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Abstract—We consider the problem of inferring the conditional
independence graph (CIG) of high-dimensional Gaussian vectors
from multi-attribute data. Most existing methods for graph esti-
mation are based on single-attribute models where one associates
a scalar random variable with each node. In multi-attribute
graphical models, each node represents a random vector. In this
paper we provide a unified theoretical analysis of multi-attribute
graph learning using a penalized log-likelihood objective function.
We consider both convex (sparse-group lasso) and non-convex
(log-sum and SCAD group penalties) penalty/regularization func-
tions. We establish sufficient conditions in a high-dimensional
setting for consistency (convergence of the precision matrix to
true value in the Frobenius norm), local convexity when using
non-convex penalties, and graph recovery. We do not impose any
incoherence or irrepresentability condition for our convergence
results.

I. INTRODUCTION

Graphical models provide a powerful tool for analyzing
multivariate data [1], [2]. In an undirected graphical model, the
conditional dependency structure among p random variables
x1, x2, · · · , xp, (x = [x1 x2 · · · xp]>), is represented using
an undirected graph G = (V, E), where V = {1, 2, · · · , p} =
[p] is the set of p nodes corresponding to the p random
variables xi’s, and E ⊆ [p]× [p] is the set of undirected edges
describing conditional dependencies among xi’s. The graph G
then is a conditional independence graph (CIG) where there is
no edge between nodes i and j iff xi and xj are conditionally
independent given the remaining p-2 variables.

Gaussian graphical models (GGMs) are CIGs where x is
multivariate Gaussian. Suppose x has positive-definite covari-
ance matrix Σ with inverse covariance matrix Ω = Σ−1.
Then Ωij , the (i, j)-th element of Ω, is zero iff xi and xj
are conditionally independent. Given n samples of x, in high-
dimensional settings, one estimates Ω under some sparsity
constraints; see, e.g., [3]. In these graphs each node represents
a scalar random variable. In many applications, there may
be more than one random variable associated with a node.
This class of graphical models has been called multi-attribute
graphical models in [4], [5]. In [5], a sparse-group lasso
[6], [7] based penalized log-likelihood approach for graph
learning from multi-attribute data was presented whereas [4]
consider only group lasso [8]. Both sparse-group lasso and
group lasso are convex penalties. It is well-known that use
of non-convex penalties such as Smoothly Clipped Absolute
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Deviation (SCAD) [9], [10] or log-sum [11], can yield more
accurate results. Such penalties can produce sparse set of
solution like lasso, and approximately unbiased coefficients
for large coefficients, unlike lasso.

Contributions: In this paper we provide a unified theoretical
analysis of multi-attribute graph learning using a penalized
log-likelihood objective function. We consider both convex
(sparse-group lasso) and non-convex (log-sum and SCAD
group penalties) penalty/regularization functions. We establish
sufficient conditions in a high-dimensional setting for con-
sistency (convergence of the precision matrix to true value
in the Frobenius norm), local convexity when using non-
convex penalties, and graph recovery. We do not impose any
incoherence or irrepresentability condition for our convergence
results, unlike [4] where only group lasso is considered. In
[4] the primal-dual witness technique of [12] is followed
whereas we follow the proof technique of [13] (as in [5]). The
SCAD penalty for multi-attribute graphs has been considered
in [14] but it does not have counterparts to our Lemma 1 and
Theorems 2 and 3. Moreover, the sparse-group SCAD penalty
used in this paper is different than that in [14]. We provide only
a theoretical analysis in this paper. Numerical optimization of
the penalized log-likelihood can be done using an ADMM
approach [15] as in [5], [14], where for non-convex penalties
(SCAD or log-sum), one uses a local linear approximation of
the penalties ( [10], [14]) or reweighted `1 minimization [11],
initialized via sparse-group lasso results of [5].

Notation: Given A ∈ Rp×p, we use φmin(A), φmax(A),
|A| and tr(A) to denote the minimum eigenvalue, maximum
eigenvalue, determinant and trace of A, respectively. For B ∈
Rp×q , we have ‖B‖ =

√
φmax(B>B), ‖B‖F =

√
tr(B>B)

and ‖B‖1 =
∑
i,j |Bij | where Bij is the (i, j)-th element of

B (also denoted by [B]ij). Given A ∈ Rp×p, A+ = diag(A)
is a diagonal matrix with the same diagonal as A, and
A− = A−A+ is A with all its diagonal elements set to zero.
The notation yn = OP (xn) for random vectors yn,xn ∈ Rp
means that for any ε > 0, there exists 0 < M <∞ such that
P (‖yn‖ ≤M‖xn‖) ≥ 1− ε ∀n ≥ 1.

II. SYSTEM MODEL

We will call G considered earlier a single-attribute graphical
model for x. Now consider p jointly Gaussian random vectors
zi ∈ Rm, i = 1, 2, · · · , p. We associate zi with the ith node
of an undirected graph G = (V, E) where V = [p] and edges
in E describe the conditional dependencies among vectors
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{zi, i ∈ V }. As in the scalar case (m = 1), there is no edge
between node i and node j in G iff random vectors zi and zj
are conditionally independent given all the remaining random
vectors [4]. This is the multi-attribute Gaussian graphical
model of interest in this paper.

Define the mp-vector

x = [z>1 z>2 · · · z>p ]> ∈ Rmp . (1)

Suppose we have n i.i.d. observations x(t), t = 0, 1, · · · , n−1,
of zero-mean x. Our objective is to estimate the inverse
covariance matrix (E{xx>})−1 and to determine if edge
{i, j} ∈ E , given data {x(t)}n−1t=0 . Let us associate x with
an “enlarged” graph Ḡ = (V̄ , Ē), where V̄ = [mp] and
Ē ⊆ V̄ × V̄ . Now [zj ]`, the `th component of zj asso-
ciated with node j of G = (V, E), is the random variable
xq = [x]q , where q = (j − 1)m + `, j = 1, 2, · · · , p and
` = 1, 2, · · · ,m. The random variable xq is associated with
node q of Ḡ = (V̄ , Ē). Corresponding to the edge {j, k} ∈ E in
the multi-attribute G = (V, E), there are m2 edges {q, r} ∈ Ē
specified by q = (j − 1)m+ s and r = (k − 1)m+ t, where
s = 1, 2, · · · ,m and t = 1, 2, · · · ,m. The graph Ḡ = (V̄ , Ē) is
a single-attribute graph. In order for Ḡ to reflect the conditional
independencies encoded in G, we must have the equivalence
{j, k} 6∈ E ⇔ Ē(jk) ∩ Ē = ∅, where Ē(jk) =

{
{q, r} : q =

(j − 1)m + s, r = (k − 1)m + t, s, t = 1, 2, · · · ,m
}

. Let
Rxx = E{xx>} � 0 and Ω = R−1xx . Define the (j, k)th
m×m subblock Ω(jk) of Ω as

[Ω(jk)]st = [Ω](j−1)m+s,(k−1)m+t , s, t = 1, 2, · · · ,m . (2)

It is established in [4, Sec. 2.1] that Ω(jk) = 0⇔ {j, k} 6∈ E .
Since Ω(jk) = 0 is equivalent to [Ω]qr = 0 for every {q, r} ∈
Ē(jk), and since, by [2, Proposition 5.2], [Ω]qr = 0 iff xq
and xr are conditionally independent, hence, iff {q, r} 6∈ Ē , it
follows that the aforementioned equivalence holds true.

III. PENALIZED NEGATIVE LOG-LIKELIHOOD

Consider a finite set of data comprised of n i.i.d. zero-
mean observations x(t), t = 0, 1, 2, · · · , n−1. Parameterizing
in terms of the precision (inverse covariance) matrix Ω, the
negative log-likelihood, up to some irrelevant constants, is
given by

L(Ω) := ln(|Ω|)− tr
(
Σ̂Ω

)
(3)

where Σ̂ =
1

n

n−1∑
t=0

x(t)x>(t) . (4)

In the high-dimensional case (n < p or n comparable to p),
to enforce sparsity and to make the problem well-conditioned,
we propose to minimize a penalized version L̄(Ω) of L(Ω)
where we penalize (regularize) both element-wise and group-
wise. We have

L̄(Ω) = L(Ω) + αPe(Ω) + (1− α)Pg(Ω), (5)

Pe(Ω) =

mp∑
i6=j

ρλ

(∣∣∣[Ω]ij

∣∣∣) , (6)

Pg(Ω) = m

p∑
q 6=`

ρλ

(
‖Ω(q`)‖F

)
(7)

where Ω(q`) ∈ Rm×m is defined as in (2), λ > 0, α ∈ [0, 1],
m in (7) reflects the number of group variables [8], and for
u ∈ R, ρλ(u) is a penalty function that is function of |u|. In
(6), the penalty term is applied to each off-diagonal element
of Ω and in (7), the penalty term is applied to the off-block-
diagonal group of m2 terms via Ω(q`). The parameter α ∈
[0, 1] “balances” element-wise and group-wise penalties [5]–
[7].

The following penalty functions are considered:
• Lasso. For some λ > 0, ρλ(u) = λ|u|, u ∈ R.
• Log-sum. For some λ > 0 and 1 � ε > 0, ρλ(u) =

λε ln
(

1 + |u|
ε

)
.

• Smoothly Clipped Absolute Deviation (SCAD). For some
λ > 0 and a > 2, ρλ(u) = λ|u| for |u| ≤ λ, = (2aλ|u|−
|u|2−λ2)/(2(a−1)) for λ < |u| < aλ and = λ2(a+1)/2
for |u| ≥ aλ.

In the terminology of [16], all of the above three penalties are
“µ-amenable” for some µ ≥ 0. As defined in [16, Sec. 2.2],
ρλ(u) is µ-amenable for some µ ≥ 0 if
(i) The function ρλ(u) is symmetric around zero, i.e.,

ρλ(u) = ρλ(−u) and ρλ(0) = 0.
(ii) The function ρλ(u) is nondecreasing on R+.

(iii) The function ρλ(u)/u is nonincreasing on R+.
(iv) The function ρλ(u) is differentiable for u 6= 0.
(v) The function ρλ(u) + µ

2u
2 is convex, for some µ ≥ 0.

(vi) limu→0+
dρλ(u)
du = λ.

It is shown in [16, Appendix A.1], that all of the above
three penalties are µ-amenable with µ = 0 for Lasso and
µ = 1/(a − 1) for SCAD. In [16] the log-sum penalty is
defined as ρλ(u) = ln(1 + λ|u|) whereas in [11], it is defined
as ρλ(u) = λ ln

(
1 + |u|

ε

)
. We follow [11] but modify it so

that property (vi) in the definition of µ-amenable penalties
holds. In our case µ = λ

ε for the log-sum penalty since
d2ρλ(u)
du2 = −λε/(ε+ |u|)2 for u 6= 0.
The following properties also hold for the three penalty

functions:
(vii) For some Cλ > 0 and δλ > 0, we have

ρλ(u) ≥ Cλ|u| for |u| ≤ δλ . (8)

(viii) dρλ(u)
d|u| ≤ λ for u 6= 0.

Property (viii) is straightforward to verify. For Lasso, Cλ =
λ and δλ = ∞. For SCAD, Cλ = λ and δλ = λ. Since
ln(1+x) ≥ x/(1+x) for x > −1, we have ln(1+x) ≥ x/C1

for 0 ≤ x ≤ C1 − 1, C1 > 1. Take C1 = 2. Then log-sum
ρλ(u) ≥ λ

2 |u| for any |u| ≤ ε, leading to Cλ = λ
2 and δλ = ε.

We may and will take Cλ = λ
2 for lasso and SCAD penalties

as well.

1054

Authorized licensed use limited to: Auburn University. Downloaded on May 12,2025 at 16:34:16 UTC from IEEE Xplore.  Restrictions apply. 



IV. THEORETICAL ANALYSIS

We now allow p and λ to be functions of sample size n,
denoted as pn and λn, respectively. Recall that we have the
original multi-attribute graph G = (V, E) with |V | = pn and
the corresponding enlarged graph Ḡ = (V̄ , Ē) with |V̄ | =
mpn. We assume the following regarding G.

(A1) Denote the true edge set of the graph by E0, implying
that E0 = {{j, k} : ‖Ω(jk)

0 ‖F > 0, j 6= k} where Ω0

denotes the true precision matrix of x(t). Assume that
card(E0) = |(E0)| ≤ sn0.

(A2) The minimum and maximum eigenvalues of (mpn) ×
(mpn) true covariance Σ0 � 0 satisfy

0 < βmin ≤ φmin(Σ0) ≤ φmax(Σ0) ≤ βmax <∞ .

Here βmin and βmax are not functions of n (or pn).

Let Ω̂λ = arg minΩ�0 L̄(Ω). Theorem 1 establishes local
consistency of Ω̂λ (a sketch of the proof is in the Appendix).
Theorem 1 (Local Consistency). For τ > 2, let

C0 =40 max
k

([Σ0]kk)
√
N1/ ln(mpn) , (9)

R =8(1 +m)C0/β
2
min , (10)

rn =
√

(mpn +m2sn0) ln(mpn)/n = o(1) , (11)
N1 =2 ln(4(mpn)τ ) , (12)

N2 = arg min
{
n : rn ≤ 0.1/(Rβmin)

}
, (13)

N3 = arg min
{
n : rn ≤

ε

R

}
, (14)

N4 = arg min
{
n : λn ≤

min(i,j): [Ω0]ij 6=0 |[Ω0]ij |
a+ 1

}
,

(15)

λn` =2C0

√
ln(mpn)/n , (16)

λnu1 =C0(m+ 1)rn/(m
√
sn0) , (17)

λnu2 = min (Rrn, λnu1) . (18)

Under assumptions (A1)-(A2), there exists a local minimizer
Ω̂λ of L̄(Ω) satisfying

‖Ω̂λ −Ω0‖F ≤ Rrn (19)

with probability greater than 1− 1/(mpn)τ−2 if

(i) for the lasso penalty n > max{N1, N2} and λn satisfies
λn` ≤ λn ≤ λnu1,

(ii) for the SCAD penalty n > max{N1, N2, N4} and λn
satisfies λn = λnu2,

(iii) for the log-sum penalty n > max{N1, N2, N3} and λn
satisfies λn` ≤ λn ≤ λnu1.

For the lasso penalty, Ω̂λ is a global minimizer whereas for
the other two penalties, it is a local minimizer. •

We follow the proof technique of [16, Lemma 6] in estab-
lishing Lemma 1 (the proof is in the Appendix).
Lemma 1 (Local Convexity). The optimization problem

Ω̂λ = arg min
Ω∈B
L̄(Ω) , (20)

B ={Ω : Ω � 0, ‖Ω‖ ≤ 0.99 µ̄} , (21)

µ̄ =


∞ : lasso√

(a− 1)/m : SCAD√
ε/(mλn) : log-sum,

(22)

consists of a strictly convex objective function over a convex
constraint set, for all three penalties, where λn is as in
Theorem 1. •

Lemma 1 and Theorem 1 lead to Theorem 2.
Theorem 2. Assume the conditions of Theorem 1. Then Ω̂λ as
defined in Lemma 1 is unique, satisfying ‖Ω̂λ−Ω0‖F ≤ Rrn
with probability greater than 1 − 1/(mpn)τ−2 if Rrn +
1/βmin ≤ 0.99 µ̄.
Sketch of Proof. If 1/βmin ≤ 0.99µ̄, then Ω0 ∈ B since
‖Ω0‖ ≤ 1/βmin, and also Ω̂ ∈ B since ‖Ω̂‖ ≤ Rrn+1/βmin.
Thus, both Ω̂λ and Ω0 are feasible. �

Remark 1. We see from Theorem 1 that as n→∞, λn →
0 (since rn = o(1)), therefore, we eventually have “global”
convexity for log-sum penalty by (22) for any Ω0. But such
is not the case for SCAD where one may need a to become
large in which case it would behave more like lasso. �

We now turn to graph recovery. Define

Ê =
{
{q, `} : ‖Ω̂(q`)‖F > γn > 0, q 6= `

}
, (23)

E0 =
{
{q, `} : ‖Ω(q`)

0 ‖F > 0, q 6= `
}
, (24)

σ̄n =Rrn , (25)

ν = min
{q,`}∈E0

‖Ω(q`)
0 ‖F , (26)

N4 = arg min
{
n : σ̄n ≤ 0.4ν

}
, (27)

where R and rn are as in (10) and (11), respectively.
Theorem 3. For γn = 0.5ν and n ≥ N4, Ê = E0 with
probability> 1− 1/(mpn)τ−2 under the conditions of Theo-
rem 1. •

V. CONCLUSIONS

A unified theoretical analysis of multi-attribute graph learn-
ing using a penalized log-likelihood objective function was
presented where both convex (sparse-group lasso) and non-
convex (log-sum and SCAD group penalties) regularization
functions were considered. Sufficient conditions in a high-
dimensional setting for consistency (convergence of the pre-
cision matrix to true value in the Frobenius norm), local
convexity when using non-convex penalties, and graph recov-
ery were analyzed. We did not impose any incoherence or
irrepresentability condition for our convergence results.
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APPENDIX

Sketch of Proof of Theorem 1: Let Ω = Ω0 + ∆ with both
Ω, Ω0 � 0, and

Q(Ω) := L̄(Ω)− L̄(Ω0) . (28)

The estimate Ω̂λ, denoted by Ω̂ hereafter suppressing dependence
upon λ, minimizes Q(Ω), or equivalently, ∆̂ = Ω̂−Ω0 minimizes
G(∆) := Q(Ω0 + ∆). We will follow the method of proof of [5,
Theorem 1], which, in turn, for the most part, follows the method of
proof of [13, Theorem 1] pertaining to lasso penalty. Consider the
set

Θn(R) :=
{

∆ : ∆ = ∆>, ‖∆‖F = Rrn
}

(29)

where R and rn are as in (10) and (11), respectively. Since G(∆̂) ≤
G(0) = 0, if we can show that inf∆{G(∆) : ∆ ∈ Θn(R)} > 0,

then the minimizer ∆̂ must be inside Θn(R), and hence ‖∆̂‖F ≤
Rrn. It is shown in [13, (9)] that

ln(|Ω0 + ∆|)− ln(|Ω0|) = tr(Σ0∆)−A1 (30)

where, with H(Ω0,∆, v) = (Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1 and v
denoting a scalar,

A1 =vec(∆)>
(∫ 1

0

(1− v)H(Ω0,∆, v) dv

)
vec(∆) . (31)

Noting that Ω−1 = Σ, we can rewrite G(∆) as

G(∆) = A1 +A2 +A3 +A4 , (32)

where A2 =tr
(

(Σ̂−Σ0)∆
)
, (33)

A3 =α

mpn∑
i,j=1;i6=j

(ρλ(|Ω0ij + ∆ij |)− ρλ(|Ω0ij |)) , (34)

A4 =(1− α)m

pn∑
q,`=1;q 6=`

(
ρλ(‖Ω(q`)

0 + ∆(q`)‖F )

− ρλ(‖Ω(q`)
0 ‖F )

)
. (35)

Following [13, p. 502], we have

A1 ≥
‖∆‖2F

2(‖Ω0‖+ ‖∆‖)2
≥ ‖∆‖2F

2
(
β−1

min +Rrn
)2 (36)

where we have used the fact that ‖Ω0‖ = ‖Σ−1
0 ‖ = φmax(Σ−1

0 ) =
(φmin(Σ0))−1 ≤ β−1

min and ‖∆‖ ≤ ‖∆‖F = Rrn. We now consider
A2 in (33). We have

A2 =

mpn∑
i,j=1;i6=j

[Σ̂−Σ0]ij∆ji︸ ︷︷ ︸
L1

+

mpn∑
i=1

[Σ̂−Σ0]ii∆ii︸ ︷︷ ︸
L2

(37)

Recall that by [5, Lemma 2], the sample covariance Σ̂ satisfies the
tail bound

P

(
max
k,`

∣∣∣[Σ̂−Σ0]kl

∣∣∣ > C0

√
ln(mpn)

n

)
≤ 1

(mpn)τ−2
(38)

for τ > 2, if the sample size n > N1 (N1 is defined in (12)). To
bound L1, using [5, Lemma 2], we can show that with probability
> 1− 1/(mpn)τ−2,

|L1| ≤ ‖∆−‖1 C0

√
ln(mpn)

n
, (39)

and

|L2| ≤ ‖∆+‖FC0rn . (40)

Therefore, with probability > 1− 1/(mpn)τ−2,

|A2| ≤ ‖∆−‖1 C0

√
ln(mpn)

n
+ ‖∆+‖FC0rn . (41)

We now derive a different bound on A2. Define ∆̃ ∈ Rpn×pn with
(i, j)-th element ∆̃ij = ‖∆(ij)‖F , where ∆(ij) is defined from ∆
similar to (2). Using the Cauchy-Schwarz inequality an alternative
bound can be derived as

|A2| ≤ m‖∆̃−‖1 C0

√
ln(mpn)

n
+
√
m ‖∆̃+‖FC0rn . (42)

For Lasso and Log-Sum Penalties: We now bound A3 in (34).
Let Ē0 denote the true enlarged edge-set corresponding to E0 when
one interprets multi-attribute model as a single-attribute model. Let
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Ēc0 denote its complement. Using the mean-value theorem, we have
(ρ′λ(u) = dρλ(u)

du
)

ρλ(|Ω0ij + ∆ij |) =ρλ(|Ω0ij |)
+ ρ′λ(|Ω̃ij |)(|Ω0ij + ∆ij | − |Ω0ij |) (43)

where |Ω̃ij | = |Ω0ij |+γ(|Ω0ij +∆ij |− |Ω0ij |) for some γ ∈ [0, 1].
Using (43) we can show that

A3 ≥ −α
∑

(i,j)∈Ē0

ρ′λ(|Ω̃ij |)|∆ij |+ α
∑

(i,j)∈Ēc0

Cλ|∆ij |

for |∆ij | ≤ δλ . (44)

Now use property (viii) of the penalty functions and Cλ = λ/2 to
conclude that

A3 ≥ −αλn
∑

(i,j)∈Ē0

|∆ij |+ α(λn/2)
∑

(i,j)∈Ēc0

|∆ij | . (45)

Next we bound A4 in (35). Considering the true edge-set E0 for
the multi-attribute graph, let Ec0 denote its complement. If the edge
{i, j} ∈ Ec0 , then Ω

(ij)
0 = 0, therefore, ‖Ω(ij)

0 + ∆(ij)‖F −
‖Ω(ij)

0 ‖F = ‖∆(ij)‖F . For {i, j} ∈ E0, by the triangle inequality,
‖Ω(ij)

0 + ∆(ij)‖F − ‖Ω(ij)
0 ‖F ≥ −‖∆(ij)‖F . Thus, similar to

bounding A3, we have

A4 ≥ −(1− α)mλn
∑

(i,j)∈E0

‖∆(ij)‖F

+ (1− α)m(λn/2)
∑

(i,j)∈Ec0

‖∆(ij)‖F . (46)

Bounding αA2 +A3 and (1−α)A2 +A4 separately, we can show
that

A2+A3 +A4 ≥ −‖∆‖F (λnm
√
sn0 + (1 +m)C0rn)

≥ −2(1 +m)C0rn‖∆‖F (47)

where we used the fact that since λn ≤ λnu1, λnm
√
sn0 ≤ C0(1 +

m)rn. Using (32), the bound (36) on A1, bound (47) on A2 +A3 +
A4, and ‖∆‖F = Rrn, we have with probability > 1−1/(mpn)τ−2,

G(∆) ≥ ‖∆‖2F
[

1

2(β−1
min +Rrn)2

− 2C0(1 +m)

R

]
. (48)

For the given choice of N2, Rrn ≤ RrN2 ≤ 0.1/βmin for n ≥ N2.
Also, 2C0(1 +m)/R = β2

min/4 by (10). Then for n ≥ N2,

1

2(β−1
min +Rrn)2

− 2C0(1 +m)

R
≥ β2

min

(
1

2.42
− 1

4

)
> 0 ,

implying G(∆) > 0. This proves (19). The choice of N3 for log-
sum penalty ensures that |∆ij | ≤ δλ = ε needed in (44) is satisfied
w.h.p.: if Rrn ≤ ε, then |∆ij | ≤ ‖∆‖F ≤ Rrn ≤ ε.

For SCAD Penalty: Here we address (43) differently. Using triangle
inequality, we have

|Ω̃ij | ≥ |Ω0ij |+ γ
(
|Ω0ij | − |∆ij | − |Ω0ij |

)
≥ |Ω0ij | − |∆ij | . (49)

Since |∆ij | ≤ ‖∆‖F ≤ Rrn, the choice λn = λnu2 implies that
λn ≥ Rrn, satisfying |∆ij | ≤ λn. Therefore, |Ω̃ij | ≥ |Ω0ij | −
λn. For n̄ ≥ N4, ρ′λ(|Ω̃ij |) = 0 (see (15)) if {i, j} ∈ Ē0, i.e,
|Ω0ij | 6= 0, since in this case |Ω̃ij | ≥ (a + 1)λn − λn = aλn.
Therefore, A3 = α

∑
(i,j)∈Ēc0

ρλ(|∆ij |) ≥ α
∑

(i,j)∈Ēc0
Cλ|∆ij | for

|∆ij | ≤ δλ, leading to

A3 ≥ α(λn/2)
∑

(i,j)∈Ēc0

|∆ij | . (50)

Mimicking the steps for bounding A3 above and under same condi-
tions, we have

A4 ≥ (1− α)m(λn/2)
∑

(i,j)∈Ec0

‖∆(ij)‖F . (51)

Similar to the lasso and log-sum case, we then have

A2+A3 +A4 ≥ −‖∆‖F (C0d1m
√
sn0 +mC0rn)

≥ −(1 +m)C0rn‖∆‖F (52)

where we used the fact that C0d1m
√
sn0 ≤ C0rn. Mimicking (48),

we have with probability > 1− 1/(mpn)τ−2, we have

G(∆) ≥ ‖∆‖2F
[

1

2(β−1
min +Rrn)2

− (1 +m)C0

R

]
≥β2

min

(
1

2.42
− 1

8

)
> 0 , (53)

implying G(∆) > 0. This proves (19). For the SCAD penalty, we
need |∆ij | ≤ δλ = λn in (50). Since |∆ij | ≤ ‖∆‖F ≤ Rrn, the
choice λn = λnu2 implies that λn ≥ Rrn, satisfying |∆ij | ≤ λn.
This completes the proof. �

Proof of Lemma 1: Consider h(Ω) = L(Ω) − µ
2
‖Ω‖2F for some

µ ≥ 0. The Hessian of L(Ω) w.r.t. vec(Ω) is∇2L(Ω) = Ω−1⊗Ω−1

with

φmin(∇2L(Ω)) =φ2
min(Ω−1) = 1/φ2

max(Ω) = 1/‖Ω‖2. (54)

Since ∇2h(Ω) = Ω−1 ⊗ Ω−1 − µI(mp)2 , it follows that h(Ω) is
positive semi-definite, hence convex, if

‖Ω‖ ≤ 1/
√
µ .

By property (v) of the penalty functions, g(u) := ρλ(u) + µ
2
u2 is

convex, for some µ ≥ 0, and by property (ii), it is non-decreasing on
R+. Therefore, by the composition rules [17, Sec. 3.2.4], g(|[Ω]ij |)
and g(‖Ω(q`)‖F ) are convex. Hence,

Pe(Ω) +
µe
2
‖Ω‖2F =

mpn∑
i 6=j

(
ρλ(
∣∣[Ω]ij

∣∣) +
µe
2

∣∣[Ω]ij
∣∣2)

is convex for µe = µ ≥ 0, and similarly,

Pg(Ω) +
µg
2
‖Ω‖2F = m

pn∑
q 6=`

(
ρλ(‖Ω(q`)‖F ) +

µg
2m
‖Ω(q`)‖2F

)
is convex for µg = mµ, where µ is the value that renders ρλ(u) +
µ
2
u2 convex. Now express L̄(Ω) as

L̄(Ω) =αL̄e(Ω) + (1− α)L̄g(Ω) , (55)

L̄e(Ω) =L(Ω)− µ

2
‖Ω‖2F + Pe(Ω) +

µ

2
‖Ω‖2F , (56)

L̄g(Ω) =L(Ω)− µ

2
‖Ω‖2F + Pg(Ω) +

µ

2
‖Ω‖2F . (57)

Now L̄e(Ω) is convex function of Ω if ‖Ω‖ ≤ 1/
√
µ, and L̄g(Ω) is

convex in Ω if ‖Ω‖ ≤ 1/
√
µg = 1/

√
mµ =: µ̄. Thus, for L̄(Ω) to

be strictly convex, using the (minimum) values of µ to make ρλ(u)+
µ
2
u2 convex, we require

‖Ω‖ ≤ µ̄

=


∞ : lasso√

(a− 1)/m : SCAD√
ε/(mλn) : log-sum,

(58)

The choice ‖Ω‖ < µ̄ makes L(Ω)− µ
2
‖Ω‖2F positive definite, hence

strictly convex. We take ‖Ω‖ = 0.99 µ̄, completing the proof. �
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