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Abstract— This paper presents a novel aperiodic sens-
ing scheme for reconstructing the dynamics of a nonlinear
continuous-time system online using the Chebyshev pseudospec-
tral (PS) method. Unlike traditional system identification via
adaptive control techniques, where the sensor measures the
system states periodically, this research employs an aperiodic
sensing scheme for online data collection using the idea of
Chebyshev nodes that guarantee an arbitrary approximation
accuracy. A moving time window approach is introduced to
determine the sensing time instances within each time window
online. The number of nodes (sensing times) within a window
is incremented or decremented adaptively until the desired
approximation accuracy is reached. The least-square approach
is employed to estimate the coefficients of the Chebyshev basis
function for the time window. An adaptive identifier is also
proposed to estimate the system states using the piecewise
approximated system dynamics. The convergence of the state
estimation and parameter estimation errors is ensured analyt-
ically using the Lyapunov stability theory. Numerical results
are also included to show the efficacy of the sensing and
identification scheme with a 2D example.

I. INTRODUCTION

Over the past three decades, pseudospectral (PS) tech-
niques have emerged as efficient tools in nonlinear function
approximation and optimal control problems [1], [2]. Among
the spectrum of PS methods, only the global orthogonal
Legendre and Chebyshev polynomials have been rigorously
validated to ensure approximation feasibility, consistency,
and convergence [3]. The Chebyshev polynomials are found
to be more advantageous than others primarily due to three
reasons. Firstly, the Chebyshev approximation results in
optimal polynomial approximation in the L∞ norm [4].
Secondly, the Chebyshev polynomial nodes inherently cluster
towards the interval’s endpoints, a feature that mitigates the
Runge phenomenon [5]. Thirdly, in contrast to Legendre
nodes, Chebyshev nodes are amenable to closed-form eval-
uations. Consequently, the Chebyshev PS approach stream-
lines computations by obviating the necessity for intricate
numerical linear algebra methods pivotal for Legendre node
calculation [6].

In earlier works, Chebyshev polynomials are employed
to solve optimal control problems by approximating the
solution to the state differential equation offline [7], [8]. The
state information spanning the entire state space is collected
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apriori, and the values corresponding to Chebyshev nodes are
interpolated for approximation. Fast Chebyshev Transform
(FCT) approach [9] is employed to compute the coefficients
of the Chebyshev basis functions using the collected data.
However, online approximation of the system dynamics
directly in a forward-in-time manner is still an open problem.

Concurrent advancements in neural networks (NN) re-
sulted in the employment of Chebyshev and Legendre
polynomials in functional link artificial neural networks
(FLANN) as the basis for approximating unknown nonlinear
functions [10]. In FLANN, the weights are updated period-
ically with the measured system state/output and input in-
formation, leading to significant computational demand. Re-
cently, to reduce the computational burden of the NN-based
approaches, event-based weight tuning is introduced [11],
[12]. Although these approaches reduce the sampling instants
and computations while maintaining system stability, they
do not guarantee the desired NN approximation accuracy.
In addition, the adaptive event-triggering conditions used to
determine the sampling instants trigger the system to sample
the states frequently in the initial learning phase to ensure
NN wight convergence, leading to higher computations [13].

Motivated by the above limitations, in this paper, we
propose a novel online sensing and adaptive identifier design
to approximate the unknown system dynamics of a nonlin-
ear continuous-time system and estimate the system states
using the Chebyshev interpolation polynomials. The system
states are measured aperiodically to approximate the system
dynamics using the Chebyshev polynomial as a basis. The
aperiodic time instants are determined using the Chebyshev
nodes (solution to the Chebyshev polynomial) within a
moving time window. Since the data points use Chebyshev
nodes for approximation, the desired approximation accuracy
is ensured by selecting the appropriate number of nodes.

To achieve this, in the proposed approach, the number of
nodes within a time window is selected dynamically using
the average approximation error within respective windows
and comparing it with the desired approximation error. If
the average approximation error in the current time window
exceeds the desired error threshold, nodes are incremented
for the next approximation interval or vice versa. Next, an
adaptive identifier is designed using the approximated system
dynamics to estimate the continuous system states. The
identifier uses the aperiodically available state measurements
at the window transition time of each window to reset its
initial condition for the next window. The adaptive identifier
parameters are updated using the data collected within each
time window at the end of each interval using the least square

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy 

979-8-3503-1633-9/24/$31.00 ©2024 IEEE 8766

20
24

 IE
EE

 6
3r

d 
C

on
fe

re
nc

e 
on

 D
ec

is
io

n 
an

d 
C

on
tro

l (
C

D
C

) |
 9

79
-8

-3
50

3-
16

33
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
D

C
56

72
4.

20
24

.1
08

86
28

6

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on May 12,2025 at 17:16:18 UTC from IEEE Xplore.  Restrictions apply. 



approach. The uniform boundedness of state and parameter
estimation errors are shown using the extension of Lyapunov
theory for hybrid dynamical systems.

The main contributions of the paper are 1) determin-
ing aperiodic sensing time instants online using Chebyshev
nodes, 2) the introduction of a moving time window ap-
proach to adaptively determine the number of nodes or intra-
sampling points within each window, and 3) ensuring the
boundedness of the state and parameter estimation error. The
next section provides background information on Chebyshev
approximation and formulates the problem.

II. BACKGROUND AND PROBLEM FORMULATION

This section presents the background on function ap-
proximation using the Chebyshev polynomials [6], [14] and
formulates the system identification problem with online
sensing.

A. Background

Consider an autonomous continuous-time nonlinear sys-
tem represented by

ẋ(t) = F (x(t)), (1)

where x : R≥0 → Ω is the state vector, and the vector
function F (x) ∈ L∞

np
(Ω) is the internal system dynamics,

where Ω ⊆ Rn is the domain of F and L∞
np
(Ω) is the space

of Rnp -valued essentially bounded measurable functions over
Ω. The function F (x) is unknown but locally Lipschitz-
continuous. Note that the system in (1) can be considered
as the closed-loop dynamics of the system with a stabi-
lizing feedback control input u = µ(x), i.e., the system
ẋ = f(x, u) = f(x, µ(x)) = F (x). Note that the time
argument in the state x are dropped for brevity. To formulate
the identification problem, we assume the existence of a
stabilizing control input µ(x) for the system (1).

The goal is to design an adaptive identifier by finding
the best approximation polynomial F̂ (x) ∈ Pm of the
function F (x) with respect to the L∞ norm, i.e. ϵ(x) =

inf
F̂∈Pm

∥∥∥F (x)− F̂ (x)
∥∥∥
∞
, where ϵ(x) denotes the approxi-

mation error and Pm is the set of all polynomials of degree
at most m.

PS approaches using Chebyshev polynomials as basis are
widely employed to approximate nonlinear functions in an
interval. The Chebyshev polynomial U∗

N (z) of the second
kind for a 1D system (np = 1) is a polynomial of degree N

defined by UN (cos(θ)) = sin((N+1)θ)
sin(θ) , where θ = arccos (z),

θ ∈ [0, π]. Alternatively, the 1D Chebyshev polynomials can
be expressed using the recurrence relations given by [6]{

U0(z) = 1, U1(z) = 2z,

Uh(z) = 2zUh−1(z)− Uh−2(z), h = 2, 3, ..., N.
(2)

The roots of the Chebyshev polynomial Uh(z), often
referred to as Chebyshev nodes, can be calculated as zl =

cos
(

lπ
N+1

)
, l = 1, 2, . . . , N in the interval [−1, 1].

For example, given a function G(z) on the interval [−1, 1]
and N points z1, z2, . . . , zN in that interval, the interpolation

polynomial is that unique polynomial Ĝ of degree at most
N − 1, which has the value G(zl) at each point zl. When
the interpolation nodes z1, z2, . . . , zN are the roots of UN ,
it can be verified that the approximation error at each point
satisfies [15]

ϵ(z) = G(z)− Ĝ(z) =
G(N)(ξ)

N !

N∏
l=1

(z − zl), (3)

for some ξ (depending on z) in the interval [−1, 1]. The
term

∏N
l=1(z − zl) causes oscillation outside the nodes.

Therefore, the number of nodes is selected such that
maxz∈[−1,1]

∣∣∣∏N
l=1(z − zl)

∣∣∣ is minimized. It has been proven
in [16] that for the second kind Chebyshev polynomial, the
maximal value of this term is bounded by 1

2N
.

To generate the nodes over an arbitrary interval [a, b], an
affine transformation can be used, expressed by [6]

zl =
1

2
(a+ b) +

1

2
(b− a) cos

(
lπ

N + 1

)
, (4)

for l = 1, . . . , N . Therefore, in the interval [a, b] containing
N distinct nodes, the interpolation error is bounded as∣∣∣G(z)− Ĝ(z)

∣∣∣ ≤ 1

2NN !

(
b− a

2

)N

max
ξ∈[a,b]

∣∣∣G(N) (ξ)
∣∣∣ . (5)

B. Problem Statement

To formulize the approximation problem, consider the
simple 1D case for z ∈ R. The function G(z) ∈ R can
be approximated in an interval [a, b] using PS methods with
Chebyshev polynomial basis as follows:

G(z) =

∞∑
k=0

θ∗kUk(z) =

N∑
k=0

θ∗kUk(z) + ϵ(z), (6)

where θ∗k, k = 0, 1, · · · , N are the unknown coefficients,
and ϵ(z) is the approximation error due to truncation. Let
zl for l = 1, 2, · · · , N determined by (4), are the N
Chebyshev nodes (sample data points) to approximate G(z).
The approximation of the function G(z) over the interval
[a, b] can be expressed as

Ĝ(z) =

N∑
k=0

θkUk(z). (7)

where θk’s for k = 0, 1, · · · , N are the estimates of θ∗k.
To generalize the approximation for z =

[z1, z2, · · · , znp ]T ∈ Rnp , the function G(z) ∈ R can
be expressed using the one-dimensional Chebyshev
polynomials in (2) as

Ĝ(z) =

N∑
k1=0

· · ·
N∑

knp=0

(
θk1,k2,...,knp

Uk1(z
1) · · ·Uknp(z

np)
)
.

(8)
In (8), we assume the same number of nodes N for each
state zj , j = 1, 2, · · · , np for ease of exposition. However,
one can choose a different number of nodes.
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In a compact form, the Chebyshev polynomial basis
can be expressed as the Kroneker product in each di-
mension as UN (z) =

⊗np

j=1 ŪN

(
zj
)

where ŪN (zj) =[
U0

(
zj
)

U1

(
zj
)
· · · UN

(
zj
)]T

, with zj being the jth

element of z ∈ Rnp for j = 1, 2, · · · , np and ŪN (zj)
forms a 1D Chebyshev vector and UN (z) ∈ R(N+1)np .
For example in the case of a 2D system (np = 2) with
nodes N = 3, the Chebyshev basis vector U3 (z) =
Ū3

(
z1
)
⊗ Ū3

(
z2
)

= [1 2z1 U2(z
1) U3(z

1)]T ⊗
[1 2z2 U2(z

2) U3(z
2)]T ∈ R16.

Equation (8) can be expressed in vectorized form as

Ĝ(z) = θTUN (z) , (9)

where θ ∈ R(N+1)np . For a minimum interpolation error
defined in (5), we can measure the Chebyshev nodes zl and
the corresponding G(zl) for l = 1, 2, .., N in the interval
[a, b] to compute the coefficient vector θ.

On the other hand, for a dynamical system in (1), to
approximate the system dynamics F (x(t)) ∈ Rnp using the
Chebyshev PS method, i.e., estimating the coefficients, that
results in minimum interpolation error as in (5), we need
data consisting of Chebyshev nodes xl = [x1

l , · · · , x
np

l ]T

and corresponding F (xl) ∈ Rnp for l = 1, 2, · · · , N . Online
measurement of the Chebyshev nodes, i.e., the states xj

l for
l = 1, 2, · · · , N and j = 1, 2, · · · , np computed using (4),
and their derivatives forward-in-time is not feasible primarily
for three reasons. First, to compute the node (state) vector
xl ∈ Rnp , we need the information about the interval of
approximation of each element xj of the state vector x,
which is unknown. Second, even when the interval is known,
determining the corresponding time instants tl, for each xj

l ,
l = 1, 2, . . . , N such that a smart sensor can actively measure
the system states at these time instants and compute the
state derivatives is not possible. Third, traditional Chebyshev-
based approximation assumes a certain number of nodes N
to determine the degree of the Chebyshev polynomial that
guarantees the approximation accuracy. With the dynamics
F (x) unknown, it is impossible to determine the number of
nodes N required to approximate the function to a desired
accuracy without prior knowledge about the dynamics.

In addition, using Chebyshev nodes to approximate the
dynamics leads to aperiodic sensing of the system states
since the distance between two nodes is not constant within
an interval. Therefore, an adaptive identifier that can si-
multaneously approximate the system dynamics F (x) and
estimate the system states x must use the available aperiodic
measurements. This introduces an additional measurement
error in the adaptive identifier dynamics compared to the
traditional extended Luenberger observer, making the iden-
tification challenging.

Therefore, the problem at hand is threefold: 1) developing
an online aperiodic sensing scheme without the knowledge
of the state values at the Chebyshev nodes in the current
approximation interval, 2) introducing an online and forward-
in-time approach to compute the number of nodes to achieve
a desired approximation accuracy, and 3) developing an

adaptive identifier that uses these aperiodic state measure-
ments for estimating the system state and approximating
the dynamics simultaneously. In the following sections, a
solution to the above challenges is presented.

III. ADAPTIVE IDENTIFIER DESIGN

In this section, we present an online solution to the system
identification problem by introducing a moving window
approach for sensing the states online and approximating the
dynamics.

A. Proposed Solution

System

Identifier

Least Square Update

Sample at Che yshev nodes

Control 

input

Communicate 

measurements

at window times

b

Smart sensor

Fig. 1. Proposed aperiodic sensing for system identification.

The architecture of the proposed solution to the identifi-
cation problem is shown in Figure 1. A smart sensor is con-
nected to the system to sense the states actively at aperiodic
sampling instants. The sampling times twl , l = 1, 2, · · · , Nw

are computed using (4), where Nw is the number of time-
nodes in a moving time window (tw−1, tw], w = 1, 2, · · · .
The smart sensor measures the state vector x(twl ) and x(twl −
∆t), where ∆t is a small time interval. In addition, the smart
sensor samples x (tw) as an initial condition for the identifier.
The sensor stores all the measured states at time-nodes, i.e.,
x(twl ) and x(twl −∆t) for l = 1, 2, . . . , Nw and sends them as
one packet to the identifier at the end of each window. This
reduces the number of transmissions between the sensor and
the identifier. The identifier uses the least square approach to
compute the coefficients of the Chebyshev basis and resets
its states with the received system states at each tw.

B. Moving Window Scheme for Online Aperiodic Sensing

As discussed in previous section, the time instants
{tl}Nl=1 ⊂ {t} corresponding to the Chebyshev nodes xj

l ∈
[a, b] for l = 1, 2, . . . , N , j = 1, 2, · · · , np in (4) for
approximating the function F (x) could not be computed
directly. Since the dynamics F (x(t)) = F (t) is an implicit
function of time t, we propose to use time instants tl in an
interval computed using (4) as nodes (referred to as time-
nodes) for sampling the states. The corresponding states
x(tl) are used to formulate the Chebyshev basis function
for approximation.

To compute the time-nodes, the initial and final time must
be known. However, in an online approximation scheme the
final time is not known apriori. To address this challenge, we
propose a moving time window scheme to compute the time-
nodes dynamically within each window using (4). Define a
sequence of time instants {tw}∞w=0 with t0 = 0 and tw >
tw−1. We denote the interval [tw−1, tw], w = 1, 2, . . . as the
moving window which is employed to compute time-nodes
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twl using (4). The width of the wth window τw = tw− tw−1

can be fixed or time-varying. For clarity of the exposition,
we assume τw ∈ R ≥ 0 is constant in this paper and can be
determined by the designer.

Remark 1: The selection of a variable width time window
τw can be effectively guided by the principles of event-
triggered or self-triggered control approaches developed in
the literature [17].

The Chebyshev time-nodes within each time window
(tw−1 tw], w = 1, 2, · · · can be computed using (4) as

twl =
1

2

(
tw−1 + tw

)
+

1

2
(τw) cos

(
lπ

Nw + 1

)
(10)

for l = 1, 2, . . . , Nw, where Nw denotes the number of nodes
at the wth time window. Note that Nw governs the degree of
the Chebyshev polynomial and approximation accuracy and
is not known apriori. In Section III-E, we propose an online
node selection algorithm to address this challenge. Before
introducing it, the identifier design is presented next.

C. Nonlinear Online Identifier Design

The Chebyshev basis for each moving window (tw−1, tw]
can be rewritten as Uw

Nw
(x) =

⊗np

j=1 Ū
w
Nw

(
xj
)
, where

Ūw
Nw

(xj) =
[
1 xj Uw

2

(
xj
)
· · · Uw

Nw

(
xj
)]T

, with xj

is the jth element of x for j = 1, 2, · · · , np and Uw
N(w)(x) ∈

R(Nw+1)np .
The system dynamics F (x) ∈ Rnp within each window

using Chebyshev approximation can be expressed as

Fw(x) = Θw∗T
Uw

Nw
(x) + ϵw(x), tw−1 < t ≤ tw, (11)

where Θw∗
=

[
θw

∗

1 θw
∗

2 · · · θw
∗

np

]
∈ R(Nw+1)np×np

with θw
∗

j ∈ R(Nw+1)np is the parameter matrix for the trun-
cated Chebyshev polynomial with Nw nodes and ϵw(x) ∈
Rnp is the truncation error. The estimate of the system
dynamics in wth time window can be expressed as

F̂w(x) = ΘwT

Uw
Nw

(x), tw−1 < t ≤ tw (12)

where F̂w(x) ∈ Rnp is the approximated dynamics and Θw

denotes the estimated parameter matrix.
The system dynamics in (1) using the Chebyshev approx-

imation within (tw−1, tw] in (11) can be written as

ẋ = Θw∗T
Uw

Nw
(x) + ϵw(x), tw−1 < t ≤ tw (13)

for w = 1, 2, · · · . Since Θw is estimated only at the end
of the interval (tw−1, tw], the adaptive identifier dynamics
using (12) with previously updated parameter Θw−1 can be
expressed as

˙̂x = Θw−1TUw−1
Nw

(x̂)−Kw
(
xw−1 − x̂

)
, tw−1 < t ≤ tw

(14)

x̂(t) =

{
x(tw−1) t = tw−1

x̂(t) tw−1 < t ≤ tw
(15)

where xw−1 = x(tw−1) for w = 1, 2, · · · is the state
measurement received at the identifier from the smart sensor

at the time tw−1, and Kw is the observer gain matrix to be
designed in each time window (tw−1, tw]. Upon the arrival
of the new packet, the identifier state x̂ gets updated using
(15) with the state x(tw−1) at the time of the last node in
wth window.

Remark 2: Although the system states are measured at
each time-node twl within a window, the sensor transmits
all the states measured within a window as a single packet.
Therefore, we propose to update the identifier state x̂ at the
latest state information, i.e., the state measurement at the
window transition time instant tw only. Further, resetting the
identifier state vector x̂ with the lastest received system state
vector xw−1 serves as initializing the identifier states at each
window. This forces the identification error to reset to zero.

D. Parameter Update Law for Coefficient Estimation

To estimate the coefficients Θw in (12), in addition to the
state measurements at the time-nodes, we also need the state
derivative ẋ information. We compute the state derivatives at
each time-node.

The state vector derivative at lth Chebyshev time-node
in wth window can be computed as ẋw

l ≈
x(twl )−x(twl −∆t)

∆t ,
where x (twl −∆t) denotes the value of state variable picked
out in close proximity of the Chebyshev time-node twl .

Using the least-square method that minimizes the perfor-
mance index J =

∑Nw

i=1 x̃
wT

i x̃w
i +θw

T

0 Rw
0 θ

w
0 , the coefficients

θwj within the wth window can be estimated as

θwj =
(
Ūw
Nw

(xw) ŪwT

Nw
(xw) +Rw

0

)−1 (
Rw

0 θw0 + Ūw
Nw

(xw)Xj,w
)
,

(16)
for w = 1, 2, · · · and j = 1, 2, · · ·np where x̃i is the state
estimation error, θw0 is any arbitrary initial parameter, and
Rw

0 is a positive definite matrix of appropriate dimension
to ensure the inverse in (17) exists. The regressor vector
Ūw

Nw
(xw) =

[
Uw

Nw
(xw

1 ) Uw
Nw

(xw
2 ) · · · Uw

Nw
(xw

Nw
)
]
∈

R(Nw+1)np×Nw and Xj,w =
[
ẋj,w
1 ẋj,w

2 · · · ẋj,w
Nw

]T ∈
RNw are the concatenated regression and jth element of the
state derivative vectors.

In a matrix form, the coefficient matrix

Θw =
(
Ūw

Nw
(xw) ŪwT

Nw
(xw) +Rw

0

)−1 (
Rw

0 Θ0 + Ūw
Nw

(xw)Xw) ,
(17)

where Xw =
[
X1,w X2,w · · · Xnp,w

]
∈ RNw×np and

Θ0 is the augmented θ0.

E. Dynamic Node Selection

From (3), it is clear that the optimal number of nodes for
the 1D system can be determined by minimizing the term∏N

l=1(z − zl). Therefore, to select the number of nodes for
np-dimension that can guarantee a desired approximation
accuracy ϵth, we define the average approximation error
within a window as

ew =
1

τw

∫ tw

tw−1

(∏Nw

l=1
∥(x̂(t)− x(twl ))∥

)
dt. (18)

Using (3), the number of nodes Nw within a window
satisfies Nw! = F (N)(ξ)

∏Nw
l=1(z−zl)

ϵ(z) .
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Obtaining a closed-form solution for the number of nodes
from the above expression is not possible. Taking natural
log on both sides and approximating Nw! using Stirling’s
approximation [18], i.e., ln(Nw!) ≈ Nw ln(Nw) −Nw, one
can develop a recursive solution to update the Nw. We
propose Algorithm 1 for adaptively updating the number
of nodes in each window. Here ϵth denotes the desired
approximation error threshold, α > 0

is the step size, and κ > 1 is the hysteresis factor to create
a dead zone around the error tolerance threshold.

Algorithm 1: Node Selection for Next Time Window
Input: Initialize number of node Nw, prediction error
ew, error threshold ϵth, scale factor α, parameter κ

if ew > ϵth then
Nw+1 ← Nw +

⌊
α ln

(
ew
ϵth

)⌋
else if ew < ϵth

κ then
Nw+1 ← Nw +

⌊
α ln

(
ew
ϵth

)⌋
if Nw+1 < 2 then

Nw+1 ← 2
end

end
if ϵth

κ ≤ ew ≤ ϵth then
Nw+1 ← Nw

end

Remark 3: From the recursive node update Nw, it is
routine to check that the number of the nodes increases when
the average error ew > ϵth and decreases as the average
error ew < ϵth

κ . The number of nodes remains constant for
ϵth
κ ≤ ew ≤ ϵth.

The dead zone prevents frequent adjustments of the num-
ber of nodes due to small fluctuations around the error
threshold.

IV. MAIN RESULTS

Before we present the main results, we define the fol-
lowing three errors. The state estimation error for the wth

window is given by

x̃ = x− x̂, tw−1 < t ≤ tw, (19)

The state measurement error due to the aperiodic availability
of the state at the identifier is defined as

ews = xw−1 − x, tw−1 < t ≤ tw, (20)

and the parameter estimation error is defined as

Θ̃w = Θw∗
−Θw, tw−1 < t ≤ tw. (21)

Remark 4: In event-triggered control [13], the measure-
ment error ews is used to design the triggering condition
that determines the sampling instants. For identification of
a stable system, the error ews is bounded, i.e., ∥ews ∥ < ews,M .

The following lemma guarantees the convergence of the
parameter estimation error to its ultimate bound.

Lemma 1: Consider the system in (1) in a parametric form
(13) and the identifier in (14) and (15) over the time window

(tw−1, tw] for w = 1, 2, · · · . Let the parameter Θw be
updated using (17) in wth time window. Then, the parameter
estimation error Θ̃w is uniformly bounded (UB).
Proof. The proof uses a discrete-time Lyapunov function
to show the boundedness of the parameter estimation error
within each time window. The complete proof is omitted due
to space constraints.

Next, the boundedness of the state and parameter estima-
tion errors are presented in the following theorem.

Theorem 1: Consider the system dynamics in (1), approx-
imated using PS method in (13), and adaptive identifier
dynamics in (14) and (15). Let the adaptive identifier param-
eters be updated using (17). Then the state x̃ and parameter
estimation errors Θ̃w are UB, provided the gain matrix Kw in
each time window (tw−1, tw] satisfies the Lyapunov equation

PwKw +KwT

Pw = −Qw (22)

where Pw and Qw are symmetric positive definite matrices
satisfying λmin(Q

w) > 4.
Proof. The proof uses the Lyapunov approach for hybrid

systems to ensure UB of the parameter and state estimation
errors within the moving windows and window transition
times. A Lyapunov function candidate that is a function
of both Θ̃w and x̃ in continuous time within each moving
window is used. The boundedness of both errors during
the window transitions are shown by combining the results
with Lemma 1. The complete proof is omitted due to space
constraints.

V. SIMULATION RESULTS

Consider the following continuous-time 2D system to be
identified using the Chebyshev approximation

ẋ1 = −x1 sin (x1)− x3
2 cos (x1) , ẋ2 = −x1x

2
2 − x2. (23)

The following parameters were selected for the simulation.
The time window τw = 0.1 was selected as a constant, and
the desired approximation error was chosen as ϵth = 10−4.
The simulation was conducted over a total duration of T =
3s with a fixed time step of 0.001s. For implementing the
proposed approximation method, the initial nodes were set
as two. The initial condition of the identifier in (14) was
selected as [1 1]T . In addition, the initial value of Θw for
w = 0 was selected as

[
0.0005× 19×1 −0.0005× 19×1

]
where 1 is the vector with all element 1. The initial condition
of the true system was selected as [2 2]T . The node selection
parameters in Algorithm 1 were considered as κ = 100
and α = 0.5. To compute the identifier gain Kw using
(22) within each window, the matrices Pw and Qw were
selected as Pw = diag(10, 10), Qw = diag(5, 4.5), R0 =
0.001∗I(Nw+1)2 , and θ0 = I where I is an identity matrix of
the appropriate dimension for a respective window. ThThis
resulted in a constant Hurwitz matrix for each window w.
The simulation results are shown in Figures 2 to 4.

From Figure 2, it can be seen that the approximated system
dynamics converge close to the actual dynamics within 0.1 s.
The error in the first moving window is large due to arbitrary
intial parameter Θ0. With the increased number of nodes
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Fig. 2. Convergence of Chebyshev approximated dynamics F̂ (x̂) to actual
dynamics F (x).

in the following time windows, the approximation error is
reduced.

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2

2.5

3

3.5

Fig. 3. Plot of the number of nodes at each time window

Figure 3 depicts the increment and decrement of nodes
in each moving time window. At the 5th window, the
estimation error reaches 8.6 × 10−5, which is less than the
error threshold. But as κ is selected 100, the nodes aren’t
decreased until the 16th interval, in which the estimation
error is 8.8 × 10−7 which is less than εth × 1

κ = 10−6.
After 16th interval, the number of nodes is dropped to 2
at the steady state. This demonstrates the efficacy of the
proposed online approximation with minimal and aperiodic
measurements of the states.

The state estimation errors, plotted in Figure 4, reset to
zero at the start of each moving window since the estimated
states are reset to the system.
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Fig. 4. Convergence of the state estimation errors x̃.

From the simulation results, it can be concluded that
the adaptive identifier effectively approximates the system
dynamics and state with a reduced number of measurements
and desired approximation accuracy.

VI. CONCULSION AND FUTURE DIRECTIONS

This paper presented an online aperiodic sensing method
for approximating the unknown nonlinear dynamics of a
continuous-time nonlinear system using the Chebyshev poly-
nomial of the second kind. The proposed adaptive identifier
was able to approximate the system dynamics to achieve the
desired approximation accuracy using a reduced number of
data collected aperiodically at the time nodes. The numerical
results also validated the analytical design. We plan to inves-
tigate the impact of time-varying windows on approximation
in our future research.
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