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Abstract: The Potts spin glass is a generalization of the Sherrington—Kirkpatrick (SK)
model that allows for spins to take more than two values. Based on a novel synchro-
nization mechanism, Panchenko (Ann Probab 46(2):829-864, 2018) showed that the
limiting free energy is given by a Parisi-type variational formula. The functional order
parameter in this formula is a probability measure on a monotone path in the space of
positive-semidefinite matrices. By comparison, the order parameter for the SK model is
much simpler: a probability measure on the unit interval. Nevertheless, a longstanding
prediction by Elderfield and Sherrington (J Phys C Solid State Phys 16(15):L497-L503,
1983) is that the order parameter for the Potts spin glass can be reduced to that of the
SK model. We prove this prediction for the balanced Potts spin glass, where the model
is constrained so that the fraction of spins taking each value is asymptotically the same.
It is generally believed that the limiting free energy of the balanced model is the same as
that of the unconstrained model, in which case our results reduce the functional order pa-
rameter of Panchenko’s variational formula to probability measures on the unit interval.
The intuitive reason—for both this belief and the Elderfield—Sherrington prediction—is
that no spin value is a priori preferred over another, and the order parameter should re-
flect this inherent symmetry. This paper rigorously demonstrates how symmetry, when
combined with synchronization, acts as the desired reduction mechanism. Our proof
requires that we introduce a generalized Potts spin glass model with mixed higher-order
interactions, which is interesting it its own right. We prove that the Parisi formula for this
model is differentiable with respect to inverse temperatures. This is a key ingredient for
guaranteeing the Ghirlanda—Guerra identities without perturbation, which then allow us
to exploit symmetry and synchronization simultaneously.
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1. Introduction

1.1. The model. The Potts spin glass was introduced by Elderfield and Sherrington
[31] and has been extensively studied in statistical mechanics [12,14,28,32,35,48]. In
dimension « > 2, the model is defined as follows. At volume N, the configuration
space is the product set >N where T = {e1, ..., ec} is the standard basis in R*. Each
configuration ¢ = (071, ...,oy) € LV is thought of as a k x N matrix, and its energy
is given by the Hamiltonian

N

N
HN(a>:=%Zg,-,,-ﬂ{o,-:aj}— > gijloi.o)). (1.1)

i, j=1 i, j=1

where (g;, j)lN j— are independent standard normal random variables, (A, o) = Ao is
the inner product of A, 0 € R*, and 8 > 0 is an inverse temperature parameter. The
associated free energy is

1
Fy:= E]ElogZN, where Zy := Z exp Hy (o). (1.2)

oexN

For k = 2, the Hamiltonian (1.1) is equivalent to the classical Sherrington—Kirkpatrick
(SK) model [68] by the mapping ¢ +— 7 = (11, ... TN), Where

5= +1 afai = €] (13)
—1 lf(Ii =€).

By this transformation, the free energy Fy equals the free energy of the SK model up to
rescaling B. In this case, the limiting free energy limy _, » Fy is given by the celebrated
Parisi formula, which is a variational expression predicted by Parisi [60—63] but not
proved until the seminal work of Guerra [36] and Talagrand [70].

The fundamental insight behind the Parisi formula is that the SK free energy can be
understood by keeping track of a single random variable, namely the replica overlap. In
our context, this is the quantity N~ IZ[ 1{o;, 0} o?), where 0! and o2 are 1ndependent
samples from the Gibbs measure Gy (o) = exp Hy(co)/Zy. This quantity is exactly
the fraction of coordinates at which 0! and o2 agree. The law of this random variable
is a probability measure on [0, 1], and Parisi’s formula is a minimization problem over
such measures.

For k > 3, this perspective runs into difficulty because of the additional degrees of
freedom. Namely, the transformation (1.3) does not have a natural generalization, and so
there is no obvious way to relate the free energy of the Potts spin glass to a scalar statistic.
In principle, one needs to keep track of the entire ¥ x « matrix N~'o'!(62)T, whereas
the replica overlap is just the trace. Nevertheless, using an ingenious synchronization
mechanism, Panchenko [58] showed that in the large-N limit, this overlap matrix is some
deterministic map of its trace (Theorem 2.3). This led to a generalized Parisi formula that
optimizes over probability measures on [0, 1] fogether with so-called synchronization
maps (Theorem 1.1).

The program initiated by this paper is to go even further: there is only one possible
choice for the synchronization map. Theorem 1.3 accomplishes this for the balanced
Potts spin glass and is presented in the next section.
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1.2. Limiting free energ1y. A crucial fact of synchronization is that it requires the self-
overlap matrix N~ loo ! € R“** to take a fixed value (see (2.11) in Theorem 2.3). But
of course the function ¢ — N~ 'oo T is not constant over the configuration space £V ;
it can be any diagonal matrix whose entries belong to {0, % e, % 1} and sum to
1. Therefore, the strategy of Panchenko [57] is to consider subsets of £ on which
this function is approximately constant, and then derive a Parisi formula for the model
constrained to these subsets. The number of subsets needed grows only polynomially
in N, whereas (1.2) concerns an exponential growth rate. Therefore, classical Gaussian
concentration allows one to determine that the limiting free energy of the unconstrained
model is simply the largest limiting free energy among the constrained models. We now
proceed to make things precise.
Denote the k-dimensional unit simplex by

D::{d:(dl,...,d,() € [0, 1] : kzzjldkz 1].

An element d € D is called a magnetization of the Potts spin glass. The configuration
space with magnetization d and approximation parameter ¢ > 0 is

N
1
>N, e):= [o ez ‘NZH{O‘,' =ek}—dk‘ < eforeachk e {1,...,/«}}.
i=1

(1.4)
The associated constrained free energy is
1
Fn(d,e):= NElogZN(d, g), where Zyn(d, &) := Z exp Hy (o).
oexN(d,e)
(1.5)

When ¢ = 0, we write
2N(@d):=2N(d,0), Zy(d):=2Zn(d,0), Fy(d):=Fy(d,0).

This last free energy only makes sense if £ (d) is nonempty, which occurs precisely
when d belongs to the set

Dy:=DN((Z/N) ={deD: V) + @}. (1.6)
Next we introduce the order parameter for Panchenko’s variational formula. Define
[y :={y € R“*“: y is symmetric and positive-semidefinite}.

Given d € D, let ', (d) be the subset of I', consisting of matrices with nonnegative
entires whose row sums are given by d:

K
Ie(d):= {y eI N[O, 177% Z Viw = di foreach k € {1, .. .,K}}, deD.
k'=1
(1.7)
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We write < for the positive-semidefinite order on symmetric matrices. Then consider
the following collection of paths on I', (d):

Mg:={m: (0, 1] > I'c(d) : 7 is left-continuous, 7(s) < w (1) if s <¢}.  (1.8)

To place this definition into context with the previous section: each w € I, is the com-
bination of a probability measure w on [0, 1] with a synchronization map &: [0, 1] —
' (d). More specifically, 7 is the composition ® o Q,, where Q,, is the quantile func-
tion of w. See Remark 1.4 for an important special case, and Sect.2.1 for the origin of
the map .

The following result summarizes the outcome of Panchenko’s synchronization scheme
for the Potts spin glass. The statement below combines the results of two papers. The
Parisi functional P is defined in Sect. 1.4, specifically (1.35) with & given in (1.15).

Theorem 1.1. [57,58] There is an explicit functional P: Ugzep Iy — R such that for
every d € D, the constrained free energy has the following limit:

lim lim sup Fy (d, ¢) = lim liminf Fx (d, €) = inf P(r). (1.9)
3 N— 00 eN\O0 N—oo melly

Furthermore, the limiting unconstrained free energy is given by

lim Fy = sup inf P(x). (1.10)
N—oo deD7ely

Remark 1.2. In [58], the definition of I1; included additional stipulations that 7 (0) = 0
and (1) = diag(d). The first condition is unimportant because the value of 7 (0) plays no
role in determining the value of P (7). Regarding the second condition 7 (1) = diag(d),
our definition (1.8) only implies 7 (1) < diag(d), since diag(d) is the maximal element
of I'y (d) (Lemma A.3). The infimum in (1.9) is not sensitive to this difference because
every m € Il can be approximated by 7 € I, such that 7 (1) = diag(d), and the
Parisi functional is continuous (Proposition 2.13(b)). On the other hand, our definition
guarantees the existence of a minimizer.

It was further predicted by Elderfield and Sherrington [31] when they introduced the
Potts spin glass model that the variational expression sup,.p infrem, P(r) in (1.10) is
achieved on a restricted set. In our notation, Elderfield and Sherrington [31, Eq. (15)]
predicts the following:

(a) The supremum over d € D is achieved at the balanced case d = dpg), where
dpal := P 1,

and 1 € R¥ is the vector of all ones. This prediction was echoed in [58, Rmk. 3].
(b) The infimum over 7 € Il is achieved by some 7 such that for every ¢ € [0, 1],
the matrix 77 (¢) is constant on its diagonal and also constant off its diagonal.

In fact, these predictions were central to analysis of [31] regarding the phase transitions
of the Potts spin glass. See [12, Sec. VI.H.1] for further discussion.

Our main result confirms prediction (b). To thisend, let I, € R“** denote the identity
matrix, and consider the following subset of Iy (dpa)):

1 —
F*::{yeFK:y=21K+ el
K

2117 for some ¢ € [0, 1]}. (1.11)
K
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Then define the corresponding subset of the path space 14,

I := {n: (0,11 — I' : 7 is left-continuous, 7 (s) < 7 (¢) if s < t}. (1.12)

Theorem 1.3. For dyy = k~'1, we have

lim lim sup Fy (dpgs, €) = lim liminf Fy (dpg, €) = inf P(r).
3 N—00 eNO0 N—oo mell*

Moreover; for any dN € Dy converging to dya as N — 00, we have
lim Fy(d") = inf P(n).
N—oo N( ) mell* ( )

We note that Theorem 1.3 is only interesting when x > 3 since for k = 2, we have
IT* = M4, For « > 3, however, I"* remains a 1-dimensional space, whereas I (dpal)

has dimension @ Theorem 1.3 thus shows that when d = dpg|, the infimum in
(1.10) can be taken over a much smaller space. In this way Theorem 1.3 can viewed as
a deterministic statement on top of Theorem 1.1, although our proof is probabilistic. In
fact, we will deduce Theorem 1.3 from a more general result, Theorem 1.8, presented
in Sect. 1.3.

One may naively hope to prove Theorem 1.3 by showing that 1y, > 7 +— P(w)
is convex, since then the infimum in (1.10) must be achieved at a “symmetric” m, by
which me mean & € IT*. But unfortunately this convexity fails when ¥ > 3, because
of complications in comparing synchronization maps with different images. In fact, a
recurring challenge in settings relying on synchronization—such as multi-species mod-
els or vector spin models—is to extract information about the minimizer of the Parisi
functional without relying on convexity, e.g. [8,9,29]. Theorem 1.3 is a new example of
how to accomplish this, and we anticipate it can actually enable convexity arguments as
in the SK model [4,13,40,50]. This is because the synchronization map is now fixed, as
explained below in Remark 1.4. Indeed, following the initial release of this manuscript,
Chen [16] proved a version of Theorem 1.3 for the model with self-overlap correction,
and the resulting Parisi functional is strictly convex [18].

Remark 1.4. There is a one-to-one correspondence between IT* and Prob([0, 1]), the
set of Borel probability measures on [0, 1]. Given u € Prob([0, 1]), denote its quantile
function by Q () = inf{g > 0 : u([0, g]) > t}. Then the correspondence is achieved
through the relation 7 = ®* o Q,,, where ®*(q) = gk e+ (1 — q)/c_zllT. In this
way, the functional order parameter in the balanced Potts spin glass is understood as
an element of Prob([0, 1]). Moreover, if prediction (a) is also true, then Theorems 1.1
and 1.3 together express the unconstrained free energy limy _, oo Fy as an infimum over
probability measures on [0, 1], just as for the classical SK model.

Regardless of the status of prediction (a), the balanced Potts spin glass has an impor-
tant application in combinatorial optimization. Namely, denote by MaxCut(G, k) the
size of the maximum cut of graph G into « parts, and consider either the sparse Erd6s—
Rényi graph Gy ~ G(N, d/N) or the sparse random regular graph Gy ~ Greg(N, d)
with degree d. It was shown by Sen [67, Sec. 2.2] that for d sufficiently large, the
following asymptotic holds with high probability as N — oo:

MBCUGN-) _ 4 (1 1 2 o,
N 2 K 2
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where P, («) denotes the ground-state energy of the balanced Potts spin glass model:

P.(x):= lim l inf P(m; p).

B—00 nel‘[dbal

Here we are making explicit the dependence of the Parisi functional on . Now Theo-
rem 1.3 simplifies this to a lower-dimensional minimization problem:

P, (x) = ﬂlimw é niglfl* P(r; B). (1.13)

For k = 2 (in which case g, = II1*), numerical studies [27,66] give P.(2) ~
0.763166. Since IT* has no dimensional dependence on « (unlike Iy, ), (1.13) opens
the possibility of numerically computing P, (k) for k > 3.

1.3. Potts spin glass with general covariance function. We will obtain Theorem 1.3
from the analogous result for a more general Hamiltonian. But this is not simply for
the sake of generality: our proof of Theorem 1.3 actually requires that we first replace
(1.1) with a Hamiltonian that includes higher-order interactions. Namely, we assume
henceforth that (Hy £(0)), 5w~ is a centered Gaussian process with covariance

O‘U/T

N

E[Hy ¢(0)Hy £ (0))] = Ng( ) o0’ e =V, (1.14)

where & : R“** — R is any function satisfying assumptions (A1) and (A2) below. The
ordinary Potts spin glass (1.1) is the special case

ER)=p> Y Rip=PpuwRR). (1.15)
k,k'=1

To state our more general assumptions, we require some definitions.
Let N = {1, 2, ...}. Then define the following set of parameters:

®:={(p,m,n1,...,nm,wl,...,wm) spomong, .o ony €Ny wy, L wy 6[—1,1]'(}.

(1.16)

For 6 € ©, define the function &y : R“** — R by

m

£ (R) = [ [(RPwj, w))™, (1.17)

j=1

where R°? denotes the pth Hadamard power of the matrix R, i.e. (R°”)x p = (Rix/)?.
The function & is a homogeneous polynomial of degree

deg(0) :=p(ny + - +ny). (1.18)

Then we assume the following about the covariance function & : R“** — R in (1.14):
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(A1) There exists a countable subset ®) C O and coefficients (ag)ge@, such that
&(R) = Z agé‘g (R) and Z ag(l +6)%e®@ ~ 56 for some & > 0.
00y 0By
(A2) £ is convex when restricted to the following set:
Ry :={R € [0, 11 : | Rl < 1}. (1.19)
Remark 1.5. We always have
léa (R < IIRI. (1.20)

Therefore, the decay condition on ap in (Al) ensures that ) , €60 agfg‘g(R) converges

uniformly on the set {R € R“*¥ : ||R||; < 1}. In particular, £ is smooth on this set.
Outside this set, the sum may diverge, and this is okay because we will only ever need
to apply & on the set %, defined in (A2). This is because for any o, ¢’ € TV, we have
N~'66'T € %,.Nevertheless, we will continue to write R“*¥ as the domain of £ simply
to remind the reader of the ambient matrix space.

Remark 1.6. Comparing (1.15) and (1.17), one sees that the ordinary Potts spin glass (1.1)
corresponds to the case when ®g has a single element: (p =1, m =1,n =2, w =1).

Extending the notation of (1.5), we write

Fneld, e) = %]ElogZN,g(d, €), where Zy:(d,¢) = Z exp Hy (o),
cesN(d,e)

(1.21)
and Fy¢(d) = Fye(d,0) and Zy £(d) = Zng(d,0) as before. We first generalize
Theorem 1.1 to this setting.

Theorem 1.7. Assume & : R“** — R satisfies (Al) and (A2). Then for any d € D,

lim li F d = lim liminf F d = inf
lim Jim sup Ne(d,€) lim lim inf Ne(d,€) nlenndpg(ﬂ), (1.22a)

N—o0
where the Parisi functional P () is defined in (1.35). Moreover, for any d"N e Dy such
that dN — d as N — oo, we have
lim Fye(@") = inf :
im Neg@d™) nf P (1) (1.22b)

More importantly, we show that when d = dpg and & has a certain symmetry—
which is the case for the usual Potts spin glass (1.15)—the Parisi formula (1.22) can
be reduced to have order parameter = € IT*. First we define the symmetry condition.
Let S, denote the symmetric group on {1, ..., x}. Given a permutation ® € S, and a
matrix R € R“**, let w « R be the matrix obtained by permuting the rows and columns
according to w. That is,

(a).R)k,k’ = Ra)“(k),w"(k/)’ k, k/ € {1,...,/(}. (123)

We then make the following assumption:
E(we R) =&(R) forevery w € S, and R € R“*“. (A3)

The following is our main result: it generalizes Theorem 1.3 to the setting (1.14).



228 Page 8 of 68 E. Bates, Y. Sohn

Theorem 1.8. Assume & : R“** — R satisfies (A1), (A2), (A3). Then for any dN e Dy
such that dV — dpg as N — oo, we have

lim Fy (@) = lim li Fu & (dpal, €) = lim liminf Fy ¢ (dpgl, €) = inf Ps (),
Jim Fy g (d™) Jim lim sup N.& (dpal; €) Jim Tim int N.¢ (doal. £) = inf Py(r)
(1.24)

where I1* is defined in (1.12) and Ps (1) is defined in (1.35) (see also (1.36)).

We close this section by explaining why Theorem 1.8 only applies to the balanced
case d = dpg. Given a permutation w € S, and a vector u = (uy,...,u,) € R, let
w ¢ u be the vector obtained by permuting the coordinates of u:

(o) = uy-14), ke{l,....k} (1.25a)

In particular, for any standard basis vector e,, we have w e €, = €,(,). Now extend this
actiontoo = (o1, ...,0n8) € V¥ by

weo = (weoy,...,we0y), o€V, (1.25b)

The original Potts Hamiltonian (1.1) is clearly unchanged in distribution under any such
action. This fact is generalized by assumption (A3), which implies (see Lemma 6.7(a))

lﬂN(

(HN,g(U))(,ezN = HN,S((U°U))0€2N- (1.26)

Unfortunately this symmetry is not particularly helpful for the constrained model (1.21),
since the constrained configuration space £ (d) from (1.4) is not invariant under these
permutations. But there is one exception: whend = dpg). Inthis case, themapo > weo
is a bijection =V (dpa)) — X (dpal). The central objective of the paper is to capitalize
on this basic observation. Roughly speaking, Theorem 1.8 is the statement that when
d = dpg, the order parameter 77 : (0, 1] — T’y (dpg) in (1.34) must reflect the symmetry
offered by (1.26). That is, m should actually map to the space I'* defined in (1.11),
which is precisely the subset of I, (dpg)) consisting of those matrices y which satisfy
wey = y forevery w € S.

1.4. Parisi functional. In this section we define the Parisi functional P for any & satisfy-
ing (A1). We denote the derivative of &£ by V& : R“*¢ — R“*X which is a matrix-valued
function with entries given by

098 :
[VER) Ik 1 = v (R), kK e{l,..., k}.

In addition, define the function ¢ : R“>** — R by

Ve (R):=(R, VE(R)) — &(R), (1.27)

where (A, B) = tr(ATB) denotes the inner product of two matrices A, B. Under as-
sumption (A1), the functions &, V&, and ¢ are nondecreasing when restricted to the set
I, of positive-semidefinite matrices; see Proposition 2.7(b).
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Recall the set of paths I, from (1.8). We first define P (;r) for any discrete path 7,
and then extend continuously to general . By a discrete path we mean an element of
the set

Hgisc :={m € Iy : 7 takes only finitely many values, 7 (1) = diag(d)}.  (1.28)
Thus every 7 € T19C has the form
w(t) =y fort e (my,_1,m.],re{l,...,s} (1.29a)
for some sequence of weights
O=mg<my <---<my_1 <mg =1, (1.29b)
and some sequence of matrices
O0=pp<y1 < <ys—1 < ys = diag(d). (1.29¢)

Given these sequences, consider independent centered Gaussian random vectors
20, - - -, Zs—1 In R¥ with covariance structure

E(zr2)) = VE(ra1) — VE()1{r > O} (1.30)

Given a parameter A = (A1, ..., &) € R* which serves as a Lagrange multiplier, define

K s—1
X = logZexp(Zz, + A, ek>.
k=1 r=0

Using E, to denote expectation with respect to z,, we then define inductively

1
X, = —1logE,exp(m,X,+1) forre{l,...,s —1}, and Xo=Eo(Xy).
m

,
We then record the non-random quanity X as a function of 7 and A:
20 (1. 3) = Xo. (1.31)

We show in Lemma 5.1 that Hgisc 57T > 3”5(1)(7[, A) is Lipschitz continuous with
respect to the following L! norm on paths:

1
b4 |—>/ |7 ()1 dt. (1.32)
0

Since Hgisc C TIl; is dense with respect to this norm, there is a unique continuous
extension of ,@é(l) to all of ;. Next define

1
P2 () = %/ B¢ (1)) dt — %ﬁg(diag(d)), 7 eIy, (1.33)
0

and set
Pe(n,0) =2 (. 0) + P2 (7). (1.34)
Finally, the Parisi functional is defined as

Pe(m):= inf [Pe(mw, L) — (A, d)], m e y. (1.35)
LERK
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Remark 1.9. The reason for the Lagrange multiplier A and the infimum in (1.35) is later
explained in Remark 3.8. It is straightforward to check that & (7w, 1) = P& (w, A +c1)
holds for any ¢ € R. Therefore, one could fix the last coordinate A, = 0 so that the
infimum in (1.35) is over R*—!: this was done in [58]. More importantly, we show in
Lemma 5.4 that for 7 € IT* and & satisfying the symmetry condition (A3), the infimum
is achieved at A = O:

Pe(m) = Pe(,0) forany w € IT*. (1.36)

Consequently, Theorem 1.8 shows that the Lagrange parameter X is not needed for
symmetric models, although it remains necessary for the proof.

1.5. Related literature. The Potts spin glass model is closely related to the max «-cut
problem on random graphs. As mentioned after Remark 1.4, the balanced case addressed
in this paper corresponds to sparse Erd6s—Rényi graphs or random regular graphs [67],
both of which have distributional symmetry analogous to (A3). An unbalanced version
(with k = 2) was studied in [39], corresponding to the generalized SK model introduced
in [49]. Motivated by the max k-cut problem on inhomogeneous random graphs, Jagan-
nath et al. [38] introduced a vector version of multi-species SK model and combined
approaches from [56,58] to obtain a Parisi formula for the limiting free energy. As in
this paper, a key technical component was the synchronization mechanism discussed in
Sect. 1.1.

The synchronization technique was first introduced by Panchenko [56] to study the
multi-species SK model. More specifically, synchronization enabled a free energy lower
bound that matched the upper bound obtained in [7] via Guerra’s replica symmetry break-
ing interpolation [36]. These methods were generalized in [58] to obtain the variational
formula (1.10), which is a special case of the mixed vector spin model considered in [57].
Synchronization has since been used in a variety of generalized spin glasses, including
a multi-scale SK model [26], the quantum SK model [1], spherical spin glasses with
constrained overlaps [42], and multi-species spherical models [10]. These generalized
models are related to a number of problems in statistical inference and combinatorial
optimization, such as spiked random tensors [22,23], principal submatrix recovery [33],
and the ¢”—Gaussian—Grothendieck problem [25,30].

Synchronization also been used in conjunction with a strategy initiated by Mourrat
[43,45] that identifies the Parisi formula as a solution to a Hamilton—Jacobi equation.
This program has also led to results on spin glasses enriched by a certain magnetic field
[47], non-convex models such as the bipartite SK model [44], and vector spin models
[20,46]. Building on these developments, Chen [19] recently showed that by introducing
a self-overlap correction term in the free energy, one can remove the supremum over
magnetizations in (1.10). Moreover, the self-overlap concentrates in that setting, thereby
softly enforcing a balanced constraint [17].

For spherical vector spin glasses, Ko [41] obtained the Crisanti-Sommers variational
formula for the limiting free energy. Various properties of the minimizer to this formula
were obtained by Auffinger and Zhou [6], who also extended the formula to zero temper-
ature. In the SK case, the limiting free energy was computed earlier by Panchenko and
Talagrand [59, Thm. 2]. More recently, Husson and Ko [37] gave an alternative proof
using spherical integrals, even allowing « to grow sublinearly with N.
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1.6. Organization of the paper. The paper’s format is meant to prioritize new and cen-
tral ideas, by postponing certain technical aspects that could be otherwise distracting.
Section 2 contains the proof of our main result, Theorem 1.8. The proof invokes various
inputs that are introduced in Sect.2 but proved later in the paper. Section 3 establishes
some notation involving the Parisi functional and Ruelle probability cascades that will
be needed in all subsequent parts. Section4 concerns the differentiability of the Parisi
functional with respect to certain inverse temperatures, while Sect.5 contains various
continuity properties of the Parisi functional. Section6 unites these ingredients with
symmetry to complete the lower bound portion of Theorem 1.8.

Several intermediate results are either standard or very similar to previous works. For
some of these results, the proofs can be read essentially verbatim elsewhere and are thus
omitted. For others, we defer the proofs to one of several appendices. These include the
existence of certain Gaussian processes (“Appendix A”), proof of the Aizenman—Sims—
Starr scheme (“Appendix B”), checking various lemmas involving Ruelle probability
cascades (“Appendix C”), generalizing a variational argument from [58] related to the
infimum in (1.35) (“Appendix D”), and finally verification of the upper bound via Guerra
interpolation (“Appendix E”).

2. Proof Overview

We introduce a series of intermediate results in Sects.2.1-2.3, and then use them to
prove Theorem 1.8 (and Theorem 1.3) in Sect.2.4. The results labeled as propositions
will be proved in the remainder of the paper, while lemmas are argued immediately.
Meanwhile, Theorem 1.7 is proved using the same strategy as in [58], and so we will
not focus on it here. Instead a review of the proof is provided in “Appendix E”.
Toward our goal of Theorem 1.8, we first observe that the upper bound

lim li Fy e(dpa, ) < inf

Jum lim sup N.g (doal. €) = inf Py ()
is immediate from Theorem 1.7, since IT* is a subset of I1g,,. What requires novel
justification is the lower bound, which amounts to showing

1}\}n inf Fen g (dpal) = Pe(r) for some mw € IT*. 2.1)
—00

The factor « in k N is to guarantee that <V (dpg) is nonempty.

The standard approach for proving a Parisi formula lower bound such as (2.1) is the
Aizenman—Sims—Starr (A.S.S.) scheme [2,3]. Indeed, this method is what yields the
lower bound portion of Theorem 1.7. The shortcoming is that this implementation alone
yields a minimizer 7 belonging to Iy, whereas we want more specific information,
namely that 7 can be found in IT*. So we will actually use the A.S.S. scheme a second
time, but with some interventions that preserve the symmetry needed to infer Theorem 1.8
from Theorem 1.7. The next three sections explain how this is accomplished.

2.1. Synchronized overlap arrays. The main characters in the A.S.S. scheme are overlap
arrays. Given any ol,0%, ... € ¥V, we can define an array R = (Ry¢)e 0>1, Where

. . . ’
Re.e is the k x « overlap matrix associated to otandot:

/ N

Rep = R, o _ o) 1 Liot\T e REXK

e =R, 0 )._T_NE o;(0;) € . (2.2)
i=1
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In other words, the (k, k') entry of R(o, o) is the fraction of columns i that satisfy
oi = e, and o/ = ey:
1
R(@, 0w = 5 D Mot = exll{o] = ex). (2.3)
i=1
The case of interest is when (o %) ¢>1 are independent samples from the Gibbs measure
G ¢ associated to the Hamiltonian H y ¢ from (1.14):

Gen (@) ccexp Hen g(0), o € B (dpa). (2.4)
This measure is random depending on the Gaussian process H, v ¢. Therefore, the array
R is generated by first fixing the realization of Gy ¢, and then drawing i.i.d. samples
(o9 ¢>1 from Gy . We denote the resulting distribution by Law(R; E(G?ﬁ,‘%)). This
is a probability measure on the space (R*)N*N equipped with the usual product o -
algebra. Its properties generalize those of classical Gram—de Finetti arrays, as captured

by the following definition. Recall that R°P denotes the pth Hadamard power of matrix
R, and the permutation action R — w e R from (1.23).

Definition 2.1. A «-dimensional Gram—de Finetti array is a random array of k X «
matrices R = (Re¢)e. =1 such that for every positive integer p and w € R*, the
array Q = ((RZi,w, w))¢ ¢>1 is a (1-dimensional) Gram—de Finetti array. That is, Q
is almost surely symmetric and positive-semidefinite, and is exchangeable under any
finite permutation applied to its rows and columns simultaneously. In this case, we say
Law(R) is a Gram—de Finetti law.

Roughly speaking, the A.S.S. scheme works by identifying a functional W¢ on Gram—
de Finetti laws (see Sect. 3.1) such that

Feng +0(1) > Wg (Law(R; E(GER2))). (2.5)
As a first step to go from (2.5) to (2.1), one assumes (by passing to a subsequence) that
Law(R; E(G?ﬁf’s)) converges weakly as N — oo to some L. (2.6)

By continuity of W¢ (see Corollary 3.3), this results in

liminf Fyy g (dpa) = We (£). (2.7)
N—o00

But this limiting law £ is now divorced from the representation (2.2). There is not
necessarily any way of realizing £ by sampling from a Gibbs measure, unless L satisfies
a certain family of identities introduced in [58] and recalled in the following definition.

Definition 2.2. A Gram—de Finettilaw £ = Law(R) is said to satisfy the (x-dimensional)
Ghirlanda—Guerra (G.G.) identities if the following holds for every p > 1, m > 1,
wi, ..., w, € [—1,1]%, and bounded measurable function ¢: R”™ — R. Define the
scalar array

A =g (R wi, i),y (G w, w)). 2.8)

Then for any n > 1 and any bounded measurable function f of the finite subarray
R™ = (Rye)1<6,0/<n» We have

1 1 n
ELf (R™)A1wa] = ~E[f(R)IE[A 2]+~ 3 E[f(R™) A1l (29)
=2
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The theorem quoted below clarifies the role of these identities: to guarantee synchro-
nization. In fact, they also guarantee that each matrix in the array is positive-semidefinite.
The condition (2.11) is why the Gibbs measure in (2.4) is restricted to £V (dpg)). This
restriction ensures that the array in (2.2) satisfies

Re.¢ = diag(dpa)) = k"', for every £. (2.10)

Theorem 2.3. [57, Thm. 4] Assume Law(R) is a Gram—de Finetti law in the sense of
Definition 2.1 and satisfies the Ghirlanda—Guerra identities in Definition 2.2. Suppose
further that there is some deterministic D € 'y with tr(D) = 1 such that

Ree = D forall ¢ > 1, with probability one. (2.11)
Then there exists a map ®: [0, 1] — T’y such that with probability one,
Rew = ®(r(Rep)) forevery £, > 1.
Furthermore, this map can be taken to be nondecreasing,
D(q) = P(g) forq =4,

and Lipschitz continuous,

I®(q) — (@)l < Celg — 4l
for some constant C, depending only on k.

So when the «-dimensional G.G. identities are satisfied, the matrix array (Ry /)¢, ¢/>1
is simply a function of the scalar array (tr(R¢ )¢, ¢'>1. Moreover, this scalar array
satisfies the 1-dimensional (or canonical) G.G. identities (see Lemma 6.6). In turn,
the 1-dimensional G.G. identities [34] are known to yield the following existence and
uniqueness result via ultrametricity [53]. We use Q and L (instead of R and £) as
notational cues that we are speaking of 1-dimensional Gram—de Finetti arrays.

Theorem 2.4. [54, Thm. 2.13, 2.16, and 2.17] Let u be a probability measure on [0, 1].
There is exactly one Gram—de Finetti law L, = Law(Q) that has all three of the
following properties: (i) E_M satisfies the 1-dimensional G.G. identities; (ii) Law(Q; 2) =
w,; and (iii) Q¢ ¢ = 1 with probability one, for every £ > 1. Furthermore, the map
we L . 1s continuous with respect to weak convergence.

In summary, every Gram—de Finetti law £ = Law(R) satisfying the x-dimensional
G.G. identities can be described by a pair (®, ), where ® is the synchronization map
from Theorem 2.3, and u = Law(tr(R12)). This pair induces apathm = ®o Q,,, where
Q. is the quantile function of u. There is thus a correspondence £ <> 7, and under this
correspondence one checks that We (£) = Pg () (see Lemma 3.9). In our case, the £ of
interest satisfies (2.10), which means ® maps into I' (dpa), and thus = € Iy, . Hence
(2.7) leads to

liminf Fyy g (dpal) > P () forsomem € Iy, (2.12)
N—o0

To go further and say 7 belongs to the smaller set IT* from (1.12), we make a simple but
important observation stated in Lemma 2.6 below. We preface the result with a definition.
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Definition 2.5. For an array of x x « matrices R = (Rg ¢ )¢, ¢>1 and a permutation
w € Si, we write w e R to denote the array (w e Ry ¢)¢ ¢/>1, Where w e Ry ¢ is defined
in (1.23). When R is a random array, we say that Law(R) is symmetric if Law(R) =
Law(w e R) for every w € S;.

The following result shows that once this symmetry condition is added to the hy-
potheses of Theorem 2.3, each matrix in the array has all of its diagonal entries equal,

and all of its off-diagonal entries equal. In the statement below, Rlz’if,, denotes the (k, k')
entry of Ry .

Lemma 2.6. Assume Law(R) satisfies the hypotheses of Theorem 2.3 and is symmetric
in the sense of Definition 2.5. Then for all ky # k| and ky # k), and all £, ¢’ > 1,

— Rk, (2.13)

REok _ plake g Rk o

(R4 (N4 6(’

In particular, if Ry ¢ € T (dpal) almost surely, then Ry ¢ € T almost surely.

Proof. Consider any k, k' € {1,...,«},¢,£ > 1,and € S,. Since Ry ¢ law weRyy
by assumption, it follows that

law

kK k).~ (K
(Rip r(Re)) & (R, w(Rep),
where we used the fact that tr(R, o) = tr(w ¢ Ry ) holds for any @ € S. In particular,

]E[R’Z’gf

—1 —17/
tr(Ru/)] = E[R(Ze, (0.0 &) ‘tr(RU/)] a.s.
On the other hand, by Theorem 2.3, R, is measurable with respect to tr(R; ). Hence
—1 —1 7/ 1 —1
RYY = B[REL |ueRe | = B[Ry, O [uRen ] = RY, @79 as.

As this holds for any permutation w € S, (2.13) follows.

To justify the final sentence in the proposition, recall from definition (1.11) that I'*
is precisely the subset of I'y (dpa)) consisting of matrices that are constant both on the
diagonal and off the diagonal. O

Under the condition of symmetry, Lemma 2.6 specifies exactly what the synchro-
nization map in Theorem 2.3 must be:

* q 1_q
D (g) = -1+ —5—
K K

117, gelo, 1]
This suggests that under the assumption (A3), the previous lower bound (2.12) can be
improved to (2.1). Indeed, (1.26) implies that Law(R; E(G%iﬁ)) is symmetric in the
sense of Definition 2.5 (see Lemma 6.7(b)), and this symmetry trivially passes to the
limit law £ in (2.6). The crucial detail is that £ must also satisfy the G.G. identities for
us to obtain (2.12) in the first place, but there is a major obstacle: the G.G. identities are
not known to hold!

There are two natural options for moving forward, both of which run into difficulty:
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(I) The standard approach for obtaining the G.G. identities is to perturb the Hamiltonian
by lower-order terms with random coefficients, and then average over these coef-
ficients [34,72]. Indeed, this strategy was used in [57,58] to obtain Theorem 1.1.
Because the perturbations do not change the limiting free energy, one can obtain a
law L satisfying both (2.7) and the G.G. identities, but it would not necessarily be
equal to the limit in (2.6). Instead, the Gibbs measure G, y ¢ would be replaced by
one corresponding to the perturbed Hamiltonian, whose covariance function only
satisfies the symmetry condition (A3) asymptotically. Since Gibbs measures in spin
glass theory are known to exhibit temperature chaos [11,24], this is not enough to
ensure L is still symmetric in the sense of Definition 2.5. Without this property,
Lemma 2.6 is not applicable.

(II) One could instead try to obtain the G.G. identities directly, without any perturbation.
This would allow symmetry to be preserved, but the task of proving the G.G. iden-
tities (or some version thereof) remains a major open problem even for SK model
[71]. Therefore, this approach does not presently seem viable.

It would thus appear that the G.G. identities needed for the existence of a synchro-
nization are at odds with the symmetry needed to say more about the map itself. We
thus employ a different strategy: we introduce a generic version of the Potts spin glass
for which we can obtain the G.G. identities via differentiability, without averaging over
perturbations.

Inspired by [52] and [54, Sec. 3.7], the generic model works by augmenting the co-
variance function £ with countably many polynomials of the form &y from (1.17). If these
polynomials are selected so that they span a dense subset of all continuous functions, and
if the array (59 (Ry ¢'))¢ ¢r>1 satisfies the 1-dimensional G.G. identities for each €, then
(Re.0)e.e=1 will satisfy the «-dimensional G.G. identities. The same principle underlies
approach (I), but here the new terms added to the Hamiltonian will be of the same order
as the Hamiltonian itself. Therefore, the limiting free energy of the augmented model
will be different from the original, but still fall under the purview of Theorem 1.7. Each
new term in the Hamiltonian will be modulated by an inverse temperature parameter Sy
which is fixed and does not require averaging. We will ultimately choose these param-
eters to be sufficiently small, but all nonzero, and preserve symmetry of £ in (A3). The
next section defines this generic model.

2.2. The generic model and differentiability. Recall the set ® in (1.16) and the function
& R — Rin (1.17). Specializing the notation from (1.27), we denote

U9(R) := g, (R) = (R, Vg (R)) — §(R). (2.14)

The following result provides several important properties of the functions &g, V&, U¢.
Under assumption (A1), parts (b), (c), and (d) obviously remain true when &y is replaced

by &.
Proposition 2.7. For any 0 € ® and N > 1, the following hold.

(a) Vg = (deg(6) — Dés.
(b) Forany Q, R € 'y such that Q < R, we have

0=<8(Q) =& (R), 0=xVE&(Q)=2VEHR), 0=10¢(Q) =vg(R). (2.15)
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(c) There exists a centered Gaussian process Hy g : =N 5 R with covariance

T

E[Hy g(0)Hy p(0)] = N$0<07v ) (2.16)

(d) There exist centered Gaussian processes Zy g : >N 5 Rf and Y, N.G: >N LR
with covariances

ool

E| Zn.o(0)Zn.o () | = Ve (T il

) Elna@)Yno(@ = vo( ).

The proof of Proposition 2.7 is given in “Appendix A”. Note that part (b) was used
in (1.30) to define the Parisi functional Pg. Part (c) guarantees the existence of the
Gaussian process (Hy £(0)), xn in (1.14), under assumption (A1). Finally, part (d)
will be needed for the A.S.S. scheme in Sect.6.1.

While (A1) allows the covariance function & = ), €O oegég to use any countable
subset @ of the parameter space ®, here we consider a particular countable subset:

®Q={(p,m,nl,...,nm,wl,...,wm): p.m,ny, ..., 0y > 1w, ...,
wn € (@N1[-1,1)"}.

Given § and a family of parameters B = (Bp)ocoy, We define the modified covariance
function §g: R“** — R by

Eg(R)=E(R)+ Y BIto(R). 2.17)

0€Bq

As in Remark 1.5, the following decay condition on (,39)9@@)@ guarantees that &g is
smooth on the set {R € R*** : ||R||o0 < 1}

Z ,33(1 +)90 ~ 55 for some & > 0. (B1)
0€Bq

Nevertheless, the modified function §g may fail to be convex even if § is convex, in
which case Theorem 1.7 would not apply to £g. To avoid this scenario, we impose an
additional decay condition on (,3(9)96@)@ as follows.

For twice continuously differentiable f: R¥*¥ — R, denote the Hessian of f at R
by

9% f

3Rk1,k;3Rk2,k§ )(k],k’,),(kz,ké)e{l,‘..,:(}zl

V2 f£(R) :=(

Thinking of V2 £ (R) as a (self-adjoint) linear operator R ** — R¥*¥_ we can speak of
its minimum eigenvalue

Amin(V2 f(R)) := , min (VZ£(R)Q, Q),

Qll2=1

and its spectral radius

IV2f(R)llop:= max [(VZf(R)Q, Q).
[1Q]l2=1
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Now define the following constant for each 6 € ©:

Co = ”;ﬁlp 1 {IVE (R)lloo V 1 V2&5 (R) lop}» (2.18)
1=

which is finite by Remark 1.5. Convexity assumption (A2) means Amin(V2E(R)) > 0
for all R € %, . The following lemma shows how this condition can be maintained after
modification (2.17) provided we assume a strict inequality for the original covariance
function &.

Lemma 2.8. Assume & satisfies (Al) and

inf Amin(V*£(R)) > 0. (A2)
ReX,
Assume B satisfies (B1) and
> BiCo < inf Amin(VZE(R)). (B2)
Re%,
0€Bq

Then &g defined in (2.17) satisfies (A1) and (A2).

Proof. That &g satisfies (A1) is immediate from (B1). For (A2), we simply observe that
for any R € %,

(B2)
Jmin(VZE(R)) = Amin(VZE(R)) — Y BFIVE9(R)llop > O.
0€0q

Hence &g is convex on the set %, |

The following result is the reason for introducing the modified model (2.17). It is
proved in Sect. 4.

Proposition 2.9. Assume & satisfies (Al), (A2’), and B satisfies (B1), (B2). Then for
any d € D and 6 € ®g, when only the value of By is varied, the function By >
infremy, Pgﬂ () is differentiable on an open interval.

To see the utility of Proposition 2.9, let us consider a Hamiltonian corresponding to
the modified covariance function &g from (2.17). Namely,

Hy g5(0) = Hyg(o) + Z BeHn,6(0), (2.19)
0e0g '

where Hy ¢ is asin (1.14), and each Hy ¢ is an independent Gaussian process satisfying
(2.16). It is well-known [5, 15,51] that the differentiability of the Parisi formula guaran-
tees the concentration of Hy (o) under the Gibbs measure. This concentration in turn
leads to the G.G. identities in Definition 2.2, provided that 8y # 0 for each 6 € Og. In
this way we will be able to obtain synchronization from Theorem 2.3 without any per-
turbation. The tradeoff is that we need the model to have a generic covariance function
&g, instead of the original function & whose symmetry (A3) was meant to enable the
crucial Lemma 2.6. But as the next section explains, this symmetry can be preserved by
selecting B in a special way.
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2.3. Parisi formula for symmetric generic models. Section2.1 outlined how to obtain
the desired lower bound (2.1) under two assumptions:

(1) in the large N-large limit, the array of overlap matrices satisfies the G.G. identities;
(ii) each matrix in that array is invariant (in distribution) under permutation of its rows
and columns.

Section 2.2 described how to secure assumption (i) for the generic model (2.17) with
parameters § = (ﬂ@)ge@)@ satisfying Bg # O for every 8. Now we address assumption (ii)
for the generic model.

Given a permutation w € S, and a vector w = (w(k));_, € R*, define the permuted

vector w e w := (w(w~ 1 (k)))“_,. We now extend this action to the parameter space ©:
k=1 p p

for0 = (p,m,ny, ..., 0y, Wi, ..., W) € O, (2.20)
definewed = (p,m,ny, ..., Ny, wewWy,...,0ewy) € O. ’
We are then interested in § satisfying the following symmetry condition:
Bo = Bnep foreveryf € ® and w € ;. (B3)
Lemma 2.10. If'§ satisfies (A3) and B satisfies (B3), then &g satisfies (A3).
Proof. For any given 6 = (p,m, ny, ..., Ay, W1, ..., Wy), we have
(LI7),(1.23) 1 - nj
59 ((,(). R) = 1—[ ( Z szl(k)wal(k/)wj (k)wj (k/)) .
j=1 kk=1
“ o nj (1.17),(2.20)
= (X REpwj@@w;@En)” TTE e Ly R).

j=1 k=1
The assumption (B3) means Bg = B,,-1 44 no matter the choice of w, hence
D BiEaweR) = > B k1R = > BiEa(R).
0€0g 0€0g 0€0g

Since &£(w e R) = £(R) by assumption, we have now shown that the same is true for the
sum &g = & + Y g0, Biéo- O

By implementing the strategy discussed after Proposition 2.9, we will prove the
following result in Sect. 6. Note that @gﬂ (r, 0) is the Parisi functional (1.34) without
the Lagrange multiplier A (see Remark 1.9 for further discussion).

Proposition 2.11. Assume & satisfies (A1), (A2’), (A3), and B satisfies (B1), (B2), (B3).
Provided By # 0 for every 6 € O, there exists w € I1* such that

l}vnl i;lof Fien g5 (dpal) > Py (m, 0). (2.21)

From here the end goal (2.1) is not too much further. There are just two missing
items:

1. Construct 8 that satisfies the hypotheses of Proposition 2.11.
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2. Justify sending § — 0.
Item 1. is taken care of by the following lemma. Recall the constant Cyg defined in (2.18).

Lemma 2.12. For any ¢ > 0, there exists B = (Bg)oco, satisfying (B1), (B3), By # 0
for every 6 € Oq, and

Z B2(CyVv 1) <e. (2.22)

0€Bq

Proof. The operation (w, 0) — w ¢ 6 defined in (2.20) is a group action by the symmetric
group S, on Ogq. Since Og is countable, we can enumerate the orbits of ®¢ under this
action: @1, O,, and so on. Both the constant Cy in (2.18) and the degree in (1.18) are
invariant under the action, and so we can write C; = Cyp and deg(Q;) = deg(0) for any
0 € O;. Given ¢ > 0, define

1 &
= [ A = 0. 223
b=\ s @@ "\ e v (223)

and then set Bg = B; for all 6 € ;. The collection 8 = (Bo)oeo satisfies (B3) by
construction. Inequality (B1) holds because of the first term on the right-hand side of
(2.23), while (2.22) holds because of the second term and the fact |O;| < «!. m|

Meanwhile, item 2. will be possible thanks to the following proposition, which shows
that both sides of (2.21) are continuous with respect to the covariance function £.

Proposition 2.13. Assume & and & satisfy (A1). Then the following statements hold.
(a) For any d € Dy, we have

Fre(d) —Fy ()| < Sup E(R) — E(R)].
1=

(b) Forany d € D and any 7, & € Ty, we have
|Pg (1) — P ()| < 2W§|1|1p<1 |VE®R) - VE®R)|
1=

1 (2.24)
+ sup V2R, / I (t) — 7 (1)1l dr.
IRl <1 0

Proposition 2.13 is proved in Sect.5.1.

2.4. Proofs of main results. Finally, we prove our main theorems.

Proof of Theorem 1.8. Consider any dV € Dy such that dV — dp as N — oo. We
wish to establish (1.24). Since IT* is a subset of 14, Theorem 1.7 provides an upper
bound:

lim Fy (@) = limli Fu.£(dpal, €) = lim liminf Fy ¢ (dpal,

Jim Fyg(d?) = lim imn sup . (dpal, €) lim lim int . (dpal, €)

= _inf Pe(m) (2.25)

neI‘Idbal

IA

;311; Pe ().
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Since the first line of (2.25) is entirely equalities, the matching lower bound only needs
to be established along a subsequence. More specifically, we will prove (2.1).

The covariance function £ is assumed to satisfy weak convexity (A2). To upgrade to
strong convexity, we add a small multiple of the usual Potts Hamiltonian: for ¢ > 0,
define

ES(R):=&(R) +¢ - tr(RTR)/2. (2.26)

Let us note three properties of &£¢. First, by Remark 1.6, ¢ satisfies (A1) provided &
satisfies (A1). Second, by assumption (A2) for &, the new function &° satisfies (A2”)
with

xmin(vzgg(R)) > ¢ forevery R € %. 2.27)

Third and ﬁnal]ly, since £ is assumed to satisfy the symmetry condition (A3) and the
map R +— tr(R'R) does as well (the expression in (1.15) is clearly invariant under any
permutation of the row and column indices), the function &° satisfies (A3). Therefore,
Lemma 2.12 guarantees the existence of B = (Bg)geog such that (B1) and (B3) hold,
Bo # 0 for every 6 € Og, and

0€®q

Applying the modification (2.17) to £¢ in place of &, we obtain Eg =&+ Zee(—)Q ,3(359.
The combination of (2.27) and (2.28) shows that (B2) is satisfied with £¢ in place of &.
We can thus apply Proposition 2.11 to determine that

. (135
l}vnggof Fen.g5 (dba) = P (m,0) = n‘élrfppgﬁ(”)‘ (2.29)

The remainder of the proof is to justify sending ¢ and 8 to zero.
We first address the left-hand side of (2.29). By Proposition 2.13(a), we have

|Fien,¢ (doan) — Fen g5 (doa)| < sup |E(R) = §5(R)].
g IRI <1

Whenever |R||; < 1, we have

ER) —g5(R)] = [ER) —ET(R)| +|E°(R) — £5(R)]
(2.26),(2.17),(1.20) ¢ , (228) 3¢
= stk = 5

0€Bq

The two previous displays together show
|Fien & (doal) — FKN,s;, (dpan)| < 3¢/2. (2.30)

Meanwhile, regarding the right-hand side of (2.29), Proposition 2.13(b) gives

nlglfl* Pe () — nléllfl" Pes (71)’ <2 ngﬁllpsl [VER) — Vég(R) (.
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Whenever || R||; < 1, another application of the triangle inequality leads to

[VER) —Veg(B)| . = [VER) = VESR)|  + || VE (R) — VEZ(R) |
(2.26)5(2.18) - Z ,392Ce (2%8) 2.

0€®q

Putting the two previous displays together, we have
i — 1 £ < .
nléllfl* Pe () ﬂléllg* Pé,g (n)’ <d4e (2.31)
Finally, the combination of (2.29), (2.30), and (2.31) yields

liminf Fyn g (dpa)) = inf Pg () — 6e.
N—o00 mell*

Letting (0 completes the proof. O

Proof of Theorem 1.3. This is immediate from Theorem 1.8 since the associated covari-
ance function £(R) = ,thr(RTR) from (1.15) satisfies (A1), (A2), (A3). |

3. Parisi Functional Preliminaries

3.1. Prelimit of the Parisi functional. In this section we define the functional W that
appears in (2.5). More precisely, there is a family of functionals (Vg y)y>1 that arise
naturally in the A.S.S. scheme (Proposition 6.2). These can be thought of as prelimiting
versions of the Parisi functional Pg. Understanding their behavior as N — oo is an
important step in proving that the Parisi formula is a lower bound for the limiting free
energy.

Our definition requires three steps:

Give a abstract notion of an overlap map R which generalizes (2.2).

. Using this map and a random measure from which to sample, generate a random
array of overlap matrices.

3. Define a functional £ — Wg¢ n (L), where L is the law of the random array.

N =

3.1.1. Allowable overlap maps Recall from (1.19) that %, denotes the set of k¥ X «
matrices whose entries are nonnegative and have sum at most 1. Fix d € D and a
positive integer N.

Assumption 3.1. (X, F) is a measurable space, and R: X x X — %, is a map with
the following properties.

(i) R is measurable.
(ii) For every x € X, R(x, x) = diag(d).
(iii) There exist centered Gaussian processes Z: X — R“ and Y : X — R with covari-
ances

E[Z(x)Z(x")T] = VE(R(x, x'))

} ) for x,x' € X. 3.1)
E[Y (x)Y(x)] = ¢ (R(x, x7))

Furthermore, these processes are almost surely measurable functions on X'.
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3.1.2. The overlap array Given a random probability measure G on (X, F) which is
independent of the processes from (3.1), let (x%),>1 be i.i.d. samples from G. Apply R
to each pair of samples, and set

Re = R(x', x¥) + Ty—p (diag(d) — R(x%, x")).

This defines a random array R = (Ry_¢)¢.¢'>1. Denote the law of R under E(G®>) by
Law(R; E(G®>)), where the dependence on the map R is implicit.

3.1.3. The functional Given a nonempty subset S C >N we now define a functional
L + Wy (L; S) that accepts as input any law £ = Law(R; E(G®™)) realized as
above.

Let Zy, ..., Zn be independent copies of the process Z from (3.1). Let Y be as in
(3.1). Let (-)g denote expectation with respect to G. Finally, let [E(-) denote expectation
over both realizations of G and the Gaussian processes from Assumption 3.1. Now define

N

1
U (Lid. )= —Elog ) ( exp (Z (Z:(x), o,»)))g, (3.22)
ges i=1
1
W, (£: d) = - Elog (exp (VN ¥ (). (3.2b)
and then the functional of interest is given by
Wy 6 (L: 8) i= WL (L3 8) — WP, (L) (3.3)

Especially important is the fact that £ — Wy ¢(L; S) is continuous. To state this
precisely, we need to introduce some notation. Given any law £ = Law(R; G) realized
as above, let £™ denote the law of the finite subarray R™ = (Re.e)1<e.0<n; this
is a Borel probability measure on n x n arrays whose elements belong to %,. Let
Prob((Z%,.)"*"") denote the set of all Borel probability measures on this space. Because
Z, is compact, one can metrize the topology of weak convergence on Prob((Z,)"*")
by, say, a Wasserstein distance with respect to the norm |R™|| := ZZ =1 IRe.erll1-
We can thus speak of continuity with respect to weak convergence. '

Proposition 3.2. Assume & satisfies (Al). For any ¢ > 0, there is n large enough and
some continuous function ¢ : Prob((Z,)"*") — R such that

|Wn.e(L; S) —dn(L™)| < & whenever Wy ¢ (L; S) is defined.

It follows from this proposition that £ +— Wy ¢(L; S) is continuous. In the state-
ment below, weak convergence is understood in the product sense: a sequence (L)1

converges weakly to L if for every n, (Lf,'f ))m21 converges weakly to £,

Corollary 3.3. Assume & satisfies (Al). If (L) j>1 is a weakly convergent sequence of
laws such that Wy ¢ (L ;; S) is defined for every j, thenlimj_. oo Wy £ (L}; S) exists and
depends only on the limit of (L;) j>1.

A proof of Corollary 3.3 can be found in [10, Cor. 2.7]. Proposition 3.2 follows
from a standard truncation argument that relies only on the compactness of %, and the
continuity of V& and . Examples of this argument can be found in [55, Lem. 3], [54,
Thm. 1.3], and [10, Prop. 2.6]. Therefore, we omit the proof.
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3.2. Ruelle probability cascades. In this section we restrict the functional Wy ¢ from
(3.3) to overlap arrays generated by a Ruelle probability cascade (RPC). The RPCs are
a certain class of random probability measures with ultrametric support. Each RPC is
associated to a partition of the unit interval:

O=mog<mi <---<my_1 <mg =1. (3.4

For concreteness, we take the support of the RPC to be the countable set N°~!, which
can be regarded as the leaf set of a tree of depth s — 1:

e The root vertex is the empty sequence @, and by convention N0 = {&}.

e Each ¢ = (ay,...,a,) € N’ is said to have depth |¢| = r and has children
{(oel,...,ozr,a) Ta EN} atdepth r + 1.
e The path to a given leaf & = (¢, ..., 05-1) € N1 is the set
pla) =1{9, a1, (a1, @2), ..., (a1, ..., a5_1)}.
Given two leaves o = (@1,...,a;-1) and o’ = (o, ..., a,_;) in N1 let r (@, @)

denote the smallest depth at which their ancestral paths disagree:

r )= inf{r: o #a.} ifa#d
s

ifao =o'
The RPCs are characterized by the following fact.

Theorem 3.4. [69, Thm. 15.2.1] For any sequence of the form (3.4), there is a random
measure v on NS~1 with the following property. Given any sequence 0<gr <--- <
qs = 1, define the measure y = Zizl(m, my_ 1)5% If (a ) ~ ]E(v®°°)
then the law of the array (qr(ag’a[/))(y[/zl is equal to L w from Theorem 2.4.

The measure v is called the RPC associated to (3.4), and we denote its probability
mass function by (Vo) ens-1. We will now use RPCs to give a different formulation of
the Parisi functional from Sect. 1.4. .

Let & satisfy (A1l). Consider any d € D and any discrete path 7 € Hg'sc, meaning
there is a partition of the form (3.4) and a sequence in [, (d),

0=y < 2 y-1 Xy = diag(d), (3.5a)

such that
w(t) =y fort e (my_1,m.],re{l,...,s}h (3.5b)
Let Zy,...,Zy: N1 — R¥ and Y: N°~! — R be independent centered Gaussian

processes with covariances
E[Zi(@)Zi(@)"] = VEr@a)
E[Y (@)Y (@] = 9¢ (Vr(a.e)

We assume these processes are also independent of the weights (vy),ens—1; their exis-
tence is addressed in Remark 3.9. Now define, for A € R and nonempty S € >N the
quantity

N
PP, (w0 S) = —Elog > Y veexp (D (Zie) + 2 ai)). (3.7)
i=l1

acNs—loeS

fora, o’ € N°71, (3.6)



228  Page 24 of 68 E. Bates, Y. Sohn
Also recall the following quantity from (1.33):
@ 1! 1.
P () = 3 Ve (mw (1)) dt — Ez?g(dlag(d)), e Iy. (3.8)
0
Apart from the Lagrange multiplier A € R in (3.7), the functionals Wl(vl)g and 91(\,2)5

are simply \I’(l) and \l'( ) from (3.2) applied to the RPC setting. This is captured by
the following lemma Wthh is proved in “Appendix C”.

Lemma 3.5. Assume & satisfies (Al). Let v be the RPC associated to (3.4). With m €

Hgisc given by (3.5), let L denote the law of the array (¥, ¢ ,e))e,0>1 under E@W®®).
Then

PN (. 0:8) = W (L: 9), (3.92)

P2 (m) = —\IJQ)S ©L). (3.9b)

In particular, f@;\}’)s (7, 0;8) + @éz) (m) =Wy (L5 5).

Remark 3.6. Because (3.5a) allows for equalities, the representation (3.5b) of the path =
is not unique. For instance, one could insert duplicate copies of some y, and then refine
the partition (3.4). Consequently, it is not immediately clear that &2 (1) is well-defined,
but this actually follows from Lemma 3.5. Indeed, no matter the representatlon of i, the
following measure remains the same:

N
=y (my—my_1)8,, where g, =sup{t € (0, 1]: m(t)=y).

Under this definition of ¢g,, we always have 7 (q,) = y; by left-continuity of 7, and so
the array (y (. a@/))g ¢>11nLemma 3.5 is equal to (n(qr(ag ag/)))g’g/zl. Since the law of
(qr(ag ay))g’g/zl is equal to E by Theorem 3.4, it follows that the law £ in Lemma 3.5
does not depend on the representation of .

Notice that the left-hand side of (3.9b) does not depend on N. Our next lemma
shows the same is true of (3.9a) when S is the entire product set >N More importantly,
the functional @gl) from (1.31) is recovered. Once again, the proof is postponed to
“Appendix C”.

Lemma 3.7. Assume & satisfies (Al). Forany N > 1, & € H(ciiisc’ and A € R¥, we have
P\ 0TV = 2P (7). (3.10)

Remark 3.8. It would appear from Lemmas 3.5 and 3.7 that the functional Wy ¢ from
(3.3) is easily related to &7 from (1.34). The complication is that the A.S.S. scheme
presented in Sect. 6.1 will require we evaluate £ — Wy ¢(L; S) using the constrained
set $ = =V @V) for some d¥ € Dy. In contrast, the identity (3.10) only holds in
unconstrained case S = XV This gap can only be bridged once N — oo, for then the
constraintd” can be replaced by an optimization over the dual variable A; see Lemma 5.2.
The tradeoff is that an additional optimization must be performed over A, as in (1.35).
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Remark 3.9. In order for the quantities in (3.9) to be defined, we need the existence
of processes Z1, ..., Zy, Y satistfying (3.6). Fortunately, it is easy to construct them.
Indeed,let (o : i > 1, € NU...U Ns_l) be i.i.d. standard normal random vectors
in R¥, and then define

s—1

Zi(@) =Y VEQr1) — VEGOL{r > 0} i (a0 (3.11)

r=0

Here we are using (2.15) to ensure that the matrix inside the square root is positive-
semidefinite and thus admits a square root. Since (g, ..., q;) = (oz’l, ...,a)) if and
only if r < r(«, &’), we have

r(o,a’)—1

ElZi(@)Zi@) 1= Y [VEWm1) — VEWILr > 0 = VEWr@a)-
r=0

Similarly, let (g : @ € NOU ... UN*~1) be i.i.d. standard normal random variables,
and then

s—1

Y(@) =Y V0 (vre1) — O (V) Nanotr) - (3.12)
r=0

The same kind of telescoping calculation as above yields E[Y ()Y (&')] = ¢ (Vr(a.a'))-

4. Differentiability of the Parisi Formula

In this section, we prove Proposition 2.9. The following lemma provides the key estimate.
Recall the functional & from (1.34).

Lemma 4.1. Assume & satisfies (A1) and B = (Bp)oco, satisfies (B1). Forany 6 € ®q,
there exists a constant C depending only on 6 and k, such that

0 \2 ‘
‘(%) %a(”,k)‘SC(Hﬁé) foranyneng'sc,deD,AeRK,

Proof. During the proof, the value of C may change from line to line, but it will only
depend on 6 and x. Assume 7 is given by (1.29). Since ,@gﬁ (m,A) = ,@é(;)(n, A) +

ﬂg) (), it suffices to prove the desired differential inequality for each term on the
right-hand side. We begin with the second term.
Recalling the definition of ‘@5(5) from (1.33), we have

s

1 1 .
‘@g)(”) =3 Z(mr —mp—1)Vg (¥r) — Eﬂgﬂ (diag(d)).

r=1

The right-hand side can be rewritten using summation by parts. Since mo = 0, my = 1,
and y; = diag(d), this results in

1 s
gzs(;)(ﬂ) = _E Zm’_l[ﬁgﬂ (y’) - 795;9 (Vr—l)]~
r=2
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Nowrecallfrom(1.27)that19§ﬂ(R) = (R, VEg(R))—&g(R), where§g = §+29€®Q ﬂ92§9
as in (2.17). We thus have

(2 14) Prop. 2.7(a)

a
( ) Vg (R) = 2(R, V&3 (R)) — 286 (R) 294 (R) 2(deg(0) — 1)ép(R).

P

Recall from Proposition 2.7(b) that & (y;) > &g (y+—1) > O for each r. Therefore, the
two previous displays together yield

)(8/3 ) 70 )| < <deg(9)—1)259(yr)—se(yr D] .

< (deg(0) — l)Ee(Vs) < (deg(®) — 1) ”;hlp 1 180 (R)| = C.
1=

Next we consider the quantity ,@é(;)(n, A) from (1.31). By Lemma 3.7 with N = 1,
P2 =Elog Y D vaexp(Zey (@) +1,0), 4.2)
acNs—loeX

where (Vy)yens—1 1S the probability mass function of the Ruelle probability cascade
associated to (3.4), and Zg, : N* —1 — RX is an independent centered Gaussian process
with covariance

E[Zsy (@) Zs ()] = VER Vr(@ar))-

We can realize this process as Zgﬂ () = Zg () + Zee@@ BoZo(c), where all the pro-
cesses on the right-hand side are independent and centered, with covariances

E[Zs () Z: (@) = VEGWr@an)s  ElZo@)Zo(@)'] = VE W) (43)

These processes exist by Remark 3.9. Then consider the following probability measure
on N°~! x »:

G(a,0) X vy exp(Zgﬁ (a) + A, a).

In what follows, we will write ((ae, (r[))e>1 to denote i.i.d. samples from G, and (-)g

to denote expectation with respect to G®°, Differentiating (4.2) with respect to By, we
have

T (@(1)(7{7 A) = ]E(gl)c, where gy = (Zg(o/), ae).

By Gaussian integration by parts [54, Lem. 1.1], this can be rewritten as

T 9’“)(71 ) = BoE(fi1 — fia)g. (4.4)

where f; ¢ = C((a%, oY), @, o)), and C: (W' x £)? — Ris given by

C((@, ), @, 0")) = E[(Zo(@), 0) - (Zs (@), 5")] “E" (V& r(wa))0s o).
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Because o, 6’ € ¥ are both standard basis vectors, we have
(VE (Vr(,a))0: 0 )| < IVE Vr@a))lloo < sup [[VE(R) oo < C

IRI1<1
Therefore, for any ¢, £/ > 1 we have

| feel < C.
By differentiating (4.4) using the product rule, we obtain
@ (1) 7, M) =E — + B8, —TF _
(8;3 ) (. M) =E(fi.1 — fi2)g ,393/3 (f1i1— fi2)g-
Observe that f; , has no dependence on Sy, and so direct calculation yields

=S4~

,3 E(f1.2); = E(fi.2- (&1 + g2 — 283)); = 2E(f1.2- (81 — &3)) -

Applying Gaussian integration by parts once more (this time using [54, Lem. 1.2]), we
have

E(fi.1 - 81)g = BoB(f1.1 - (fr.1 — f1.2)) 5
E(f1.1 - 82)s = BoE(f1.1 - (fa1 + f22 —2/23))5
E(f1.2- 1) = BoB(f1.2 - (fi.1+ f1.2 — 2/1.3)) -

E(f1.2 - 83); = BoB(f1.2- (5.1 + f32+ f3.3 —3/3.4)) ;-

The four previous displays together show
&) 2
‘(8,3 ) P 0| = ca+ . 4.5)

The combination of (4.1) and (4.5) yields the desired inequality. |

Lemma 4.2. Assume & satisfies (Al), (A2’), and B satisfies (B1), (B2). Then for any
d € D, the following statements hold.

(2) infrer, Pe; (1) = 0.

(b) For any 6 € Og, the function By > infrcn, ’Pgﬁ () is convex on an open interval.

Proof. By Theorem 1.7 we have
f h\r‘n limsupFy g (d, &) = mf Pgﬂ (). (4.6)

N—o00
Given any ¢ > 0, the set 2V (d, &) from (1.4) is nonempty for all large N. For any
o € N (d, &), we have the trivial lower bound

1
Fu £gd, €)= IEHN (o) =0. 4.7)

Part (a) now follows from (4.6) and (4.7).

For part (b), note that (4.6) remains true for all By in some open interval, since (B1)
and (B2) remain true for all 8y in some open interval. From the decomposition (2.19), a
standard application of Holder’s inequality shows that whenever % (d, ¢) is nonempty,
the map By — FN,gﬂ (d, &) is convex forany 6 € Oq. Therefore, fy > infrer, Pgg (1)
is a limit of convex functions (via (4.6)) and hence convex. |
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Finally, we show that Lemmas 4.1 and 4.2 imply Proposition 2.9.

Proof of Proposition 2.9. Fix 6 € ©g andd € D.
For clarity, we make the dependence of Pg,(m,A) on By explicit by writing
Fr..(Bo) i="Pgg(, ), as well as

F = inf = inf  F .
(Bo):= int Poy(o)= il Fos (o)

By Lemma 4.2(a), F(By) is a finite number. So for any £ > 0, there exist 7, € 1y
and A, € R” such that

Fr..(Bo) = F(Bo) +e. (4.8)

Since By —> F(By) is convex by Lemma 4.2(b), the differentiability we seek is equivalent
to the subdifferential 9F(8y) consisting of a single point. So consider x € dF(8y). For
all small enough /& > 0, we have

< F(By +h) — F(ﬂe)_

4.
< ; 4.9)

Combining (4.8) and (4.9) with the trivial inequality F(8s + h) < Fy, 1. (Bs +h), we
see

F +h)—F +¢ 0 e
x < e e (Bo )h e (Bo) < %an,xg(ﬁ9)+Ch(1 +(|’39|+h)2)+}_1’

(4.10)

where the second inequality follows from Taylor’s theorem together with Lemma 4.1.
By analogous reasoning,

0
x = %an,xg(ﬁe) — Ch(1+ (sl +1)?) - % (4.11)

Finally, take & = /¢ and send ¢ — 0. The inequalities (4.10) and (4.11) together show
that x can take at most one value. m|

5. Continuity and Duality

The purpose of this section is threefold. First we prove Proposition 2.13, part (b) of
which gives Lipschitz continuity of the Parisi functional. Next we use this continuity
in the proof of a duality statement (Lemma 5.3) that is needed in Sect. 6 to relate the
functional appearing the Aizenman—Sims—Starr Scheme to the Parisi functional. Finally,
we solve this duality in the balanced case (Lemma 5.4), thereby eliminating the infimum
appearing in (1.35) and fulfilling the promise of Remark 1.9.
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5.1. Continuity of free energy and the Parisi functional. Both parts of Proposition 2.13
follow from interpolation arguments. We begin with part (a).
Proof of Proposition 2.13(a). For t € [0, 1], define the following interpolating free en-
ergy:

1
o) = ﬁElog Z expH;(0), where H;(0) =1 Hyg(0)+/1—1 Hy:(0).

oexN(d)

We assume Hy ¢ is independent of H), £ Let (-); denote expectation with respect to

the Gibbs measure G, (') o exp H, (o) on £V (d). By differentiating the expression for
¢ (t) with respect to ¢, we have

)

By Gaussian integration by parts [54, Lem. 1.1], this can be rewritten as
¢' () =N""EC(c'.a") —C(c', 0?)),

where !, 0% denote independent samples from G;, and C: =V (d) x £V(d) — Ris
given by

et =[] 23 (7) -1 (5]
Since loo’T||; < N forany o, 0’ € £V, we deduce that
sup [¢'(0] = sup [§(R) —E(R)I.
1€(0,1) IR[I1=<1
In summary,

|Fne—Fyzl =lo() —90) < Sup E(R) — E(R).
1=

O

We now turn our attention to Proposition 2.13(b), which will be an easy consequence
of the following lemma. In fact, this lemma is what allows the Parisi functional to be
extended to arbitrary paths in the first place.

Lemma 5.1. Assume & and € satisfy (A1). Then for any d € D, discrete paths 7w, 7% €
Hg'sc, A € R%, and nonempty S € =N, we have

| PN (.35 8) = PV S))

- 1 1
< sup IIV%“(R)—V‘E(R)IIoo+§ sup ||V2§(R)||oo/ I () — ()1 dz.
IRl <1 IRl =<1 0

(5.1)
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Similarly,
1270~ 27 @)

~ 1 1
< sup [[VE(R) — VER) o+ 5, sup IIVZE(R)Iloo/ () — 7 (®)|1 dz.
IRl <1 IRl1=<1 0
(5.2)

Proof. As in (3.5), we assume 7 and 77 are of the form
n(t)=1y, and 7 (t) =y, forte (m—;,m],re{l,..., s}

There is no loss of generality in using the same partition 0 = mg < mj < --- <my = 1
for both paths, thanks to Remark 3.6.

First we prove (5.1). Let (Z; (@))1<i<N.ens-! be anindependent copy of the process
(Zi(2))<j<N wens—1 from (3.6). We assume both processes are independent of the RPC
weights (Vg )gens—1- Then define an interpolating process

N

H,(a,o):Z(\/;(Zi(a),ai>+ 1—1(Zi(@), o)+ (r,03)), te[0,1], (53)

i=1

as well as the corresponding energy

1
¢(t) = NElog Z Z Vo CXle((X, o). (5.4)
aeNs—loeS

We then have ¢ (1) = :@1(\})5(71 A; S) while ¢(0) = 9(1) (7w, A; S), and so we seek

an upper bound on |¢ (1) — ¢ (0)]. For (5.1) it suffices to show a uniform bound on the
derivative of ¢:

sup |¢'(1)] < RH.S. of (5.1).
1€(0,1) (5-3)

To thisend, let (-); denote expectation with respect to the probability measure G, (&, o)
Ve exp Hy (e, o) on N°~! x §. By differentiating (5.4) with respect to ¢, we have

o' (1) = <%>I (5.6)

Define C: (N°~! x §)> - R by

OHi (o, 0)

1
(@ 0), (@, o)) = NIE[ -

H (o, a’)]

5.3)

1 & - -
o ZE[(zi (@), ai)Zi(@), of) = (Zi(@), i) Zi (), 0})]

(3‘6) b

N
Z (VEWr(@a))0i» 0]) — (VEFr@.a))0i. 07)].

2

(5.7)
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Then Gaussian integration by parts [54, Lem. 1.1] transforms (5.6) to
o0 =E(c(@ o @ oh) - c(@ oD @ D). 58
t

where (!, o), (a2, 62) denote independent samples from G, . Since both o; and o/ are
standard basis vectors, it follows from (5.7) that

1 -
|C((Ot, 0)7 (Ol/, a/))l =< E”VE(Vr(a,a’)) - V%—();r(ot,a’))”oo

IA

1 - - ~ .
§(||V$(yr(a,a/)) - VE(Vr(a,a’))”oo + ”Vé(yr(a,oﬂ)) - VE(Vr(a,oz’))”oo)

1 -
= 5( s IVE@) o - 177w = Friwarlln + sup [VER) = VER) o )-
IR[I1=<1 IRI1<1
(5.9
In the special case @ = @', we can use the assumption that both = and 7 belong to Hgisc

in order to conclude that

Vriwa) = Vs = Vs = diag(d).

That is, the first term in the final line of (5.9) vanishes when & = «’. Therefore, using
(5.9) in (5.8) leads to

~ 1 ~
|¢'(1)]< sup IVE(R)=VE(R)[oot7 sup V26 (RN B(1Vr 01 02) = Pr(at ) l11);-
IRII1=<1 IRI=<1

By [54, Thm. 4.4], the marginal of » (o', @?) under E(Gl®2) is the same with the marginal
of r(a!, &?) under E(v®?), where v is the RPC from Theorem 3.4. In particular,

E{17, @ a?) = Priat oty 1), Znyr—yrnl(mr—mr o-f ll7r (£) — 7 (@)l de.

r=1

Using this calculation in the previous inequality yields (5.5).
Now we turn to proving (5.2). Since 7 and 7 both belong to I1;, we have

220 = 22 / 19 (e (1)) — V5 G (1)) dr. (5.10)

For any y and y, the triangle inequality gives
10:(v) = 0D < [0 (v) — D (D] + [0 (¥) — 9z (V). (5.11)

When ||y |1, [7]l1 < 1, the first term on the right-hand side of (5.11) obeys the upper
bound

9c(7) — 9 = sup [VO(Rlloo - Iy — 711 5.12)
IR <1

Now recall from (1.27) that ¢z (R) = (R, V&(R)) —&(R). It follows that the (a, b) entry
of Vs (R) is

BRab: Ra.b Z R, p0 R r

Nyral abaRkk/
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and thus ||V (R)|loo < IR]|1 - V2 (R)||00. Using this in (5.12) results in

26 = V@l = sup IV2ER) oo - lly = 7ll1- (5.13)
1=

Meanwhile, the second term on the right-hand side of (5.11) satisfies
10: () — 0 < [y, VEWY) — VEG)I+IEG) —EX)

< sup [[VE(R) — VER)|loo+ sup [E(R) —E(R)|.
[IR][1<1 [IR][1<1

(5.14)

Since £(0) = £(0) =0 by (A1), the second supremum above can be further controlled
as

sup [E(R) —E(R)| < sup [VE(R) — VE(R) oo
IR]I1=<1 IR[[1=<1

Therefore, (5.14) can be rewritten as

19:(y) =9 (¥)| <2 ”RSGJP 1 IVE(R) = VE(R)loo- (5.15)
1=

Applying both (5.13) and (5.15) in (5.11) results in

96 (¥) = 9:(7) <2 sup [[VER) = VER) oo+ sup [VER)lloo - Iy — 7.
IR <1 IR <1

Applying this uniform bound to the integrand in (5.10) yields (5.2) as desired. O
A key consequence of Lemma 5.1 is that the map Hgisc 57T 3”1(\,1’)5 (r, &; )
has a unique continuous extension to all of I1;. We continue to write @1(\,1,)5 for this

extension, including the special case @él)(n, A) = @1(15) (7, A; X) used in (1.31). Of
course, these extensions admit the same estimates (5.1) and (5.2) for any 77, 7 € I1;. We

now record how these estimates lead to the continuity of Parisi functional, as claimed in
Proposition 2.13(b).

Proof of Proposition 2.13(b). Recall the definition of the Parisi functional from (1.35):
P = inf [20@ 0+ 2P @0 — (0, d
e = inf [20@ 0+ PP ) — ()]

(3.10) . (1) (2)
= f (& D)+ P LA — (A, d)Y).
Jnf [P ¢ (e 05 %) + 27 (1,0) = (1, d)]

By combining (5.1) and (5.2), we have

[P D)+ 2P0 = 2 F ) = 20 W)

1
<2 sup ||[VE(R) = VE(R)llw+ sup [[VZE(R)]oo / 7w (2) — 7 ()]ly de.
IR1=1 IR]l1=<1 0
(5.16)
Since the right-hand side of (5.16) does not depend on 2, it follows that
Pz () — Pg ()] < RH.S. of (5.16).

This is exactly what was claimed in (2.24). O
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5.2. Duality of magnetization with Lagrange multiplier. The following lemma makes
precise the discussion in Remark 3.8. It is a generalization of [58, Lem. 2] and is proved
similarly. The proof is included in “Appendix D” for completeness.

Lemma 5.2. Assume § satisfies (A1). Assume d N e Dy convergestod € Das N — oo.

Then forany d’ € Dand 7w € Hglsc, we have

M 0 e N Ny — M N
Jim 2y G, 0 BV @) = inf [P (r.0) = (1. d)]. (5.17)

On a technical note, we point out that d’ does not need to be related to d. We will,
however, only need the case d’ = d. Now we bootstrap to a stronger statement.

Lemma 5.3. Assume & satisfies (Al). Assume d N e Dy convergestod € Das N — oo.
Let m € Tly where d’ € D is arbitrary, and consider any sequence (mty)n>1 in [y
satisfying

1
lim / lmn (@) — 7 (@)]; dt =0, (5.18)
N—o0 Jo
We then have
. ) R ) _
Jim 2y (o, 0; 2 @Y) = inf [P (1) = (e d)]: (5.19)

Proof. Our goal is to extend (5.17) to general paths = € I1; and to allow for 7 on the
left-hand side of (5.17) to be replaced with an approximating sequence (7y)n>1. To
this end, take any 7 € Hg',sc and observe that

|24, 058 @) = inf [2" .0 = (1. d)]|
<| 2\ (an. 0: TV (@) — 2\ (7. 0: =N @)
M =~ . NN : M~
+| 2@ 02N @) - inf 200 - ()]

+ )AienﬂgK (2. 0) - (x )] (2.3 = (1, )|

— inf

AERK

(5.1),(5.17)
=<

1
o(1) + sup ||V2$(R)|Ioo/0 (len @) = 7@l + 17 (@) = 7 (D)) dr

IRI1=1

(5.18) ) L
= o)+ sup |V E(R)Iloo/ 2|z () — m (o)l dr.
IRI1=1 0

(5.20)

Since Hgisc is dense in I, (with respect to the norm (1.32)), we can choose 7 to make
the integral on the final line of (5.20) arbitrarily small. The claim (5.19) follows. O
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5.3. Duality in the balanced case. When d = dpg|, we can solve the infimum on the
right-hand side of (5.19), at least for paths 7 belonging to the set IT* from (1.12). Namely,
the infimum is achieved at A = 0.

Lemma 5.4. Assume & satisfies (A1) and (A3). Then for any w € I1*, we have

, ) N _ 50
inf [2(0(r,0) = (1. doa)] = ("7, 0). (5.21)

In what follows, it is necessary to recall the permutation action R +— e R from
(1.23). Namely, the (k, k") entry of R is equal to the (w(k), w(k’)) entry of w e R.

Lemma 5.5. Assume & satisfies (Al) and (A3). Then for any permutation o € S,
weVE(R) = VE(weR) forall R € R, (5.22)

Proof. First make a general observation not requiring symmetry: if we define the function
§“(R) = §(weR), then

(k, k') entry of VE®(R) = (w(k), w(k')) entry of VE(w e R). (5.23)
The assumption that £ is symmetric means £“(R) = &(R). In this case, we can now
chase definitions from the left-hand side of (5.22) to the right-hand side of (5.22):

(1.23)

(k, k') entry of w e VE(R) (0 ' (k), o~ (K)) entry of VE(R)

C2Y (k, k') entry of VE(w e R).
O

Proof of Lemma 5.4. It suffices to verify (5.21) for discrete paths = € Hgisc, since such
paths are dense in I1y, and both sides of (5.21) are continuous in 7 thanks to (5.1). So let

usassume w € l'[diSC is given by (3.5). It follows from [58, Lem. 6] that A — @(1)(7{ A)

is convex. This implies A +— 9(1) (r, &) — (X, dpay) is convex and thus achieves a global
minimum wherever its gradlent is zero. Therefore, it suffices to show

a@é‘)(n,,\)‘ 9 (A dpy) foreachk e (1 }
—_— = —(, oreachk € {1,...,k}.
oAy A=0  OAg bal o

Since dpa = k1, this amounts to showing
3.2, ) 1

g—‘ = — foreachk e {l1,...,«}. (5.24)
oy A=0 K

With (vg)yens—1 denoting the RPC associated to (3.4), we have

K
3.10 3.7
2P0 2 2N ) P Elog 30 veexp(Z@) +h ). (5.25)
aeNs—1 k=1

where (Z (o)), ens-1 18 a centered R -valued Gaussian process with covariance structure

E[Z@)Z(@)] = VEWrwa)), oo € N1 (5.26)



Parisi Formula for Balanced Potts Page 35 of 68 228

Now differentiate (5.25) with respect to A and evaluate at > = 0:

agzg”(n, 2) ‘ ~
OAk A=0

| Lachi! Ve xpZ(@). &) | GEL
ZQENS*I Zk’:l Vo €XP <Z(O{), ek’>

If we sum over k, then the numerators on the right-hand side add up to the denominator:

< 92, 2
3 Eaf’x =L (5.28)
k =

k=1
On the other hand, we make the following claim.
Claim 5.6. ((Z(a), ek))aeNkl’lskSK is exchangeable in k.

Proof. For any permutation w € S, we have

(5.26)

E[Z (@), eu@ )[Z(@), enw)] (VEVr(.a')€ok)» Ca(k))

(1.23) _
=7 (0 e VEWr(@a))eks €k

5.22) _
=7 (VE@ " o Yrwan)ek, ).

Since w € IT*, the matrix y, (4,o) has identical diagonal entries and identical off-diagonal

entries. In particular, it is invariant under the group action (1.23): w™! * Vi) =

Yr(a,o’)- Therefore, the previous display shows

E[Z(@), €0 )| Z(@), ewi))] = ElZ(@), e)(Z (@), ey 1.

Since ((Z (@), ek>)aeNx71’1§kSK is a centered Gaussian process, this equivalence of co-
variances is enough to establish exchangeability. [J (Claim)

Recall that (Z(«))yens—1 is independent of the RPC weights (vg)qcns—1. Conse-
quently, it follows from Claim 5.6 that the right-hand side of (5.27) does not depend on
k. In light of (5.28), this forces (5.24). |

6. Lower Bound

In this section we prove Proposition 2.11. The A.S.S. scheme is presented in Sect. 6.1,
and the G.G. identities are proved in Sect. 6.2. These two inputs are then combined with
symmetry to prove the proposition in Sect. 6.3.

Since the A.S.S. scheme is based on the cavity method, we must work with a cav-
ity Hamiltonian (Hy p,6(0)),exn. Lemma 6.1 stated below guarantees its existence.
Throughout Sect. 6, we will write Gy u,¢ for the associated Gibbs measure. More pre-
cisely, given some dV € Dy, Gy pm ¢ is the probability measure on =V (dV) defined
by

exp Hy m.e(0)

h Z dN = H .
Zn me(dV) where  Zy p.£(d™) Z exp Hy m (o)

oexN@N)

Gy me(o) =

6.1)



228 Page 36 of 68 E. Bates, Y. Sohn

We will write Law(R; E(G%"’;f’s)) to denote the law of the array R = (Ry.¢)e.0'>15
where

Rew=—-—, (@07 ..) ~EGYY.)-

Lemma 6.1. Assume & satisfies (Al). Then for any positive integers N and M, there
exists a centered Gaussian process (Hy y,£(0)) sV With covariance

T

ELHn 116 Hy .6 @)] = (N + Mg (7o ). (6.2)

Proof. By the decomposition in (A1), it suffices to prove the following for each 6 in the
parameter set © from (1.16): there exists a centered Gaussian processes (Hy 4,6 (0))yex ¥
such that

T

ELHN,u1,0) Hy m.0(0)] = (N + Mg (1= ). (6.3)

where &y is defined in (1.17). To this end, let (Hy (o)), x5~ be the Gaussian process
from Proposition 2.7(c), and then set

H ©) ( N )(deg(e)fl)ﬂH )
N.M,0(0) = N M N,0(0),
where deg(0) is defined in (1.18). This trivially leads to
, N \deg(6)-1 ,
ElHY 0@ Hy o) = (3757)  ElHno(@Hys(@)]

(2.16) N \deg@®-1 oo’T
= (o) Me()
N+M N

Then, by the fact that &y is a homogeneous polynomial, we achieve (6.3):

, N \deg® /00’7
ElHy,m.0(0) Hyo@)) = NV + M) (=) 40(T5)
T
— (N +M)& (Afi M). (6.4)

6.1. Aizenman—Sims—Starr scheme. The A.S.S. scheme relates ratios of partition func-
tions to the functional Wy ¢ from (3.3). In what follows, we use the following notation:

f = Oy2¢(g) meansthat [f|<g-C ngﬁ1p<1 IV2£(R) || oo (6.5)
1=

where C is some universal constant.
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Proposition 6.2. (A.S.S. scheme) Assume & and £ satisfy (Al). Let M be a positive
integer, and suppose dV € Dy, dV*M € Doy, M € Dy satisfy

NdN + MM = (N + M)dV*M., (6.6)

Let Ly y = Law(R; ]E(G%f’;,,)g)). We then have

Zyan 8@ M2\ N+M .
W+0Vz§<N+M>+ sup [E(R) — E(R)

Elog
2 Rp= (6.7)
= MUy (Ly,m:d™, 2Y (M),

Proposition 6.2 follows from a standard application of Aizenman—Sims—Starr Scheme
[2,21]. The proof is included in “Appendix B” for completeness. In order to prove
Proposition 2.11, we will take N, M to be a multiple of « and use Proposition 6.2 with
AV = ghN+M — sM — 4.

Remark 6.3. For the right-hand side of (6.7) to make sense, it is essential that the Gibbs
measure Gy, u,¢ in (6.1) is restricted to the space N @N),sothat N~ loo T = diag(d™)
for all o in the support of Gy . ¢. This allows for Assumption 3.1(ii) to hold with

(X, R, d) = (2N @Y), (0,0") > Nl (o7, dV).

In this setting, Assumption 3.1(i) is obvious, and 3.1(iii) follows from Proposition 2.7(d).

6.2. Ghirlanda—Guerra identities for generic models. In this section we prove that dif-
ferentiability of the Parisi formula leads to the G.G. identities for generic models, thus
fulfilling the outcomes discussed after Proposition 2.9. But in order to discuss the G.G.
identies, we must first check that the relevant arrays are symmetric and positive semi-
definite.

Lemma 6.4. Given o', ..., 0" € =V, denote Rev = N_IJZ(GZ/)T. Then for any
., . . o

w € R* and positive integer p, the array (Qe ¢)1<e.¢'<n given by Qp ¢ = (Re";/w, w)

is symmetric and positive-semidefinite.

Proof. Fix p > 1 and w € R“. Consider the parameter 6 = (p, 1, 1, w) € ©, for which
(1.17) becomes & (R) = (R°Pw, w). By Proposition 2.7(c), there exists a centered
Gaussian process H: XV — R with covariance

GO‘/T

E[H (0)H(0")] = & ("

) = N{(R(0, )P w, w),

where R(0, 6') = N~ 'oo'T. Itfollows that (o, ') — (R(c, 0/)°Pw, w)isa symmetric
and positive-semidefinite map =V x ¥V — R. O

Proposition 6.5. Assume & satisfies (A1), (A2’), and B = (Bo)ocoy satisfies (B1), (B2).
Provided By # 0 for every 6 € Oq, the following holds for any positive integer M. Let
Ly .m =Law(R; E(G%?I?/I,Sp))' Then any subsequential weak limit of Ly p as N — 0o
satisfies the k -dimensional Ghirlanda—Guerra identities in Definition 2.2.
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Proof. To simplify notation, let us assume Ly ) converges weakly as N — oo. Even
if this convergence occurs only along a subsequence, the argument we give below can
be restricted to that subsequence. Under the assumption that £y js converges, we must
have that dV converges to some d € D, since at volume N the self-overlap matrix
Ree=N"lot (09T is equal to diag(d™) with probability one under G%’Ol‘f,[’ g

We divide the remainder of the proof into five steps. In the first four steps, we consider
afixed 0 € Oq.
Step 1. Isolate the role of 0 in the Hamiltonian.

Similar to (2.19), we can realize Hy, m 4 as a sum:

Hn mgp(0) = Hy m (o) + Z BorHn m,00(0), 6.8)
0'€0q
where Hy ¢ is as in (6.2), Hy a0 is as in (6.3), and all Gaussian processes on the

right-hand side of (6.8) are independent. We also consider the Hamiltonian without the
contribution of Hy, a0, as follows. Define B~ = (B, )o'co, by

g B ifo’ # 6
" 1o ifo' =0.
We then have
Hy Mgy (0) = Hy mg(0) + Z Bor Hn.m.0'(0) = Hn m,g4(0) — BoHN m,6(0).
0'c0q
0'40
(6.9)
From our definitions,
6.1) €Xp Hn M4 (0)
Gnme (o) = —5———~—
5 ZN m.gg(dN)
6.9 ex H o exp Hy m ¢, (0)
©.9) p(BoHN,m,0(0)) 8 6.10)

T Zvmg @)/ Zn g, @) Zy g, (@)
©.1) exp(Bo Hn,m,0(0))
Zymg@Y)/ZN gy (dV)

Note that Hy ¢ - (0) in independent of Hy . Therefore, (6.10) expresses the mea-

sure of interest Gy, Mg S the Gibbs measure associated to B¢ Hy pr,¢ With respect to
the independent reference measure Gy, u ¢ 5 We thus write

GN.mg,- (0).

ZN, M g5 @d")y

Z Al A
N.m.6(Bo) Znare, @)

1
and FN,M,(-)(ﬂH):ZN]EIOgZN,M,G(,BG)' (6.11)

We think of these as functions of just 8y, keeping By fixed for every 6’ # 6.
Step 2. Show that F _p.0(Bp) converges as N — oo.
Upon defining é,, : R — R by

N+M

i N
SR = —y §ﬂ<N+MR)’ 6.12)
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we can rewrite (6.2) for £g as

B O_O,/T
E[HN. m.85(0) HN M g5 (0)] = N%ﬂ( N

). (6.13)

We can then use the notation of (1.21) to write

1 N N
ﬁElogZN,M,gﬂ @av) = FN,Eﬂ(d ).
By Proposition 2.13(a), we have

|Frvigs (@) = Fyg,@™)] < sup |£5(R) — g(R)|.

IR[1=<1

Assuming ||R||; < 1, we now recall (6.12) and apply the triangle inequality to obtain

|é,g(R>—§,s<R>|_\é/ﬂR)—%ﬁ(NivM R)|+ _‘5(5)(N+M )|

M
< sup [|VEg(Q)lloo + sup [€g(Q)I.
N+M o= ? N o=t P

A

Since M is fixed, we conclude from the two previous displays that
lim |Fy g, @) —Fy; @) =0.
im | Ngg(d™) —Fy g ( )|
Hence Theorem 1.7 gives

1
lim —ElogZNMgﬂ(d )= 1nf Pgﬂ(n)

N—oco N

By the same argument (just replacing 8 with 87, which still satisfies (B1) and (B2)),

lim —Elog ZN,M,gﬂ, @dVy = 7Tienl_fl Pgﬂf (7).
d

N—oco N

In light of definition (6.11), the two previous displays together yield
lim F = inf — inf .
Jim Fy a6 (Bo) Anf Peg (1) Anf P, (1) (6.14)

Step 3. Show that Zn m.0(Be) concentrates.
By (6.13) we have

E[Hy,u.65(0)*] = Nég(diag(@™)) forallo e N (@").

Hence Gaussian concentration (see [54, Thm. 1.2]) implies that for all x > 0,

log Zy w1 &, (@ Elog Zy .y, (@) 2
IP)(\og N/Itfléﬁ ) _Eloe N;Sﬂ( =) =2 p(m)

In particular, we have the following limit:

. log Zy m,6,(dY)  ElogZy,ume,(d")
lim E — ‘ =
N—o0 N N
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By the same argument (but replacing 8 with 7),

)1ogzN,M,§ﬂ_(dN) ElogzN,M,sﬂ_(dN)‘ 0
N B N B

lim
N—o0

In light of the definition (6.11), the two previous displays together yield

logZy,m,6(Bo)  ElogZy am,6(Be)
N N

lim IE‘

N—o0

‘ —0. (6.15)

Step 4. Conclude that Hy p.9(0) from (6.8) concentrates around E(Hy yp.0(0))N,
where (-) N denotes expectation with respect to G%oi,, x

Since (B1) and (B2) remain true if Sy is varied slightly, the limits (6.14) and (6.15)
remain true for all choices of By in some open interval. Furthermore, by Proposition 2.9,
the right-hand side of (6.14) is differentiable with respect to By. Therefore, by applying
the result of [52] (see the remark after Thm. 1) to the representation (6.10), we have

1
lim (| Hy.m.0(0) = BCHN,m.0(@))n |}y = 0. (6.16)

N—o0

Step 5. Conclude that the Ghirlanda—Guerra identities are satisfied in the large-N limit.
Given any positive integer n, consider any bounded measurable function f of the

finite subarray R = (Re.er)1<e.0'<n- With (-) y denoting expectation with respect to

G%oﬁ’,’ gp0 V€ have the following for any 6 € Qq:

(7 - (Hv.mo@") — Bty o @ DN)) | <1 ool [ Hrmo @) = EHy, .0 D)y
The right-hand side is o(N) by (6.16), and so the left-hand side is o(N) as well:
. 1 1 1
_ . — =0. 6.17
ngnoo N ‘]E<f (HN,M,G(U ) —E(Hn m(0 ))N))N’ 0 (6.17)

On the other hand, Gaussian integration by parts [54, Lem. 1.2] gives
n
) 1 _ . 1oy 1 _n+l
B(f - Hyamot@") = poE(f (;cw o =nc@'a™h)) . 618)

where C: =V (@") x V¥ (@") — Ris given by

_ N \deg® T
Co.0") = ElHN a0 @) Hyanal)] S V(=) (T ).

Hence (6.18) can be rewritten as

N
N+M

)deg(e)fl]E<f . (XH:EQ(RL@) — ﬂS@(Rl,nH)))N-

=1

SE(7 o) = b
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Since R1,; = diag(d N ) with probability one under Gy, Mg, WE Can further rewrite the
right-hand side to obtain

N
N+M

1 deg(6)—1
SB(f Hxmno@h) = Po( o) [E(fm - £ (diag(@")

; (6.19)
+ ]E<f . (;EG(RI,D - nSe(Rl,n+1)>>Ni|'

In the special case of the constant function f = 1, we have

E(Hy Mo )y
R =

o (i) oo g™ + | > 60(R1) — 1 (Ri ), |
=2

N
N+M

= () [eoding@™) — Bt Ry 2]

Upon multiplying this last equation by E( f)n, we obtain

1
—E(f -E(Hynmo0"))n
N < >N (6.20)

N \deg®)-1
=po(5oar) [EU - Go(diag@) —E(f)y - Bl (Rin ]

Subtracting (6.20) from (6.19) results in

SE - (Bv o ~ BN o v )

N
N+M

= () O s (S R10 - e (Riwen)) + BN - Blea(Ry 0w |
(=2

By (6.17), the left-hand side of this identity tends to 0 as N — oo. By our crucial
assumption that By # 0, it follows that

=0.

. 1 1 n
Jim ‘E(f 80 (Rins)))y = “E(fIv - Ega(Ri))v — — gEU E9(R1.0))y

Now let £ denote the weak limit of Ly 3 as N — oo. The previous display means that
when the array R is distributed according to £, we have

1 1 o
ELf(R™) - & (Rine)] = ~ELf(RM)] - B&y(R12) + — ) EIF(R") - &(Ri.0)]-
=2
(6.21)

This is a special case of the G.G. identity (2.9). All that remains is to argue that this
special case implies the general case.

Recall that &(R) = ]_[;-"zl(Ronj, w;j)"i, where p,m,ny,...,n, > 1 and
Wi, ..., W, € [—1, 1]¢ are the parameters defining 6. Since (Q N [—1, 1]) is dense
in [—1, 1]%, and (6.21) holds for every 6 € @, it follows that (6.21) holds for every
6 € ©. That is, (2.9) holds whenever the function ¢ in (2.8) is a polynomial of the
form ¢(x1,...,xn) = ]_[;-"=1 x:.l'f . By approximating continuous functions with linear
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combinations of such polynomials (together with constant functions, for which (2.9) is
trivial), we deduce the same statement for any bounded continuous ¢: R” — R. Fi-
nally, by approximating bounded measurable functions with bounded continuous func-
tions (e.g. using Lusin’s theorem [65, Thm. 2.24]), we obtain the identity (2.9) for any
bounded measurable ¢. Note that these approximations are over compact domains, since
every overlap matrix R, almost surely belongs to the compact set Z, from (1.19). O

Before we can make use of Proposition 6.5 in the next section, we need one more
basic fact about the G.G. identities.

Lemma 6.6. Assume £ = Law(R) is a Gram—de Finetti law that satisfies the k-
dimensional Ghirlanda—Guerra identities in Definition 2.2. Then the scalar array Q =
(Qe.e)e.e=1 given by Qq ¢ = tr(Ry ¢) satisfies the 1-dimensional Ghirlanda—Guerra
identities. That is, for any bounded measurable function f of the finite subarray Q"™ =
(Qe.e)1<t,0/<n, and any bounded measurable vy : R — R, we have

1 1 &
ELf(Q")¥(Quue)] = —EIf (Q)IEY(Qi2)]+— ) ELf(Q")¥(Qio)l.

(=2
(6.22)
Proof. Define ¢p: R — Rby ¢(xq,...,x¢) = ¥(x1 +---+x,). We then have
Y (tr(R)) = ¢((Rey, eq), ..., (Re, €)),
and so (6.22) is a special case of (2.9). |

6.3. Proof of lower bound from symmetry. From here to the end of Sect. 6, we always
assume d”V = dpg. Recall that =V (dp,)) is nonempty if and only if N is a multiple of «,
and so we will frequently replace N with k N so that N continues to be a generic positive
integer. For instance, we will write Gy, m,¢ as in (6.1), but now with the understanding

that d*N = dbal-
Lemma 6.7. Assume & satisfies (A1) and (A3). Then the following statements hold.
(a) For any permutation w € Sy, we have

(HN . 6©@) ez =

Hy mg(@90)) s

(b) IfdN = dpg), then Law (R; E(G?ﬁ?M’S)) is symmetric in the sense of Definition 2.5.

Proof. Fork e {1,...,k}ando = (01,...,0y§) € =N we isolate the kth coordinates

in o by writing o (k) = (o1(k), ..., oNn (k))T € RN . Recall the overlap map R(o, 0’) =

N~'oo'T from (2.2). That is, the (k, k') entry of R(o, o) is given by an inner product:
R(o,0)p = N oK), o' (K)). (6.23)

Forany w € S, and 0,0’ € >N we claim that

weR(0,0') = R(weo,wed’). (6.24)
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The action by w on the left-hand side of (6.24) is defined in (1.23), whereas the action
on the right-hand side is defined in (1.25). For any k, k" € {1, ..., k}, we have

(k. &) entry of we R(e, ) '2¥ (1 (k). &~ (k') entry of R(o, o)

©29 (o7 k). o (@ ()
2 0 eo1®), [we oK)

6.23) (k, k') entry of R(weo, weo”).

This verifies (6.24). We can now write

6.2
E[H u16(@*0) Hy s (@ )] = (N + M) (———
(6.24)

=7 v+ g (

@ N+ s (

R(weo, a)oa’))

Nt R@)

R(o, 0’))

N
N+M
6.2
=y E[HN m,e(0)Hn pmg(0)].

This proves part (a).
For part (b), consider the following Gibbs measure:

exp Hen mg(@ 1 eo)

, 03N dpa). (6.25
/€SN (dpgy) EXP HieN M g (@™ 0 07) (o). (6:23)

G?N’M’S(a) = 5

Part (a) implies E(G?ﬁ?M’S) = E((G?N’M’S)@’OO). In particular,

Law(R; E(GERy ) = Law(R; E(Giy pr £)®™))- (6.26)

But notice that ¢’ — w leo’ is a bijection on =N (dpg) since w e diag(dpa) =

diag(dpg))- Therefore, the denominator in (6.25) can be rewritten to give

exp Hien, m e (a)_l °0)
o' e TN (dggy) EXP HieN M6 (07)

G?N,M,g (0) = 3

Drawing from G7y /. £ is thus equivalent to sampling from Gy um.¢ and then applying
o to the sample. Consequently,

Law (R; E((Gey .£)®™)) = Law(R E(GER, ) (6.27)

where R® = (Rif)g/)e,e’zl is the array given by Rz)z/ = R(wect, we g’f’), On the other
hand, (6.24) says that R = w R, hence

Law(R”; E(GEYy.¢)) =Law(w e R: E(GER )y 0))- (6.28)

Chaining together (6.26)-(6.28) yields Law(R; E(G?ﬁ?M’S)) = Law(weR;
E(Gvae): o
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We are now ready to complete the main objective of this section.
Proof of Proposition 2.11. 1t is an elementary fact that for any real-valued sequence

(an)n>1 and an integer M > 1,

1
hmlnf —_— > — 11m1nf(aN+M —an).
N—o0 N—

Applying this observation to ay = k" 'ElogZ, N.£g (dal) and replacing M by kM
results in
1 z &5 (dpal)
lim inf Fyy g, (doar) > —— lim inf E log —a - 287
N—oo KM N—oco ZKN,Sﬂ (dpal)

Now apply Proposition 6.2 with d“V = @<N+M) — <M — g, . so that (6.7) yields

liminf Fy, g (doa) = lim inf Wy g (LaW(R E(GET ye,): =M (dba|)).
(6.29)

Note that because G, Mg, 1s supported on X* Nk (dpal), we trivially have

Ree = R(O’Z, O’Z) = diag(dpg) forall £, ¢ > 1, with probability one. (6.30)
By Lemma 6.4, we know

Law(R: E(G SNy & )) is Gram—de Finetti (Definition 2.1). 6.31)

By Lemma 2.10, &g satisfies the symmetry condition (A3). So by Lemma 6.7(b), we
know

LaW(R IE(GKN M &5 )) is symmetric (Definition 2.5). (6.32)

Now pass to a subsequence (N;) j>1 that achieves the infimum on the right-hand side of
(6.29):

P : : ® M
lim inf Fox gy (doan) = Tim W g (Law(R: EGEY oy e,): 5 @oan) (633)

By passing to a further subsequence, we may also assume there is some Gram—de Finetti
law L such that

Law(R ]E(GKN M Sp)) converges weakly to Ly as j — oo. (6.34)

Let us check that £ satisfies the hypotheses of Lemma 2.6. First, (6.30) obviously
remains true under L. Second, £j; must be a Gram—de Finetti law by (6.31), because
R — ((R;Z,w, w))e.¢'>1 is acontinuous operation on arrays forany p > land w € R*.
Similarly, £ inherits symmetry from (6.32), since R > w ¢ R is a continuous operation
on arrays for any w € S;. Finally, according to Proposition 6.5, the «-dimensional G.G.
identities are satisfied by L.

We can now invoke Lemma 2.6: if £, = Law(R), then almost surely

Ry = @*(tr(Re,¢)), where ®*(q) = 4 (6.35)
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In other words, if we denote the array of traces by Q = (Q¢ ¢)e.¢r>1 = (tr(Re.er))e.e>1
and define Ly = Law(Q), then Ly is the pushforwardl of £y under ®*:

Ly = Ly o (@)L (6.36)

Furthermore, £ satisfies the 1-dimensional G.G. identities by Lemma 6.6. Therefore,
Theorem 2.4 says that LM = ﬁu w» Where s = Law(tr(Ry,2)). This is a probability
measure on [0, 1], and we consider its quantile function

Quy () :=1nf{g = 0: u([0,9]) =1}, 7€ (0,1].

Then define mpr: (0, 1] = I'™ by (1) = *(Qp,, (). Since Q,, is left-continuous
and ®* is continuous, this )/ is an element of the path space IT* defined in (1.12).
Now let (1 p, j)j>1 be a sequence of probability measures on [0, 1] such that

(i) wmm, j is supported on finitely many points.
(i) pm, j({1}) > 0.
(iii) ppm, j converges weakly to iy as j — oo.

Thendefine ryy, j: (0, 1] — IMbymy, j(1) = CD*(QMMYJ,(I)). By properties (i) and (ii),
this 77, ; is an element of the path space Hgtii? from (1.28). Meanwhile, property (iii)
implies

1
lim [ [Qpuy (1) = Oy, (D] dr = 0. (6.37a)
j—0o0 Jo ‘

As ®* is Lipschitz and 7y (1) — i, j(1) = P*(Qp,, (1)) — D*(Qpy, ; (1)), this limit
implies

1
'lim/‘ I7mar (1) — mag, j ()11 dr = 0. (6.37b)
J=70 J0o

From this convergence and Lemma 5.1, it follows that

Jim_ 730 g, (s 03 Z (doan)) = Pcar.ey (o, 02 5 (dpa),

(6.38)

and lim @5(5) (M, j) =2 (2) (n ).
j—o0

On the other hand, we claim the following equality:

P ey, 2 05 TN (doa) + P (u, 1) = Wiewt g Loy ; © (@175 M (dpa)),
(6.39)

where Zu M is the 1-dimensional Gram—de Finetti law from Theorem 2.4. Indeed,
suppose 7y, ;j has the form

wm, jt) =y forte (m,—1,m.],re{l,...,s},

1 Here there is a slight abuse of notation: in (6.35), ®* is a map [0, 1] — R¥*¥ whereas in (6.36), ®* is
thought of as a map [0, NN (exi)NxN gefined by performing (6.35) to every element in an array.
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where 0 = myg <m; < --- <mg =1land 0 <X y; < --- < ¥y = diag(dpa)). This
means [y, j has the form

s
MM, j = Z(mr —my_1)8,, where ®*(g,) = y,.

r=I1

Now let v be the RPC from Theorem 3.4, so that when (o', o2, ...) is sampled from
E(v®>), the induced array (@) (e, ag/)) ¢.0>1 has law Eu M, Applylng ®* to every entry,
we obtain an array of matrices (y (. a@/))g ¢>1 whose law is EMM jo(@N)” 1 Then
(6.39) follows from Lemma 3.5. ~

By Property (iii) and the final statement in Theorem 2.4, £, ,, ; converges weakly to

Ly, as j — o0o. Since ®* is continuous, it follows that

Luy, ;o (@97 converges weakly to £y, o (®*)7! €2 frras j— 0o, (6.40)

Since (6.40) and (6.34) have the same limit, Corollary 3.3 implies
: . ® M
Jim W, (Law(Rs B(GET pr,)); = (doa)

' i o (6.41)
= fim Wi, g5 (Lyuy, ;0 (@773 2% (dpal))-

Now we put our various observations together:

o (6.33) —
liminf F g (doar) = lim n Wy (LaW(R: EGEY 6,)): T (doa))

6.41 . 5 _
©4h Jim W g (L, o (@75 5 doa)
(6 39) lim

i=

6.38
20 Do ey (a, 0; TN (o)) + 2 ().

n [ P4, O, . 0: M (o)) + 2 ()]

Finally, we must send M — oo.

By passing to a subsequence, we may assume iy converges weakly as M — oo to
some probability measure (2 on [0, 1]. Define 7 : (0, 1] — I'™byn () = ®*(Q4(1)). As
before, 7w belongs to IT* because of the left-continuity of Q, together with the continuity
of ®*. Using the same logic as in (6.37), we must have m); — 7 in the L' norm (1.32).
Hence Lemmas 5.3 and 5.4 give

(5 9) (5 21)

Jim 0 G, 0: 5 (doa) "= inf [P (. 0) = (. doai)] "= 5, (., 0).

Applying Lemma 5.1 once more, we also have
: 2 2
Jim 20 ) = 20 ().
Combining the three previous displays, we obtain

(1.34)

liminf ey, g, (doat) = P4, (. 0) + 2 (m) =" Pgy (. 0).
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Appendix A. Gaussian Processes for Generic Model

Here we prove Proposition 2.7. We fix 8 = (p,m,ny, ..., 0y, Wi, ..., Wy) € ©
throughout this appendix and denote the coordinates of w; € [—1,1]° by w; =

(w(k));_,- We first establish two lemmas.
Lemma A.1. For Q, R € Ty such that Q < R, we have

0=<8(Q) =&(R), 0=xVE(Q) = VE(R).
Furthermore, 99(R) = (deg(8) — 1)&y(R) for any R € R**¥,
Proof. First we make an elementary claim about Hadamard products:

0<Q=<R 0<Q <R = 0xQ0Q <RoR. (A.D)

Indeed, we have the decomposition

RoR —QoQ =Ro(R—Q0)+Q o(R-0Q),

and the Schur product theorem tells us that both R o (R — Q) and Q" o (R — Q) are
positive-semidefinite. Hence (A.1) holds.
By repeatedly applying (A.1) with Q' = Q and R’ = R, we see that

0<Q0=<R = 0=<(Q°%u,u) <(R°®u,u) forany p > 1andu € R".

In light of the definition of &y in (1.17), it follows that 0 < &, (Q) < & (R).
Next we argue 0 <X V& (Q) < V& (R). By differentiating (1.17) with respect to
Ry 1/, we compute the (k, k') entry of V& (R) to be

m
VE (R = Y [ [ J(RoPwe, we>"f]n;<R°”wJ-, wi)" - pRY S w (Ryw; (k).

j=1 U
(A.2)
If we write W; = diag(w;), then (A.2) says
m
VE(R) =p Y nj&,(R)- WiR*P~DW,, (A3)

j=1
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where 0; € O is obtained from 6 = (p,m,ny, ..., Ny, Wi, ..., wy) by modifying
nj to nj — 1. For each j we have 0 < Sg_/.(Q) < ’;‘g_i (R) by the argument of the
previous paragraph. In addition, (A.1) gives 0 < Q°(1’_1) < R°P=D and so 0 <
WQeP—Dw < WR°P~DW for any diagaonal matrix W. It is thus apparent from
(A.3) that 0 < V& (Q) < V& (R).

To see the final assertion of the lemma, insert (A.2) into the definition of ¥4 (R) =
(R, V& (R)) — &p(R). This results in

m

20 (R) = p Y nj[ [ TR we, we)™ [(RPwj, )"
j=1 )
1.17) -
—&R) =" pY niE(R) —&(R),
j=1
which is exactly as desired. O

In the next lemma, we follow the construction in [57, Sec. 5]. Our Hy g is equal to
\/Nh]v,g in the notation of [57].

Lemma A.2. Foreach N > 1, there exist a centered Gaussian process (H N.6 (0))
with covariance

oeRrxN

UO_/T

N

E[Hn .0 (@) Hy.0(0)] = Néo (T2 ). (A4)

and a centered k-dimensional Gaussian process (Z N.6 ((T))U CRFXN with covariance

T UG/T
E[ Zwo(@)Zno (@) | = Ves (T2 )- (A5)
Proof. For any p-tuple of indices I = (i, ...,ip) € {1, ..., N}, let us write
o1 = (0. ...,0i,) € R)? foro e (RN,
Furthermore, for any n-tuple of p-tuples Z = (I, ..., I;) € ({1,..., N}”)"*, we will
write
o7 = (01, ...,01,) € (R)P)" foro e (R)V.

Given such 7 and some w = (w(k)) € R¥, define the following polynomial:

1<k=<k

K

Sw(oz) :=Syw(or) ... Sw(or,), where Sy(oi, .. .O’ip) = Z w(k)oj, (k) .. N (k).
k=1

Finally, we sum over all choices of 7y, ..., Z, withZ; € ({1, ..., N}?)":

1
Hyg(o):= m Z 871.... T Sw (07)) - - . Sw,, (07T,),
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where each g7, 7, is an independent standard normal random variable. Recall that

deg(@) = p Z'}Ll n;j. The covariance of the Gaussian process (HNﬁ(U))aeRwN is
then

m

E[Hy (o) Hy 6(c")] = H [ P st, (07,)Su, (07, )}

If we write R for the matrix R(c, 0’) = o¢’T/N, then

1 < e P
w7 2 SwEDSwp= 3] wj(k)wj(k/)<ﬁ > o (k)o{(k/))
I€{l,....N}P kk'=1 i=1
= (ROpwj, w;).

By combining the two previous displays and recalling the definition of & from (1.17),
we obtain (A.4).

To prove the existence of the Gaussian process Zy g, we first claim that for any
p = 1, there exists a k-dimensional centered Gaussian process (zy,(0)), cgexn With
covariance

oo'T\e(p—1)
) . (A.6)

E[zN,p(a)ZN,p(U/)T] = ( N

If p = 1, then the right-hand side of (A.6) is interpreted as the k x « identity matrix, and
so it suffices to take zy, ,(0) equal to a standard normal random vector not depending

ono. If p > 2, then we make the following construction. For k € {1, ..., x} define
| N
N, pk(0) = N Z 8ityenip—10iy (k) ... 07, (k)
if,.ip-1=1

where each g;,,._.i, |
N, plo) = (zN, p,k(o))zzl, we obtain a k-dimensional Gaussian process satisfying
(A.6).

Now let z ,1\, pre z’ﬁ’ » be independent copies of zy, ,. Asin the proof of Lemma A.1,
let §; € ® be obtained from 6 = (p, m, ny, ..., Ny, w1, ..., wy) by modifying n; to
n; — 1. From (A.4), consider centered Gaussian processes Hy g, , . . ., Hy g,,, which we
assume are independent of each other and of each z 11\, P N > Finally, recalling the

notation W; = diag(w;), we define

is an independent standard normal random variable. By setting

m
1/2 77— j
Zy o) i=p"? Y n*N"V2Hy 5,(0) Wizl ,(0).
Jj=1

It follows from (A.3) and (A.6) that the covariance of (Zy,0(0)), pexn is given by
(A5). o
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Proof of Proposition 2.7. Parts (a) and (b) follow immediately from Lemma A.1. Part (c)
follows from Lemma A.2. Finally, part (d) follows from combining Lemmas A.1 and A.2

since we can set Yy g(0) = (%)I/ZHN’Q(O'). |
The following lemma was used in Remark 1.2.

Lemma A.3. For any d € D and any y belonging to the set I (d) from (1.7), we have
y = diag(d).

Proof. For any u = (uy, ..., u,) € R, we have

K K
(diag(dyu, u) — (yu,u) = Y dyui— Y yiwirip
k=1 k=1

K
@7
= Z Yk (UF — ugup)

k,k'=1
2 2 2
= Z Vi (g + . — 2uguyr) = Z Yik (g — ug)” = 0,
k<k' k<k'
where the final inequality uses the fact that every entry y, j/ is nonnegative. O

Appendix B. Proof of the Aizenman-Sims—Starr Scheme

In this appendix, we prove Proposition 6.2. To begin, we deduce from (6.6) the inclusion

S NM (@N+My 5 5N (gNy x =M (sM). (B.1)
Indeed, for 0 = (01,...,0n5) € EVN@V)and t = (11, ..., ) € TM(M), let us
write (o, T) for the x x (N + M) matrix whose first N columns are oy, ..., oy and
whose last M columns are 7y, ..., Tp. In this notation, we have

(0,7)(0,7)7 = 00T + 117 = Ndiag(@") + Mdiag(s™) X (N + M)diag(@¥*),

which by definition means (o, 7) € ZV+*M (@N*M) From (B.1), it immediately follows
that

ZN+M’§(dN+M) > Z Z exXp HN+M,§(O’ T). (Bz)

oceZN(@@dN) rexM (M)
Recall from (1.14) that

(0, T)(0’, r/>T>
N+M
oo’ + II’T>

N+M

E[Hy,p (0, D Hy,p 07, T)] = (N + M)é(

= (v + M (

Replacing € with & on the right-hand side incurs an error:
., oo’ T+17T
ELHy 3102 T Hyypy 660721 = (N + 30 (o )|

<(N+M) uziﬁlp 1 |€(R) — E(R)|. (B.3)
1=
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By smoothness (see Remark 1.5), we have the following linearization about (oo’ T) J(N+
M):
oo’ T +17T oo'T oo'T 7T M \2
(o) =) Ve () w0 () )
N+M N+M N+M/ N+M N+M

where we are using the notation from (6.5). Furthermore, we have the approximation

Ve(225) = V6 (700) + 0w ()

Combining the two previous displays, we arrive to

s () = 0 e () (5 (75 ) o

M2
* OVzS(N ¥ M)'

(B.4)

Regarding the first term on the right-hand side, we have the further linearization

T

o0
(N+M)5(N+M)
T a a
= (N+M)[5(U;‘v ) _<VS(G;‘V ) le/lz\(fIZM)>+ 0Vzé(<N{:—/IM)2>]

] R R LA R B LA )

UU/T

The term being subtracted on the final line is simply M 195( = ) Moving this term to
the left-hand side, we arrive to

T

() (5

T

)= N5 ) roue () @)

Equipped with the approximations (B.4) and (B.5), we resume our probabilistic argu-
ment.

Let Hy ¢ be the cavity Hamiltonian from (6.2). Let Zy, ..., Zy: >N . R¥ and
Y: =V — R be centered Gaussian processes with covariances

T

E[Z/0)Zi) ] = vs(g;‘v ). El@)Ye) = ﬁg(“;‘v_ﬂ), (B.6)

Such processes exist by Proposition 2.7(d) and assumption (A1l). We assume all these
processes are independent of each other and of Hy y ¢. Now write

ZN+M,§(dN+M) ®2) DoexN@N) 2resM My eXp Hy 4y (0, 7) 0107

ZN,S(dN) - ZUGEN(dN)eXP HN,&(U) N QZQSH’
B.7)
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where Q1, Qf", Q2, Q5" are the following quotients:

ZUGEN(a'N) Zre):M((SM) exp(Hn,m.£(0) + 2?4:1 (Zj (), Tj>)

Q= Yoesvan) eXp AN i £ (@) |
oo Dgexh @) Lrex i) XP Hy y £(0,7) ., (B8
D oenN @) 2ores sy eXP(Hy m £ (0) + Zj=1 (2j (@), 7
Q> := Yoexv @) XP(Hy.1.£(0) + VM Y (0))
> sexN@ny €Xp Hy mg(0)
05— 2ozt @) P Hy £ (@) (B.9)

Y oesh V) eXp(Hy m.£(0) + VM Y (0))

Observe that Q1 and Q> have the desired form for realizing the functional Wy, ¢ from
(3.3). Namely, if (-) y enotes expectation with respect to the measure G y ¢ from (6.1),
then

M
Elog Q) =Elog Y. <exp(2 (Z;(0), 7] )> C29 pw ), (L arsaV =M M),
TexM (M) Jj=1

(3. 2b)

while Elog 02 = Elog (exp(v/M Y (0)))y MY (L ).

(B.10)

Therefore, the remainder of the proof is to show that

o Mm? N+M -
[Elog 05| < Ovae( 57 37) + s R —ERL - B11a)
1=
M2
and  Elog Q5" = OVQS(N +M). (B.11b)

Indeed, the claim (6.7) follows from using (B.10) and (B.11) in the initial inequality
(B.7).

We now argue each estimate in (B.11) separately, although the two arguments are
very similar. Since the one for Q5" is slightly simpler, we begin there.

Control of Q5. Define an interpolating Hamiltonian on =N @My

Hi(0) = V1 Hy (o) + VT —t(Hy me(@) +MY(0)), 1€[0,1]. (B.12)

Consider the free energy associated to H;:

¢(t) = Elog Z exp H; (o). (B.13)

oexNdN)
Recalling the definition of Q from (B.9), we see that

Elog 05" = ¢(1) — ¢(0). (B.14)
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We control this difference by studying the derivative of (B.13) with respect to ¢, which
is easily computed to be

# 0 =B H )

where (-); denotes expectation with respect to the Gibbs measure G;(0) o exp H; (o)
on 2V (dN). Thanks to Gaussian integration by parts [54, Lem. 1.1], we can rewrite this
as

¢'(1) =E(C(c'.0") —C(c'.0P),.

where o1, 62 denote independent samples from G, and C: V¥ (@") x TV (@) - R
is defined by

C(U,G/) — [ HZ‘(U)

LMo ) (B.15)

Since the Gaussian processes on the right-hand side of (B.12) are independent and
centered, the right-hand side of (B.15) reduces to a linear combination of their respective
covariances:

1 1
C(o,0") 2? SElHy () Hy.e(0)] = SE[Hy 0.6 (@) Hy .6 (0))]
M !
- —E[Y(O)Y(U )]
(. 14)(62)(B 6) 1 [NS(UG T) _ N+ M)é( oo'T ) e <GU/T>]
N+M AN,
M2
Ov2g (N + M)'

Reading the three previous displays together, we have established the following estimate:

2

sup 16/()] = Oy (o)
= 2\ — ).
1€(0,1) VE\N+ M

Therefore, (B.14) leads to (B.11b).
Control of Qf". Define an interpolating Hamiltonian on SNEN) x =M (M),

M
H, (0, 7) = 7 Hyop (0, 7) + /T = z(HN,M,E(o) +3°(200), z,-)), t €0, 1].
=1
(B.16)

From (B.6), one can calculate the covariance of the final term on the right-hand side:

T

[% Zj0), t)\Z;(0)), T )] =<vg(0;
j=1

), n’T>. (B.17)
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Now consider the free energy associated to H;:
¢ () = Elog Z Z exp H, (o, 7).
cexN(dN) rexM (sM)

Recalling the definition of Q{" from (B.8), we see that

Elog 07" = ¢(1) — ¢/(0). (B.18)

We control this difference by studying the derivative of (B.13) with respect to ¢, which
is easily computed to be

# 0 =B H o)

where (-); denotes expectation with respect to the Gibbs measure G, (o, 7)  exp H; (o, T)
on XV (dV) x =M (8M). By Gaussian integration by parts [54, Lem. 1.1], we can rewrite
this as

9’0 =EC(@". 7). 0" h) = (@', 7). (0% 7))

t

where (o!, 1), (62, t2) denote independent samples from G;, and C: EN@Vy x
=M (5M))?2 - R is defined by

[BHz (0,7)
ot
Since the Gaussian processes on the right-hand side of (B.16) are independent and

centered, the right-hand side of (B.19) reduces to a linear combination of their respective
covariances:

C((o, 1), (0, r/)) =FE H, (o', r/)]. (B.19)

®.16) |1
= EE[HN+M,§(U’T)HN+M,§(U/"C/)]

‘E[—BHI;? 2 H, (o', r/)]

M
_—E[HNMS(G)HNMS(O’) ——]E[Z (Z;(0), })Z;(0)), 7! )]‘
j=1

T T

B3)62.B1D N + M ER)— E(R)|+ ‘(N_'_M)s(aa +r7 )
< sup - = —_—
2 Rrnh=1 2 N+M
oo'T oo'T T
Nms () = (ve (T ) )
—(N+M)§ N & N )T
B4 N+ M ~ M?
= sup_[£(R) = E(R)| + Ogzg (- )-
2 RIh=1 VEAN +M

Reading the three previous displays together, we have established the following estimate:

2

801 = Og (o) + o sup [E(R) —E(R)
sup < Oy sup - .
1e0.) VEAN + M 2 JRIi=t

Therefore, (B.18) leads to (B.11a), which concludes the proof of Proposition 6.2.
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Appendix C. Properties of Ruelle Probability Cascades

This appendix proves Lemmas 3.5 and 3.7. Both proofs rely on the following fact.

Theorem C.1. [72, Thm. 14.2.1] Let 9, ..., n~D be independent random variables
taking values in a metric space T. Assume f: T® — R is a deterministic function such
that

Eexp f(n@, nV, ..., n¢™) <00 and E|fn@, 7™, ... 78 D) < oo,

Let |, denote expectation with respect to n\"”). Given the sequence (3.4), inductively
define

= f(n(o)’ 77(1)’ o, n(é'*l))’
1
X, :=—1ogE, exp(m;X,4+1) forre{l,...,s — 1}, (C.1)
my
Xo :=Eo(X1).

On the other hand, let v be the RPC associated to (3.4). Foreachr € {0, ...,s — 1}, let
(ng)penr be ii.d. copies of n7) that are independent of v. We then have

Xo =Elog Z Vo €XP f(Nas Niay)s Nar,an)s - -+ s D@t _1))- (C.2)

aeNs—1

Proof of Lemma 3.5. The right-hand sides of (3.9) are defined in (3.2) with
X=N""" R@ad)=Viwary, G=v. (C.3)

By inspection, (3.2a) is the same as (3.7) with A = 0. This proves (3.9a).
Meanwhile, in the setting (C.3), definition (3.2b) becomes
2
W )E(‘C d) = —E]Og Z Vg EXP (\/ﬁ Y(Ol)). (C.4a)
aeNs—1

Using the representation (3.12) of Y, we can rewrite this as

aeNs—1
By (C.2), the right-hand side can be transformed to yield
1

W (L d) = 5 Xo. (C.4b)
where X, X1, ..., X are related inductively as in (C.1), and

s—1
Xs = VN Y O rat) = e 0.

r=0
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Here @, ..., n®~D are i.i.d. standard normal random variables. Therefore, using the
fact that Eexp(cn®)) = % exp(c?) for any ¢ € R, it is straightforward to calculate

s—1

N
Xo =5 Y m(D (rra) = 96 ).

r=1

Rewriting the right-hand side using summation by parts, we obtain

N N ¢
Xo = 060) = 3 (mr —mp )0 ()
r=1 ] (C4c)
N . N 3.8)
= 5 Ve (diag(d)) - ?/0 9 (1)) de B —NZ2 (7).
Therefore, (C.4b) is exactly the desired statement (3.9b). O

Proof of Lemma 3.7. Inserting (3.11) into (3.7), we can express 91(\]1’)5 (m, X; S) as

s—1

N
%Elog > D v (DD VIEGr) = VEGILE > 0) sy + 2 05))-

aeNs—loeS i=1 r=0

By (C.2), we have the alternative representation
PO, 3 5) = Cs
e A S) = NXO(S), (C.5a)

where X((S), X1(S), ..., X;(S) are related inductively as in (C.1), and

s—1

X,(8) =log 3 exp (i(Zzl@ + 2, ai>). (C.5b)

o€eS i=1 r=0

Here each z}r) is an independent centered Gaussian vector in R¥ with covariance matrix
Elz{” ()] = VE(r1) — VEG)T{r > 0). (C.50)

When S is the entire product set =N (C.5b) can be rewritten as

Rt

N 1
XM =tog 3 [Jexo (X +n00)

O1,...0NEXZ i=1 r=0
N s—1 N
:ZlogZexp( (zl(r)+k,a)> = ZX?')(E),
i=1 oex r=0 i=l

where Xs(l)(E), e, XS(N)(E) are i.i.d. random variables. The inductive procedure (C.1)
can be applied to each one of these variables separately, resulting in i.i.d. random vari-

ables Xﬁl)(E), R XﬁN)(E) foreachr € {0, 1, ..., s — 1}. Assuming inductively that



Parisi Formula for Balanced Potts Page 57 of 68 228

X, (EV) =N X(’)I(E) we have

N

1
X,(=V) € logE, exp (mr Zx(”](z))
My i=1

N
1 (C.1) ;
= —logl_[IE exp(m, X ffl(E)) = ZXﬁl)(E),

m
r i=1 i=1

where the middle equality uses independence. Taking r = 0, we conclude that

PP, (0 2N Y %XO(EN) = Zx(”(z) x(®) 2 2N 2),
(C.6)
Moreover, a comparison of (C.5a) and (1.31) reveals that
2N 0z = 2P0,
and so (C.6) is exactly (3.10). O

Appendix D. Duality

In this appendix, we prove Lemma 5.2. We closely follow the proof of [58, Lem. 2].
The key ingredient is the following result. Recall the set £V (d, &) from (1.4): using the
notation R(o, o’) = 00’1 /N, we have

>N, e) ={o € =V : |R(0, 0) — diag(d) | < €} (D.1)

Lemma D.1. Assume & satisfies (Al). There exists a constant C depending only on &
and k., such that forevery N > 1,d" € D, w € Ty, A € R¥, and & > 0, we have

s%) ‘9(1) T, a2V, &) — 3”1(\,]2 (7, A; EN(d))‘ < C./e. (D.2)
de N

Proof. We assume without loss of generality that ¢ € (0, 1/2]. Note for later that there
exists a constant Cg such that

elog(l/e) < Coa/e foralle € (0,1/2]. (D.3)

Forany A € R and § C >N the map [y > 7w — :@1(\,1’)5 (7, A; S) is by definition a
continuous extension of its restriction to the set Hgisc (see the text following the proof
of Lemma 5.1). Therefore, it suffices to verify the lemma for 7 € Hgisc. We assume 7
is given by (1.29), with d’ replacing d in (1.29¢).

Given any d € Dy, let P: ¥V (d, ) — XV (d) be any projection with respect to
Hamming distance. That is, for each o € TV (d, ¢), we choose some Po € =V (d)
that minimizes ZlN: 1 I{o; # (Po);}. Changing a single column o; (from one standard
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basis vector to another) moves the self-overlap matrix R(o, o) by distance N~! in the
£°° norm. Therefore, o and Po differ in at most ¢ N columns:

N
Zn{a,- # (Po)i} <eN foreveryo € £V (d, ¢). (D.4)
i=1
In particular, if eN < 1, then P is the identity map and so £V (d, &) = ¥ (d). The
right-hand side of (D.2) is zero in this case, and so we assume henceforth that eN > 1.
Consider the size of the preimage,
N(o):=|{r e =V, e): Pt =0} (D.5)

If Pt = o, then (D.4) says there are at most ¢ N many columns in which t and o differ.
Each such column of t takes one of « possible values, and so

N(o) < <[81;]\11>K£N < (%)”Num < (expil)lc)eNH - (expil),c)zezv.

Taking logarithms and dividing by N, we arrive to

l1og/\/(a)<2e(1+1og/<+1og(1/g)) < cf (D.6)

where C, =2(1 +logk + Co).

NextletZy, ..., Zn, Z1, ..., Zn: N°°1 — R¥ bei.id. centered Gaussian processes
with covariance given by (3.6). Define the interpolating process Z; : N*" ! x 2V (d, &) —
R by

N
Zi@.o) = Y [VilZi@) + 2, 03) + VT=H{Zi@) + 1, (PoY) |, 1€ 0,11 D7)

i=1

Upon defining the associated free energy,
1
() = NIElog Z Z vy exp Zi(, 0), (D.8)
aeNs—lgeXN(d,e)
we have

o) = 23, (1.2 =V, o)),

N
¢(0) = —Elog Z Z exp(Z(Z(u)+A, (PU),-)).

aeNs—loexN(d,e) i=1
Note that N'(¢) > 1 since Po = o, and thus

@]ﬂ}g(n,k;z’v(d))(”) og Y Y vaexp(Z(Zi(a)+A,oi))

aeNs—1 gexN(d) i=1

N
< %Elog Z Z N(o)vaexp<;(zi(a)+)»,0i)> (D_g)fb(o)

aeNs—1 gexN(d)

(D.9)

©5)
< PN (m a2V @) + Cv/e.

(D.10)
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Putting these observations together and using a triangle inequality, we have

|23 (.0 2V (d. 0)) — 23, (m. 3 2V (@) |

2 o (1) — 2P, (m. 05 =V @)

0 . (D.11)
< lp) — ¢ +]|¢p©0) — (n,A;Z @)|

(D.10)
< o) = (0)| + Cen/e.

To control the first term in the last line, we consider the probability measure G, (¢, o)
Ve exp Z; (o, o) on N~ x =N (d, ¢), and let (-); denote expectation with respect to G;.
Differentiation of (D.8) results in
1 _j0Zi(a,0)
0= Lp[P@ o)
o) N Jat t
Applying Gaussian integration by parts [54, Lem. 1.1], we can rewrite this as

¢'(1) = %E(C((al, oh), @' oh) —c(@' oh, @', ah))t,

where (a!, o), (¢?, 6%) denote independent samples from G;, and C: (N*~! x
»N(d, €))> — Ris given by

C((a,0), (@', 0"))
_ E[BZ,(O(, o)

Z /’ /]
91 (@', o)

E[(Zi(@), i) Zi (@), of) = {Zi(@). (Po)i)(Zi @), (Poy)]

I
N =
-

—

223 (AT VErwa)o! = (PO VEGrwan) (PO ).

N =
AMZ

1

1

By (D.4), there are at most 2¢ N many values of i for which the ith summand on
the final line is nonzero. Since o;, al.’, (Po);, (Po"); are all standard basis vectors, the
nonzero summands trivially satisfy

=2 sup [[VE(R)lco-
IR <1

0T VEWr(@a))o] — (PO)] VEWVr (@) (PO

Therefore, the four previous displays together imply

lp(1) — $(0)] < sup |¢(r>|<4e sup | VE(R) |loo-
te(0,1) Rl1=1

Inserting this inequality into (D.11) results in
|23 (m. 0 =V, 0)) — Py (m. 2 TV (@)] < Ce,

where C :4Sup”R”1§1 ||VE(R)||OO+CK o
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With Lemma D.1 in hand, the next result follows by the exact same argument as [58,
Lem. 4 and Lem. 5], and thus we omit the proof.

Lemma D.2. Assume & satisfies (Al). Fix any d’ € D, w € Ty. Suppose d¥ € Dy
converges tod € D as N — oc. Then the following limit exists, is finite, and depends
onlyond:

fd)= lim 2y (r,0; 5N @"). (D.12)

Furthermore, d — f(d) is a continuous concave function.

We are now ready to complete the objective of this appendix. The following proof is
very similar to that of [58, Lem. 6].

Proof of Lemma 5.2. As in the proof of Lemma D.1, let = be given by (1.29), with d’
replacing d in (1.29¢). We will show that

log(N + 1)
0= 2D (rn %) — max 20 o BNy < KOEVED
< P\ ) = max P @)= —. -5 (D.13)

Before proving (D.13), we use it to prove the desired identity (5.17). For every o €
2N (d), wehave 3_"_, (A, 0;) = N(, d). Therefore, when S = %" (d), definition (3.7)
results in

Py 2 2N @) = P (1.0, 2V (@) + (.d) ford € Dy.

Using this identity and 1@,(\,1,)5 (T, A =Ny = @gl)(n, A) from (3.10), we infer from
(D.13) that

2P0 = lim max [ 2y (7.0 V(@) + (1. d)]. (D.14)

N—oodeDy

‘We then claim that

P, 0) = sup [£(d) + (h, )], (D.15)
deD

Indeed, let dV € Dy be a maximizer in (D.14). By compactness of D, we may assume
(by passing to a subsequence) that " converges to some d as N — oo. It then follows
that

2O (e, 1) P27 Jim [ 240,60, 28 @) + (1)) LD £y + (0, d).

(D.16)
On the other hand, if we choose any other convergent sequence ¥ — d, not necessarily a
sequence of maximizers, then the first equality in (D.16) becomes >, and (D.15) follows.
Finally, since f is concave and continuous by Lemma D.2, the Fenchel-Moreau theorem
(e.g. [64, Thm. 12.2]) implies the following dual version of (D.15):
d) = inf [2" @, 2) - (. d)].
[ AIEHRK[ e (T,0) = (h,d)]

Once we use (D.12) to rewrite f(d), this identity is exactly (5.17).
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It remains to establish the two inequalities in (D.13). The first inequality is immediate
from definition (3.7), since =V (d) € =N For the second inequality, recall the notation
in (C.5). We claim

exp (m,X,(EN)) < Z exp (mrX,(EN(d))> foreachr € {1, ..., s}. (D.17)
dEDN

To see this claim, first observe that there is equality when r = s, simply by inspect-
ing (C.5b) together with the fact that my = 1. Now proceed by downward induction.
Assuming the claim is true in the (r + 1)th case, and noting that m, /m,;1 < 1, we have
Ny) €D N
exp (m,X,(E )) =" E,exp (m,X,+1(E ))

= E.|exp (mr+1Xr+1(EN))m’”/'"’]

< Z exp (mr+]Xr+1(EN(d)))>mr/mr+1]

dEDN

< B 3 ex (mrxm(zN(d)))}

- dEDN

(C='1) Z exp (mrX,(EN(d))).

dEDN

< E

~

With (D.17) established, we use the final r = 1 case:

1 17) 1
PP, (05 5V) Y ~EoXi (=" y 2 -y Bolos 3 exp( 1X1(2N(d))).
dEDN
By definition of Dy in (1.6),eachd = (d1, ..., d,) € Dy has Nd; € {0, 1, ..., N} for
each i. Hence |Dy| < (N + 1)*, and so the previous display yields
k log(N +1)
2D A 2N _— —E X (=N
N (T ) = N dd;](v 0X1 (=Y (@)
(C.5a) Kk log(N + 1) ) N
= = X P A 2N (d
N de y Né(n (d)).
This completes the proof of (D.13), and so we are done. m|

Appendix E. Parisi Formula for General Model

In this appendix, we prove Theorem 1.7 by generalizing the strategy used by Panchenko
[57,58] for Theorem 1.1. The following upper bound uses Guerra-style interpolation
[36].

Proposition E.1. Assume & satisfies (A1) and (A2).
For every d € D, we have

11\1"1(1) limsupFy £(d, ) < lnf Pg (7). (E.1)

N—o0



228 Page 62 of 68 E. Bates, Y. Sohn

Meanwhile, the lower bound does not require the convexity assumption (A2). The
following result follows from the Aizenman—Sims—Starr scheme as in [58, Sec. 7].

Proposition E.2. Assume & satisfies (Al). Givend = (dy);_, € D and any constant L,
assume dN € Dy is such that

|d¥ —d|lc < L/N and dY = 0 whenever dy = 0. (E.2)
Then
liminf Fy ¢ (@") > inf Pe(n).
iminf Fy ¢ ( )_rrlenl'ld £ (1) (E.3)

Although [58] considers only the case £(R) = tr(R' R), the argument for Proposi-
tion E.2 proceeds in exactly the same way, and thus we omit the proof. Proposition E.1,
however, is inherently more sensitive to the covariance function &, and so we do provide
its proof.

Proof of Proposition E.1. Since Hgisc is a dense subset of I1; with respect to the L'
norm (1.32), and w +— (i) is continuous by Proposition 2.13(b), we have inf; e,
Pg () =inf emdse Pe (). Therefore, to establish (E.1), it suffices to prove that for any

path 7 of the form (1.29), we have

ii\r‘% li]:;n_)sllop Fne(d, e) < Pe(m). (E.4)
To this end, let Zy, ..., Zy: N*"1 — R< and Y: N°~! — R be independent centered

Gaussian processes with covariances given by (3.6), and define the following process
on N*~1 x m=N:

N
Hi(e,0) =Vt Hy (o) +VT—1) (Zi(@). 0:)+ViIv/NY (@), t€[0,1]. (BS5)

i=1

We assume that Hy ¢ is independent of Zi, ..., Zy, Y, and that all of these Gaussian
processes are independent of the RPC weights (V) cns—1 associated with (1.29b). Given
& > 0, consider the associated constrained free energy

1
oy (1) = NElog Y ) veexpHi(e. o). (E.6)
aeNs~l oeXxN(d,e)

Claim E.3. For any N > 1 and t € (0, 1), the derivative of ¢ satisfies qb;\,(t) < Ce
for some constant C not depending N, d, € nort.

Proof. Denote by (-); the average with respect to the following probability measure on
NI x =N, e):

Gi(a, 0) x vy exp Hy(a, 0).
Differentiation of (E.6) results in

o= 2402
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Applying Gaussian integration by parts [54, Lem. 1.1], we rewrite this as
() =E[C(@' o), @ oh) —C@' oh @ a)) . @)
t

where (a!, o), (¢?, 02) denote independent samples from G;, and C: (N1 %
2N, £))?> — R is defined by

oH;(x, 0)

1
(@, 0), (@, 0)) = NE[ -

i@ o).
To compute this expectation, recall that the three Gaussian processes on the right-hand

side of (E.5) are independent, centered, and have covariances given by (1.14) and (3.6).
Therefore,

1
Cl@ o) @ oY) = 3 (6R12) ~ [VEGra a2 R} + Pt o)
1
(1.27) (‘é(Rl 2) = EWrala2) — (VE(yr(al,az))’ Ri2
- Vr(al,otz)))’

where R1 2 = R(c!, 02) as in (2.2). By the convexity assumption (A2),
we have

C(@' oh, (@* %) = 0. (E.8)
In the special case (@', o) = (a2, 02), we have Yrlal) = Vs = diag(d) by (1.29¢),
and ||R1,1 — diag(d)|l1 < ke by definition of >N, &) in (D.1). It follows that

C(',oh), (@' o) < = sup IVER)ls - ke (E.9)

Combining (E.7), (E.8), and (E.9) concludes the proof. [J (Claim)
Claim E.3 implies
¢n(1) = PN (0) + Ce. (E.10)
When ¢ = 1, the @ and o terms in (E.6) fully decouple, resulting in
1 (C4 ©)
on(1) =Fye(d &) + - Elog > | veexp (VN Yo) "= Fye(d, &) — 27 ().
aeNs—

(E.11)

On the other hand, evaluating (E.6) at r = 0 yields

N
on(0) = —Elog Z Z Vo exp(Z Z (), al> (E.12)

aeNs—l oexN(d,e) i=1
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For any o € >N (d, &) and A € R¥, we have

N
Y000 = )+ {3, Zo,—d) 2 od)y et (€13)
i=1

Now add and subtract (A, o;) within the exponent appearing in (E.12). Using (E.13)
and the trivial containment ¥V (d,e) C >V we deduce that

N
¢n(0) < %Elog > Y e (Y (Zi@ 4 ai)) = (ko d) +ellnl

aeNs—1l gexN i=l

2 PP 2V — (dy+ellally = 2P @) — (k) + el
(E.14)
Inserting (E.11) and (E.14) into (E.10), we arrive to
Fyed.e) < 200+ 20 (1) = (h,d)+(C+xlne
29 2, 0) = (d)+ (€ +IMe.
As this inequality holds for any N, we conclude
hm limsupFy £(d, &) < Pe(m, L) — (A, d). (E.15)

N—o00

Finally, recall that Pz () = infjcre [P (r, L) — (A, d)], and so (E.15) implies (E.4). O

We are almost ready to prove Theorem 1.7. One technical detail that needs to be
resolved is relaxing (E.2) to the weaker condition dN — d. The crucial lemma is the
following analogue of Lemma D.1 for free energy.

Lemma E.4. Assume & satisfies (Al). There exists a constant C depending only on &
and k, such that for every N > 1 and ¢ > 0, we have

sup |Fune(d, &) —Fye(d)| < Cy/e.
a’eDN| : § | (E.16)

Proof. As in the proof of Lemma D.1, assume without loss of generality that ¢ €
[1/N, 1/2], and consider any map P: £V (d,e) — ZV(d) that is a projection with
respect to Hamming distance.

Let Hy ¢ be an independent copy of Hy ¢, and then define an interpolating Hamil-
tonian on XV (d, ¢):

Hi(0) =1 Hy (o) +/T—1 Hys(Po), te€l0,1].
Define the associated free energy
1
¢(t) = N]ElOg Z CXpH;(O’), (E.17)
oexN(d,e)

so that

(1) =Fye(d.e) and $(0) = lIElog Y N(o)exp Hy (o), (E.18a)
oexN(d)
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where N (o) is defined in (D.5). Since every o € >N (d) satisfies P(c) = o, we have
N(o) > 1. Also N (o) < exp(Cr+/¢N) by (D.6), and so

Fne(d) <¢(0) <Fune(d) +Cei/e. (E.18b)
Meanwhile, differentiation of (E.17) results in

3Hr(0)>
t

o= 4%

where (-); denotes expectation with respect to the Gibbs measure G;(0)  exp H; (o)
on =V (d, ¢). Applying Gaussian integration by parts [54, Lem. 1.1], we rewrite this as

¢'(t) =E(C(c'.o") —C(o'. 0?)),

where o!, 02 denote independent samples from G;, and C: N d,e) x =N
(d, &) — Ris defined by

1 [S’H,(G)

Clo.0') = NL or

1
o] "2 2 ((R@. o) — £ (R(Pa, Po")).

It follows that

'O <= sup [VE(R)lloo-  sup  [[R(o,0") = R(Po, Pa')|1.

IRlI1=<1 0,0'eZN(d,¢)
For any 0,0’ € £V (d, ¢), we have

IR(0, ") = R(Pa, Pa")|1

1 K N
RS Z(n{m=ek}11{a,-’=ek/}—ﬂ{(Po>,-=ek}11{<Po’>,-=ekf})‘
kk'=1"i=1
1 N K
s T2 Loy = exilo] = ew} — 1{(Po); = e} 1{(Po); = e}
i=1k,k'=1

1N
= 220 > (Lo = e = 1{(Po) = el| +[1lo] = ex) = 1{(Po")i = ev))

(D.4)
< 4e.

The two previous displays together show that sup, (o, 1 |¢’(r)| < C’e for some con-
stant C’ depending only on & and «. Combining this fact with (E.18), we determine
that

|Fyv.e(d, &) — Fye(d)| < Cen/e+Ce.
We have thus proved (E.16) with C = C, + C’. O

We now complete the main objective of this appendix.
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Proof of Theorem 1.7. For any d € D and N > 1, it follows from the definition of Dy
in (1.6) that there exists d € Dy satisfying (E.2) with L = 1.

So for any fixed ¢ > 0, we have 2V (d, &) 2 ¥ (d") once N is large enough that
& > 1/N. Hence

(E.3)
liminf Fy ¢(d, &) > liminf Fy ¢ (@) > inf Ps(m).
N—oo N—o0 welly

Combining this with the upper bound from Proposition E.1, we deduce (1.22a). For
(1.22b), we consider any sequence dN e Dy such that d¥ — d as N — o0, not
necessarily satisfying (E.2). Once N is large enough that [|[d" — d| < &/2, we have

>N, e/2) c =VN@N,e) € =V, 2¢).
Hence Fy ¢(d, €/2) < FNyg(dN, €) < Fne(d, 2¢) forall large N, and so (1.22a) forces

21\1}) limsupFy ¢(d™, e) = ?\r‘% l}vnl}cl}of Fned”,e) = 7Tlenlfld Pe(m).  (E.19)

N—o00

Meanwhile, by Lemma E.4 we have

lim sup |FN,g(dN, g) — FN,g(dN)| < Ci/e.
N—o0

By sending ¢\0 and appealing to (E.19), we obtain (1.22b). O
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