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Abstract—We consider the problem of secure communication
over a noiseless 1-2-1 network, an abstract model introduced to
capture the directivity characteristic of mmWave communications.
We focus on structured networks, which we refer to as 1-2-1
atomic networks. Broadly speaking, these are characterized by
a source, a destination, and three layers of intermediate nodes
with sparse connections. The goal is for the source to securely
communicate to the destination in the presence of an eavesdropper
with unbounded computation capabilities, but limited network
presence. We derive novel upper and lower bounds on the secrecy
capacity of 1-2-1 atomic networks. These bounds are shown to
be tighter than existing bounds in some regimes. Moreover, in
such regimes, the bounds match and hence, they characterize the
secrecy capacity of 1-2-1 atomic networks.

I. INTRODUCTION

Millimeter Wave (mmWave) communication has shown
a great potential in overcoming the spectrum scarcity and
enabling multi-gigabit services [1], [2]. In [3], the authors
introduced the so-called -2-1 network model with the goal to
study the information theoretic capacity of mmWave networks.
This model abstracts away the physical layer component, while
capturing the fundamental directivity characteristic of mmWave
communication. In the 1-2-1 network model, in order to activate
the communication link from node a to node b, these two nodes
need to perform beamforming in a way that their beams face
each other (hence, the term 1-2-1).

In this work, similarly to [4] and [5], we study secure com-
munication over 1-2-1 networks. We consider 1-2-1 networks
with lossless communication links of unitary capacity, where a
source wishes to securely communicate with a destination in the
presence of an eavesdropper with limited network coverage, but
unbounded computation capabilities (e.g., quantum computer).
In particular, the adversary can eavesdrop at most K edges of
their choice. This assumption on the limited network presence
is reasonable in mmWave networks since the adversary has
to be physically present on a link to eavesdrop the high-
directional communication over it. We assume that the source
and destination have stronger beamforming capabilities than
the intermediate nodes, i.e., they can transmit to (the source)
and receive from (the destination) at most M nodes, whereas
the intermediate nodes have only a single transmit beam and a
single receive beam. We focus on a class of 1-2-1 networks,
which we refer to as 1-2-1 atomic networks, an example of
which is shown in Figure 1. Broadly speaking, these are layered
networks (no communication links exist between nodes within
the same layer). Our main contribution consists of: (1) deriving
novel lower and upper bounds on the secrecy capacity of
1-2-1 atomic networks; and (2) providing conditions under
which these match, hence characterizing the secrecy capacity

in these regimes. The lower bound is obtained through the
design of a transmission scheme that suitably leverages the
network multipath to establish keys and transmit messages
(encoded with the keys) between the source and the destination.
A surprising result of our work is that, given the same network
topology, the source may need to change the transmission
strategy as K increases.

We study secure communication over 1-2-1 networks as [4]
and [5]. However, our work has key distinguishing features
from [4] and [5]. In [5], the 1-2-1 model analyzed is different
from the 1-2-1 atomic network considered in this paper. In [4],
although the derived lower and upper bounds can be applied
to 1-2-1 atomic networks, they are not tight in general.

In order to ensure secrecy, we here leverage the following
two aspects: (1) directivity; and (2) multipath. Directivity has
been investigated for ensuring security in MIMO beamform-
ing [6], [7]. The main idea of these works is to create beams
that are narrow enough to significantly weaken the channel
of the adversary. However, these works focus on guaranteeing
secrecy over channels and not over networks, which is our goal
in this paper. Multipath has also been leveraged for security in
noiseless networks in the context of secure network coding [7—
13]. The literature on (linear) secure network coding is rich,
with a few examples given by [10, 14-21]. However, these
works consider networks in which nodes can simultaneously
communicate to all the connected nodes. Differently, in this
work we have a directivity (1-2-1) constraint imposed by
mmWave communication, which allows each node only to
communicate with a limited number of connected nodes.
Paper organization. In Section II, we present the 1-2-1 atomic
network model and we review a few existing results on the
secrecy capacity of 1-2-1 networks. In Section III, we describe
our main results, i.e., we derive novel upper and lower bounds
on the secrecy capacity and identify regimes in which they are
tight. In Section IV, we provide the proof of our main results.
Notation. For any m € N, we define [m] :={1,2,...,m};
[a : b] is the set of integers from a to b > a; [z]T = max{0, x}.
For a set X, |X| denotes its cardinality; & is the empty set.
For a real number x € R, we denote its floor by |z|. We use
Xs to denote (X :j€S).

II. SYSTEM MODEL AND KNOWN RESULTS

We consider a 1-2-1 network [3], where a source S wishes
to securely communicate with a destination D. The network
is modeled by a directed acyclic graph G = (V, ), where V
is the set of vertices such that (S,D) € V and £ is the set of
edges. All edges are lossless and have a fixed finite capacity,
which we assume to be unitary, without loss of generality.
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An edge e € £ is activated according to the 1-2-1 constraint.
Under this constraint, each intermediate node (i.e., each v € V
except for S and D) can simultaneously receive and transmit,
but at each point in time it can receive from at most one
incoming edge and transmit through at most one outgoing
edge. For instance, with reference to Figure 1, at each point in
time, node v; can receive from at most one among nodes a, b, ¢
and transmit to at most one among nodes h, i, j. Differently,
the source S (respectively, the destination D) can transmit to
(respectively, receive from) at most M > 1 nodes.

We denote by H. and H, the maximum numbers of edge-
disjoint and vertex-disjoint paths from S to D, respectively.
Among arbitrary 1-2-1 networks, our focus in this paper is
on structured networks, which we refer to as 1-2-1 atomic
networks, as formally defined next.

Definition 1. A 1-2-1 atomic network is one for which its
underlying G = (V, &) can be partitioned into H, atomic
subgraphs' G; = (V;, &) with V; CV and & C & for all
i € [Hy], such that the three following conditions hold:
o The maximum number of vertex disjoint paths (respectively,
edge disjoint paths) from S to D in each G; is equal to
one (respectively, h;);
o All the h; edge disjoint paths in each G; from S to D only
share one (intermediate) node, referred to as atom v;;
o Any two G; and G; share no nodes other than S and D,
Sforalli,j € [Hy,),i # j.

Throughout the paper, we will represent a 1-2-1 atomic
network by a vector h = [hy, ..., hy,], where h; is defined in
Definition 1. Figure 1 provides an example of a 1-2-1 atomic
network with H,, = 3 and h = [3,2,2].

The communication from S to D over a 1-2-1 atomic network
takes place in the presence of an external passive adversary
who can eavesdrop any K edges of their choice (unknown to
all the other nodes in the network). If the adversary eavesdrops
edges in Z C &,|Z| = K, we require that the communication
remains secure from the adversary in the following sense,

IW;TEY <6, vZCE, |2 =K, (1

where W is the message with entropy rate R that S wishes to
transmit to D and T2 = {Te["] e € Z} denotes the packets
transmitted over e € Z in n network uses.

In this paper, we seek to characterize the secrecy capacity
C, for 1-2-1 atomic networks. This is defined as the maximum
rate at which S can communicate to D with zero error, while
satisfying the 1-2-1 constraints of the network and the security
constraint in (1). To the best of our knowledge, the tightest
bounds on C; are given by [4],

min {M, H,} H, - K < Cy <min{M, H.} He - K )
H, H.,
It is worth noting that the lower and the upper bounds in (2)
match when H, = H,. However, when H, < H. we will

'Even though we refer to the G;’s as a partition of G, we assume that S
and D are common to all the subgraphs.
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Figure 1: A 1-2-1 atomic network with H, = 7 and H, = 3.
The H. = 7 edge-disjoint paths are referred to as p;,i € [7]
from top to bottom, e.g., py =S = d = vo — k — D.

show that, in general, neither the lower bound nor the upper
bound in (2) are tight for a 1-2-1 atomic network. For instance,
consider the 1-2-1 atomic network in Figure 1 for which H, =
7 and H, = 3. Assume that X = 1 and M = 3. From the
bounds in (2), we obtain that 2 < C, < 18/7. However, in
this paper we will prove that C; = 5/2.

III. MAIN RESULTS

In this section, we present the main results of our work. We
start by providing a lower bound on the secrecy capacity C,
of a 1-2-1 atomic network.

Theorem 1. Define M= min(M, H,) and, for all ¢ € [0 :
M — 1], let

— +
C
R = | == =P, K
(&3 )
En:O P]/W\—n
ipﬂfﬂ with Pyp .1 € [0:¢] be/inél7 a sef?
with groups of M — 1) vertex-disjoint paths of G\U!_y) Py7_;-
Each path can appear in at most one group.

Then, for a 1-2-1 atomic network with K eavesdropped edges,
it holds that C; > R(c*) where ¢* = arg max R(c).

Proof: See Section IV-A.

3

where P iy

0:M—1]

Example 1. Consider the 1-2-1 atomic network in Figure 1
with M = 3. Thus, M = 3. Assuming K = 1, we have that:
1) n=0:P3={{p1,ps,P6},{P2,p5,P7}} and hence, P3=2;
2) n=1:Py =& and hence, Py = 0;
3)n=2:P1 ={ps} and hence, P1 = 1.

By using the above inside (3), we obtain R(0) = 5/2,
R(1) =5/2, and R(2) = 2. Thus, ¢* =0 and C; > 5/2.

Remark 1. The value of ¢* in Theorem 1 for a specific 1-2-1
atomic network depends on K. For instance, assume the same
setting as in Example 1, but with K = 5. Then, we would

2Algorithm 1 will provide the detailed construction of Pﬁ—n'
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obtain R(0) = 1/2, R(1) = 1/2, and R(2) = 2/3. Thus,
c* = 2, which is different from ¢* =0 when K = 1.

We observe that the lower bound on C, in Theorem 1 de-
pends on Pyz .7 € [0 : ¢]. Thus, a natural question arises: Is
it possible to find an expression to compute Pﬂ—n’ nel0:?
The next lemma (the proof of which is in [22, Appendix A])
will be helpful to provide an answer to this question.

Lemma 1. Consider a 1-2-1 atomic network with underlying
graph G. Assume, without loss of generality, that hy > hy >

. > hp,. Then, there are at least Py(hiy,)) groups of £
vertex-disjoint paths in G, where

H,
Py (b)) =D _ b,
i=1
and, for all £ € [2: H,], it holds that

Poo1 (b))  if b > Poecq (Romy))
PZ (h[Hv]) = { {Z%)l hiJ

(4a)

otherwise.
(4b)

We note that Lemma 1 can be applied M times to compute
P1,P2,..., P4 in Theorem 1. In particular, to compute P57
Lemma 1 is applied over G then, to compute P77 | Lemma 1

is applied over G'\ Py; and so on, until P, that can be computed

by applying Lemma 1 over G \ Uﬁf Pii_i-

We now focus on deriving an upper bound on the secrecy
capacity C, of a 1-2-1 atomic network.

Theorem 2. For a 1-2-1 atomic network with K eavesdropped
edges, it holds that

H,

where, without loss of generality, it is assumed that h1 > hg >
... > hpg,, and where

(5a)

Hv
K;=min{ hj, K — Y K; ¢, i€ [H,)
j=i+1
Proof: See Section 1V-B.
We now leverage the results in Theorem 1 and Theorem 2
to prove the following secrecy capacity result.

(5b)

Theorem 3. For a 1-2-1 atomic network with K eavesdropped
edges and M > H,, the derived achievability and converse
bounds match and hence, under this condition, the secrecy
capacity of the considered network is given by (5).

Proof: See Section 1V-C.

Theorem 3 provides a new secrecy capacity result for 1-
2-1 networks. In particular, when M > H, our lower and
outer bounds in Theorem 1 and Theorem 2 are tighter than
those in (2). However, we next show that when M < H, the
bounds in (2) may be tighter. This implies that our bounds in
Theorem 1 and Theorem 2 can be further improved, and this
is indeed object of current investigation.

Example 2. Consider a 1-2-1 atomic network with h =
[2,1,1,1), M = 3 and K = 1. From Theorem 1, we obtain
Cs > 2, whereas from (2) we have that C; > 9/4. Thus, our
achievable bound in looser than the existing one from [4].

Example 3. Consider a 1-2-1 atomic network withh = [4,3, 2],
M = 2, and K = 5. From Theorem 2, we obtain C;, < 1,
whereas from (2) we have that C5 < 8/9. Thus, our converse
bound in looser than the existing one from [4].

IV. PROOF OF MAIN RESULTS
A. Proof of Theorem 1

We here propose a secure transmission scheme for a 1-2-1

atomic network with K eavesdropped edges and we prove that
it achieves the secrecy rate in Theorem 1. The scheme consists
of four phases, which are next described. The key generation
and encoding phases are the same as those in [4].
1) Key generation. We generate K uniform random packets,
denoted by X[x) and create H, linear combinations of them
by pre-multiplying X|x) by a maximum distance separable
(MDS) code matrix V of size H, x K, i.e.,

f(X) = VX (6)

In what follows, we will refer to each row of f(X) in (6) as a
key. Note that any K rows of f(X) are linearly independent.
2) Encoding. We take H, — K message packets W;,j €
[H. — K] and we encode them using f(X) in (6). In particular,
this encoding operation is as follows,

T, = {fi(X)
[ilX) + Wi_k

where f;(X),i € [H,] is the ith row of f(X) in (6).

3) Transmission. The transmission phase consists of ¢ + 1
rounds of sub-transmissions. At each round 1 € [0 : ¢], we first
construct a set Pﬁ*n of groups of M- n vertex-disjoint paths
unused from previous rounds. Then, we transmit packets over
the paths p € Pﬁ—n' In particular, we construct the set Pﬁ—n’
using Algorithm 1. Once Pﬁ—n is constructed, the source S
starts sending the packets T, i € [H] in (7) sequentially.
For instance, for = 0, S sends M packets simultaneously

i€ [K],

ie[K+1:H], @

Algorithm 1 Construction of 79]\777]

1: Let G = G\U?;()l Pyi_,» which is a graph G with edges
that have not been used during rounds 7 € [0 : np — 1].

2: Initialize Pﬁ—n =o.

3: Return Pﬁfn if step 4 cannot run.

4. Select M- 7 atomic subgraphs of G that have the top
M — 1 number of non-zero edge-disjoint paths.

5: Select one path from each selected atomic subgraph and
let Q denote them. Note that |Q| = M — .

6: Update Py =Prr_, U Q and remove the paths in Q
from G, ie., G =G \ Q.

7: Go to step 3.
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(i.e., in one network use) through each of the [Py;| =: Py;
groups of paths in Pz;. Note that this is possible since: (i)
at each point in time, S can simultaneously transmit to M
nodes, and (ii) each group of paths in Py; are vertex-disjoint.
Thus, the 1-2-1 constraint /1§ satisfied. At the end of round
n =0, S has sent Tj,i € [MP;], i.e., round 7 = 0 consists
of P]\? network uses. After this, round n = 1 starts and S
sends M — 1 packets simultaneously (i.e., in one network use)
through each of the |Py; | =: Py;_, groups of paths in
P+i_,- In particular, round i = 1 consists of P57 ;| network
uses. Then, round n = 2 will start and so on until n = c.
Each round 7 € [0 : ¢| consists of Py, network uses in
each of which M- 7 packets are sent by S. Thus, for each
c€[0: M —1] a total of Z;ZO(M - 77)P]\7777 packets are
sent by Sin > 7, Py;_, network uses.

4) Decoding. At the destination D, the decoding is done by first
finding the K random packets X[ and then reconstructing
the keys f(X). Specifically, since the first K received packets
are just keys without messages (see (7)), the random packets
X (K] can be obtained as follows,

Xk = Vignix) ' Tix)s )

where V| (k7 is the sub-matrix of V' obtained by just retaining
the first K rows and all the K columns of V. Then, D can
generate the keys f(X') using X[ in (8) similar to (6). Finally,
D decodes the messages W;,j € [H, — K] as follows,

Wik =T — fi(X),

where i € [K +1: H.].

Security. In each network use, the adversary can receive a
packet passing through an eavesdropped edge if the eaves-
dropped edge belongs to the paths used in that particular
network use. Since the K eavesdropped edges can at most
be part of K paths, the eavesdropper will receive at most K
packets, which are linearly independent thanks to the property
of MDS codes (see (7)). Thus, the scheme securely transmits

—~ +
a total of {ZTFO(M - 7))PA7777 — K}
Z;:o Pz_, network uses. This leads to R(c) in (3). The proof

of Theorem 1 is concluded by considering the ¢* € [0 : M- 1]
for which R(c*) is maximum.

©))

message packets in

Example 4. Consider the 1-2-1 atomic network in Figure 1
with M = 2. Thus, M = 2. Assume K = 5. Then, the proposed
scheme for c = 1 runs as follows,

1) We generate K = 5 uniform random packets X5, and
extend them to 7 keys, f;(X), i € [7] using an MDS code
matrix of size 7 X 5.

2) We encode H, — K = 2 messages W;, i € [2] as follows,

T, = fi(X) 2:6 5], (10)
fi(X)+Wi75 1€ [67]
3) From Algorithm 1, for ¢ = 1, we obtain
7)2 = {{p17p4}7{p23p6}>{p3ap5}}> (11)

P = {pr}. (12)
For transmission, we use the network Po+P1 =3+1 =4
times: (1) each group of paths in Py can be used to
simultaneously transmit M = 2 packets, e.g., p1 and py
can be used to transmit Ty and Ts in the first network
use, po and pg can be used to transmit T3 and Ty in the
second network use, and p3 and ps can be used to transmit
Ts and Tg in the third network use; and (2) each group
of paths in Py can be used to simultaneously transmit
M — 1 =1 packet, e.g., p7 can be used to transmit Tr7 in
the fourth network use.

4) Upon receiving Ty, i € [7], D recovers Wy and Wy using
the property of the MDS code matrix (see (8) and (9)).

The adversary can learn at most 5 packets, which are encoded
with independent keys. Thus, the eavesdropper cannot learn
anything about W1 and Ws. For ¢ = 1, we hence obtain a

secrecy rate R(1) = 7% = 1.

B. Proof of Theorem 2

We let 7:9["] be the set of packets sent over edges e € S in n
network uses, i.e., 7:9["] = {’Te["],VG IS S}, and we let £ be

the set of all edges incoming into D. We also let Tg[n] be the

i

packets sent to atom v; € V; over n network uses. We obtain

nR=H(W)

i w) - (wT)
=1 (W;Tg[?])

1,
< T (W; U 7}“”)

=1 .
— 1 (Wi 7)1 <W; T, TZ[."]>
) " =1
O i m (U 7l @:ﬂ)

i=1
@ - [n] ]
<et > H (T8 | T2

i=1

(e) L hl Kz [n]
<e+ l:zl hi H (7} )

(13)

where the labeled (in)equalities follow from: (a) the constraint
for reliable decoding; (b) the data processing inequality; (c)
the security constraint in (1) and the fact that the entropy of
a discrete random variable is non-negative; (d) letting Z; =
&;NZ and using the chain rule for the entropy and the fact that
conditioning does not increase the entropy; (e) applying [4,
Lemma 1]; and (f) the 1-2-1 network constraint.
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By dividing both sides of (13) by n and letting n — oo, we

arrive at "
Sy — K
R < . 14
< ; n (14)

The above bound holds for any Z C & such that |Z| = K.

Thus, we can find the tightest upper bound by minimizing it
with respect to K;’s, which yields

H
~ hi — K;
R< min . (15)
K €NU{0},i€[Hy): h;
Zf:vl K=K, =

K;<h;, iE[HVU]

Now, recall that the h;’s are assumed (without loss of generality)

to be sorted in descending order, i.e., hy > ha > ... > hpy, .

This implies that a solution to (15) would first fill Kz, with its
maximum value, i.e., Ky, = min{hg, , K}. Then, it will fill
Kg,1as Kg,—1 =min{hg,_1, K — Kg,} and so on until
Kqi = min {hl, K — Zfib KZ} This concludes the proof of
Theorem 2.

C. Proof of Theorem 3

Without loss of generality, assume that hy > hy > ... >
hg,. If M > H,, which implies M = H,, it is not difficult
to see that (see also Algorithm 1),

Py =Pu, =hnu,. (16)

Then, the representation for G\ Py; is given by [h; —

he,, ..., hig,—1 — hmg,,0], which similarly gives
Py 1 =Pu,-1=hu,-1—hu,. (17)

Iterating the above procedure up to P;, we obtain
P, =hy — hg+1, VYl e [Hv}, (18)

where we let hg, 11 = 0. Substituting (18) into (3) yields that
force[0: H, —1],

_ ZZZO(HU o n)(hHu—n - th—n-H) - K i
R(c) = l > om=o (Wi, —n = R, —nt1) 1

c—1 +
—ohH,—n— K
ano Hy—n 1 ) (19)

=|H,—c+
l hHl,—c

Now, we pick ¢ € [0 : H, — 1] such that > hy, ; <
K <3¢, hm,—i- Note that such a c always exists. We define
a; = min {hi, K = X1 ap ), i € [H,), that i,

0 ifi<H, —c—1,
=K - by ifi=H,—c (20)
hi if i > H, — c.

The «;’s in (20) imply that

K_Z',(/'];%) th_”] c= K_Z;;%) hHu_"]
th—c th—c .

1=

H‘U
o
h;
H,—c+1

‘. 1)

R(c) = [Hv —

where

H'u
o; =min{ hj, K — Z o ¢, i€ [H,), (23)

j=i+1
which is the upper bound in (5). This concludes the proof of
Theorem 3.
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