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ABSTRACT

Estimation of the conditional independence graph (CIG) of high-
dimensional multivariate Gaussian time series from multi-attribute
data is considered. All existing methods for graph estimation for
such data are based on single-attribute models where one associates
a scalar time series with each node. In multi-attribute graphical
models, each node represents a random vector or vector time se-
ries. In this paper we provide a unified theoretical analysis of multi-
attribute graph learning for dependent time series using a penalized
log-likelihood objective function. We consider both convex (sparse-
group lasso) and non-convex (log-sum and SCAD group penalties)
penalty/regularization functions. We establish sufficient conditions
in a high-dimensional setting for consistency (convergence of the in-
verse power spectral density to true value in the Frobenius norm),
local convexity when using non-convex penalties, and graph recov-
ery. We illustrate our approach using numerical examples utilizing
both synthetic and real data.

Index Terms— Sparse graph learning, multi-attribute graphs,
time series, undirected graph, inverse spectral density estimation.

1. INTRODUCTION

Graphical models are a useful tool for analyzing multivariate
data where conditional independence is a central concept [1–4].
Consider a graph G = (V, E) with a set of p vertices (nodes)
V = {1, 2, · · · , p} = [p], and a corresponding set of (undirected)
edges E ⊆ [p] × [p]. Also consider a stationary (real-valued),
zero-mean, p−dimensional multivariate Gaussian time series x(t),
t = 0,±1,±2, · · · , with ith component xi(t), and correlation
(covariance) matrix function Rxx(τ) = E{x(t + τ)xT (t)},
τ = 0,±1, · · · . Given {x(t)}, in the corresponding graph G,
each component series {xi(t)} is represented by a node (i in V ),
and associations between components {xi(t)} and {xj(t)} are rep-
resented by edges between nodes i and j of G. In a conditional
independence graph (CIG), there is no edge between nodes i and j
(i.e., {i, j} 6∈ E) if and only if (iff) xi(t) and xj(t) are conditionally
independent given the remaining p-2 scalar series x`(t), ` ∈ [p],
` 6= i, ` 6= j. (This is a generalization of CIG for random vectors
where {i, j} 6∈ E iff Ωij = 0; Ω = (E{x(t)x>(t)})−1 is the
precision matrix.)

Denote the power spectral density (PSD) matrix of {x(t)} by
Sx(f), where Sx(f) =

∑∞
τ=−∞Rxx(τ)e−ι2πfτ and ι =

√
−1.

In [5] it was shown that conditional independence of two time se-
ries components given all other components of the time series, is
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encoded by zeros in the inverse PSD, that is, {i, j} 6∈ E iff the (i, j)-
th element of Sx(f), [S−1

x (f)]ij = 0 for every f . Hence one can
use estimated inverse PSD of observed time series to infer the as-
sociated graph. Nonparametric approaches for graphical modeling
of time series in high-dimensional settings (sample size n is smaller
than or of the order of p) have been formulated in frequency-domain
in [6–11] using group lasso penalties. A sparse-group non-convex
log-sum penalty is investigated in [12] to regularize the problem,
motivated by [13].

In many applications, there may be more than one random vari-
able (or scalar time series) associated with a node. This class of
graphical models has been called multi-attribute graphical models
in [14, 15]. Such models have been considered in the literature only
for random vectors, not for time series graphical models. The ob-
jective of this paper is to fill this gap. In this paper we provide a
unified theoretical analysis of multi-attribute graph learning for de-
pendent time series using a penalized log-likelihood objective func-
tion. We consider both convex (sparse-group lasso [16,17]) and non-
convex (log-sum [13] and Smoothly Clipped Absolute Deviation
(SCAD) [18,19] group penalties) penalty functions. It is well-known
that use of non-convex penalties can yield more accurate results, i.e.,
they can produce sparse set of solution like lasso, and approximately
unbiased coefficients for large coefficients, unlike lasso [13, 18, 19].

Notation. The superscripts ∗,> and H denote the complex con-
jugate, transpose and Hermitian (conjugate transpose) operations,
respectively, and the sets of real and complex numbers are denoted
by R and C, respectively. Given A ∈ Cp×p, we use φmin(A),
φmax(A), |A|, tr(A) and etr(A) to denote the minimum eigenvalue,
maximum eigenvalue, determinant, trace, and exponential of trace of
A, respectively. We useA � 0 andA � 0 to denote that Hermitian
A is positive semi-definite and positive definite, respectively. For
B ∈ Cp×q , we define the operator norm, the Frobenius norm and
the vectorized `1 norm, respectively, as ‖B‖ =

√
φmax(BHB),

‖B‖F =
√

tr(BHB) and ‖B‖1 =
∑
i,j |Bij |, where Bij is the

(i, j)-th element of B, also denoted by [B]ij . For vector θ ∈ Cp,
we define ‖θ‖1 =

∑p
i=1 |θi| and ‖θ‖2 =

√∑p
i=1 |θi|2, and we

also use ‖θ‖ for ‖θ‖2. The notation x ∼ Nc(m,Σ) denotes a com-
plex random vector x that is circularly symmetric (proper), complex
Gaussian with mean m and covariance Σ, and x ∼ Nr(m,Σ) de-
notes real-valued Gaussian x with meanm and covariance Σ.

2. SYSTEM MODEL

Consider p jointly Gaussian, zero-mean stationary, vector sequences
{zi(t)}t∈Z, zi(t) ∈ Rm, i ∈ [p]. In a multi-attribute time se-
ries graphical model, we associate {zi(t)}t∈Z with the ith node of
an undirected graph G = (V, E) where V = [p] is the set of p
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nodes (vertices) and E ⊆ V × V is the set of undirected edges
that describe the conditional dependencies among the p sequences
{{zi(t)}t∈Z, i ∈ V }. Similar to the scalar case (m = 1), edge
{i, j} 6∈ E iff the sequences {zi(t)} and {zj(t)} are conditionally
independent given the remaining p − 2 vector sequences {z`(t)},
` ∈ V \{i, j}.

Define the mp-dimensional sequence

x(t) =
[
z>1 (t), z>2 (t), · · · , z>m(t)

]> ∈ Rmp . (1)

Associate {x(t)}t∈Z with an enlarged graph Ḡ =
(
V̄ , Ē

)
where

V̄ = [mp] and Ē ⊆ V̄ × V̄ . The `th component of {zj(t)}, denoted
by {[zj ]`(t)}, associated with the node j of G, is the scalar sequence
{xq(t)}, xq = [x]q , q = (j − 1)m + `, j ∈ [p] and ` ∈ [m].
The scalar sequence {xq(t)} is associated with node q of enlarged
graph Ḡ. Corresponding to the edge {j, k} ∈ V × V in G, there
are m2 edges {q, r} ∈ V̄ × V̄ in Ḡ where q = (j − 1)m + u and
r = (k − 1)m+ v with u, v ∈ [m].

As in Sec. 1, denote the power spectral density (PSD) matrix of
{x(t)} by Sx(f), where Sx(f) =

∑∞
τ=−∞Rxx(τ)e−ι2πfτ and

Rxx(τ) = E{x(t+ τ)xT (t)}. Here f is the normalized frequency,
in Hz. Given a matrixA ∈ C(mp)×(mp), we useA(jk) to denote the
m×m submatrix ofA whose (u, v)th element is given by

[A(jk)]uv = [A](j−1)m+u,(k−1)m+v , u, v ∈ [m]. (2)

By [5, Theorem 2.4], in the conditional independence graph (CIG)
G = (V, E) of the multi-attribute time series {x(t)}t∈Z originating
via (1), we have

{j, k} 6∈ E ⇔
(
S−1
x (f)

)(jk) ≡ 0 (3)

provided Sx(f) � 0 ∀f . (Note that while most of the discussion
and all of the numerical results in [5] pertain to scalar time series per
node, the theory is shown to apply to vector series per node also.)

2.1. Problem Formulation

Given time-domain data {x(t)}n−1
t=0 originating from amp−dimensional

stationary Gaussian sequence, our objective is to first estimate the
inverse PSD S−1

x (f) at distinct frequencies, and then select the edge
{j, k} in the multi-attribute time series graphical model G based on
whether or not

(
S−1
x (f)

)(jk)
= 0 for every f . The single attribute

case (m = 1) has been discussed in [11] with group lasso penalty
and in [12] with group log-sum penalty. Since for real-valued time
series, Sx(f) = SHx (−f), and Sx(f) is periodic in f with period
one, knowledge of Sx(f) in the interval [0, 0.5] completely spec-
ifies Sx(f) for other values of f . Hence, it is enough to check if(
S−1
x (f)

)(jk)
= 0 for every f ∈ [0, 0.5].

Given x(t) for t = 0, 1, 2, · · · , n − 1. Define the (normalized)
DFT dx(f`) of x(t), (ι =

√
−1),

dx(f`) =
1√
n

n−1∑
t=0

x(t) exp (−ι2πf`t) (4)

where
f` = `/n, ` = 0, 1, · · · , n− 1. (5)

Since {x(t)} is Gaussian, so is dx(f`). As discussed in [11], the
set of complex-valued random vectors {dx(f`)}n/2`=0, n even, is a
sufficient statistic for any statistical inference problem, including our
problem of estimation of inverse PSD.

We need the following assumption in order to invoke [20, Theo-
rem 4.4.1], used extensively later.

(A1) The mp−dimensional time series {x(t)}t∈Z is zero-mean
stationary and Gaussian, satisfying

∞∑
τ=−∞

|[Rxx(τ)]k`| <∞ for every k, ` ∈ V̄ .

It follows from [20, Theorem 4.4.1] that under assumption (A1),
asymptotically (as n → ∞), dx(f`), ` = 1, 2, · · · , (n/2) − 1,
(n even), are independent proper (i.e., circularly symmetric), com-
plex Gaussian Nc(0,Sx(f`)) random vectors, respectively. Also,
asymptotically, dx(f0) and dx(fn/2), (n even), are independent real
Gaussian Nr(0,Sx(f0)) and Nr(0,Sx(fn/2)) random vectors, re-
spectively, independent of dx(f`), ` ∈ {1, 2, · · · , (n/2) − 1}. We
will ignore these two frequency points f0 and fn/2.

Define

D =
[
dx(f1) · · · dx(f(n/2)−1)

]
∈ C(mp)×((n/2)−1) . (6)

We assume that Sx(f`) is locally smooth (a standard assumption
in PSD estimation [20]), so that Sx(f`) is (approximately) constant
over K = 2mt + 1, mt > 0, frequency points. Pick

f̃k =
(k − 1)K +mt + 1

n
, k = 1, 2, · · · ,M , (7)

M =

⌊ n
2
−mt − 1

K

⌋
, (8)

leading to M equally spaced frequencies f̃k in the interval (0, 0.5),
at intervals of K/n. We state the local smoothness assumption as
assumption (A2).

(A2) Assume that for ` = −mt,−mt + 1, · · · ,mt,

Sx(f̃k,`) = Sx(f̃k) , (9)

where f̃k,` =
(
(k − 1)K +mt + 1 + `

)
/n . (10)

Under assumptions (A1)-(A2), the joint pdf ofD is given by

fD(D) =

M∏
k=1

[
mt∏

`=−mt

exp (−gkl − g∗kl)
πmp |S−1

x (f̃k)|1/2 |S−∗x (f̃k)|1/2

]
, (11)

gkl =
1

2
dHx (f̃k,`)S

−1
x (f̃k)dx(f̃k,`) , (12)

where A−∗ stands for (A−1)∗. Parameterizing in terms of the in-
verse PSD matrix Φk := S−1

x (f̃k), the negative log-likelihood, up
to some irrelevant constants, is given by

− ln fD(D) ∝ L(Ω) (13)

:=

M∑
k=1

1

2

[
ln(|Φk|) + ln(|Φ∗k|)− tr

(
ŜkΦk + Ŝ∗kΦ

∗
k

)]
(14)

where

Ω = [Φ1 , Φ2 , · · · ,ΦM ] ∈ C(mp)×(mpM) , (15)

Ŝk =
1

K

mt∑
`=−mt

dx(f̃k,`)dHx (f̃k,`) . (16)

Note that Ŝk represents PSD estimator at frequency f̃k using un-
weighted frequency-domain smoothing [20].
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3. PENALIZED NEGATIVE LOG-LIKELIHOOD

In the high-dimensional case of K < p, to enforce sparsity and
to make the problem well-conditioned, we propose to minimize a
penalized version L̄(Ω) of L(Ω) where we penalize (regularize) at
both element-wise and group-wise. We have

L̄(Ω) = L(Ω) + αPe(Ω) + (1− α)Pg(Ω), (17)

Pe(Ω) =

M∑
k=1

mp∑
i6=j

ρλ
(∣∣∣[Φk]ij

∣∣∣) , (18)

Pg(Ω) = m
√
M

p∑
q 6=`

ρλ
(
‖Ω(q`M)‖F

)
(19)

where Ω(q`M) ∈ Cm×(mM) is defined as

Ω(q`M) := [Φ
(q`)
1 , Φ

(q`)
2 , · · · , Φ

(q`)
M ] , (20)

Φ
(q`)
i , i ∈ [M ], is defined as in (2), λ > 0, α ∈ [0, 1], m

√
M in

(19) reflects the number of group variables [21], and for u ∈ R,
ρλ(u) is a penalty function that is function of |u|. In (18), the
penalty term is applied to each off-diagonal element of Φk and in
(19), the penalty term is applied to the off-block-diagonal group of
m2M terms via Ω(q`M), defined in (20). The parameter α ∈ [0, 1]
“balances” element-wise and group-wise penalties [11, 16]

The following penalty functions are considered:

• Lasso. For some λ > 0,

ρλ(u) = λ|u|, u ∈ R . (21)

• Log-sum. For some λ > 0 and 1� ε > 0,

ρλ(u) = λε ln

(
1 +
|u|
ε

)
. (22)

• Smoothly Clipped Absolute Deviation (SCAD). For some λ >
0 and a > 2,

ρλ(u) =


λ|u| for |u| ≤ λ
2aλ|u|−|u|2−λ2

2(a−1)
for λ < |u| < aλ

λ2(a+1)
2

for |u| ≥ aλ .
(23)

In the terminology of [22], all of the above three penalties are “µ-
amenable” for some µ ≥ 0. As defined in [22, Sec. 2.2], ρλ(u) is
µ-amenable for some µ ≥ 0 if
(i) The function ρλ(u) is symmetric around zero, i.e., ρλ(u) =
ρλ(−u) and ρλ(0) = 0. (ii) The function ρλ(u) is nondecreas-
ing on R+. (iii) The function ρλ(u)/u is nonincreasing on R+. (iv)
The function ρλ(u) is differentiable for u 6= 0. (v) The function
ρλ(u)+ µ

2
u2 is convex, for some µ ≥ 0. (vi) limu→0+

dρλ(u)
du

= λ.
It is shown in [22, Appendix A.1], that all of the above three

penalties are µ-amenable with µ = 0 for Lasso and µ = 1/(a − 1)
for SCAD. In [22] the log-sum penalty is defined as ρλ(u) = ln(1+

λ|u|) whereas in [13], it is defined as ρλ(u) = λ ln
(

1 + |u|
ε

)
. We

follow [13] but modify it so that property (vi) in the definition of
µ-amenable penalties holds. In our case µ = λ

ε
for the log-sum

penalty since d2ρλ(u)

du2 = −λε/(ε + |u|)2 for u 6= 0. The above
three penalty functions also have the following properties: (vii) For
some Cλ > 0 and δλ > 0, the function ρλ(u) has a lower bound
ρλ(u) ≥ Cλ|u| for |u| ≤ δλ. (viii) ρ′λ(|u|) := dρλ(u)

d|u| ≤ λ for
u 6= 0.

Property (viii) is straightforward to verify. For Lasso, Cλ = λ
and δλ = ∞. For SCAD, Cλ = λ and δλ = λ. Since ln(1 + x) ≥
x/(1 + x) for x > −1, we have ln(1 + x) ≥ x/C1 for 0 ≤ x ≤
C1 − 1, C1 > 1. Take C1 = 2. Then log-sum ρλ(u) ≥ λ

2
|u| for

any |u| ≤ ε, leading to Cλ = λ
2

and δλ = ε. We may and will take
Cλ = λ

2
for lasso and SCAD penalties as well.

4. OPTIMIZATION

Consider the scaled augmented Lagrangian for this problem [23] af-
ter variable splitting, given by

L̄ρ({Ω}, {W }, {U}) = L({Ω}+ αPe(W )

+ (1− α)Pg(W ) +
ρ

2

M∑
k=1

‖Φk −Wk +Uk‖2F , (24)

Pe(W ) =

M∑
k=1

mp∑
i6=j

ρλ
(∣∣∣[Wk]ij

∣∣∣) , (25)

Pg(W ) = m
√
M

p∑
q 6=`

ρλ
(
‖W (q`M)‖F

)
(26)

where {W } = {Wk, k = 1, 2, · · · ,M} results from variable
splitting where in the penalties we useWk’s instead of Φk’s, adding
the equality constraintWk = Φk, {U} = {Uk, k = 1, 2, · · · ,M}
are dual variables, and ρ > 0 is the “penalty parameter” [23]. For
non-convex ρλ(u), we use a local linear approximation (LLA) (as
in [19, 24]), to yield

ρλ(u) ≈ ρλ(|u0|) + ρ′λ(|u0|)(|u| − |u0|) ⇒ ρ′λ(|u0|)|u| , (27)

where u0 is an initial guess, ρ′λ(|u0|) = λε/(|u0|+ ε) for LSP, and
for SCAD, ρ′λ(|u0|) = λ for |u| ≤ λ, = aλ−|u|

a−1
for λ < |u| < aλ,

and = 0 for |u| ≥ aλ. Therefore, with u0 fixed, we consider only
the last term above for optimization w.r.t. u. By [24, Theorem 1], the
LLA provides a majorization of non-convex penalty, thereby yield-
ing a majorization-minimization approach. Thus in LSP, with initial
guess Ŵk, we replace ρλ(|[Wk]ij |)→ λε/(|[Ŵk]ij |+ ε) =: λkij
and ρλ(‖W (q`M)‖F )→ λε/(‖Ŵ (q`M)‖F + ε) =: λq`M , leading
an adaptive sparse-group lasso convex problem. The initial guess
follows from the solution to lasso-penalized objective function.

We follow an ADMM (alternating direction method of multi-
pliers) approach, as outlined in [11], for both lasso and LLA to
LSP/SCAD. The main difference between [11] and this paper is that
in [11], Wk and Φk are p × p whereas in this paper we have Wk

and Φk as (mp) × (mp) matrices. Therefore, the approach of [11]
is applicable after we account for the dimension difference, and ad-
ditionally for that fact that Pg(W ) and Pg(Ω) are penalized slightly
differently in the two papers (the factorm

√
M is missing from [11]).

See [11] for further details.For non-convex penalties, we have an it-
erative solution: first solve with lasso penalty, then use the solution
for LLA and solve again the adaptive lasso type convex problem. In
practice, just two iterations seem to be enough.

4.1. BIC for Tuning Parameter Selection

Given n and choice of K and M , we follow the Bayesian informa-
tion criterion (BIC) as given in [11], to select λ (with α = 0.05
fixed), for all penalty functions.

Authorized licensed use limited to: Auburn University. Downloaded on May 12,2025 at 16:35:25 UTC from IEEE Xplore.  Restrictions apply. 



5. THEORETICAL ANALYSIS

We now allow p,M ,K (see (7), (8)), and λ to be functions of sample
size n, denoted as pn, Mn, Kn and λn, respectively. We take pn to
be a non-decreasing function of n, as is typical in high-dimensional
settings. Note that KnMn ≈ n/2. Pick Kn = a1n

γ and Mn =
a2n

1−γ for some 0.5 < γ < 1, 0 < a1, a2 < ∞, so that both
Mn/Kn → 0 and Kn/n→ 0 as n→∞ (cf. [11, Remark 1]).

Recall that we have the original multi-attribute graph G =
(V, E) with |V | = pn and the enlarged graph Ḡ = (V̄ , Ē) with
|V̄ | = mpn. We assume the following regarding G.

(A3) Denote the true edge set of the graph by E0, implying that
E0 = {{j, k} : (S−1

0 (f))(jk) 6≡ 0, j 6= k, 0 ≤ f ≤ 0.5}
where S0(f) denotes the true PSD of x(t). (We also use Φ0k

for S−1
0 (f̃k) where f̃k is as in (7), and use Ω0 to denote the

true value of Ω). Assume that card(E0) = |(E0)| ≤ sn0.

(A4) The minimum and maximum eigenvalues of mpn × mpn
PSD S0(f) � 0 satisfy

0 < βmin ≤ min
f∈[0,0.5]

φmin(S0(f))

≤ max
f∈[0,0.5]

φmax(S0(f)) ≤ βmax <∞ .

Here βmin and βmax are not functions of n (or pn).

Let Ω̂λ = arg minΩ :Φk�0 L̄(Ω). Theorem 1 establishes local
consistency of Ω̂λ.
Theorem 1 (Local Consistency). For τ > 2, let

C0 = 80 max
`,f

([S0(f)]``)
√
N0/ ln(mpn) (28)

where
N0 = 2 ln(16(mpn)τMn) . (29)

Define

R =8(1 +m)C0/β
2
min , (30)

rn =
√
Mn(mpn +m2sn0) ln(mpn)/Kn = o(1) , (31)

N1 = arg min
{
n : Kn > N0

}
, (32)

N2 = arg min {n : rn ≤ 0.1/(Rβmin)} , (33)

N3 = arg min
{
n : rn ≤ ε/R

}
, (34)

λn` =2C0

√
ln(mpn)/Kn , (35)

λnu1 =C0(1 +
1

m
)

√
(m2 +

mpn
sn0

)
ln(mpn)

Kn
, (36)

λnu2 = min (Rrn, λnu1) . (37)

Under assumptions (A1)-(A4), there exists a local minimizer Ω̂λ of
L̄(Ω) in the neighborhood of Ω0, satisfying

‖Ω̂λ −Ω0‖F ≤ Rrn (38)

with probability greater than 1− 1/(mpn)τ−2 if

(i) for the lasso penalty ρλ(t) = λ|t|, sample size n >
max{N1, N2} and λn satisfies λn` ≤ λn ≤ λnu1,

(ii) for the SCAD penalty ρλ(t), sample size n > max{N1, N2}
and the regularization parameter satisfies λn` ≤ λn ≤ λnu2,

(iii) sample size n > max{N1, N2, N3} and λn satisfies λn` ≤
λn ≤ λnu1 for the log-sum penalty ρλ(t).

For the lasso penalty, Ω̂λ is a global minimizer whereas for the other
two penalties, it is a local minimizer. •
The proof of Theorem 1 follows for most part from [11, Theorem 1]
which is based on the proof technique of [25].

We follow the proof technique of [22, Lemma 6] in establishing
Lemma 1.
Lemma 1 (Local Convexity). The optimization problem

Ω̂λ = arg min
Ω :Φk∈Bk

L̄(Ω) , (39)

Bk =
{

Φk : Φk � 0, ‖Φk‖ ≤ 0.99

√
2/(mµ

√
Mn )

}
,

√
2/(mµ

√
Mn ) =


∞ : Lasso√

2(a−1)

m
√
Mn

: SCAD√
2ε

m
√
Mnλn

: log-sum,
(40)

consists of a strictly convex objective function over a convex con-
straint set, for all three penalties, where C0 and λn are as defined in
Theorem 1. •

Lemma 1 and Theorem 1 lead to Theorem 2.
Theorem 2. Assume the conditions of Theorem 1. Then Ω̂λ as
defined in Lemma 1 is unique, satisfying ‖Ω̂λ − Ω0‖F ≤ Rrn
with probability > 1 − 1/(mpn)τ−2 if Rrn + 1/βmin ≤
0.99

√
2/(mµ

√
Mn ), as defined in Lemma 1. •

Sketch of Proof. If 1/βmin ≤ 0.99√
µ

, then Φ0k ∈ Bk since

‖Φ0k‖ ≤ 1/βmin, and also Φ̂k ∈ Bk since ‖Φ̂k‖ ≤ Rrn+1/βmin.
Thus, both Φ̂k and Φ0k, hence Ω̂λ and Ω0, respectively, are feasi-
ble. �

We now turn to graph recovery. Define

Ê =
{
{q, `} : ‖Ω̂(q`)‖F > γn > 0, q 6= `

}
, (41)

E0 =
{
{q, `} : ‖Ω(q`)

0 ‖F > 0, q 6= `
}
, (42)

σ̄n =Rrn , (43)

ν = min
{q,`}∈E0

‖Ω(q`)
0 ‖F , (44)

N4 = arg min
{
n : σ̄n ≤ 0.4ν

}
, (45)

where R and rn are as in (30) and (31), respectively.
Theorem 3. For γn = 0.5ν and n ≥ N4, Ê = E0 with probability
greater than 1 − 1/(mpn)τ−2 under the conditions of Theorem 1.
�
The proof of Theorem 3 is omitted for lack of space.

6. NUMERICAL EXAMPLES

We now present numerical results for both synthetic and real data to
illustrate the proposed approach.

6.1. Synthetic Data

Consider a graph with p = 64 nodes, each node with m = 4 at-
tributes. The time series data {x(t)} is generated using a vector
autoregressive model of order 3 (VAR(3)):

x(t) =

3∑
i=1

Aix(t− i) +w(t) , x(t) ∈ Rmp ,

where w(t) is i.i.d. zero-mean Gaussian with precision matrix
Ω̃. We create 8 clusters (communities) of 8 nodes each, each
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(a) M=4: Lasso penalty (b) M=4: Log-sum penalty

Fig. 1: Pollution graphs for the Beijing air-quality dataset [27] for year 2013-14: 8 monitoring sites and 11 features (m = 8, p = 11, M = 4,
n = 364). Number of distinct edges = 29 and 7 in graphs (a) and (b), respectively. Estimated ‖Ω̂(ijM)‖F is the edge weight (normalized
to have maxi6=j ‖Ω̂(ijM)‖F = 1), see (20). The edge weights are color coded , in addition to the edges with higher weights being drawn
thicker.

node with m = 4 attributes, where nodes within a community
are not connected to any node in other communities. We set
[Ω̃(q`)]uv = 0.5|u−v| for q = ` ∈ [8], u 6= v, u, v ∈ [m]
(notation as in 2), and it is zero otherwise. For q 6= `, we have
Ω̃(q`) = 0. We add γImp to Ω̃1 and choose γ to make the min-
imum eigenvalue of Ω̃1 + γImp equal to 0.5 . The parameters
of VAR(3) model are generated similarly by having A(q`)

i = 0

for q 6= `, and only 10% of the entries of A(qq)
i ’s are nonzero

with the nonzero elements independently and uniformly distributed
over [−0.6, 0.6]. We then check if the VAR(3) model is stable,
a necessary and sufficient condition for which is that the roots
of a(z) = |Imp −

∑3
i=1Aiz

−i| = 0 should all have modulus
< 1; this condition is equivalent to having all eigenvalues of the
corresponding (3mp) × (3mp) companion matrix to have modulus
< 1 [26, Sec. 8.2.3]. Additionally, in order to avoid a “long” impulse
response, we require the roots of a(z) to have modulus ≤ 0.95.
Suppose this condition is violated with |zmax| > 0.95 where
|zmax| = arg max`∈[3mp]{|z`| : a(z`) = 0}. In this case, we scale
Ai’s to Āi = γiAi, γ = 0.95/|zmax|. It is easy to see that the roots
of ā(z) = |Imp −

∑3
i=1 Āiz

−i| = a(z/γ) = 0 now all have mod-
ulus≤ 0.95. First 100 samples are discarded to eliminate transients.
This set-up leads to approximately 11% connected edges. In each
run, we calculated the true PSD S(f) for f ∈ [0, 0.5] at intervals

of 0.01, and then take {q, `} ∈ E if
√∑

f ‖(S−1(f))(q`)‖2F >

10−2(maxq,`∈[p]
√∑

f ‖(S−1(f))(q`)‖2F ), else {q, `} 6∈ E .
Simulation results based on 100 runs are shown in Table 1 where

the performance measure are F1-score and Hamming distance for
efficacy in edge detection. The F1-score is defined as F1 = 2 ×
precision × recall/(precision + recall) where precision = |Ê ∩
E0|/|Ê |, recall = |Ê ∩ E0|/|E0|, and E0 and Ê denote the true and
estimated edge sets, respectively. The Hamming distance is be-
tween Ê and E0, scaled by 0.5 to count only distinct edges. For
our proposed approach, we consider M = 4 for three samples sizes
n ∈ {128, 256, 1024}. For M = 4, we used K = 15, 31, 127 for
n = 128, 256, 1024, respectively. We fixed α = 0.05 and λ was
selected by searching over a grid of values to maximize the F1-score
(over 100 runs), or via BIC as in Sec. 4.1 ( [11]). We used lasso

Table 1: F1 scores and Hamming distances for fixed tuning param-
eters, for the synthetic data example, averaged over 100 runs.

n 128 256 1024
M=4: F1 score ±σ: λ’s picked to maximize F1

Lasso 0.579 ± 0.141 0.765 ± 0.131 0.968 ± 0.035
Log-sum 0.707 ± 0.052 0.868 ± 0.026 0.990 ± 0.008
M=4: Hamming distance ±σ: λ’s picked to maximize F1

Lasso 168.5 ± 040.3 097.4 ± 044.0 013.9 ± 014.7
Log-sum 113.3 ± 012.4 057.7 ± 011.1 004.5 ± 003.3

M=4: F1 score ±σ: λ’s picked to minimize BIC
Log-sum 0.439 ± 0.011 0.663 ± 0.050 0.958 ± 0.053
M=4: Hamming distance ±σ: λ’s picked to minimize BIC

Log-sum 500.0 ± 015.9 214.1 ± 050.7 017.2 ± 020.2

(convex) or log-sum (non-convex, ε = 0.0001) penalties. It is seen
that the non-convex penalty outperforms the convex penalty.

6.2. Real Data: Beijing air-quality dataset [27]

Here we consider Beijing air-quality dataset [27, 28], downloaded
from https://archive.ics.uci.edu/dataset/501/
beijing+multi+site+air+quality+data. This data set
includes hourly air pollutants data from 12 nationally-controlled air-
quality monitoring sites in the Beijing area. The time period is from
March 1st, 2013 to February 28th, 2017. The six air pollutants are
PM2.5, PM10, SO2, NO2, CO, and O3, and the meteorological data
is comprised of five features: temperature, atmospheric pressure,
dew point, wind speed, and rain; we did not use wind direction.
Thus we have eleven (= p) features (pollutants and weather vari-
ables). We used data from 8 (= m) sites: Changping, Dingling,
Huairou, Shunyi Aotizhongxin, Dongsi, Guanyuan, Gucheng. The
data are averaged over 24 hour period to yield daily averages xi(t),
i ∈ [88]. We used one year 2013-14 of daily data resulting in
n = 365 days. We pre-processed the data as follows. Given xi(t),
we transform it to x̄i(t) = ln(xi(t)/xi(t − 1)) for each i (leads
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to n = 364), and then detrend it (i.e., remove the best straight-line
fit). Finally, we scale the detrended scalar sequence to have a mean-
square value of one. All temperatures were converted from Celsius
to Kelvin to avoid negative numbers. If a value of a feature is zero
(e.g., wind speed), we added a small positive number to it so that
the log transformation is well-defined. Fig. 1 shows the CIGs for
lasso and log-sum penalties for M = 4 where with α = 0.05, λ
was selected via BIC: an edge exists iff ‖Ω̂(ijM)‖F > 0. It is seen
that lasso yields a much denser graph (29 edges) while the graph
resulting from the log-sum penalty is much sparser (7 edges). Cold,
dry air from the north of Beijing reduces both dew point and PM2.5

particle concentration in suburban areas while southerly wind brings
warmer and more humid air from the more polluted south that el-
evates both dew point and PM2.5 concentration [27]. This fact is
captured by the edge between dew point and PM2.5 in Fig. 1.

7. CONCLUSIONS

Estimation of the CIG of high-dimensional multivariate Gaussian
time series from multi-attribute data was considered. We provided a
unified theoretical analysis of multi-attribute graph learning for de-
pendent time series using a penalized log-likelihood objective func-
tion. Both convex and non-convex regularization functions were
considered. We established sufficient conditions for consistency, lo-
cal convexity when using non-convex penalties, and graph recov-
ery. Our approach was illustrated using numerical examples utiliz-
ing both synthetic and real (Beijing air-quality dataset) data. Non-
convex log-sum regularization yielded more accurate results com-
pared to convex sparse-group lasso regularization for synthetic data,
and sparser graph for real data.

8. REFERENCES

[1] J. Whittaker, Graphical Models in Applied Multivariate
Statistics. New York: Wiley, 1990.

[2] S.L. Lauritzen, Graphical models. Oxford, UK: Oxford Univ.
Press, 1996.

[3] P. Bühlmann and S. van de Geer, Statistics for High-
Dimensional data. Berlin: Springer, 2011.

[4] N. Meinshausen and P. Bühlmann, “High-dimensional graphs
and variable selection with the Lasso,” Ann. Statist., vol. 34,
no. 3, pp. 1436-1462, 2006.

[5] R. Dahlhaus, “Graphical interaction models for multivariate
time series,” Metrika, vol. 51, pp. 157-172, 2000.

[6] A. Jung, R. Heckel, H. Bölcskei, and F. Hlawatsch, “Com-
pressive nonparametric graphical model selection for time se-
ries,” in Proc. IEEE ICASSP-2014, Florence, Italy, May 2014.

[7] A. Jung, “Learning the conditional independence structure of
stationary time series: A multitask learning approach,” IEEE
Trans. Signal Process., vol. 63, no. 21, pp. 5677-5690, Nov.
1, 2015.

[8] A. Jung, G. Hannak and N. Goertz, “Graphical LASSO based
model selection for time series,” IEEE Signal Process. Lett.,
vol. 22, no. 10, pp. 1781-1785, Oct. 2015.

[9] J.K. Tugnait, “Graphical modeling of high-dimensional time
series,” in Proc. 52nd Asilomar Conference on Signals, Sys-
tems and Computers, Pacific Grove, CA, Oct. 29 - Oct. 31,
2018, pp. 840-844.

[10] J.K. Tugnait, “Consistency of sparse-group lasso graphical
model selection for time series,” in Proc. 54th Asilomar Con-
ference on Signals, Systems and Computers, Pacific Grove,
CA, Nov. 1-4, 2020, pp. 589-593.

[11] J.K. Tugnait, “On sparse high-dimensional graphical model
learning for dependent time series,” Signal Processing, vol.
197, pp. 1-18, Aug. 2022, Article 108539.

[12] J.K. Tugnait, “Sparse-group log-sum penalized graphical
model learning for time series,” in Proc. ICASSP 2022, pp.
5822-5826, Singapore, May 22-27, 2022.

[13] E.J. Candès, M.B. Wakin and S.P. Boyd, “Enhancing sparsity
by reweighted `1 minimization,” J. Fourier Anal. Appl., vol.
14, pp. 877-905, 2008.

[14] M. Kolar, H. Liu and E.P. Xing, “Graph estimation from
multi-attribute data,” J. Machine Learning Research, vol. 15,
pp. 1713-1750, 2014.

[15] J.K. Tugnait, “Sparse-group lasso for graph learning from
multi-attribute data,” IEEE Trans. Signal Process., vol. 69,
pp. 1771-1786, 2021. (Corrections, vol. 69, p. 4758, 2021.)

[16] J. Friedman, T. Hastie and R. Tibshirani, “A note on the
group lasso and a sparse group lasso,” arXiv:1001.0736v1
[math.ST], 5 Jan 2010.

[17] N. Simon, J. Friedman, T. Hastie and R. Tibshirani, “A sparse-
group lasso,” J. Computational Graphical Statistics, vol. 22,
pp. 231-245, 2013.

[18] J. Fan and R. Li, “Variable selection via nonconcave penal-
ized likelihood and its oracle properties,” J. American Statis-
tical Assoc., vol. 96, pp. 1348-1360, Dec. 2001.

[19] C. Lam and J. Fan, “Sparsistency and rates of convergence in
large covariance matrix estimation,” Ann. Statist., vol. 37, no.
6B, pp. 4254-4278, 2009.

[20] D.R. Brillinger, Time Series: Data Analysis and Theory, Ex-
panded edition. New York: McGraw Hill, 1981.

[21] M. Yuan and Y. Lin, “Model selection and estimation in re-
gression with grouped variables,” J. Royal Statistical Society:
Statistical Methodology, Series B, vol. 68, no. 1, pp. 49-67,
2006. ’

[22] P.-L. Loh and M.J. Wainwright, “Support recovery without
incoherence: A case for nonconvex regularization,” Annals of
Statistics, vol. 45, pp. 2455-2482, 2017.

[23] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternat-
ing direction method of multipliers,” Foundations and Trends
in Machine Learning, vol. 3, no. 1, pp. 1-122, 2010.

[24] H. Zou and R. Li, “One-step sparse estimates in nonconcave
penalized likelihood models,” Ann. Statist., vol. 36, no. 4, pp.
1509-1533, 2008.

[25] A.J. Rothman, P.J. Bickel, E. Levina and J. Zhu, “Sparse
permutation invariant covariance estimation,” Electronic J.
Statistics, vol. 2, pp. 494-515, 2008.

[26] R.S. Tsay, Analysis of Financial Time Series, 3rd Ed., Hobo-
ken, NJ: John Wiley, 2010.

[27] S. Zhang, B. Guo, A. Dong, J. He, Z. Xu and S.X. Chen,
“Cautionary tales on air-quality improvement in Beijing,”
Proc. Royal Soc. A, vol. 473, p. 20170457, 2017.

[28] W. Chen, F. Wang, G. Xiao, J. Wu and S. Zhang, “Air quality
of Beijing and impacts of the new ambient air quality stan-
dard,” Atmosphere, vol. 6, pp. 1243-1258, 2015.

Authorized licensed use limited to: Auburn University. Downloaded on May 12,2025 at 16:35:25 UTC from IEEE Xplore.  Restrictions apply. 


