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Abstract—We consider the problem of secure communication
over a noiseless 1-2-1 network, an abstract model introduced to
capture the directivity characteristic of mmWave communications.
We focus on structured networks, which we refer to as 1-2-1
atomic networks. Broadly speaking, these are characterized by
a source, a destination, and three layers of intermediate nodes
with sparse connections. The goal is for the source to securely
communicate to the destination in the presence of an eavesdropper
with unbounded computation capabilities, but limited network
presence. We derive novel upper and lower bounds on the secrecy
capacity of 1-2-1 atomic networks. These bounds are shown to
be tighter than existing bounds in some regimes. Moreover, in
such regimes, the bounds match and hence, they characterize the
secrecy capacity of 1-2-1 atomic networks.

I. INTRODUCTION

Millimeter Wave (mmWave) communication has shown

a great potential in overcoming the spectrum scarcity and

enabling multi-gigabit services [1], [2]. In [3], the authors

introduced the so-called 1-2-1 network model with the goal to

study the information theoretic capacity of mmWave networks.

This model abstracts away the physical layer component, while

capturing the fundamental directivity characteristic of mmWave

communication. In the 1-2-1 network model, in order to activate

the communication link from node a to node b, these two nodes

need to perform beamforming in a way that their beams face

each other (hence, the term 1-2-1).

In this work, similarly to [4] and [5], we study secure com-

munication over 1-2-1 networks. We consider 1-2-1 networks

with lossless communication links of unitary capacity, where a

source wishes to securely communicate with a destination in the

presence of an eavesdropper with limited network coverage, but

unbounded computation capabilities (e.g., quantum computer).

In particular, the adversary can eavesdrop at most K edges of

their choice. This assumption on the limited network presence

is reasonable in mmWave networks since the adversary has

to be physically present on a link to eavesdrop the high-

directional communication over it. We assume that the source

and destination have stronger beamforming capabilities than

the intermediate nodes, i.e., they can transmit to (the source)

and receive from (the destination) at most M nodes, whereas

the intermediate nodes have only a single transmit beam and a

single receive beam. We focus on a class of 1-2-1 networks,

which we refer to as 1-2-1 atomic networks, an example of

which is shown in Figure 1. Broadly speaking, these are layered

networks (no communication links exist between nodes within

the same layer). Our main contribution consists of: (1) deriving

novel lower and upper bounds on the secrecy capacity of

1-2-1 atomic networks; and (2) providing conditions under

which these match, hence characterizing the secrecy capacity

in these regimes. The lower bound is obtained through the

design of a transmission scheme that suitably leverages the

network multipath to establish keys and transmit messages

(encoded with the keys) between the source and the destination.

A surprising result of our work is that, given the same network

topology, the source may need to change the transmission

strategy as K increases.

We study secure communication over 1-2-1 networks as [4]

and [5]. However, our work has key distinguishing features

from [4] and [5]. In [5], the 1-2-1 model analyzed is different

from the 1-2-1 atomic network considered in this paper. In [4],

although the derived lower and upper bounds can be applied

to 1-2-1 atomic networks, they are not tight in general.

In order to ensure secrecy, we here leverage the following

two aspects: (1) directivity; and (2) multipath. Directivity has

been investigated for ensuring security in MIMO beamform-

ing [6], [7]. The main idea of these works is to create beams

that are narrow enough to significantly weaken the channel

of the adversary. However, these works focus on guaranteeing

secrecy over channels and not over networks, which is our goal

in this paper. Multipath has also been leveraged for security in

noiseless networks in the context of secure network coding [7–

13]. The literature on (linear) secure network coding is rich,

with a few examples given by [10, 14–21]. However, these

works consider networks in which nodes can simultaneously

communicate to all the connected nodes. Differently, in this

work we have a directivity (1-2-1) constraint imposed by

mmWave communication, which allows each node only to

communicate with a limited number of connected nodes.

Paper organization. In Section II, we present the 1-2-1 atomic

network model and we review a few existing results on the

secrecy capacity of 1-2-1 networks. In Section III, we describe

our main results, i.e., we derive novel upper and lower bounds

on the secrecy capacity and identify regimes in which they are

tight. In Section IV, we provide the proof of our main results.

Notation. For any m ∈ N, we define [m] := {1, 2, . . . ,m};

[a : b] is the set of integers from a to b g a; [x]+ = max{0, x}.

For a set X , |X | denotes its cardinality; ∅ is the empty set.

For a real number x ∈ R, we denote its floor by +x,. We use

XS to denote (Xj : j ∈ S).

II. SYSTEM MODEL AND KNOWN RESULTS

We consider a 1-2-1 network [3], where a source S wishes

to securely communicate with a destination D. The network

is modeled by a directed acyclic graph G = (V, E), where V
is the set of vertices such that (S,D) ∈ V and E is the set of

edges. All edges are lossless and have a fixed finite capacity,

which we assume to be unitary, without loss of generality.
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Abstract-We consider the problem of secure communication 
over a noiseless 1-2-1 network, an abstract model introduced to 
capture the directivity characteristic of mm Wave communications. 
We focus on structured networks, which we refer to as 1-2-1 
atomic networks. Broadly speaking, these are characterized by 
a source, a destination, and three layers of intermediate nodes 
with sparse connections. The goal is for the source to securely 
communicate to the destination in the presence of an eavesdropper 
with unbounded computation capabilities, but limited network 
presence. We derive novel upper and lower bounds on the secrecy 
capacity of' 1-2-1 atomic networks. These bounds are shown to 
be tighter than existing bounds in some regimes. Moreover, in 
such regimes, the bounds match and hence, they characterize the 
secrecy capacity of 1-2-1 atomic networks . 

I. INTRODUCTION 

Millimeter Wave (mmWave) communication has shown 
a great potential in overcoming the spectrum scarcity and 
enabling multi-gigabit services [1],  [2]. In [3], the authors 
introduced the so-called 1-2-1 network model with the goal to 
study the information theoretic capacity of mmWave networks. 
This model abstracts away the physical layer component, while 
capturing the fundamental directivity characteristic of mm Wave 
communication. In the 1-2-1 network model, in order to activate 
the communication link from node a to node b, these two nodes 
need to perform beamforming in a way that their beams face 
each other (hence, the term 1-2-1). 

In this work, similarly to [4] and [5], we study secure com-
munication over 1-2-1 networks. We consider 1-2-1 networks 
with lossless communication links of unitary capacity, where a 
source wishes to securely communicate with a destination in the 
presence of an eavesdropper with limited network coverage, but 
unbounded computation capabilities (e.g., quantum computer). 
In particular, the adversary can eavesdrop at most K edges of 
their choice. This assumption on the limited network presence 
is reasonable in mm Wave networks since the adversary has 
to be physically present on a link to eavesdrop the high-
directional cormnunication over it. We assume that the source 
and destination have stronger beamforming capabilities than 
the intermediate nodes, i.e., they can transmit to (the source) 
and receive from (the destination) at most M nodes, whereas 
the intermediate nodes have only a single transmit beam and a 
single receive beam. We focus on a class of 1-2-1 networks, 
which we refer to as 1-2-1 atomic networks, an example of 
which is shown in Figure 1. Broadly speaking, these are layered 
networks (no communication links exist between nodes within 
the same layer). Our main contribution consists of: (1) deriving 
novel lower and upper bounds on the secrecy capacity of 
1-2-1 atomic networks; and (2) providing conditions under 
which these match, hence characterizing the secrecy capacity 

in these regimes. The lower bound is obtained through the 
design of a transmission scheme that suitably leverages the 
network multipath to establish keys and transmit messages 
(encoded with the keys) between the source and the destination. 
A surprising result of our work is that, given the same network 
topology, the source may need to change the transmission 
strategy as K increases. 

We study secure communication over 1-2-1 networks as [4] 
and [5]. However, our work has key distinguishing features 
from [ 4] and [5]. In [5], the 1-2-1 model analyzed is different 
from the 1-2-1 atomic network considered in this paper. In [4], 
although the derived lower and upper bounds can be applied 
to 1-2-1 atomic networks, they are not tight in general. 

In order to ensure secrecy, we here leverage the following 
two aspects: (1) directivity; and (2) multipath. Directivity has 
been investigated for ensuring security in MIMO beamform-
ing [6], [7]. The main idea of these works is to create beams 
that are narrow enough to significantly weaken the channel 
of the adversary. However, these works focus on guaranteeing 
secrecy over channels and not over networks, which is our goal 
in this paper. Multipath has also been leveraged for security in 
noiseless networks in the context of secure network coding [7-
13]. The literature on (linear) secure network coding is rich, 
with a few examples given by [10, 14-21). However, these 
works consider networks in which nodes can simultaneously 
communicate to all the connected nodes. Differently , in this 
work we have a directivity (1-2-1) constraint imposed by 
mm Wave communication, which allows each node only to 
communicate with a limited number of connected nodes. 
Paper organization. In Section II, we present the 1-2-1 atomic 
network model and we review a few existing results on the 
secrecy capacity of 1-2-1 networks. In Section III, we describe 
our main results, i.e., we derive novel upper and lower bounds 
on the secrecy capacity and identify regimes in which they are 
tight. In Section IV, we provide the proof of our main results. 
Notation. For any m E N, we define [m] := {1, 2, ... , m }; 
[a : b] is the set of integers from a to b 2". a; [x]+ = max{0 , x }. 
For a set X, IXI denotes its cardinality; 0 is the empty set. 
For a real number x E JR, we denote its floor by l x J. We use 
Xs to denote (X1 : j E S). 

II. SYST EM MODEL AND KNOWN R ESULTS 

We consider a 1-2-1 network [3], where a source S wishes 
to securely communicate with a destination D. The network 
is modeled by a directed acyclic graph G = (V , £), where V 
is the set of vertices such that (S, D) E V and £ is the set of 
edges. All edges are lossless and have a fixed finite capacity, 
which we assume to be unitary, without loss of generality. 
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An edge e ∈ E is activated according to the 1-2-1 constraint.

Under this constraint, each intermediate node (i.e., each v ∈ V
except for S and D) can simultaneously receive and transmit,

but at each point in time it can receive from at most one

incoming edge and transmit through at most one outgoing

edge. For instance, with reference to Figure 1, at each point in

time, node v1 can receive from at most one among nodes a, b, c
and transmit to at most one among nodes h, i, j. Differently,

the source S (respectively, the destination D) can transmit to

(respectively, receive from) at most M g 1 nodes.

We denote by He and Hv the maximum numbers of edge-

disjoint and vertex-disjoint paths from S to D, respectively.

Among arbitrary 1-2-1 networks, our focus in this paper is

on structured networks, which we refer to as 1-2-1 atomic

networks, as formally defined next.

Definition 1. A 1-2-1 atomic network is one for which its

underlying G = (V, E) can be partitioned into Hv atomic

subgraphs1 Gi = (Vi, Ei) with Vi ¦ V and Ei ¦ E for all

i ∈ [Hv], such that the three following conditions hold:

• The maximum number of vertex disjoint paths (respectively,

edge disjoint paths) from S to D in each Gi is equal to

one (respectively, hi);

• All the hi edge disjoint paths in each Gi from S to D only

share one (intermediate) node, referred to as atom vi;
• Any two Gi and Gj share no nodes other than S and D,

for all i, j ∈ [Hv], i ̸= j.

Throughout the paper, we will represent a 1-2-1 atomic

network by a vector h = [h1, . . . , hHv
], where hi is defined in

Definition 1. Figure 1 provides an example of a 1-2-1 atomic

network with Hv = 3 and h = [3, 2, 2].
The communication from S to D over a 1-2-1 atomic network

takes place in the presence of an external passive adversary

who can eavesdrop any K edges of their choice (unknown to

all the other nodes in the network). If the adversary eavesdrops

edges in Z ¦ E , |Z| = K, we require that the communication

remains secure from the adversary in the following sense,

I(W ;T
[n]
Z ) f ε, ∀Z ¦ E , |Z| = K, (1)

where W is the message with entropy rate R that S wishes to

transmit to D and T
[n]
Z =

{
T

[n]
e , e ∈ Z

}
denotes the packets

transmitted over e ∈ Z in n network uses.

In this paper, we seek to characterize the secrecy capacity

Cs for 1-2-1 atomic networks. This is defined as the maximum

rate at which S can communicate to D with zero error, while

satisfying the 1-2-1 constraints of the network and the security

constraint in (1). To the best of our knowledge, the tightest

bounds on Cs are given by [4],

min {M,Hv}
Hv −K

Hv

f Cs f min {M,He}
He −K

He

. (2)

It is worth noting that the lower and the upper bounds in (2)

match when He = Hv. However, when Hv < He we will

1Even though we refer to the Gi’s as a partition of G, we assume that S
and D are common to all the subgraphs.
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Figure 1: A 1-2-1 atomic network with He = 7 and Hv = 3.

The He = 7 edge-disjoint paths are referred to as pi, i ∈ [7]
from top to bottom, e.g., p4 = S → d → v2 → k → D.

show that, in general, neither the lower bound nor the upper

bound in (2) are tight for a 1-2-1 atomic network. For instance,

consider the 1-2-1 atomic network in Figure 1 for which He =
7 and Hv = 3. Assume that K = 1 and M = 3. From the

bounds in (2), we obtain that 2 f Cs f 18/7. However, in

this paper we will prove that Cs = 5/2.

III. MAIN RESULTS

In this section, we present the main results of our work. We

start by providing a lower bound on the secrecy capacity Cs

of a 1-2-1 atomic network.

Theorem 1. Define M̂ := min(M,Hv) and, for all c ∈ [0 :

M̂ − 1], let

R(c) =

[∑c
¸=0(M̂ − ¸)P

M̂−¸
−K

∑c
¸=0 PM̂−¸

]+
, (3)

where P
M̂−¸

:= |P
M̂−¸

| with P
M̂−¸

, ¸ ∈ [0 : c] being a set2

with groups of M̂ − ¸ vertex-disjoint paths of G \
⋃¸−1

i=0 P
M̂−i

.

Each path can appear in at most one group.

Then, for a 1-2-1 atomic network with K eavesdropped edges,

it holds that Cs g R(c⋆) where c⋆ = argmax
c∈[0:M̂−1]

R(c).

Proof: See Section IV-A.

Example 1. Consider the 1-2-1 atomic network in Figure 1

with M = 3. Thus, M̂ = 3. Assuming K = 1, we have that:

1) ¸ = 0 : P3={{p1, p4, p6}, {p2, p5, p7}} and hence, P3=2;

2) ¸ = 1 : P2 = ∅ and hence, P2 = 0;

3) ¸ = 2 : P1 = {p3} and hence, P1 = 1.

By using the above inside (3), we obtain R(0) = 5/2,

R(1) = 5/2, and R(2) = 2. Thus, c⋆ = 0 and Cs g 5/2.

Remark 1. The value of c⋆ in Theorem 1 for a specific 1-2-1

atomic network depends on K. For instance, assume the same

setting as in Example 1, but with K = 5. Then, we would

2Algorithm 1 will provide the detailed construction of P
M̂−η

.
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An edge e E £ is activated according to the 1-2-1 constraint. 
Under this constraint, each intermediate node (i.e., each v E V 
except for S and D) can simultaneously receive and transmit, 
but at each point in time it can receive from at most one 
incoming edge and transmit through at most one outgoing 
edge. For instance, with reference to Figure 1, at each point in 
time, node v1 can receive from at most one among nodes a, b, c 
and transmit to at most one among nodes h, i, j. Differently, 
the source S (respectively, the destination D) can transmit to 
(respectively, receive from) at most M 2'. 1 nodes. 

We denote by He and Hv the maximum numbers of edge-
disjoint and vertex-disjoint paths from S to D, respectively. 
Among arbitrary 1-2-1 networks, our focus in this paper is 
on structured networks, which we refer to as 1-2-1 atomic 
networks, as formally defined next. 

Definition 1. A 1-2-1 atomic network is one for which its 
underlying C = (V , £) can be partitioned into Hv atomic 
subgraphs 1 Ci = (V; , Ei ) with V; V and [ i £ for all 
i E [Hv], such that the three following conditions hold: 

• The maximum number of vertex disjoint paths (respectively, 
edge disjoint paths) from S to D in each Ci is equal to 
one (respectively, hi); 

• All the hi edge disjoint paths in each Ci from S to D only 
share one (intermediate) node, referred to as atom vi; 

• Any two Ci and Cj share no nodes other than S and D, 
for all i,j E [Hvl,i c/ j. 

Throughout the paper, we will represent a 1-2-1 atomic 
network by a vector h = [h1 , ... , hHJ , where hi is defined in 
Definition 1. Figure 1 provides an example of a 1-2-1 atomic 
network with Hv = 3 and h = [3, 2, 2]. 

The communication from S to Dover a 1-2-1 atomic network 
takes place in the presence of an external passive adversary 
who can eavesdrop any K edges of their choice (unknown to 
all the other nodes in the network). If the adversary eavesdrops 
edges in Z £ , IZ I = K, we require that the communication 
remains secure from the adversary in the following sense, 

where W is the message with entropy rate R that S wishes to 
transmit to D and rj;l = { TJnl, e E Z} denotes the packets 
transmitted over e E Z in n network uses. 

In this paper, we seek to characterize the secrecy capacity 
Cs for 1-2-1 atomic networks. This is defined as the maximum 
rate at which S can communicate to D with zero error, while 
satisfying the 1-2-1 constraints of the network and the security 
constraint in (1). To the best of our knowledge, the tightest 
bounds on Cs are given by [4], 

H - K H - K 
min {M , Hv} vH :c; Cs :c; min {M , He} eH . (2) 

V e 

It is worth noting that the lower and the upper bounds in (2) 
match when He = Hv. However, when Hv < He we will 

1 Even though we refer to the G;'s as a partition of G, we assume that S 
and D are common to all the subgraphs. 

Figure 1: A 1-2-1 atomic network with He = 7 and Hv = 3. 
The He = 7 edge-disjoint paths are referred to as Pi, i E [7] 
from top to bottom, e.g., p4 = S ---+ d ---+ v2 ---+ k ---+ D. 

show that, in general, neither the lower bound nor the upper 
bound in (2) are tight for a 1-2-1 atomic network. For instance, 
consider the 1-2-1 atomic network in Figure 1 for which He= 
7 and Hv = 3. Assume that K = 1 and l'vl = 3. From the 
bounds in (2), we obtain that 2 :c; Cs :c; 18/ 7. However, in 
this paper we will prove that Cs = 5/2. 

III. MAIN RESULTS 

In this section, we present the main results of our work. We 
start by providing a lower bound on the secrecy capacity Cs 
of a 1-2-1 atomic network . 

Theorem 1. Define M := min(M , Hv) and, for all c E [O: 
M - 1], let 

R(c) = [L~ =o(~ - 77~~M-ry - Kl + 
Lry = O M-ry 

(3) 

where PM- ry := IPM- ry l with PM- ry' 77 E [O: c] being a set2 

with groups of M - 77 vertex-disjoint paths of C \ U7==-l PM -i . 

Each path can appear in at most one group. 
Then,for a 1-2-1 atomic network with K eavesdropped edges, 

it holds that Cs 2'. R( c* ) where c* = argmaxcE[O:M-l] R(c). 

Proof See Section IV-A. 

Example 1. Consider the 1-2-1 atomic network in Figure 1 
with M = 3. Thus, M = 3. Assuming K = l, we have that: 
1) 77 = 0 : P 3 = { {P1, p4 , P6}, {P2, p5, p7}} and hence, P3 = 2; 
2) 77 = 1 : P2 = 0 and hence, P2 = O; 
3) 77 = 2 : A = {p3} and hence, P1 = 1. 

By using the above inside (3), we obtain R(O) = 5/2, 
R(l) = 5/2, and R(2) = 2. Thus, c* = 0 and Cs 2'. 5/2. 

Remark 1. The value of c* in Theorem 1 for a specific 1-2-1 
atomic network depends on K. For instance, assume the same 
setting as in Example 1, but with K = 5. Then, we would 

2 Algorithm I will provide the detailed construction of PM- . -17 
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obtain R(0) = 1/2, R(1) = 1/2, and R(2) = 2/3. Thus,

c⋆ = 2, which is different from c⋆ = 0 when K = 1.

We observe that the lower bound on Cs in Theorem 1 de-

pends on P
M̂−¸

, ¸ ∈ [0 : c]. Thus, a natural question arises: Is

it possible to find an expression to compute P
M̂−¸

, ¸ ∈ [0 : c]?
The next lemma (the proof of which is in [22, Appendix A])

will be helpful to provide an answer to this question.

Lemma 1. Consider a 1-2-1 atomic network with underlying

graph G. Assume, without loss of generality, that h1 g h2 g
. . . g hHv

. Then, there are at least Pℓ(h[Hv ]) groups of ℓ
vertex-disjoint paths in G, where

P1

(
h[Hv ]

)
=

Hv∑

i=1

hi, (4a)

and, for all ℓ ∈ [2 : Hv], it holds that

Pℓ

(
h[Hv ]

)
=

{
Pℓ−1

(
h[2:Hv ]

)
if h1 g Pℓ−1

(
h[2:Hv ]

)
,⌊∑

Hv

i=1
hi

ℓ

⌋
otherwise.

(4b)

We note that Lemma 1 can be applied M̂ times to compute

P1,P2, . . . ,PM̂
in Theorem 1. In particular, to compute P

M̂

Lemma 1 is applied over G; then, to compute P
M̂−1

Lemma 1

is applied over G\P
M̂

and so on, until P1 that can be computed

by applying Lemma 1 over G \
⋃M̂−2

i=0 P
M̂−i

.

We now focus on deriving an upper bound on the secrecy

capacity Cs of a 1-2-1 atomic network.

Theorem 2. For a 1-2-1 atomic network with K eavesdropped

edges, it holds that

Cs f

Hv∑

i=1

(
1−

Ki

hi

)
, (5a)

where, without loss of generality, it is assumed that h1 g h2 g
. . . g hHv

, and where

Ki = min



hi,K −

Hv∑

j=i+1

Kj



 , i ∈ [Hv]. (5b)

Proof: See Section IV-B.

We now leverage the results in Theorem 1 and Theorem 2

to prove the following secrecy capacity result.

Theorem 3. For a 1-2-1 atomic network with K eavesdropped

edges and M g Hv, the derived achievability and converse

bounds match and hence, under this condition, the secrecy

capacity of the considered network is given by (5).

Proof: See Section IV-C.

Theorem 3 provides a new secrecy capacity result for 1-

2-1 networks. In particular, when M g Hv our lower and

outer bounds in Theorem 1 and Theorem 2 are tighter than

those in (2). However, we next show that when M < Hv the

bounds in (2) may be tighter. This implies that our bounds in

Theorem 1 and Theorem 2 can be further improved, and this

is indeed object of current investigation.

Example 2. Consider a 1-2-1 atomic network with h =
[2, 1, 1, 1], M = 3 and K = 1. From Theorem 1, we obtain

Cs g 2, whereas from (2) we have that Cs g 9/4. Thus, our

achievable bound in looser than the existing one from [4].

Example 3. Consider a 1-2-1 atomic network with h = [4, 3, 2],
M = 2, and K = 5. From Theorem 2, we obtain Cs f 1,

whereas from (2) we have that Cs f 8/9. Thus, our converse

bound in looser than the existing one from [4].

IV. PROOF OF MAIN RESULTS

A. Proof of Theorem 1

We here propose a secure transmission scheme for a 1-2-1

atomic network with K eavesdropped edges and we prove that

it achieves the secrecy rate in Theorem 1. The scheme consists

of four phases, which are next described. The key generation

and encoding phases are the same as those in [4].

1) Key generation. We generate K uniform random packets,

denoted by X[K] and create He linear combinations of them

by pre-multiplying X[K] by a maximum distance separable

(MDS) code matrix V of size He ×K, i.e.,

f(X) = V X[K]. (6)

In what follows, we will refer to each row of f(X) in (6) as a

key. Note that any K rows of f(X) are linearly independent.

2) Encoding. We take He − K message packets Wj , j ∈
[He−K] and we encode them using f(X) in (6). In particular,

this encoding operation is as follows,

Ti =

{
fi(X) i ∈ [K],

fi(X) +Wi−K i ∈ [K + 1 : He],
(7)

where fi(X), i ∈ [He] is the ith row of f(X) in (6).

3) Transmission. The transmission phase consists of c + 1
rounds of sub-transmissions. At each round ¸ ∈ [0 : c], we first

construct a set P
M̂−¸

of groups of M̂ −¸ vertex-disjoint paths

unused from previous rounds. Then, we transmit packets over

the paths p ∈ P
M̂−¸

. In particular, we construct the set P
M̂−¸

,
using Algorithm 1. Once P

M̂−¸
is constructed, the source S

starts sending the packets Ti, i ∈ [He] in (7) sequentially.

For instance, for ¸ = 0, S sends M̂ packets simultaneously

Algorithm 1 Construction of P
M̂−¸

1: Let G(¸) = G\
⋃¸−1

i=0 P
M̂−i

, which is a graph G with edges

that have not been used during rounds i ∈ [0 : ¸ − 1].
2: Initialize P

M̂−¸
= ∅.

3: Return P
M̂−¸

if step 4 cannot run.

4: Select M̂ − ¸ atomic subgraphs of G(¸) that have the top

M̂ − ¸ number of non-zero edge-disjoint paths.

5: Select one path from each selected atomic subgraph and

let Q denote them. Note that |Q| = M̂ − ¸.

6: Update P
M̂−¸

= P
M̂−¸

⋃
Q and remove the paths in Q

from G(¸), i.e., G(¸) = G(¸) \ Q.

7: Go to step 3.

168

obtain R(0) = 1/ 2, R(l) = 1/ 2, and R(2) = 2/3. Thus, 
c* = 2, which is different from c* = 0 when K = l. 

We observe that the lower bound on Cs in Theorem 1 de-
pends on PM -ry, rJ E [O : c]. Thus, a natural question arises: Is 
it possible to find an expression to compute PM- ry ' TJ E [O: c]? 
The next lemma (the proof of which is in [22, Appendix A]) 
will be helpful to provide an answer to this question. 

Lemma 1. Consider a 1-2-1 atomic network with underlying 
graph G. Assume, without loss of generality, that h1 2: h2 2: 
... 2: hHv· Then, there are at least Pe(h [Hv] ) groups of e 
vertex-disjoint paths in G, where 

Hv 
pl (h [Hv] ) = L hi , (4a) 

i=l 

and, for all e E [2 : Hv], it holds that 

{ 
Pe- 1 (h [2:Hv]) if h1 2: Pe- 1 (h [2:Hv]), 

Pe (h [Hv]) = l L :1~, h , J otherwise. 

(4b) 

We note that Lemma 1 can be applied M times to compute 
P1, P2, ... , PM in Theorem 1. In particular, to compute PM 
Lemma l is applied over G ; then, to compute PM-I Lemma l 
is applied over G\ PM and so on, until P1 that can be computed 

by applying Lemma 1 over G \ LJ~~ 2 PM-i" 
We now focus on deriving an upper bound on the secrecy 

capacity Cs of a 1-2-1 atomic network. 

Theorem 2. For a 1-2-1 atomic network with K eavesdropped 
edges, it holds that 

Hv ( K) C <°"' 1 - - " s - L.., h · , 
i=l i 

(5a) 

where, without loss of generality, it is assumed that h1 2: h2 2: 
... 2: hHv , and where 

K i= min {h i ,K - t K1 } , i E [H v] - (5b) 
j=i+l 

Proof See Section IV-B. 
We now leverage the results in Theorem l and Theorem 2 

to prove the following secrecy capacity result. 

Theorem 3. For a 1-2-1 atomic network with K eavesdropped 
edges and M 2: Hv, the derived achievability and converse 
bounds match and hence, under this condition, the secrecy 
capacity of the considered network is given by (5). 

Proof See Section IV-C. 
Theorem 3 provides a new secrecy capacity result for 1-

2-1 networks. In particular, when M 2: Hv our lower and 
outer bounds in Theorem 1 and Theorem 2 are tighter than 
those in (2). However, we next show that when M < Hv the 
bounds in (2) may be tighter. This implies that our bounds in 
Theorem 1 and Theorem 2 can be further improved, and this 
is indeed object of current investigation. 

Example 2. Consider a 1-2-1 atomic network with h = 
[2, 1, 1, 1], M = 3 and K = l. From Theorem 1, we obtain 
Cs 2: 2, whereas from (2) we have that Cs 2: 9 / 4. Thus, our 
achievable bound in looser than the existing one from [ 4]. 

Example 3. Consider a 1-2-1 atomic network with h = [4, 3, 2], 
M = 2, and K = 5. From Theorem 2, we obtain Cs :c; 1, 
whereas from (2) we have that Cs :c; 8/9. Thus, our converse 
bound in looser than the existing one from [4]. 

IV. PROOF OF MAIN R ESU LTS 

A. Proof of Theorem 1 
We here propose a secure transmission scheme for a 1-2-1 

atomic network with K eavesdropped edges and we prove that 
it achieves the secrecy rate in Theorem 1. The scheme consists 
of four phases, which are next described. The key generation 
and encoding phases are the same as those in [ 4]. 
1) Key generation. We generate K uniform random packets, 
denoted by X [K] and create He linear combinations of them 
by pre-multiplying X[K] by a maximum distance separable 
(MDS) code matrix V of size He x K, i.e., 

f(X) = vx [KJ · (6) 

In what follows, we will refer to each row of f(X) in (6) as a 
key. Note that any K rows off (X) are linearly independent. 
2) Encoding. We take He - K message packets W1 , j E 
[He - K ] and we encode them using f (X) in (6). In particular, 
this encoding operation is as follows, 

i E [K], 
i E [K + 1 : He], 

(7) 

where f i (X), i E [H e] is the ith row of f(X) in (6). 
3) Transmission. The transmission phase consists of c + 1 
rounds of sub-transmissions. At eac~ound rJ E [O : c], we first 
construct a set PM - ry of groups of l'vl - TJ vertex-disjoint paths 
unused from previous rounds. Then, we transmit packets over 
the paths p E P M-ry" In particular, we construct the set P M-ry' 
using Algorithm 1. Once P M - ry is constructed, the source S 
starts sending the packets Ti, i s._[H e] in (7) sequentially. 
For instance, for rJ = 0, S sends M packets simultaneously 

Algorithm 1 Construction of PM - ry 

1: Let G(1J) = G \ LJZ: t PM-i ' which is a graph G with edges 
that have not been used during rounds i E [0: rJ - 1]. 

2: Initialize PM- = 0. -1) 

3: Return PM - ry if step 4 cannot run. 
4: Select M - rJ atomic subgraphs of G(1J) that have the top 

lvl - rJ number of non-zero edge-disjoint paths. 
5: Select one path from each selected atomic subgraph and 

let Q denote them. Note that I QI = M - TJ. 
6: Update PM - ry = PM -ry LJ Q and remove the paths in Q 

from G(1J), i.e., G(1J) = G(1J) \ Q. 
7: Go to step 3. 
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(i.e., in one network use) through each of the |P
M̂
| =: P

M̂

groups of paths in P
M̂

. Note that this is possible since: (i)

at each point in time, S can simultaneously transmit to M̂
nodes, and (ii) each group of paths in P

M̂
are vertex-disjoint.

Thus, the 1-2-1 constraint is satisfied. At the end of round

¸ = 0, S has sent Ti, i ∈ [M̂P
M̂
], i.e., round ¸ = 0 consists

of P
M̂

network uses. After this, round ¸ = 1 starts and S

sends M̂ − 1 packets simultaneously (i.e., in one network use)

through each of the |P
M̂−1

| =: P
M̂−1

groups of paths in

P
M̂−1

. In particular, round ¸ = 1 consists of P
M̂−1

network

uses. Then, round ¸ = 2 will start and so on until ¸ = c.
Each round ¸ ∈ [0 : c] consists of P

M̂−¸
network uses in

each of which M̂ − ¸ packets are sent by S. Thus, for each

c ∈ [0 : M̂ − 1] a total of
∑c

¸=0(M̂ − ¸)P
M̂−¸

packets are

sent by S in
∑c

¸=0 PM̂−¸
network uses.

4) Decoding. At the destination D, the decoding is done by first

finding the K random packets X[K] and then reconstructing

the keys f(X). Specifically, since the first K received packets

are just keys without messages (see (7)), the random packets

X[K] can be obtained as follows,

X[K] = (V[K],[K])
−1T[K], (8)

where V[K],[K] is the sub-matrix of V obtained by just retaining

the first K rows and all the K columns of V . Then, D can

generate the keys f(X) using X[K] in (8) similar to (6). Finally,

D decodes the messages Wj , j ∈ [He −K] as follows,

Ŵi−K = Ti − fi(X), (9)

where i ∈ [K + 1 : He].
Security. In each network use, the adversary can receive a

packet passing through an eavesdropped edge if the eaves-

dropped edge belongs to the paths used in that particular

network use. Since the K eavesdropped edges can at most

be part of K paths, the eavesdropper will receive at most K
packets, which are linearly independent thanks to the property

of MDS codes (see (7)). Thus, the scheme securely transmits

a total of
[∑c

¸=0(M̂ − ¸)P
M̂−¸

−K
]+

message packets in∑c
¸=0 PM̂−¸

network uses. This leads to R(c) in (3). The proof

of Theorem 1 is concluded by considering the c⋆ ∈ [0 : M̂−1]
for which R(c⋆) is maximum.

Example 4. Consider the 1-2-1 atomic network in Figure 1

with M = 2. Thus, M̂ = 2. Assume K = 5. Then, the proposed

scheme for c = 1 runs as follows,

1) We generate K = 5 uniform random packets X[5], and

extend them to 7 keys, fi(X), i ∈ [7] using an MDS code

matrix of size 7× 5.

2) We encode He −K = 2 messages Wi, i ∈ [2] as follows,

Ti =

{
fi(X) i ∈ [5],

fi(X) +Wi−5 i ∈ [6 : 7].
(10)

3) From Algorithm 1, for c = 1, we obtain

P2 = {{p1, p4} , {p2, p6} , {p3, p5}} , (11)

P1 = {p7} . (12)

For transmission, we use the network P2+P1 = 3+1 = 4
times: (1) each group of paths in P2 can be used to

simultaneously transmit M̂ = 2 packets, e.g., p1 and p4
can be used to transmit T1 and T2 in the first network

use, p2 and p6 can be used to transmit T3 and T4 in the

second network use, and p3 and p5 can be used to transmit

T5 and T6 in the third network use; and (2) each group

of paths in P1 can be used to simultaneously transmit

M̂ − 1 = 1 packet, e.g., p7 can be used to transmit T7 in

the fourth network use.

4) Upon receiving Ti, i ∈ [7], D recovers W1 and W2 using

the property of the MDS code matrix (see (8) and (9)).

The adversary can learn at most 5 packets, which are encoded

with independent keys. Thus, the eavesdropper cannot learn

anything about W1 and W2. For c = 1, we hence obtain a

secrecy rate R(1) = 7−5
4 = 1

2 .

B. Proof of Theorem 2

We let T
[n]
S be the set of packets sent over edges e ∈ S in n

network uses, i.e., T
[n]
S =

{
T

[n]
e , ∀e ∈ S

}
, and we let E−

D
be

the set of all edges incoming into D. We also let T
[n]
Ei

be the

packets sent to atom vi ∈ Vi over n network uses. We obtain

nR = H(W )

(a)
= H (W )−H

(
W |T

[n]

E−

D

)

= I
(
W ; T

[n]

E−

D

)

(b)

f I

(
W ;

Hv⋃

i=1

T
[n]
Ei

)

= I
(
W ; T

[n]
Z

)
+ I

(
W ;

Hv⋃

i=1

T
[n]
Ei\Z

∣∣∣∣∣ T
[n]
Z

)

(c)

f ε+H

(
Hv⋃

i=1

T
[n]
Ei\Z

∣∣∣∣∣ T
[n]
Z

)

(d)

f ε+

Hv∑

i=1

H
(
T

[n]
Ei\Zi

∣∣∣ T [n]
Zi

)

(e)

f ε+

Hv∑

i=1

hi −Ki

hi

H
(
T

[n]
Ei

)

(f)

f ε+

Hv∑

i=1

hi −Ki

hi

n, (13)

where the labeled (in)equalities follow from: (a) the constraint

for reliable decoding; (b) the data processing inequality; (c)
the security constraint in (1) and the fact that the entropy of

a discrete random variable is non-negative; (d) letting Zi =
Ei∩Z and using the chain rule for the entropy and the fact that

conditioning does not increase the entropy; (e) applying [4,

Lemma 1]; and (f) the 1-2-1 network constraint.
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(i.e., in one network use) through each of the IP MI = : PM 
groups of paths in PM. Note that this is possible since: (i) 
at each point in time, S can simultaneously transmit to M 
nodes, and (ii) each group of paths in PM are vertex-disjoint. 
Thus, the 1-2-1 constraint is satisfied. At the end of round 
'T/ = 0, S has sent Ti , i E [MP M] , i.e., round 77 = 0 consists 
of PM_21etwork uses. After this, round 77 = 1 starts and S 
sends M - 1 packets simultaneously (i.e., in one network use) 
through each of the IP M_ 1 I = : PM- l groups of paths in 
PM_ 1 . In particular, round 77 = 1 consists of PM- l network 
uses. Then, round 77 = 2 will start and so on until 77 = c. 
Each round 77 ~[O : c] consists of PM- 7J network uses in 
each of ~ich M - 'T/ packets are ~nt by S. Thus , for each 
c E [O : M - 1] a total of I:~ =0 (M - 77)PM- 1J packets are 
sent by S in L~=O P M- 7) network uses. 
4) Decoding. At the destination D, the decoding is done by first 
finding the K random packets X [K] and then reconstructing 
the keys f (X). Specifically, since the first K received packets 
are just keys without messages (see (7)), the random packets 
X [K] can be obtained as follows, 

(8) 

where V[K],[K ] is the sub-matrix of V obtained by just retaining 
the first K rows and all the K columns of V. Then, D can 
generate the keys f (X) using X [K] in (8) similar to (6). Finally, 
D decodes the messages W1 , j E [He - K ] as follows, 

(9) 

where i E [K + 1: H e] -
Security. In each network use, the adversary can receive a 
packet passing through an eavesdropped edge if the eaves-
dropped edge belongs to the paths used in that particular 
network use. Since the K eavesdropped edges can at most 
be part of K paths, the eavesdropper will receive at most K 
packets, which are linearly independent thanks to the property 
of MDS codes (see (7)). Thus, the scheme securely transmits 

a total of [ I:~ =O ( M - 'T/) PM - 1J - K] + message packets in 
L~=O PM- 1J network uses. This leads to R( c) in (3). The proof 
of Theorem 1 is concluded by considering the c* E [O : M - 1] 
for which R(c* ) is maximum. 

Example 4. ConsitJ!!...r the 1-2-1 atomic network in Figure 1 
with M = 2. Thus, M = 2. Assume K = 5. Then, the proposed 
scheme for c = 1 runs as follows, 

1) We generate K = 5 uniform random packets X [5], and 
extend them to 7 keys, f i (X) , i E [7] using an MDS code 
matrix of size 7 x 5. 

2) We encode He - K = 2 messages W i, i E [2] as follows, 

Ti= {fi(X) 
f i (X) + Wi-5 

i E [5], 
i E [6: 7]. 

(10) 

3) From Algorithm 1, for c = 1, we obtain 

(12) 

For transmission, we use the network P 2 + P 1 = 3 + 1 = 4 
times: ( 1) each group of paths in P2 can be used to 
simultaneously transmit M = 2 packets, e.g., p 1 and p4 
can be used to transmit T1 and T2 in the first network 
use, P2 and p5 can be used to transmit T3 and T4 in the 
second network use, and p 3 and p5 can be used to transmit 
T5 and T5 in the third network use; and (2) each group 
of paths in P1 can be used to simultaneously transmit 
M - 1 = 1 packet, e.g., p7 can be used to transmit T7 in 
the fourth network use. 

4) Upon receiving Ti, i E [7], D recovers W1 and W2 using 
the property of the MDS code matrix (see (8) and (9)). 

The adversary can learn at most 5 packets, which are encoded 
with independent keys. Thus, the eavesdropper cannot learn 
anything about W1 and W 2. For c = 1, we hence obtain a 
secrecy rate R(l) = 745 = ½-

B. Proof of Theorem 2 

We let tin] be the set of packets sent over edges e E S in n 
network uses, i.e., tin] = { 7e[n] , 've E S}, and we let £0 be 

the set of all edges incoming into D. We also let ti;l be the 
packets sent to atom Vi E Vi over n network uses. We obtain 

nR = H(W) 

H (W) - H ( W l7i~ l) 

= I(W ;7i~ l) 

1(w;iQti;i) 

= I (w ;TJnl) + I ( W; iQ 'li;~z I 7Jnl) 
E + H ( Hu,, y: [n] I 7 [n] ) - £,\ Z Z 

i= l 
(d ) H v 

c+ LH('Ji;~z, I Ttl) 
i= l 

(e) H v h K 
E + L i  -         i H ( ti;l) 

i=l hi 
(f ) H v h - K 

c+ L i h ' n, 
i= l i 

(13) 

where the labeled (in)equalities follow from: (a) the constraint 
for reliable decoding; (b) the data processing inequality; ( c) 
the security constraint in (1) and the fact that the entropy of 
a discrete random variable is non-negative; ( d) letting Z i = 
£i n Z and using the chain rule for the entropy and the fact that 
conditioning does not increase the entropy; ( e) applying [ 4, 
Lemma 1]; and ( f) the 1-2-1 network constraint. 
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By dividing both sides of (13) by n and letting n → ∞, we

arrive at

R f

Hv∑

i=1

hi −Ki

hi

. (14)

The above bound holds for any Z ¦ E such that |Z| = K.

Thus, we can find the tightest upper bound by minimizing it

with respect to Ki’s, which yields

R f min
Ki∈N∪{0},i∈[Hv ]:∑

Hv

i=1
Ki=K,

Ki≤hi, i∈[Hv ]

Hv∑

i=1

hi −Ki

hi

. (15)

Now, recall that the hi’s are assumed (without loss of generality)

to be sorted in descending order, i.e., h1 g h2 g . . . g hHv
.

This implies that a solution to (15) would first fill KHv
with its

maximum value, i.e., KHv
= min {hHv

,K}. Then, it will fill

KHv−1 as KHv−1 = min {hHv−1,K −KHv
} and so on until

K1 = min
{
h1,K −

∑Hv

i=2 Ki

}
. This concludes the proof of

Theorem 2.

C. Proof of Theorem 3

Without loss of generality, assume that h1 g h2 g . . . g
hHv

. If M g Hv, which implies M̂ = Hv, it is not difficult

to see that (see also Algorithm 1),

P
M̂

= PHv
= hHv

. (16)

Then, the representation for G \ P
M̂

is given by [h1 −
hHv

, . . . , hHv−1 − hHv
, 0], which similarly gives

P
M̂−1

= PHv−1 = hHv−1 − hHv
. (17)

Iterating the above procedure up to P1, we obtain

Pℓ = hℓ − hℓ+1, ∀ℓ ∈ [Hv], (18)

where we let hHv+1 = 0. Substituting (18) into (3) yields that

for c ∈ [0 : Hv − 1],

R(c) =

[∑c
¸=0(Hv − ¸)(hHv−¸ − hHv−¸+1)−K∑c

¸=0 (hHv−¸ − hHv−¸+1)

]+

=

[
Hv − c+

∑c−1
¸=0 hHv−¸ −K

hHv−c

]+
. (19)

Now, we pick c ∈ [0 : Hv − 1] such that
∑c−1

i=0 hHv−i <
K f

∑c
i=0 hHv−i. Note that such a c always exists. We define

³i = min
{
hi,K −

∑Hv

j=i+1 ³j

}
, i ∈ [Hv], that is,

³i =





0 if i < Hv − c− 1,

K −
∑Hv

j=i+1 hj if i = Hv − c,

hi if i > Hv − c.

(20)

The ³i’s in (20) imply that

K −
∑c−1

¸=0 hHv−¸

hHv−c

+ c =
K −

∑c−1
¸=0 hHv−¸

hHv−c

+

Hv∑

i=Hv−c+1

hi

hi

=

Hv∑

i=1

³i

hi

. (21)

Substituting (21) into (19), we obtain

R(c) =

[
Hv −

Hv∑

i=1

³i

hi

]+
=

Hv∑

i=1

(
1−

³i

hi

)
, (22)

where

³i = min



hi,K −

Hv∑

j=i+1

³j



 , i ∈ [Hv], (23)

which is the upper bound in (5). This concludes the proof of

Theorem 3.
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By dividing both sides of (13) by n and letting n oo, we 
arrive at 

(14) 

The above bound holds for any Z £ such that IZI = K. 
Thus, we can find the tightest upper bound by minimizing it 
with respect to K ;'s, which yields 

H v h - K 
R :c; min . L ' . '. 

K ,ENU {O},iE[ H v] , . h, 
"C'-d·f v K ·= K i=l L.., 1, =l 1, l 

(15) 

K ,~ h; , iE[Hv] 

Now, recall that the h i 's are assumed (without loss of generality) 
to be sorted in descending order, i.e., h1 2: h 2 2: ... 2: h Hv . 

This implies that a solution to (15) would first fill K Hv with its 
maximum value, i.e., KHv = min{hH v ,K}. Then, it will fill 
KHv- l as KHv- l = min{hH v- l,K - KHv } and so on until 
K 1 = min { h1 , K - Lt2 K i }. This concludes the proof of 
Theorem 2. 

C. Proof of Theorem 3 
Without loss of generality , assu~e that h1 2: h2 2: ... > 

hHv . If M 2: Hv , which implies M = Hv, it is not difficult 
to see that (see also Algorithm 1), 

(16) 

Then, the representation for G \ PM is given by [h1 -

h H", ... , hHv- l - h Hv , O], which similarly gives 

p M-1 = pHv- 1 = hHv- 1 - hHv · (17) 

Iterating the above procedure up to P 1 , we obtain 

(18) 

where we Jet h Hv+l = 0. Substituting (18) into (3) yields that 
for c E [0: Hv - 1], 

R(c) = [L~=o(H: - rJ)(h Hv-1'/ - h Hv-1'/+l ) - Kl + 
Lry = O (h Hv-1') - hH v-ry+l ) 

= [Hv - C + L~: ~ h Hv- 1'/ - Kl + (19) 
hHv-C 

Now, we pick c E [0  : Hv - 1] such that L ~:t hHv- i < 
K :c; L ~=O h Hv-i· Note that such a c always exists. We define 
ai = min { h i , K - L f;i+ l a 1 } , i E [Hv], that is, 

if i < Hv - C - l , 
if i = Hv - c, 
if i > Hv - c. 

(20) 

(21) 

Substituting (21) into (19), we obtain 

(22) 

where 

(23) 

which is the upper bound in (5). This concludes the proof of 
Theorem 3. 
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