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Modified alternating least squares (MALS) outperforms
alternating least squares (ALS) in the analysis of infrared
and Raman image spectral data. MALS offers superior
stability thanks to ridge regression and a substantial speed
advantage due to the kernel nature of the algorithm,
reducing computational overhead. MALS excels in
resolving basis vectors even in low signal-to-noise, nearly
collinear data, whereas ALS often falls short. For
spectroscopic imaging, both MALS and other ALS methods
rely on spatial resolution between sample components, as
low spatial resolution leads to increased mixing of
components. Spectroscopic imaging combines
spectroscopy and digital imaging to extract chemical
composition. Multivariate curve resolution (MCR)’s
foundation in ALS regression makes it a vital tool for this
analysis, enabling a comprehensive examination of
complex spectroscopic images. This tutorial delves into the
mathematical techniques necessary for extracting chemical
insights from infrared and Raman spectroscopic images.
While this discussion focuses on two-dimensional spatial
data, the methodology can be extended to three-
dimensional data.

Spectroscopic imaging combines spectroscopic techniques
such as infrared and Raman spectroscopy with digital imaging
to obtain the chemical composition of a sample—for example,
an emulsion (1) or an automotive paint chip (2), whose
constituents lie in localized and distinct regions of the sample.
The ability to mathematically resolve and analyze the chemical
information contained in these samples depends on both
spatial and spectral specificity and selectivity. Although
spectroscopic imaging is not limited to microscale samples,
most imaging studies are performed using a microscope to
achieve optimal spatial resolution of the sample image. The
spatially resolved spectra are collected and arranged in a data
matrix where each row of the matrix is a spatially resolved
spectrum. Whether the sample is moved sequentially along the
x-dimension or along the x and y dimensions into the beam of
the microscope by rastering (if a motorized stage and mapping
software are available) or whether an image of the sample is
focused onto an array detector, the spectra collected are
treated in the same way, as the inherent data structure is the
same. This tutorial focuses on the mathematics used to extract
chemical information from Raman and infrared spectroscopic
images. Although several reviews (3,4), book chapters (5,6), and
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books (7,8) have been published on this subject, this tutorial
will enumerate current practices in the field of infrared and
Raman image analysis.

A typical infrared and Raman image dataset consists of a
spectrum associated with each (x, y) spatial dimension.
Although the data suggest a three-dimensional problem,
numerically the problem is two-dimensional, as the spatial
dimensions are correlated and spatial information is not used
in the solution to the problem. Furthermore, imaging data can
be collected as a spectrum at each point in three spatial
dimensions; however, the solution reduces to a two-
dimensional problem. The two-dimensional spatial case will be
the subject of this tutorial. However, the methodology
discussed in this article can be readily extrapolated to three-
dimensional spatial data.

Multivariate Curve Resolution

An important software tool used to extract and analyze
information from infrared and Raman spectral image data is
multivariate (self-modeling) curve resolution. The heart of
multivariate curve resolution (MCR) is alternating least squares
(ALS) regression (9,10). ALS is currently the most widely used
method to solve infrared and Raman spectral image analysis
problems. As opposed to traditional approaches which are
restricted to partial visualization and analysis of the data, ALS
utilizes the entire measurement.

The starting point for understanding ALS is principal
component analysis (PCA) (11). The number of chemical
components comprising the sample is determined by
estimating the rank of the data matrix representing the image,
which can be accomplished by decomposing the data matrix
into a score matrix (designated by C in equation 1), loading
matrix (designated by S in equation 1), and residual matrix
(designated by E in equation 1), with the rank equal to the
number of significant principal components present in the data
(see equation 1, where t is the number of infrared [IR] or
Raman spectra collected over the image, w is the number of
wavelengths in each spectrum, and p is the number of
components comprising the sample). Determining the number
of significant principal components (such as, for example, the
number of chemical components) is often a problem because
of accidental correlations between signal and noise.
Furthermore, PCA constitutes a purely mathematical solution
which is often devoid of physical or chemical meaning because
there are more wavelengths than constituents. The solution to
both problems is the development of a suitable rotation.

ALS transforms the score and loading matrices more
meaningfully by seeking a rigorous algebraic solution to the
problem of estimating the factors that best reconstruct the
data matrix. To facilitate accuracy, both a non-negativity
constraint and a unimodality constraint can be applied to both
the score and loading matrices. The non-negativity constraint
forces the elements of both the score and loading matrix to be
greater than or equal to zero. Applying this constraint is logical
since both absorbance and concentration cannot be less than
zero. A unimodality constraint can also be applied to the score
matrix to facilitate the identification of regions in the spectral
image that correspond to spectra enriched with one of the
components comprising the sample. However, the unimodality
constraint should only be imposed when each sample
component has a peak shaped concentration profile with a
single maximum.

ALS decomposes a data matrix (image slice), X, into three
matrices (see equation 1), where C contains the concentration
profile of each sample component and S contains the spectral



profile of each component. Equation 1 is solved iteratively
using equations 2 and 3. To perform ALS, an initial estimate of
C must be provided by the user, and S is then computed (see
equation 2). The computed value of S is used to obtain an
improved estimate of C. From the product of C and S, an
estimate of the PCA-reproduced data matrix, X , is
calculated. This process is repeated until convergence is
achieved. To facilitate convergence, constraints such as
nonnegative absorbance and concentration and unimodality
are applied to the data.

Our previous experience with ALS has shown that initial
estimates of the concentration (score) matrix are crucial to
rotate C and S  toward a feasible solution. Although there is no
one technique that is successful with all datasets, our
experience is that the varimax extended rotation (VER) provides
a good initial estimate of C in ALS. The goal of VER (12,13) is to
find regions in a spectral image that contain only a single
component, and use these regions to obtain the spectral
profile of each component. This is accomplished through a
three-step procedure. First, the spectral data are preprocessed.
Preprocessing involves several steps. Each IR spectrum is
normalized to 100. Normalization to constant row sum ensures
that each spectrum is weighted equally in the analysis, but the
dimensionality of the data is reduced by one. Next, each
wavelength is range scaled. Range scaling allows for the
extremum points in the data to be identified, which is
important since these points may be pure components or
nearly pure components. Range scaling opens up the data,
recovering the dimension lost in the previous step. Finally, each
row vector is normalized to unit length. Normalization of the
data to unit length accounts for changes in the optical path
length, ensuring that any observed variation in the data is due
only to changes in the composition of the constituents.
Normalization to unit length also allows each spectrum to
serve as a potential basis vector for a new coordinate system.
Normalizing each row vector to unit length also reduces the
dimensionality of the data by one. Using this preprocessing
scheme, the data are closed, opened, and closed again.

The second step of VER involves PCA, which reduces the
dimensionality of the data while simultaneously retaining the
information present in the original data. In the third and final
step, a new coordinate system is developed for the data using
a varimax rotation (14) followed by an extended rotation
(15,16) to assist in the identification of the regions containing
only a single component while simultaneously rotating the
score and loading matrices toward a feasible solution using
these regions. The transformed score matrix from VER serves as
an initial estimate of C in ALS.

Modified Alternating Least Squares

Although ALS is reasonably fast and produces reliable results
for large data sets, the method suffers from drawbacks that can
degrade performance and reliability for many types of imaging
data sets. Processing speeds for ALS are often slow, due to
convergence problems and sensitivity to highly correlated data.
When constraints such as non-negativity or unimodality are
applied, ALS may be slow to converge even though each
individual iteration is fast. Modified ALS (MALS) (17) is a
solution to the constrained non-negative least squares
optimization problem for infrared and Raman imaging. MALS is
appealing, as it is fast, accurate, and robust.

MALS is a modification of ALS (see equations 4 and 5). This
modification involves the addition of two terms to equations 2
and 3, where S  and C  are the previous estimates of S and C
and w  and w  are weights that are determined dynamically.

PCA

T

0 0

s c



The first term in equation 4 (w I ) and the second term in
equation 5 (w I ) transform ALS into a ridge regression
algorithm that allows the least squares solution to be robust
towards collinear data. The second term in equation 4 (w S )
and the first term in equation 5 (w C ) compensate for the bias
that occurs when using ridge regression. As the least squares
solution moves toward convergence, the bias decreases until it
is zero or near zero at the time of convergence. The values of
the weights (w  and w ) during each iteration are adjusted such
that they are proportional to the magnitude of the difference
between the updated C matrix and the previous iteration of C
or the updated S matrix and the previous iteration of S, but are
scaled to the size of the factor space preventing the weights
from becoming too small or too large.

Using Raman imaging data of water in oil emulsions, the
efficacy and efficiency of MALS to resolve spectral images was
demonstrated (1). The data were collected by mapping a 31 ×
35 μm area in the X and Y dimensions with 6 cm  resolution,
using a Kaiser HoloScope 785 nm Raman system with an
optical fiber coupled to a Zeiss Microscope. The microscope
was equipped with a 100X/0.80 objective. The data set
consisted of 1085 spectra of 1201 wavelengths per spectrum
for a total of 1.3 million data points. The CCD exposure time on
the Raman system was set to 18 sec at each pixel location. The
oil-in-water emulsion consisted of an alkyl ester, alkyl
ethoxylate, alkyl parabens, glycerol, and water. It was
determined that four principal components were necessary to
describe the data matrix for the emulsion. Recovered spectra of
these four components from MALS were compared to spectra
of the original components comprising the emulsion, and good
matches were obtained. A comparison of the two sets of
estimates (MALS versus ALS) showed that MALS performed
significantly better at estimating the component spectra than
ALS.

In another study (2), infrared spectra from all layers of an intact
multilayered automotive paint chip were collected in a single
analysis by scanning across each layer of a cross-sectioned
automotive paint chip using an iN-10 MX Fourier transform
infrared (FT-IR) imaging microscope (Thermo-Nicolet).
Applying MALS to the IR spectral data, the IR spectrum of each
layer of an original equipment manufacturer (OEM) paint chip
was successfully extracted from a line map of the spectral
image. In this study, small paint chips (1 mm or less) were
cross-sectioned using an ultramicrotome, which does not
require epoxy or other embedding media for the paint chip,
thereby simplifying the analysis. However, extracting the IR
spectra for each layer of an OEM paint chip by ALS was
problematic for these thin peels. MALS was able to recover the
IR spectrum of each layer. By using a new sample preparation
technique and the appropriate multivariate curve resolution
method, high quality IR spectra of the layers of modern
automotive paints were obtained from paint fragments that are
smaller than what is practical to analyze by conventional FT-IR
spectroscopy.

Conclusions

MALS is superior to ALS for the analysis of infrared and Raman
image spectral data because of the stability of ridge regression
methods, and the speed advantage due to the kernel nature of
the MALS algorithm that reduces the computational overhead
of typical ridge-regression (and ALS) methods. MALS can
resolve the basis vectors characteristic of the components
comprising the sample even when the data is low signal-to-
noise and nearly collinear. For image data with these attributes,
MALS in most cases can produce a satisfactory convergent
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solution, whereas ALS often fails. The performance of MALS for
spectroscopic imaging problems, like other ALS methods, is
also influenced by the spatial resolution between sample
components, since low spatial resolution produces a greater
mixing of components within the image.
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