d, ε) ≤Pξ (π, λ)− 〈λ, d〉. (E.15)

Finally, recall that Pξ (π) = infλ∈Rκ [Pξ (π, λ)−〈λ, d〉], and so (E.15) implies (E.4). ��
We are almost ready to prove Theorem 1.7. One technical detail that needs to be

resolved is relaxing (E.2) to the weaker condition dN → d. The crucial lemma is the
following analogue of Lemma D.1 for free energy.

Lemma E.4. Assume ξ satisfies (A1). There exists a constant C depending only on ξ

and κ , such that for every N ≥ 1 and ε > 0, we have

sup
d∈DN

∣∣FN ,ξ (d, ε)− FN ,ξ (d)
∣∣ ≤ C

√
ε. (E.16)

Proof. As in the proof of Lemma D.1, assume without loss of generality that ε ∈
[1/N , 1/2], and consider any map P : �N (d, ε) → �N (d) that is a projection with
respect to Hamming distance.

Let H̃N ,ξ be an independent copy of HN ,ξ , and then define an interpolating Hamil-
tonian on �N (d, ε):

Ht (σ ) = √
t HN ,ξ (σ ) +

√
1− t H̃N ,ξ (Pσ), t ∈ [0, 1].

Define the associated free energy

φ(t) = 1

N
E log

∑

σ∈�N (d,ε)

expHt (σ ), (E.17)

so that

φ(1) = FN ,ξ (d, ε) and φ(0) = 1

N
E log

∑

σ∈�N (d)

N (σ ) exp H̃N ,ξ (σ ), (E.18a)
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where N (σ ) is defined in (D.5). Since every σ ∈ �N (d) satisfies P(σ ) = σ , we have
N (σ ) ≥ 1. Also N (σ ) ≤ exp(Cκ

√
εN ) by (D.6), and so

FN ,ξ (d) ≤ φ(0) ≤ FN ,ξ (d) + Cκ

√
ε. (E.18b)

Meanwhile, differentiation of (E.17) results in

φ′(t) = 1

N

〈∂Ht (σ )

∂t

〉

t
,

where 〈·〉t denotes expectation with respect to the Gibbs measure Gt (σ ) ∝ expHt (σ )

on �N (d, ε). Applying Gaussian integration by parts [54, Lem. 1.1], we rewrite this as

φ′(t) = E
〈C(σ 1, σ 1)− C(σ 1, σ 2)

〉
t ,

where σ 1, σ 2 denote independent samples from Gt , and C : �N (d, ε) × �N

(d, ε) → R is defined by

C(σ, σ ′) = 1

N

[∂Ht (σ )

∂t
Ht (σ

′)
]

(1.14)= 1

2

(
ξ
(
R(σ, σ ′)

)− ξ
(
R(Pσ, Pσ ′)

))
.

It follows that

|φ′(t)| ≤ sup
‖R‖1≤1

‖∇ξ(R)‖∞ · sup
σ,σ ′∈�N (d,ε)

‖R(σ, σ ′)− R(Pσ, Pσ ′)‖1.

For any σ, σ ′ ∈ �N (d, ε), we have

‖R(σ, σ ′)− R(Pσ, Pσ ′)‖1

(2.3)= 1

N

κ∑

k,k′=1

∣∣∣∣
N∑

i=1

(
1{σi = ek}1{σ ′i = ek′ } − 1{(Pσ)i = ek}1{(Pσ ′)i = ek′ }

)∣∣∣∣

≤ 1

N

N∑

i=1

κ∑

k,k′=1

∣∣∣1{σi = ek}1{σ ′i = ek′ } − 1{(Pσ)i = ek}1{(Pσ ′)i = ek′ }
∣∣∣

≤ 1

N

N∑

i=1

κ∑

k,k′=1

(∣∣1{σi = ek} − 1{(Pσ)i = ek}
∣∣ +
∣∣1{σ ′i = ek′ } − 1{(Pσ ′)i = ek′ }

∣∣
)

(D.4)≤ 4ε.

The two previous displays together show that supt∈[0,1] |φ′(t)| ≤ C ′ε for some con-
stant C ′ depending only on ξ and κ . Combining this fact with (E.18), we determine
that

∣∣FN ,ξ (d, ε)− FN ,ξ (d)
∣∣ ≤ Cκ

√
ε + C ′ε.

We have thus proved (E.16) with C = Cκ + C ′. ��
We now complete the main objective of this appendix.
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Proof of Theorem 1.7. For any d ∈ D and N ≥ 1, it follows from the definition of DN
in (1.6) that there exists dN ∈ DN satisfying (E.2) with L = 1.

So for any fixed ε > 0, we have �N (d, ε) ⊇ �N (dN ) once N is large enough that
ε ≥ 1/N . Hence

lim inf
N→∞ FN ,ξ (d, ε) ≥ lim inf

N→∞ FN ,ξ (d
N )

(E.3)≥ inf
π∈�d

Pξ (π).

Combining this with the upper bound from Proposition E.1, we deduce (1.22a). For
(1.22b), we consider any sequence dN ∈ DN such that dN → d as N → ∞, not
necessarily satisfying (E.2). Once N is large enough that ‖dN − d‖∞ ≤ ε/2, we have

�N (d, ε/2) ⊆ �N (dN , ε) ⊆ �N (d, 2ε).

HenceFN ,ξ (d, ε/2) ≤ FN ,ξ (dN , ε) ≤ FN ,ξ (d, 2ε) for all large N , and so (1.22a) forces

lim
ε↘0

lim sup
N→∞

FN ,ξ (d
N , ε) = lim

ε↘0
lim inf
N→∞ FN ,ξ (d

N , ε) = inf
π∈�d

Pξ (π). (E.19)

Meanwhile, by Lemma E.4 we have

lim sup
N→∞

∣∣FN ,ξ (d
N , ε)− FN ,ξ (d

N )
∣∣ ≤ C

√
ε.

By sending ε↘0 and appealing to (E.19), we obtain (1.22b). ��

References

1. Adhikari, A., Brennecke, C.: Free energy of the quantum Sherrington–Kirkpatrick spin-glass model with
transverse field. J. Math. Phys. 61(8), 083302 (2020)

2. Aizenman, M., Sims, R., Starr, S.L.: Extended variational principle for the Sherrington–Kirkpatrick spin-
glass model. Phys. Rev. B 68, 214403 (2003)

3. Aizenman, M., Sims, R., Starr, S.L.: Mean-field spin glass models from the cavity-ROSt perspective.
Contemp. Math. 437, 1–30 (2007)

4. Auffinger, A., Chen, W.-K.: The Parisi formula has a unique minimizer. Commun. Math. Phys. 335(3),
1429–1444 (2015)

5. Auffinger, A., Chen, W.-K.: On concentration properties of disordered Hamiltonians. Proc. Am. Math.
Soc. 146(4), 1807–1815 (2018)

6. Auffinger, A., Zhou, Y.: On properties of the spherical mixed vector p-spin model. Stoch. Process. Appl.
146, 382–413 (2022)

7. Barra, A., Contucci, P., Mingione, E., Tantari, D.: Multi-species mean field spin glasses. Rigorous results.
Ann. Henri Poincaré 16(3), 691–708 (2015)

8. Bates, E., Sloman, L., Sohn, Y.: Replica symmetry breaking in multi-species Sherrington–Kirkpatrick
model. J. Stat. Phys. 174(2), 333–350 (2019)

9. Bates, E., Sohn, Y.: Crisanti–Sommers formula and simultaneous symmetry breaking in multi-species
spherical spin glasses. Commun. Math. Phys. 394(3), 1101–1152 (2022)

10. Bates, E., Sohn, Y.: Free energy in multi-species mixed p-spin spherical models. Electron. J. Probab. 27,
52 (2022)

11. Ben Arous, G., Subag, E., Zeitouni, O.: Geometry and temperature chaos in mixed spherical spin glasses
at low temperature: the perturbative regime. Commun. Pure Appl. Math. 73(8), 1732–1828 (2020)

12. Binder, K., Young, A.P.: Spin glasses: experimental facts, theoretical concepts, and open questions. Rev.
Mod. Phys. 58, 801–976 (1986)

13. Bovier, A., Klimovsky, A.: The Aizenman–Sims–Starr and Guerra’s schemes for the SK model with
multidimensional spins. Electron. J. Probab. 14(8), 161–241 (2009)

14. Caltagirone, F., Parisi, G., Rizzo, T.: Dynamical critical exponents for the mean-field Potts glass. Phys.
Rev. E 85, 051504 (2012)

15. Chatterjee, S.: The Ghirlanda–Guerra identities without averaging. Preprint, available at arXiv:0911.4520

http://arxiv.org/abs/0911.4520


Parisi Formula for Balanced Potts Page 67 of 68   228 

16. Chen, H.-B.: On Parisi measures of Potts spin glasses with correction. Preprint, available at
arXiv:2311.11699

17. Chen, H.-B.: On the self-overlap in vector spin glasses. Preprint, available at arXiv:2311.09880
18. Chen, H.-B.: Parisi PDE and convexity for vector spins. Preprint, available at arXiv:2311.10446
19. Chen, H.-B.: Self-overlap correction simplifies the Parisi formula for vector spins. Electron. J. Probab.

28, 170 (2023)
20. Chen, H.-B., Mourrat, J.-C.: On the free energy of vector spin glasses with non-convex interactions.

Preprint, available at arXiv:2311.08980
21. Chen, W.-K.: The Aizenman–Sims–Starr scheme and Parisi formula for mixed p-spin spherical models.

Electron. J. Probab. 18(94), 14 (2013)
22. Chen, W.-K.: Phase transition in the spiked random tensor with Rademacher prior. Ann. Stat. 47(5),

2734–2756 (2019)
23. Chen, W.-K., Handschy, M., Lerman, G.: Phase transition in random tensors with multiple independent

spikes. Ann. Appl. Probab. 31(4), 1868–1913 (2021)
24. Chen, W.-K., Panchenko, D.: Temperature chaos in some spherical mixed p-spin models. J. Stat. Phys.

166(5), 1151–1162 (2017)
25. Chen, W.-K., Sen, A.: On �p-Gaussian–Grothendieck problem. Int. Math. Res. Not. IMRN 3, 2344–2428

(2023)
26. Contucci, P., Mingione, E.: A multi-scale spin-glass mean-field model. Commun. Math. Phys. 368(3),

1323–1344 (2019)
27. Crisanti, A., Rizzo, T.: Analysis of the ∞-replica symmetry breaking solution of the Sherrington–

Kirkpatrick model. Phys. Rev. E 65, 046137 (2002)
28. De Santis, E., Parisi, G., Ritort, F.: On the static and dynamical transition in the mean-field Potts glass. J.

Phys. A 28(11), 3025–3041 (1995)
29. Dey, P.S., Wu, Q.: Fluctuation results for multi-species Sherrington–Kirkpatrick model in the replica

symmetric regime. J. Stat. Phys. 185(3), 22 (2021)
30. Dominguez, T.: The �p-Gaussian–Grothendieck problem with vector spins. Electron. J. Probab. 27, 70

(2022)
31. Elderfield, D., Sherrington, D.: The curious case of the Potts spin glass. J. Phys. C Solid State Phys.

16(15), L497–L503 (1983)
32. Elderfield, D., Sherrington, D.: Novel non-ergodicity in the Potts spin glass. J. Phys. C Solid State Phys.

16(32), L1169–L1175 (1983)
33. Gamarnik, D., Jagannath, A., Sen, S.: The overlap gap property in principal submatrix recovery. Probab.

Theory Relat. Fields 181(4), 757–814 (2021)
34. Ghirlanda, S., Guerra, F.: General properties of overlap probability distributions in disordered spin sys-

tems. Towards Parisi ultrametricity. J. Phys. A 31(46), 9149–9155 (1998)
35. Gross, D.J., Kanter, I., Sompolinsky, H.: Mean-field theory of the Potts glass. Phys. Rev. Lett. 55, 304–307

(1985)
36. Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys.

233(1), 1–12 (2003)
37. Husson, J., Ko, J.: Spherical integrals of sublinear rank. Preprint, available at arXiv:2208.03642
38. Jagannath, A., Ko, J., Sen, S.: Max κ-cut and the inhomogeneous Potts spin glass. Ann. Appl. Probab.

28(3), 1536–1572 (2018)
39. Jagannath, A., Sen, S.: On the unbalanced cut problem and the generalized Sherrington–Kirkpatrick

model. Ann. Inst. Henri Poincaré D 8(1), 35–88 (2021)
40. Jagannath, A., Tobasco, I.: A dynamic programming approach to the Parisi functional. Proc. Am. Math.

Soc. 144(7), 3135–3150 (2016)
41. Ko, J.: The Crisanti–Sommers formula for spherical spin glasses with vector spins. Preprint, available at

arXiv:1911.04355
42. Ko, J.: Free energy of multiple systems of spherical spin glasses with constrained overlaps. Electron. J.

Probab. 25, 28 (2020)
43. Mourrat, J.-C.: Hamilton–Jacobi equations for mean-field disordered systems. Ann. Henri Lebesgue 4,

453–484 (2021)
44. Mourrat, J.-C.: Nonconvex interactions in mean-field spin glasses. Probab. Math. Phys. 2(2), 281–339

(2021)
45. Mourrat, J.-C.: The Parisi formula is a Hamilton–Jacobi equation in Wasserstein space. Can. J. Math.

74(3), 607–629 (2022)
46. Mourrat, J.-C.: Free energy upper bound for mean-field vector spin glasses. Ann. Inst. Henri Poincaré

Probab. Stat. 59(3), 1143–1182 (2023)
47. Mourrat, J.-C., Panchenko, D.: Extending the Parisi formula along a Hamilton–Jacobi equation. Electron.

J. Probab. 25, 23 (2020)

http://arxiv.org/abs/2311.11699
http://arxiv.org/abs/2311.09880
http://arxiv.org/abs/2311.10446
http://arxiv.org/abs/2311.08980
http://arxiv.org/abs/2208.03642
http://arxiv.org/abs/1911.04355


  228 Page 68 of 68 E. Bates, Y. Sohn

48. Nishimori, H., Stephen, M.J.: Gauge-invariant frustrated Potts spin-glass. Phys. Rev. B 27, 5644–5652
(1983)

49. Panchenko, D.: Free energy in the generalized Sherrington–Kirkpatrick mean field model. Rev. Math.
Phys. 17(7), 793–857 (2005)

50. Panchenko, D.: A question about the Parisi functional. Electron. Commun. Probab. 10, 155–166 (2005)
51. Panchenko, D.: On differentiability of the Parisi formula. Electron. Commun. Probab. 13, 241–247 (2008)
52. Panchenko, D.: The Ghirlanda–Guerra identities for mixed p-spin model. C. R. Math. Acad. Sci. Paris

348(3–4), 189–192 (2010)
53. Panchenko, D.: The Parisi ultrametricity conjecture. Ann. Math. (2) 177(1), 383–393 (2013)
54. Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics, Springer,

New York (2013)
55. Panchenko, D.: The Parisi formula for mixed p-spin models. Ann. Probab. 42(3), 946–958 (2014)
56. Panchenko, D.: The free energy in a multi-species Sherrington–Kirkpatrick model. Ann. Probab. 43(6),

3494–3513 (2015)
57. Panchenko, D.: Free energy in the mixed p-spin models with vector spins. Ann. Probab. 46(2), 865–896

(2018)
58. Panchenko, D.: Free energy in the Potts spin glass. Ann. Probab. 46(2), 829–864 (2018)
59. Panchenko, D., Talagrand, M.: On the overlap in the multiple spherical SK models. Ann. Probab. 35(6),

2321–2355 (2007)
60. Parisi, G.: Infinite number of order parameters for spin-glasses. Phys. Rev. Lett. 43, 1754–1756 (1979)
61. Parisi, G.: The order parameter for spin glasses: a function on the interval 0–1. J. Phys. A Math. Gen.

13(3), 1101–1112 (1980)
62. Parisi, G.: A sequence of approximated solutions to the S–K model for spin glasses. J. Phys. A Math.

Gen. 13(4), L115–L121 (1980)
63. Parisi, G.: Order parameter for spin-glasses. Phys. Rev. Lett. 50(24), 1946–1948 (1983)
64. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series No. 28, Princeton University Press,

Princeton (1970)
65. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)
66. Schmidt, M.J.: Replica symmetry breaking at low temperatures. PhD thesis, Universität Würzburg (2008)
67. Sen, S.: Optimization on sparse random hypergraphs and spin glasses. Random Struct. Algorithms 53(3),

504–536 (2018)
68. Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35(26), 1792–1796

(1975)
69. Talagrand, M.: Free energy of the spherical mean field model. Probab. Theory Relat. Fields 134(3),

339–382 (2006)
70. Talagrand, M.: The Parisi formula. Ann. Math. (2) 163(1), 221–263 (2006)
71. Talagrand, M.: Construction of pure states in mean field models for spin glasses. Probab. Theory Relat.

Fields 148(3–4), 601–643 (2010)
72. Talagrand, M.: Mean Field Models for Spin Glasses. Volume II, vol. 55 of Ergebnisse der Mathematik und

ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and
Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Advanced Replica-Symmetry
and Low Temperature. Springer, Heidelberg, (2011)

Communicated by J. Ding


	Parisi Formula for Balanced Potts Spin Glass
	Abstract:
	1 Introduction
	1.1 The model
	1.2 Limiting free energy
	1.3 Potts spin glass with general covariance function
	1.4 Parisi functional
	1.5 Related literature
	1.6 Organization of the paper

	2 Proof Overview
	2.1 Synchronized overlap arrays
	2.2 The generic model and differentiability
	2.3 Parisi formula for symmetric generic models
	2.4 Proofs of main results

	3 Parisi Functional Preliminaries
	3.1 Prelimit of the Parisi functional
	3.1.1 Allowable overlap maps
	3.1.2 The overlap array
	3.1.3 The functional

	3.2 Ruelle probability cascades

	4 Differentiability of the Parisi Formula
	5 Continuity and Duality
	5.1 Continuity of free energy and the Parisi functional
	5.2 Duality of magnetization with Lagrange multiplier
	5.3 Duality in the balanced case

	6 Lower Bound
	6.1 Aizenman–Sims–Starr scheme
	6.2 Ghirlanda–Guerra identities for generic models
	6.3 Proof of lower bound from symmetry

	Acknowledgement
	Appendix A Gaussian Processes for Generic Model
	Appendix B Proof of the Aizenman–Sims–Starr Scheme
	Appendix C Properties of Ruelle Probability Cascades
	Appendix D Duality
	Appendix E Parisi Formula for General Model
	References


