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Abstract—We consider the problem of inferring the conditional
independence graph (CIG) of high-dimensional Gaussian vectors
from multi-attribute data. Most existing methods for graph esti-
mation are based on single-attribute models where one associates
a scalar random variable with each node. In multi-attribute
graphical models, each node represents a random vector. In this
paper we provide a unified theoretical analysis of multi-attribute
graph learning using a penalized log-likelihood objective function.
We consider both convex (sparse-group lasso) and non-convex
(log-sum and SCAD group penalties) penalty/regularization func-
tions. We establish sufficient conditions in a high-dimensional
setting for consistency (convergence of the precision matrix to
true value in the Frobenius norm), local convexity when using
non-convex penalties, and graph recovery. We do not impose any
incoherence or irrepresentability condition for our convergence
results.

I. INTRODUCTION

Graphical models provide a powerful tool for analyzing
multivariate data [1], [2]. In an undirected graphical model, the
conditional dependency structure among p random variables
T1,T9, ,Xp, (® = [T1 T3 -++ x] "), is represented using
an undirected graph G = (V, &), where V = {1,2,--- ,p} =
[p] is the set of p nodes corresponding to the p random
variables x;’s, and £ C [p] x [p] is the set of undirected edges
describing conditional dependencies among x;’s. The graph G
then is a conditional independence graph (CIG) where there is
no edge between nodes 7 and j iff x; and x; are conditionally
independent given the remaining p-2 variables.

Gaussian graphical models (GGMs) are CIGs where x is
multivariate Gaussian. Suppose x has positive-definite covari-
ance matrix X with inverse covariance matrix = X1,
Then €;;, the (4,7)-th element of €2, is zero iff x; and z;
are conditionally independent. Given n samples of z, in high-
dimensional settings, one estimates {2 under some sparsity
constraints; see, e.g., [3]. In these graphs each node represents
a scalar random variable. In many applications, there may
be more than one random variable associated with a node.
This class of graphical models has been called multi-attribute
graphical models in [4], [5]. In [5], a sparse-group lasso
[6], [7] based penalized log-likelihood approach for graph
learning from multi-attribute data was presented whereas [4]
consider only group lasso [8]. Both sparse-group lasso and
group lasso are convex penalties. It is well-known that use
of non-convex penalties such as Smoothly Clipped Absolute
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Deviation (SCAD) [9], [10] or log-sum [11], can yield more
accurate results. Such penalties can produce sparse set of
solution like lasso, and approximately unbiased coefficients
for large coefficients, unlike lasso.

Contributions: In this paper we provide a unified theoretical
analysis of multi-attribute graph learning using a penalized
log-likelihood objective function. We consider both convex
(sparse-group lasso) and non-convex (log-sum and SCAD
group penalties) penalty/regularization functions. We establish
sufficient conditions in a high-dimensional setting for con-
sistency (convergence of the precision matrix to true value
in the Frobenius norm), local convexity when using non-
convex penalties, and graph recovery. We do not impose any
incoherence or irrepresentability condition for our convergence
results, unlike [4] where only group lasso is considered. In
[4] the primal-dual witness technique of [12] is followed
whereas we follow the proof technique of [13] (as in [5]). The
SCAD penalty for multi-attribute graphs has been considered
in [14] but it does not have counterparts to our Lemma 1 and
Theorems 2 and 3. Moreover, the sparse-group SCAD penalty
used in this paper is different than that in [14]. We provide only
a theoretical analysis in this paper. Numerical optimization of
the penalized log-likelihood can be done using an ADMM
approach [15] as in [5], [14], where for non-convex penalties
(SCAD or log-sum), one uses a local linear approximation of
the penalties ( [10], [14]) or reweighted ¢; minimization [11],
initialized via sparse-group lasso results of [5].

Notation: Given A € RP*P, we use ¢min(A), Pmax(A),
|A| and tr(A) to denote the minimum eigenvalue, maximum
eigenvalue, determinant and trace of A, respectively. For B €
RP*4, we have || B|| = \/$max(B ' B), | B|lr = /tr(BT B)
and || B|[1 = >_,; ; |Bi;| where B is the (i, j)-th element of
B (also denoted by [B];;). Given A € RP*?, AT = diag(A)
is a diagonal matrix with the same diagonal as A, and
A~ = A— AT is A with all its diagonal elements set to zero.
The notation y,, = Op(x,,) for random vectors y,,, ¢, € RP
means that for any € > 0, there exists 0 < M < oo such that
P(lyall < M@, )) > 1 - Vn > 1.

II. SYSTEM MODEL

We will call G considered earlier a single-attribute graphical
model for . Now consider p jointly Gaussian random vectors
z, € R, ¢ =1,2,--- ,p. We associate z; with the ith node
of an undirected graph G = (V, &) where V' = [p]| and edges
in £ describe the conditional dependencies among vectors
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{z;i, i € V'}. As in the scalar case (m = 1), there is no edge
between node ¢ and node j in G iff random vectors z; and z;
are conditionally independent given all the remaining random
vectors [4]. This is the multi-attribute Gaussian graphical
model of interest in this paper.

Define the mp-vector

x=[z] zg -

2]l €RTP. (1)
Suppose we have n i.i.d. observations (t),t = 0,1,--- ,n—1,
of zero-mean x. Our objective is to estimate the inverse
covariance matrix (E{xx'})~! and to determine if edge
{i,j} € &, given data {z(t)}7=;. Let us associate = with
an “enlarged” graph G = (V,&), where V [mp] and
& C V x V. Now [zj]s, the fth component of z; asso-
ciated with node j of G = (V,&), is the random variable
zq = [x]q, where ¢ = (j —1)m+ ¢, j = 1,2,--- ,p and
¢ =1,2,--- ,m. The random variable x, is associated with
node g of G = (V, £). Corresponding to the edge {j, k} € £ in
the multi-attribute G = (V, £), there are m? edges {q,r} € £
specified by ¢ = (j — 1)m + s and r = (k — 1)m + ¢, where
s=1,2,--- ,mandt =1,2,--- ,m. The graph G = (V, &) is
a single-attribute graph. In order for G to reflect the conditional
independencies encoded in G, we must have the equivalence
{j,k} ¢ € & EUM NE =0, where EUF) = {{g,r} : ¢ =
G=—1m+s,r=(k-1)m-+t st=12-- ,m}. Let
R,, = E{zz"} -~ 0 and @ = R_!. Define the (j,k)th
m x m subblock QU*) of Q as

[Q(jk)]st = [Q}(j—l)m-l-s,(k—l)m-&-ta st=1,2,---,m. (2)

It is established in [4, Sec. 2.1] that QU*) =0 < {4k} £ €.
Since QUF) = 0 is equivalent to [2],, = 0 for every {q,r} €
EUK) and since, by [2, Proposition 5.2], Qg = 0 iff z,
and z,. are conditionally independent, hence, iff {q,7} & &, it
follows that the aforementioned equivalence holds true.

III. PENALIZED NEGATIVE LOG-LIKELIHOOD

Consider a finite set of data comprised of n i.i.d. zero-
mean observations x(t), t =0, 1,2, --- ,n— 1. Parameterizing
in terms of the precision (inverse covariance) matrix €2, the
negative log-likelihood, up to some irrelevant constants, is
given by

L(2) == In(|Q]) — tr (29) 3)
) 1 n—1
where 35 = — >zt (t). (4)

In the high-dimensional case (n < p or n comparable to p),
to enforce sparsity and to make the problem well-conditioned,
we propose to minimize a penalized version £(£2) of £(€2)
where we penalize (regularize) both element-wise and group-
wise. We have

L(Q) = L) +aP(Q) + (1—a)Py(R), (5

R = Yo (920]). ©)
i#j
P@)=mY (12x) @)

q#t

where (99 € R™*™ is defined as in (2), A > 0, o € [0, 1],
m in (7) reflects the number of group variables [8], and for
u € R, px(u) is a penalty function that is function of |u/|. In
(6), the penalty term is applied to each off-diagonal element
of © and in (7), the penalty term is applied to the off-block-
diagonal group of m? terms via 2(%), The parameter a €
[0, 1] “balances” element-wise and group-wise penalties [5]—
[71.

The following penalty functions are considered:

e Lasso. For some A > 0, px(u) = Mu|, u€eR.

o Log-sum. For some A\ > 0 and 1 > € > 0, py(u)
e ln (14 1),

o Smoothly Clipped Absolute Deviation (SCAD). For some
A>0and a > 2, px(u) = Mu| for |u| < A, = (2aM|u|—
|u|>~A?)/(2(a—1)) for A < |u| < aX and = A\*(a+1)/2
for |u| > aA.

In the terminology of [16], all of the above three penalties are
“u-amenable” for some p > 0. As defined in [16, Sec. 2.2],
pa(u) is p-amenable for some p > 0 if

®

The function py(w) is symmetric around zero, i..,
pa(u) = px(—u) and px(0) = 0.

The function py(u) is nondecreasing on R .

The function py(u)/u is nonincreasing on R.

The function p)(u) is differentiable for u # 0.

The function py(u) 4+ 4u? is convex, for some > 0.

(ii)
(iii)
(iv)

)

i) doalu) _
It is shown in [16, Appendix A.l], that all of the above
three penalties are p-amenable with 1 = 0 for Lasso and
@ = 1/(a — 1) for SCAD. In [16] the log-sum penalty is
defined as py(u) = In(1 4 Au|) whereas in [11], it is defined
as pa(u) = A ln (1 + @ . We follow [11] but modify it so
that property (vi) in the definition of p-amenable penalties
holds. In our case u % for the log-sum penalty since

px(u) _ —Xe/(e + |ul)? for u # 0.

du?

The following properties also hold for the three penalty
functions:

lim, o+

(vii) For some C'\ > 0 and ) > 0, we have

pa(u) > Cylu| for |u| < 4. (8)

d’;ﬁ"” < A for u # 0.

Property (viii) is straightforward to verify. For Lasso, C) =
A and 6y, = oo. For SCAD, C, = X and d, = A. Since
In(1+z) > z/(1+z) for x > —1, we have In(1+x) > z/C4
for 0 <z < (Cy—1, C; > 1. Take C; = 2. Then log-sum
pa(u) > 3ul for any |u| < ¢, leading to Cy = 5 and 6, = e.
We may and will take C = % for lasso and SCAD penalties
as well.

(viii)
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IV. THEORETICAL ANALYSIS

We now allow p and A to be functions of sample size n,
denoted as p,, and \,, respectively. Recall that we have the
original multi-attribute graph G = (V, &) with |V| = p,, and
the corresponding enlarged graph G = (V,€) with |V| =
mpy. We assume the following regarding G.

(Al) Denote the true edge set of the graph by &, implying
that & = {{j,k} : |QV"||F >0, j # k} where €
denotes the true precision matrix of x(t). Assume that
card(é’o) = |(50)| < Sno-

(A2) The minimum and maximum eigenvalues of (mp,) x
(mpy,) true covariance Xg > O satisfy

0 < Bmin S ¢min(20) S ¢max(20) S Bmax < o0.

Here Bmin and [nax are not functions of n (or p,,).

Let Q) = arg ming,o L(€2). Theorem 1 establishes local
consistency of €2 (a sketch of the proof is in the Appendix).
Theorem 1 (Local Consistency). For 7 > 2, let

Co =40 ml?x([zo]kk)\/]\/'l/ln(mpn) , 9)

R =8(1 +m)Co/Bn » (10)
T =\ (Mpy, + m2s0) In(mp,,)/n = o(1), (11)
Ny =21n(4(mp,)7), (12)
Ny = arg min {n oy < 0.1/(R5min)} , (13)
N3 :argmin{n < %}, (14)
Ny =argmin {n P A < NG [ZO_]:TO €20l } )
(15)
Ane =2Co+/In(mpy,) /1, (16)
Anut =Co(m + 1)ry /(my/Sno) , (17)
Anuz =min (Rrp, Adpy1) - (18)

Under assumptions (A1)-(A2), there exists a local minimizer
Q) of L(€2) satisfying

19205 — Qol|r < Rry, (19)

with probability greater than 1 — 1/(mp,,)" 2 if

(i) for the lasso penalty n > max{Ny, No} and ), satisfies
)\n€ < )\n < /\nulv
(i) for the SCAD penalty n > max{Ny, No, Ny} and A,
satisfies \,, = A\pu2,
(iii) for the log-sum penalty n > max{Ny, No, N3} and A,
satisfies A\pr < Ay < Aut-

For the lasso penalty, O, isa global minimizer whereas for
the other two penalties, it is a local minimizer. e

We follow the proof technique of [16, Lemma 6] in estab-
lishing Lemma 1 (the proof is in the Appendix).
Lemma 1 (Local Convexity). The optimization problem

Q) =arg gleuéﬁ(ﬂ), (20)
B={Q2: Q>0 Q| <0994}, (21)
00 : lasso
i= (a—1)/m : SCAD (22)
e/(mA,) log-sum,

consists of a strictly convex objective function over a convex
constraint set, for all three penalties, where A, is as in
Theorem 1. o

Lemma 1 and Theorem 1 lead to Theorem 2.
Theorem 2. Assume the conditions of Theorem 1. Then €2 ) as
defined in Lemma 1 is unique, satisfying ||€2x — Q0|7 < Rrn
with probability greater than 1 — 1/(mp, )" 2 if Rr, +
1//gmin S 0.99 ﬂ
Sketch of Proof. If 1/Bmin < 0.994, then Q¢ € B since
92| < 1/Bumin, and also Q € B since ||| < Rry, +1/Buin-
Thus, both Q » and Qg are feasible. W

Remark 1. We see from Theorem 1 that as n — oo, A\, —
0 (since r,, = o(1)), therefore, we eventually have “global”
convexity for log-sum penalty by (22) for any €2y. But such
is not the case for SCAD where one may need a to become
large in which case it would behave more like lasso. [

We now turn to graph recovery. Define

E={{at) s 199 r > > 0,04 0),  @23)
go={{a.0} : 191r > 0,0 # ¢}, 24
On :Rr’rm (25)

= min_ [|Q{" 26

V= in 1926 |7, (26)

N, =argmin {n o, < 0.41/} , 27

where R and r, are as in (10) and (11), respectively.
Theorem 3. For v, = 0.5v and n > Ny, & = & with
probability> 1 — 1/(mp,,)" 2 under the conditions of Theo-
rem 1. e

V. CONCLUSIONS

A unified theoretical analysis of multi-attribute graph learn-
ing using a penalized log-likelihood objective function was
presented where both convex (sparse-group lasso) and non-
convex (log-sum and SCAD group penalties) regularization
functions were considered. Sufficient conditions in a high-
dimensional setting for consistency (convergence of the pre-
cision matrix to true value in the Frobenius norm), local
convexity when using non-convex penalties, and graph recov-
ery were analyzed. We did not impose any incoherence or
irrepresentability condition for our convergence results.
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APPENDIX

Sketch of Proof of Theorem I: Let 2 =
Q, Qo > 0, and

Qo + A with both

Q) = £(2) -

The estimate €25, denoted by Q hereafter suppressing dependence
upon A, minimizes Q(£2), or equivalently, A = Q — Q) minimizes
G(A) = Q(Q0 + A). We will follow the method of proof of [5,
Theorem 1], which, in turn, for the most part, follows the method of
proof of [13, Theorem 1] pertaining to lasso penalty. Consider the
set

L(0). (28)

then the minimizer A must be inside ©,(R), and hence ||A||r <
Rry. It is shown in [13, (9)] that

111(|Q() “+ A|) — ln(‘ﬂo‘) = tr(EoA) — A

where, with H (€20, A, v) = (0o +vA)~
denoting a scalar,

(30)
'® (R +vA)"!and v

Ay =vec(A) " (/1(1 —0)H(Qo, A, v) dv) vec(A). (1)

0

Noting that Q7! = X, we can rewrite G(A) as
G(A) = A1+ As + A3+ Ay , (32)
where Ay =tr ((2 - ZO)A) , (33)
mpn
Az=a D (pa(1Q0 + Ail) = pa(1Q035])) » (34
i,j=11i#]
Pn
Ar=(=aym 37 (1967 + Ale)
q,t=1;q7#¢
— (|8 35
P19 11 7)) - (35)
Following [13, p. 502], we have
Al [N
A 2 (36)
20l + 1A = 2 (5.1 + )’
where we have used the fact that ||Qo|| = [|Z5]| = Pmax(Zg ') =

(Pmin(0)) ™' < Bl and |A|| < ||A]|lF = Rrn. We now consider
Ao in (33). We have

mPpn mpn
A = Z (% —3o]i; Aji + Z X — ZoJul (37)
i,j=1;i#£] i=1
Ly Lo

Recall that by [5, Lemma 2], the sample covariance 3} satisfies the
tail bound

P (max‘[ﬁ] — Eo}kl‘ > Co ln(mpn)> <
kL n

38
= Gz Y
for 7 > 2, if the sample size n > N; (N is defined in (12)). To

bound L1, using [5, Lemma 2], we can show that with probability
>1— 1/(mpn)772,

_ | n
Ll < A" Gy 2P0 (39)
and
|La| < |AT|[rCory . (40)
Therefore, with probability > 1 — 1/(mp,)” 2,
_ 1 B
[Az] < A7 2 Coy/ 2P At pCora . @)

We now derive a different bound on As. Define A € RP"*P" with
(i,7)-th element A;; = ||AU||z, where A is defined from A
similar to (2). Using the Cauchy-Schwarz inequality an alternative
bound can be derived as

M +Vm ||AT | rCorn .

As| <m|| A7 |1 C 42

For Lasso and Log-Sum Penalties: We now bound Az in (34).

where R and r,, are as in (10) and (11), respectively. Since G ( ) < Let & denote the true enlarged edge-set corresponding to & when

G(0) = 0, if we can show that infa{G(A) : A € ©,(R)} > 0, one interprets multi-attribute model as a single-attribute model. Let
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&S denote its complement. Using the mean-value theorem, we have
/ _ dpx(u)
(pk(u) - du )
PA([Q0i5 + Aiz[) =pa(|Q0i;])
+ P2 (1251 (19045 + Ajl = [Q0i51)
where |Q”‘ = ‘onj' +'Y(‘QOz] —|—Az]‘ — |QOz]|) for some Yy S [O, 1]
Using (43) we can show that
Az > —a Y A DIAG +a Y CilAl
(i,5)€€0 (i,5)€ES
for |A”| S 5A .

(43)

(44)

Now use property (viii) of the penalty functions and C\ = A\/2 to
conclude that

Ay > —ada D Ayl+a(a/2) D Ayl

(i,5)€& (i,4)€ES

(45)

Next we bound A4 in (35). Considering the true edge-set & for
the multi-attribute graph, let £§ denote its complement. If the edge
{i,j} € &G, then ng = 0, therefore, ||Qéij) + A p —
HQ(”)HF = ||AY||p. For {i,j} € &o, by the triangle inequality,
Hng”) + AD|p — Q5] F > —||A®)||p. Thus, similar to
bounding As, we have

Ay > —(1—a)mr, > [[ADp
(i,5)€€0

+(1—aymAa/2) Y 1Ak

(i,5) €€

(46)

Bounding oAz + A3z and (1 — ) A2 + Ay separately, we can show
that

As+As + As > —||A|lr (Anma/Sno + (1 + m)Cory)

> =2(1 4+ m)Corn||Allr (47)

where we used the fact that since A\p, < Apu1, Anmy/Sno < Co(1+
m)ry,. Using (32), the bound (36) on A1, bound (47) on Az + A3 +

Ay, and ||A]|r = Rr,, we have with probability > 1—1/(mp, )" "2,

1 ~ 20 (1 + m)}
2(Brin + Bra)? R '

For the given choice of N2, Rr,, < Rry, < 0.1/Bmin for n > Na.
Also, 2Co(1 +m)/R = 32;,/4 by (10). Then for n > Na,

— —200(1+m)2ﬂiin(i—1>>0,
2(BoL + Rry)2 R 242 4
implying G(A) > 0. This proves (19). The choice of N3 for log-
sum penalty ensures that |A;;| < dx = € needed in (44) is satisfied
w.h.p.: if Rry, <, then |Ayj| < ||Allr < Rrn <e.
For SCAD Penalty: Here we address (43) differently. Using triangle
inequality, we have

1051 > Q04| + 7 (1Q0i5] — 1A45] — [Q0i51)
> [Qoij| — [Ai] -

G(A) > ||lA|E

(48)

(49)

Since |A;j| < ||Allr < Rry, the choice A, = Anu2 implies that
An > Rry, satisfying |A;;| < An. Therefore, [Qi;] > |[Qoij| —
An. For i > Na, p\(|;]) = 0 (see (15)) if {i,5} € &o, ie,
[Q0ij] # 0, since in this case |Qi;] > (a + D)An — A\ = an.
Therefore, Az = az(i,j)eég px(JAg]) > O‘Z(i,j)eég Ci|Agj]| for
|As;| < 8y, leading to

As > a(n/2) Y 1Ay].

(i,5)€ES

(50)

Mimicking the steps for bounding Az above and under same condi-
tions, we have

As> (1—a)m(Aa/2) > AW, (51)
(i,5)€ES
Similar to the lasso and log-sum case, we then have
As+As + Ay > —||A||F (Codimy/sno + mCorn)
> —(1+m)Corn|Allr (52)

where we used the fact that Codim+/sno < Cory. Mimicking (48),
we have with probability > 1 — 1/(mpn)” 2, we have

1 (1+m)Co
G(A) > ||A2 -
(&) z | AlF [2(6,;}D+an)2 R
11
>52. (_— _ =
> Brnin (2.42 8) >0, (53)

implying G(A) > 0. This proves (19). For the SCAD penalty, we
need |A;;| < dx = A, in (50). Since |Ay;| < [JA||lr < Rrp, the
choice A\, = Apu2 implies that A, > Rry, satisfying |Az;] < An.
This completes the proof. W

Proof of Lemma 1: Consider h(2) = L(2) — £]|Q|% for some
g > 0. The Hessian of £(Q2) w.r.t. vec(Q) is V2L(Q) = Q7 '@Q ™!
with

Pmin (V2 L(Q)) =¢min(R77) = 1/dax(R) = 1/[|QY*.  (54)
Since V2h(Q) = Q7' ® Q' — pl(,,p2. it follows that h() is

positive semi-definite, hence convex, if

e <1/vi.

By property (v) of the penalty functions, g(u) := px(u) + Lu? is
convex, for some p > 0, and by property (ii), it is non-decreasing on
R . Therefore, by the composition rules [17, Sec. 3.2.4], g(|[€2]i;])
and g(||299|| ) are convex. Hence,

mpn

P.(2) + )il = > (pa(l€2):s)) + o 1205%)

is convex for p. = g > 0, and similarly,

Pn
m : 2 :
Py + 2 1Q0% = m Y- (1977 1) + 22 1275
q#t

is convex for pig = m p, where p is the value that renders px(u) +
442 convex. Now express £(£2) as

L(Q) =aLe () + (1 —a)Ly(R), (55)
Lo(@) =L(@) - Bl + (@) + ZlQ%,  66)
Lo(Q) =£(Q) - FlQ% + Po(@) + SRl 67)

Now L. (§2) is convex function of €2 if ||| < 1//z, and L4(82) is
convex in Q if [|Q < 1//fg = 1/\/mp =: ji. Thus, for £(£2) to
be strictly convex, using the (minimum) values of y to make py (u)+
£4% convex, we require

2
< n
e . lasso
= (a—1)/m SCAD (58)
e/(mAy) log-sum,

The choice [|€2|| < /i makes £(£2) — & ||€2||% positive definite, hence
strictly convex. We take ||Q2|| = 0.99 i, completing the proof. W
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