

1 **Large global scale vegetation sensitivity to daily rainfall variability**

2
3 Andrew F. Feldman^{1,2*}, Alexandra G. Konings³, Pierre Gentine⁴, Mitra Asadollahi⁴, Lixin
4 Wang⁵, William K. Smith⁶, Joel A. Biederman⁷, Abhishek Chatterjee⁸, Joanna Joiner⁹,
5 Benjamin Poulter¹

6
7 ¹Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD,
8 USA

9 ²Earth System Science Interdisciplinary Center, University of Maryland, College Park,
10 MD, USA

11 ³Department of Earth System Science, Stanford University, Stanford, California, USA

12 ⁴Department of Earth and Environmental Engineering, Columbia University, New York,
13 New York, USA

14 ⁵Department of Earth and Environmental Sciences, Indiana University Indianapolis,
15 Indianapolis, Indiana, USA

16 ⁶School of Natural Resources and the Environment, University of Arizona, Tucson,
17 Arizona, USA

18 ⁷Agricultural Research Service, U.S. Department of Agriculture, Tucson, Arizona, USA

19 ⁸Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

20 ⁹Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight
21 Center, Greenbelt, MD, USA

22
23 *Corresponding Author: Andrew F. Feldman, andrew.feldman@nasa.gov

24
25 **Rainfall events are globally becoming less frequent but more intense under a**
26 **changing climate, thereby shifting climatic conditions for terrestrial vegetation**
27 **independent of annual rainfall totals¹⁻³. However, it remains uncertain how changes**
28 **in daily rainfall variability are affecting global vegetation photosynthesis and**
29 **growth³⁻¹⁷. Here, we use several satellite-based vegetation indices and field**
30 **observations indicative of photosynthesis and growth, and find that global annual-**
31 **scale vegetation indices are sensitive to the daily frequency and intensity of**
32 **rainfall, independent of the total amount of rainfall per year. Specifically, we find**
33 **that satellite-based vegetation indices are sensitive to daily rainfall variability**
34 **across 42% of the vegetated land surfaces. On average, vegetation's sensitivity to**
35 **daily rainfall variability is almost as large (95%) as vegetation's sensitivity to annual**
36 **rainfall totals. Moreover, we find that wet day frequency and intensity are projected**
37 **to change with similar magnitudes and spatial extents compared to annual rainfall**
38 **changes. Overall, our findings suggest that daily rainfall variability and its trends**
39 **are affecting global vegetation photosynthesis, with potential implications for the**
40 **carbon cycle and food security.**

41 Earth's vegetation regulates the global water and carbon cycles, thus strongly
42 influencing weather and climate¹⁸. Climate change is altering both rainfall mean and
43 variability, which influences vegetation function including plants' ability to provide food
44 and take up atmospheric carbon dioxide^{19–22}. Impacts of annual rainfall totals on
45 vegetation have been extensively studied^{19,23–25}. However, some studies have pointed
46 out that annual rainfall totals only partially explain the interannual variability of
47 photosynthesis, at times less than 50% even in water-limited ecosystems^{26–28}.
48 Furthermore, how plants respond to water availability in Earth system models is a
49 dominant driver of global carbon cycle uncertainty^{21,29,30}, and thus changes in moisture
50 might be having a greater impact on greening trends relative to CO₂ fertilization^{31–33}.
51 Potentially, there are overlooked aspects of rainfall's influence on annually averaged
52 vegetation function that limit prediction of plant behavior and influence on the carbon
53 cycle.
54
55 While trends in annual rainfall totals are heterogeneous and uncertain³⁴, a more robust
56 trend in rainfall variability has emerged: daily rain events, or wet days, are becoming
57 less frequent, but more intense^{1–3} (Extended Data Figs. 1 and 2). As is evident from
58 field experiments, plants are sensitive to this daily rainfall variability regardless of
59 changes in annual rainfall totals¹⁰. More intense rainfall events generally increase
60 infiltration and soil moisture^{4,10,35}. Longer dry spells can also result in more plant stress
61 from higher vapor pressure deficit and incoming surface solar radiation^{11,36}. However,
62 studies broadly conflict^{3,12}, with less frequent, more intense rain events causing
63 positive⁴, negative¹³, or no response¹⁴ in vegetation function (function refers here to
64 photosynthesis and growth). Some studies indicate that these daily rainfall variability
65 changes only marginally influence vegetation function^{11,13,15,16}. Others show plant
66 responses of up to 30%^{5,17}, which could have a substantial impact on the carbon cycle.
67 Furthermore, most methods are limited in their ability to determine global plant
68 responses to daily rainfall variability. Field manipulation experiments have limited spatial
69 scale and extent⁶. Satellite-based studies tend to evaluate spatial rather than temporal
70 relationships^{7,8,11,13,16}. Process models were developed to evaluate seasonal dynamics
71 and might struggle to capture sub-weekly wetting and drying cycles^{37,38}. Ultimately,
72 despite large impacts of mean moisture availability on plants^{19,39}, it is unclear how
73 changes in daily-scale rainfall variability impact global vegetation and carbon budgets.
74
75 Here, we ask: to what degree is global vegetation function sensitive to climatic shifts in
76 daily rainfall frequency and intensity, especially when compared to variations in annual
77 rainfall totals? Is global vegetation function higher or lower in years with less frequent,
78 more intense rainfall?
79

81 To address these questions, consensus is gained from four different satellite sources
82 that are observational, have decade-long records, span global biomes, and vary in
83 spectral range and resolution; two are normalized difference vegetation index (NDVI),
84 and two are solar induced fluorescence (SIF) (Methods). We refer to satellite NDVI and
85 SIF observations as vegetation indices for simplicity, acknowledging that their
86 reflectance and emission properties are proxies, to varying degrees, of photosynthetic
87 carbon uptake, greenness, vegetation cover, and biomass^{40,41}. Furthermore, we
88 evaluate multi-decadal globally observed and projected rainfall trends and estimate their
89 influence on vegetation function.

90

91 ***Global vegetation sensitivity estimates***

92 We use partial least square regressions to isolate the vegetation sensitivity to daily
93 rainfall variability, while controlling for annual rainfall totals and several other climatic
94 factors (including surface downwelling solar radiation, land surface temperature, and
95 atmospheric humidity; see Methods). A challenge is that wet day frequency and
96 intensity are inherently related to annual rainfall totals⁴². However, our tests reveal that
97 wet day frequency (or wet day intensity) and annual rainfall total have enough
98 uncorrelated variability that they can be statistically partitioned within our regressions
99 (Methods; Extended Data Fig. 3). For our main analysis, we use wet day frequency
100 alone to represent less frequent, more intense wet days. Specifically, by including both
101 wet day frequency and annual rainfall total as regressors, a decrease in wet day
102 frequency (longer dry spells) also represents greater wet day intensity because annual
103 rainfall totals are simultaneously controlled for. Wet day frequency and other metrics
104 used here thus broadly represent daily rainfall variability. Additionally, note that these
105 daily rainfall variability metrics are lumped parameters in capturing the daily rainfall
106 itself, but also post-rain drying factors that include sub-seasonal variability of solar
107 radiation and humidity (See Methods; Figs. S1, S2).

108

109 We find that global vegetation sensitivities to daily rainfall variability are similar in
110 magnitude as the sensitivity to annual rainfall total (Fig. 1). Namely, a one standard
111 deviation shift in daily rainfall variability (via wet day frequency or intensity) is related to
112 between 20% to 50% changes in annual mean vegetation indices across a range of
113 climatic conditions, similarly to annual rainfall total (Figs. 1a, 1b, S3). Consequently,
114 daily rainfall variability explains 5-20% of the variance of mean vegetation indices,
115 similarly to annual rainfall total (Fig. S4). In directly comparing their sensitivity
116 magnitudes, the annual mean vegetation index sensitivity magnitude to daily rainfall
117 variability is a factor of 0.95 (0.61-1.46, hereafter the range refers to 25th and 75th
118 percentile bounds across space) of the magnitude of the vegetation sensitivity to annual
119 rainfall total, based on our partial regression approach (Fig. 1c). Similar conclusions are
120 drawn when using different daily rainfall variability metrics, using soil moisture variability

121 instead of rainfall data, considering only the growing season, and when using a random
122 forest regression approach (Fig. 1c). The ratio is even higher at 1.58 (1.08-2.28) when
123 analyzing ground measurements, although this field network analysis relies on binning
124 multiple sites and is thus more uncertain (see Methods).

125
126 Additionally, vegetation sensitivity to daily rainfall variability is significant ($p < 0.05$) across
127 42% of Earth's vegetated land surfaces (Fig. 1a). For comparison, this spatial extent is
128 50% when considering vegetation sensitivity to annual rainfall totals (Fig. 1b). While
129 there is some variability of the fractional area with significant sensitivities when
130 repeating analyses across different wet day metrics and satellite datasets, it is always
131 comparable to the fractional area with significant sensitivities to annual rainfall totals
132 (Figs. S5, S6).

133
134 An example of the vegetation sensitivity to daily rainfall variability is shown in dry
135 savannas in Botswana (Fig. 2). There, NDVI was larger by 16% in a year that had more
136 intense, less frequent rainfall events compared to another year, despite both years
137 having nearly identical annual rainfall totals.

138
139 Previous investigations have found that plant sensitivity to sub-seasonal rainfall
140 variability is only a small fraction, often less than 20%, of the plant sensitivity to annual
141 rainfall totals^{9,11,13,16}. We instead find that plant sensitivity to changes in wet day
142 frequency and intensity are 95% (61%-146%) as large as their sensitivity to annual
143 rainfall totals (Fig. 1c), several times higher than previous estimates (Fig. 1c). We
144 attribute these differences in part to our analysis relying directly on temporal patterns
145 with decade long records of observed vegetation variables, rather than on mainly spatial
146 relationships in previous studies^{13,16}. Furthermore, despite some differences in results
147 across datasets and approaches (see text in SI), we emphasize our findings about the
148 sensitivity magnitudes and spatial extents are robust across many conditions (Figs. S5-
149 S12).

150

151 **Potential drivers of spatial patterns**

152 We evaluate vegetation sensitivities to less frequent, more intense wet days along a
153 gradient of mean annual rainfall in order to provide a first-order understanding of
154 differences in vegetation function between shorter, herbaceous plants that receive less
155 annual rainfall and taller, woody plants that receive more annual rainfall. We find that in
156 arid ecosystems, vegetation indices are higher in years with less frequent, more intense
157 wet days, while in humid ecosystems, vegetation indices are typically lower in such
158 years (Fig. 3a). Specifically, for dry ecosystems receiving less than 500 mm of annual
159 rainfall, 23% of pixels show increased vegetation indices while 13% show decreases in
160 years with less frequent, more intense wet days. By contrast, for humid ecosystems

161 receiving more than 1,500 mm of annual rainfall, 22% of pixels show vegetation index
162 increases while 31% show decreases in years with less frequent, more intense wet
163 days. These patterns of changing signs of responses between dry and wet ecosystems
164 are captured across most datasets and conditions (Fig. S13), though with some
165 differences (see SI). They are also consistent with a previously posed theoretical
166 paradigm and with results from field experiments^{3,6,43}.

167
168 Grasslands and shrublands, prevalent in drier regions, as well as croplands tend to
169 experience increased vegetation indices in years with less frequent, more intense wet
170 days (Fig. 3b). Boreal needleleaf forests occupying higher latitudes (Fig. S14) also show
171 increased vegetation indices under these conditions, potentially due to increases in light
172 availability over longer dry periods. Savannas which typically occupy transitional
173 regions, tend to show both positive and negative vegetation sensitivities (Fig. 3b).
174 Humid forests that occupy lower and mid-latitudes (Fig. S14; broadleaf forests) tend to
175 have an opposing relation of lower vegetation indices in years with less frequent, more
176 intense wet days (Fig. 2b). This decreasing vegetation index signal mainly comes from
177 forests in the Indo-Pacific Islands (Fig. 1a) that might respond negatively to longer dry
178 spells. In contrast, some portions of the Amazon and Congo rainforests have a positive
179 response (Fig. 1a), likely because more light and higher vapor pressure deficit (VPD)
180 benefit these ecosystems⁴⁴.

181
182 To gain further insights into diverging signs of plant responses, we use a regression and
183 variance decomposition method to evaluate the degree to which several soil, plant, and
184 atmospheric variables explain the spatial pattern of vegetation sensitivities to less
185 frequent, more intense wet days (Methods). Several main explanatory variables arise
186 (Extended Data Fig. 4; $p < 0.05$). Specifically, drier ecosystems tend to have increased
187 vegetation indices in years with less frequent, more intense wet days because these
188 ecosystems spend more time below plant water stress thresholds and thus larger
189 rainfall events are more ecologically advantageous by increasing soil moisture above
190 these thresholds. Drier ecosystems also have greater plant response sensitivities to
191 individual wet days, such that larger rain events can greatly increase plant
192 function^{37,45,46} (Fig. S15). Finally, these ecosystems have smaller mean VPD increases
193 with less frequent, more intense wet days (Fig. S15), meaning they will experience
194 relatively less plant water stress during dry spells. We tested several other factors, such
195 as mean annual soil moisture sensitivity to more intense, less frequent rainfall events,
196 but they were not found to be significant drivers of global vegetation sensitivity patterns
197 (Fig. S15).

198

199 **Daily rainfall variability trends**

200 Finally, we estimate the daily rainfall frequency and intensity trends over historical
201 periods from merged observation-based datasets (1980-2020), extrapolated in-situ
202 observations (1950-2016), and models (1940-2020) as well as model projections
203 between 2020-2099 (Methods). Common features across all datasets and time periods
204 are that wet day frequency and intensity trends are nearly as high in relative magnitude
205 and of similar spatial prevalence as trends in annual rainfall totals (Fig. 4a). For
206 example, based on CMIP6 projections from 27 models, wet day frequency and intensity
207 are changing by 0.7% and 1.2% per decade, respectively (Fig. 4a), while annual rainfall
208 total is changing by 1.2% per decade. The areal coverage of significant ($p < 0.05$) CMIP6
209 projected wet day frequency and intensity trends are 33% and 47% of global vegetated
210 surfaces, respectively, which are similar to the 36% coverage for trends in annual
211 rainfall totals. Trends over the historical period (pre-2020) are ultimately less spatially
212 extensive; note that the areal percentages of significant trends have been reduced by 3-
213 5 times after conservative removal of false positive trends (see methods, Fig. S16).
214 However, we emphasize that our focus is on the comparison between daily rainfall
215 variability trends and annual rainfall total trends for a given dataset; the feature that
216 daily rainfall variability trend extent and magnitude is similar to that of trends in annual
217 rainfall totals holds across observations (CPC and REGEN), model reanalysis
218 (MERRA2), and model simulations over a longer record (CMIP6 historical model
219 scenarios) (Fig. 4a). Our findings thus hold across different precipitation products
220 ranging from the past to the future, showing robustness of our arguments even
221 considering the limitations of each dataset (see SI).

222
223 Consequently, the presence of daily rainfall variability trends, together with widespread
224 vegetation sensitivities to daily rainfall variability (Fig. 1), suggest an influence of daily
225 rainfall variability trends on global vegetation photosynthesis and growth. We empirically
226 estimate the impact of trends in daily rainfall variability on global vegetation indices (Fig.
227 4b; Methods). While the magnitudes of empirically estimated vegetation trends
228 themselves are uncertain (see SI), a feature that emerges from estimates from each
229 rainfall dataset is that estimated vegetation index trend magnitudes due to daily rainfall
230 variability are similar to those due to trends in annual rainfall totals (Fig. 4b). For
231 example, based on CMIP6 projections between 2020-2099, vegetation index trends due
232 to both daily rainfall variability and annual rainfall totals are both 0.1%/decade.

233
234 The absolute trend magnitudes of vegetation indices due to changes in daily rainfall
235 variability are $|0.5\%|/\text{decade}$ ($|1.1\%|/\text{decade}$ at 75th percentile) and $|0.1\%|/\text{decade}$
236 ($|0.3\%|/\text{decade}$ at 75th percentile) based on CPC and CMIP6 trends, respectively (Fig.
237 4b). For comparison, mean global vegetation greening is estimated to be 1% to 3% per
238 decade since 1980, where CO₂ fertilization is expected to be playing a dominant role,

239 with climate only driving a fraction of these changes³¹. Therefore, daily rainfall variability
240 might be a dominant climate-based driver of global vegetation function changes.

241
242 Mean vegetation trends across the globe are ultimately near zero (Extended Data Fig.
243 5), attributable to averaging opposing vegetation sensitivities to less frequent, more
244 intense wet days across dry to wet ecosystems (Figs. 1 and 2). As such, the global
245 mean trend obscures large regional trends with estimated high magnitude vegetation
246 trends present in the Western US, Australia, and Southern Africa (Extended Data Fig.
247 5), where presumably disparate and pronounced rainfall trends are occurring because
248 of regional changes in atmospheric patterns¹, for example, the North American
249 Monsoon and Walker Cell.

250

251 **Discussion**

252 In summary, we find robust, substantial, and globally widespread vegetation index
253 sensitivities to how rainfall is delivered to the surface in terms of daily frequency and
254 intensity, independent of total rainfall amounts. While the analysis is limited by statistical
255 means to partition the relative plant sensitivities to daily rainfall variability, our
256 uncertainty tests reveal robustness of our findings across a multitude of statistical
257 approaches and across satellite and field datasets. Mean annual water availability has
258 long been recognized as a major driver of vegetation function^{25,47}, but we argue that
259 daily rainfall variability is playing a similarly large role on vegetation function at annual
260 scales across the globe. Since annual rainfall totals strongly drive interannual variability
261 of global photosynthesis and the carbon cycle, daily rainfall variability is likely also a
262 substantial driver of this variability^{48,49}. Our results also imply that aggregating
263 vegetation observations to monthly, seasonal, or annual timescales for many types of
264 analyses would miss essential response variability. Furthermore, while we do not
265 explicitly investigate the role of the most extreme wet days or longest dry spells here,
266 this study is consistent with and broadens the existing hypothesis that the most extreme
267 wet days and lengthening dry spells are increasing in intensity and having a substantial
268 role on the carbon cycle^{50–52}.

269

270 We also find that trends in wet day frequency and intensity are nearly as large and as
271 spatially prevalent as trends in annual rainfall totals. With both daily rainfall variability
272 trends and strong vegetation sensitivity to this variability, there are likely globally
273 prevalent vegetation function trends due to less frequent, more intense wet days that
274 are playing a role in global greening and browning^{31,53,54}. Vegetation trend attribution
275 analyses do not typically consider impacts of daily rainfall variability, and will thus miss
276 these plant responses¹. Therefore, changes in daily rainfall variability need to be
277 explicitly considered when projecting terrestrial carbon uptake and managing
278 agricultural and natural ecosystems.

280 **References**

1. Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. *Sci. Rep.* **7**, 1–9 (2017).
2. Pendergrass, A. G. & Knutti, R. The Uneven Nature of Daily Precipitation and Its Change. *Geophys. Res. Lett.* **45**, 11,980–11,988 (2018).
3. Feldman, A. F. *et al.* Plant responses to changing rainfall frequency and intensity. *Nat. Rev. Earth Environ.* (2024). doi:10.1038/s43017-024-00534-0
4. Thomey, M. L. *et al.* Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. *Glob. Chang. Biol.* **17**, 1505–1515 (2011).
5. Fay, P. A. *et al.* Relative effects of precipitation variability and warming on tallgrass prairie ecosystem function. *Biogeosciences* **8**, 3053–3068 (2011).
6. Liu, J. *et al.* Impact of temporal precipitation variability on ecosystem productivity. *Wiley Interdiscip. Rev. Water* **7**, e1481 (2020).
7. Sloat, L. L. *et al.* Increasing importance of precipitation variability on global livestock grazing lands. *Nat. Clim. Chang.* **8**, 214–218 (2018).
8. Ritter, F., Berkelhammer, M. & Garcia-Eidell, C. Distinct response of gross primary productivity in five terrestrial biomes to precipitation variability. *Commun. Earth&Environment* **1**, 34 (2020).
9. Guan, K. *et al.* Continental-scale impacts of intra-seasonal rainfall variability on simulated ecosystem responses in Africa. *Biogeosciences* **11**, 6939–6954 (2014).
10. Knapp, A. K. *et al.* Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. *Science (80-.)* **298**, 2202–2205 (2002).
11. Ross, I. *et al.* How do variations in the temporal distribution of rainfall events affect ecosystem fluxes in seasonally water-limited Northern Hemisphere shrublands and forests? *Biogeosciences* **9**, 1007–1024 (2012).
12. Su, J., Zhang, Y. & Xu, F. Divergent responses of grassland productivity and plant diversity to intra-annual precipitation variability across climate regions : A global synthesis. *J. Ecol.* **111**, 1–14 (2023).
13. Good, S. P. & Caylor, K. K. Climatological determinants of woody cover in Africa. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 4902–4907 (2011).
14. Zhang, F. *et al.* Precipitation temporal repackaging into fewer, larger storms delayed seasonal timing of peak photosynthesis in a semi-arid grassland. *Funct. Ecol.* **36**, 646–658 (2021).
15. Xu, X., Medvigy, D. & Rodriguez-Iturbe, I. Relation between rainfall intensity and savanna tree abundance explained by water use strategies. *Proc. Natl. Acad. Sci.* **112**, 12992–12996 (2015).
16. Case, M. F. & Staver, A. C. Soil texture mediates tree responses to rainfall intensity in African savannas. *New Phytol.* **219**, 1363–1372 (2018).
17. Heisler-White, J. L., Blair, J. M., Kelly, E. F., Harmoney, K. & Knapp, A. K. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. *Glob. Chang. Biol.* **15**, 2894–2904 (2009).
18. Jasechko, S. *et al.* Terrestrial water fluxes dominated by transpiration. *Nature* **496**, 347–350 (2013).
19. Green, J. K. *et al.* Large influence of soil moisture on long-term terrestrial carbon

325 uptake. *Nature* **565**, 476–479 (2019).

326 20. Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined
327 influence of soil moisture and atmospheric evaporative demand is important for
328 accurately predicting US maize yields. *Nat. Food* **1**, 127–133 (2020).

329 21. Wang, L. *et al.* Dryland productivity under a changing climate. *Nature Climate
330 Change* **12**, 981–994 (2022).

331 22. Isbell, F. *et al.* High plant diversity is needed to maintain ecosystem services.
332 *Nature* **477**, 199–202 (2011).

333 23. Gherardi, L. A. & Sala, O. E. Effect of interannual precipitation variability on
334 dryland productivity: A global synthesis. *Glob. Chang. Biol.* **25**, 269–276 (2019).

335 24. Nemani, R. R. *et al.* Climate-driven increases in global terrestrial net primary
336 production from 1982 to 1999. *Science (80-.)* **300**, 1560–1563 (2003).

337 25. Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity
338 of primary production to precipitation across the United States. *Ecol. Lett.* **23**,
339 527–536 (2020).

340 26. Sala, O. E., Parton, W. J., Joyce, L. A. & Lauenroth, W. K. Primary Production of
341 the Central Grassland Region of the United States. *Ecology* **69**, 40–45 (1988).

342 27. Biederman, J. A. *et al.* CO₂ exchange and evapotranspiration across dryland
343 ecosystems of southwestern North America. *Glob. Chang. Biol.* **23**, 4204–4221
344 (2017).

345 28. Ukkola, A. M. *et al.* Annual precipitation explains variability in dryland vegetation
346 greenness globally but not locally. *Glob. Chang. Biol.* **27**, 4367–4380 (2021).

347 29. Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil Moisture
348 Stress as a Major Driver of Carbon Cycle Uncertainty. *Geophys. Res. Lett.* **45**,
349 6495–6503 (2018).

350 30. Denissen, J. M. C. *et al.* Widespread shift from ecosystem energy to water
351 limitation with climate change. *Nat. Clim. Chang.* **12**, 677–684 (2022).

352 31. Zhu, Z. *et al.* Greening of the Earth and its drivers. *Nat. Clim. Chang.* **6**, 791–795
353 (2016).

354 32. Li, F. *et al.* Global water use efficiency saturation due to increased vapor pressure
355 deficit. *Science (80-.)* **381**, 672–677 (2023).

356 33. Smith, W. K. *et al.* Large divergence of satellite and Earth system model
357 estimates of global terrestrial CO₂ fertilization. *Nat. Clim. Chang.* **6**, 306–310
358 (2016).

359 34. Trenberth, K. E. Changes in precipitation with climate change. *Clim. Res.* **47**,
360 123–138 (2011).

361 35. Lian, X., Zhao, W. & Gentine, P. Recent global decline in rainfall interception loss
362 due to altered rainfall regimes. *Nat. Commun.* **13**, 7642 (2022).

363 36. Feldman, A. F., Short Gianotti, D. J., Trigo, I. F., Salvucci, G. D. & Entekhabi, D.
364 Land-atmosphere drivers of landscape-scale plant water content loss. *Geophys.
365 Res. Lett.* **47**, e2020GL090331 (2020).

366 37. Feldman, A. F. *et al.* Moisture pulse-reserve in the soil-plant continuum observed
367 across biomes. *Nat. Plants* **4**, 1026–1033 (2018).

368 38. Williams, C. A., Hanan, N., Scholes, R. J. & Kutsch, W. Complexity in water and
369 carbon dioxide fluxes following rain pulses in an African savanna. *Oecologia* **161**,
370 469–480 (2009).

371 39. Humphrey, V. *et al.* Sensitivity of atmospheric CO₂ growth rate to observed
372 changes in terrestrial water storage. *Nature* **560**, 628–631 (2018).

373 40. Sun, Y. *et al.* From remotely sensed solar-induced chlorophyll fluorescence to
374 ecosystem structure, function, and service: Part I—Harnessing theory. *Glob.*
375 *Chang. Biol.* **29**, 2926–2952 (2023).

376 41. Smith, W. K., Fox, A. M., MacBean, N., Moore, D. J. P. & Parazoo, N. C.
377 Constraining estimates of terrestrial carbon uptake: new opportunities using long-
378 term satellite observations and data assimilation. *New Phytol.* **225**, 105–112
379 (2020).

380 42. Fatichi, S., Ivanov, V. Y. & Caporali, E. Investigating interannual variability of
381 precipitation at the global scale: Is there a connection with seasonality? *J. Clim.*
382 **25**, 5512–5523 (2012).

383 43. Knapp, A. K. *et al.* Consequences of More Extreme Precipitation Regimes for
384 Terrestrial Ecosystems. *Bioscience* **58**, 811–821 (2008).

385 44. Green, J. K., Berry, J., Ciais, P., Zhang, Y. & Gentine, P. Amazon rainforest
386 photosynthesis increases in response to atmospheric dryness. *Sci. Adv.* **6**, 1–10
387 (2020).

388 45. Post, A. K. & Knapp, A. K. Plant growth and aboveground production respond
389 differently to late-season deluges in a semi-arid grassland. *Oecologia* **191**, 673–
390 683 (2019).

391 46. Feldman, A. F., Chulakadabba, A., Short Gianotti, D. J. & Entekhabi, D.
392 Landscape-Scale Plant Water Content and Carbon Flux Behavior Following
393 Moisture Pulses: From Dryland to Mesic Environments. *Water Resour. Res.* **57**,
394 e2020WR027592 (2021).

395 47. Huxman, T. E. *et al.* Convergence across biomes to a common rain-use
396 efficiency. *Nature* **429**, 651–654 (2004).

397 48. Poulter, B. *et al.* Contribution of semi-arid ecosystems to interannual variability of
398 the global carbon cycle. *Nature* **509**, 600–603 (2014).

399 49. Ahlström, A. *et al.* The dominant role of semi-arid ecosystems in the trend and
400 variability of the land CO₂ sink. *Science (80-).* **348**, 895–900 (2015).

401 50. Pendergrass, A. G. What precipitation is extreme? *Science (80-).* **360**, 1072–
402 1073 (2018).

403 51. Kannenberg, S. A., Bowling, D. R. & Anderegg, W. R. L. Hot moments in
404 ecosystem fluxes: High GPP anomalies exert outsized influence on the carbon
405 cycle and are differentially driven by moisture availability across biomes. *Environ.*
406 *Res. Lett.* **15**, 054004 (2020).

407 52. Wainwright, C. M., Allan, R. P. & Black, E. Consistent Trends in Dry Spell Length
408 in Recent Observations and Future Projections. *Geophys. Res. Lett.* **49**, (2022).

409 53. Piao, S. *et al.* Characteristics, drivers and feedbacks of global greening. *Nat. Rev.*
410 *Earth Environ.* **1**, 14–27 (2020).

411 54. Higgins, S. I., Conradi, T. & Muhoko, E. Shifts in vegetation activity of terrestrial
412 ecosystems attributable to climate trends. *Nat. Geosci.* **16**, 147–153 (2023).

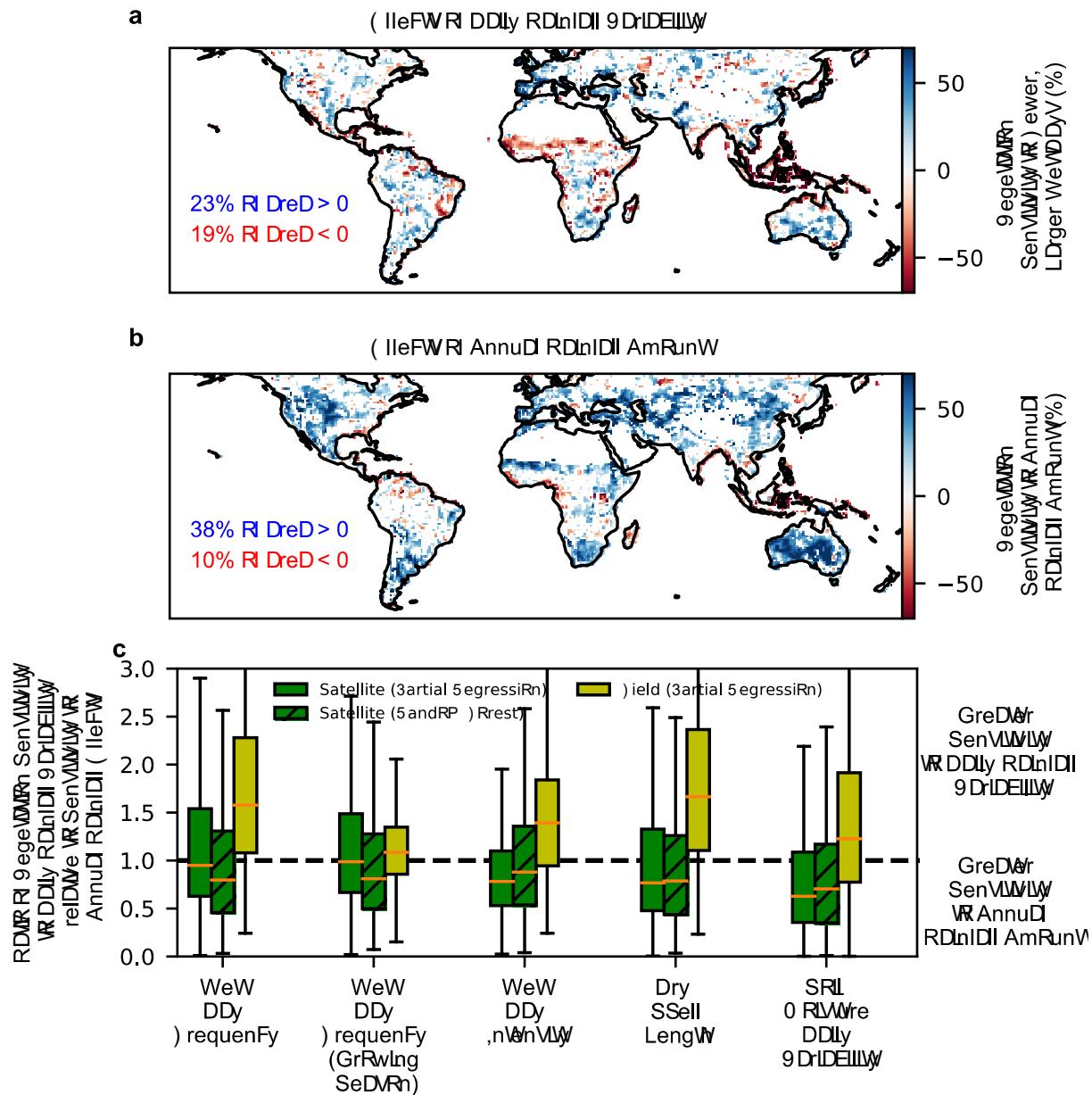
413

414

415

416

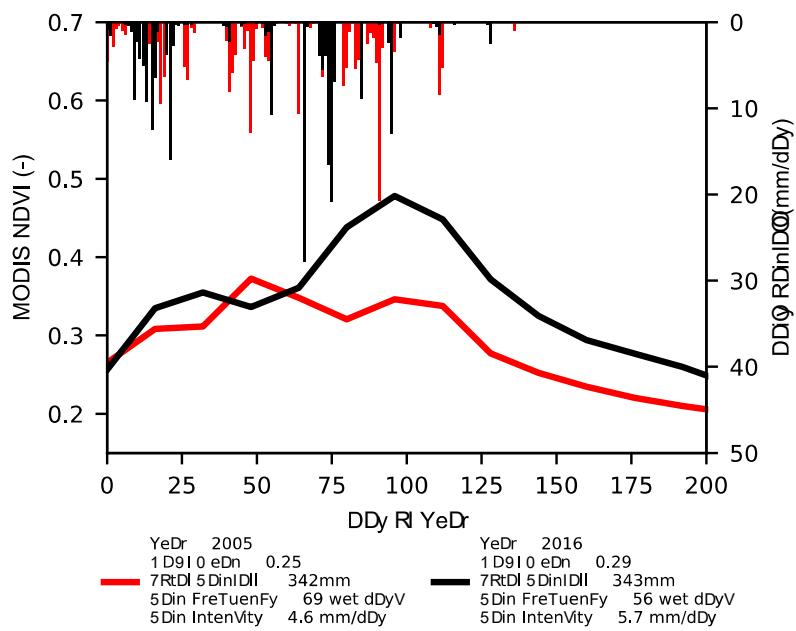
417 **Figure Legends**



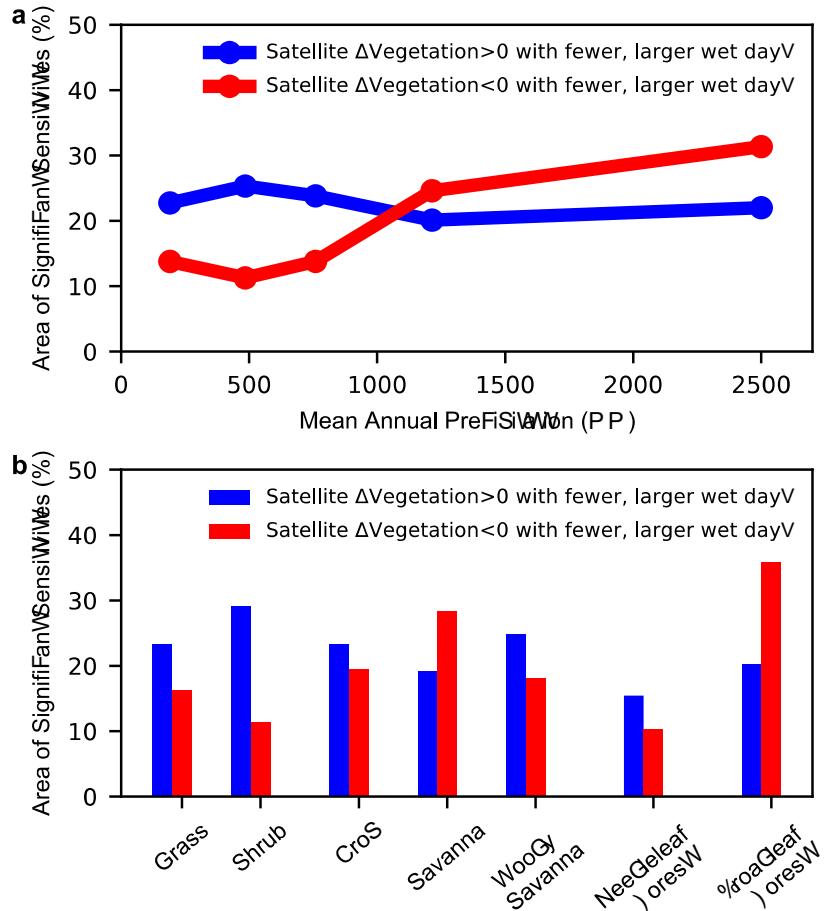
418

419 **Fig. 1. | Sensitivity of vegetation function to daily rainfall variability is nearly as**
420 **substantial and spatially extensive as its sensitivity to annual rainfall totals**
421 **across much of the globe.** (a) Satellite vegetation index sensitivity to less frequent,
422 more intense wet days (represented by a one standard deviation decrease of wet day
423 frequency; see Methods) based on a partial regression. Results are an ensemble mean
424 of normalized sensitivities across MODIS NDVI, AVHRR NDVI, OCO-2 SIF, and
425 GOME-2 SIF (Figs. S3, S5). Only significant values across all satellite datasets are
426 shown (Methods). Percent areas refer to statistically significant sensitivities considering
427 only vegetated pixels ($p < 0.05$). High latitudes (>60 degrees) are not included in the

428 analysis (Methods). (b) Same as (a), but vegetation index sensitivities to a one standard
 429 deviation increase in annual rainfall total. (c) Ratio of vegetation sensitivity to less
 430 frequent, more intense wet days relative to sensitivity to annual rainfall totals. Boxplots
 431 are global spatial distributions. A random forest method applied to the satellite data and
 432 in-situ results from FLUXNET gross primary production are shown for comparison
 433 (Methods). Reported results are based on z-score annual anomalies of each dataset.
 434 The satellite data are available between 2003-2022, with 8 to 20 year date ranges, while
 435 the FLUXNET data include 178 sites with primarily data available between 1999-2014
 436 with a median of 7 year date ranges (Table S1). Data from these tower sites are
 437 processed similarly to the satellite data (Methods).

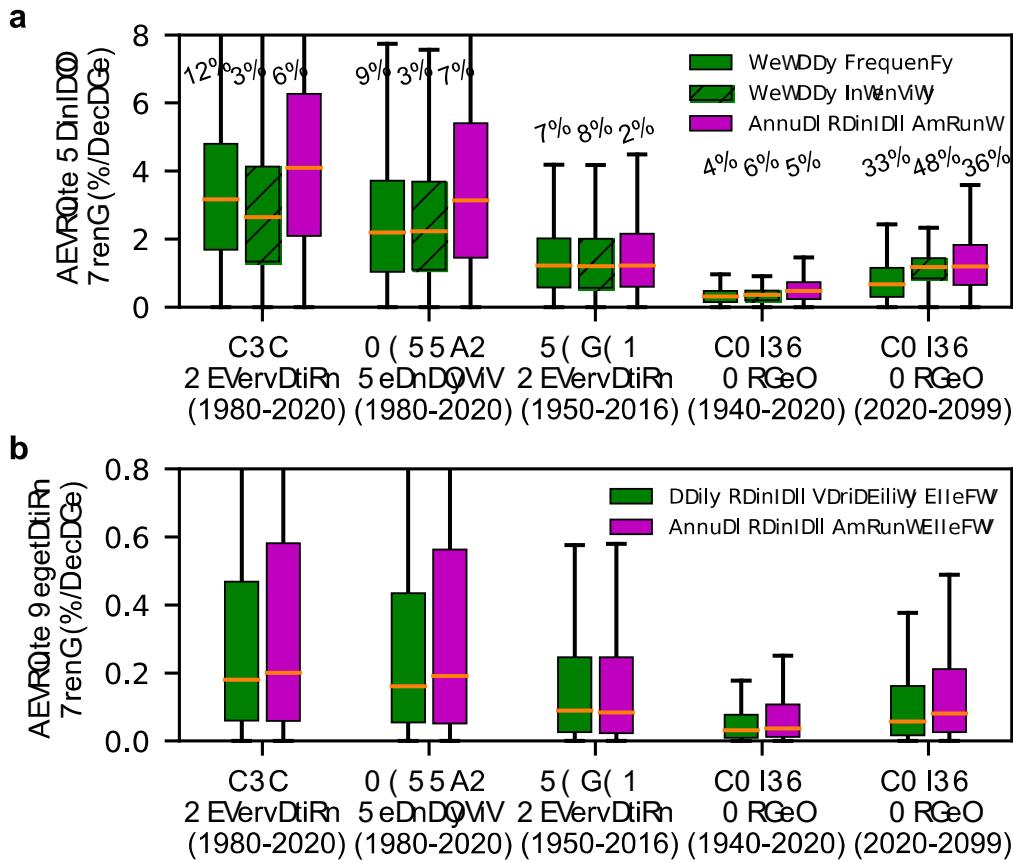


438
 439 **Fig. 2. | Example time series of dry savanna in Botswana (23°S, 22°E) where**
 440 **vegetation indices tend to be higher in years with more intense, less frequent**
 441 **rainfall events (based on results in Fig. 1).** Comparison of vegetation indices
 442 between 2005 and 2016 which had nearly identical annual rainfall totals, but fewer wet
 443 days and larger mean rainfall events in 2016.



444
445
446
447
448
449
450
451
452
453
454

Fig. 3. | Vegetation indices in years with less frequent, more intense wet days tend to increase in drier ecosystems and decrease in wetter ecosystems. (a) Mean annual rainfall gradient of sign of vegetation sensitivity to less frequent, more intense wet days based on ensemble average across vegetation metrics from MODIS NDVI, AVHRR NDVI, OCO-2 SIF, and GOME-2 SIF (Fig. S13). Significance is determined across all four satellite-based vegetation indices (Methods). Rainfall bins have nearly equal sample sizes. These relationships are reproduced using alternative regression model selection techniques and daily rainfall variability regressors (Fig. S13). (b) Same as (a) but conditioning on different vegetation types using IGBP land cover classifications (Fig. S14).



455
456 **Fig. 4. | Daily rainfall variability trends are of similar absolute magnitude and**
457 **spatial extent as shifts due to annual rainfall total, which consequently shifts**
458 **annual mean vegetation function.** (a) Absolute magnitude of trends in rainfall

459 characteristics. Percentage of land area with significant trends are shown in text
460 ($p<0.05$). All distributions have medians that are significantly different based on Mann-
461 Whitney U tests ($p<0.05$). Trends over a consistent 1980-2020 period are shown in Fig.
462 S16. Projected rainfall trends for each individual CMIP6 model are shown in Fig. S17.
463 (b) Same as (a) but empirically estimated absolute magnitude of significant vegetation
464 trends due to rainfall trends. Maps of empirically estimated global vegetation index
465 trends due to changes in daily rainfall variability are shown in Extended Data Fig. 5.

466
467
468
469
470
471
472
473
474 **Methods**

475 **Datasets**

476 We use four retrieved vegetation indices from four different satellites. These include the
477 Moderate Resolution Imaging Spectroradiometer (MODIS) Terra normalized difference
478 vegetation index (NDVI) over 2003-2022 from MOD13C1 v061 at 0.05 degrees⁵⁵, the
479 Advanced Very High Resolution Radiometer (AVHRR) NDVI over 2003-2013 from
480 AVH13C1 version 5 at 0.1 degrees⁵⁶, the Orbiting Carbon Observatory 2 (OCO-2) solar
481 induced fluorescence (SIF) level 2 version 11 product at a 1.3 x 2.25 km resolution over
482 2015-2022⁵⁷, and Global Ozone Monitoring Experiment-2 (GOME-2) SIF level 2 version
483 2.6.2 from MetOp-A at a 25km resolution over 2007-2017⁵⁸, which in this version is less
484 sensitive to identified effects of sensor degradation. All datasets are linearly resampled
485 to a 1x1 degree resolution and averaged to annual means.

486

487 The primary rainfall dataset used in the analysis is GPM IMERG V7 final run
488 precipitation from 2003-2022 at 0.1x0.1 degrees at the daily timescale⁵⁹. While based
489 on satellite observations, IMERG is also bias corrected with rain gauge measurements.
490 We additionally use Climate Prediction Center (CPC) rainfall data⁶⁰ from 1980-2020 as
491 an alternative dataset used in place of GPM for our evaluation of vegetation sensitivity
492 to daily rainfall variability. To evaluate observation-based trends of annual rainfall total
493 and daily rainfall variability, we use this CPC dataset between 1980 and 2020 which
494 aggregates both rain gauge and satellite based precipitation estimates, though with
495 variable spatial coverage of the raw observation data and varying temporal coverages.
496 Rainfall estimates on a gridded network (REGEN) was also obtained from the FROGS
497 database which merges in-situ rainfall network measurements between 1950-2016^{61,62}.
498 We also use MERRA2, a model reanalysis rainfall product, between 1980 and 2020,
499 which uses similar observed data as CPC but within a data assimilation
500 (“PRECTOTCORR”)⁶³. For modeled rainfall from past to present, historical CMIP6
501 model trends are used across 23 models which combine historical simulations between
502 1940 to 2014 and projections from shared socioeconomic pathway (SSP) 245 for 2015
503 to 2020 similarly to previous work⁵² (Table S2). Finally, considering rainfall trend
504 projections, CMIP6 models under RCP4.5 and RCP8.5 scenarios with daily precipitation
505 outputs are used between 2020-2099 (Table S2)^{64,65}. CMIP6 datasets were linearly
506 resampled to a 2x2 degree resolution. We use FLUXSAT gross primary production
507 (GPP) to linearly rescale the empirical vegetation trend estimates to CO₂ flux units⁶⁶.

508

509 Other variables are used to control for additional environmental factors or provide
510 additional evidence of main results. Lower troposphere (850mb) humidity and vapor
511 pressure deficit are obtained from NASA’s Atmospheric Infrared Sounder (AIRS)
512 version 7 at 1x1 degrees between 2003-2022. Surface downwelling solar radiation is
513 obtained from the Clouds and the Earth’s Radiant Energy System (CERES) dataset
514 edition 4.1 (SYN1 deg level 3 “adj_atmos_sw_down_all_surface_daily” variable) based

515 on MODIS Aqua and Terra instruments at a one degree resolution from 2003-2022⁶⁷.
516 MERRA2 surface downwelling solar radiation was also used, but as an auxiliary test⁶⁸.
517 Land surface temperature is obtained at 1:30pm local time from the MODIS Aqua
518 instrument MYD11C2 product v006 at 0.05 degrees from 2003-2022⁶⁹. SMAP soil
519 moisture level 3 enhanced product v5 was obtained between 2016 and 2022⁷⁰. All
520 datasets are resampled to a 1x1 degree resolution and averaged to annual means.
521

522 Mechanistic drivers used in the study include clay fraction, which is based on the
523 harmonized world soil database⁷¹, and maximum rooting depth obtained from a global
524 model estimate that is validated with observations⁷². Other metrics include soil moisture
525 thresholds for water uptake and plant response sensitivity to wet days determined from
526 SMAP multi-temporal dual channel algorithm (MT-DCA) soil moisture and vegetation
527 optical depth (VOD) version 5 at a 1-3 day timescale⁷³. We also use International
528 Geosphere Biosphere Programme (IGBP) land cover classifications to evaluate results
529 in terms of different vegetation types⁷⁴.
530

531 ***Partial Least Squares Regression: Main Analysis***

532 To isolate the vegetation sensitivity to daily rainfall variability, we use the following
533 multiple linear regression:

$$534 \quad Veg_t = \beta_0 + \beta_P P_t + \beta_{Frq} Frq_t + \beta_{Rs} Rs_t + \beta_{LST} LST_t + \beta_q q_t + \varepsilon \quad (1)$$

535 where Veg represents the satellite-based vegetation indices, P is annual rainfall total
536 (rainfall amount summed over a year) from GPM, Frq is wet day frequency which
537 captures daily rainfall variability and is computed as the number of annual wet days
538 from GPM, Rs is mean surface downwelling solar radiation over a year from MERRA2,
539 LST is mean land surface temperature over a year from MODIS, and q is mean lower
540 tropospheric humidity (at 850mb) over a year from AIRS. Each variable is at an annual
541 timescale and t subscript denotes the year. β_0 is the y-intercept while the other β 's are
542 partial sensitivities of the vegetation index to the given variable. ε are the residuals. All
543 variables are converted to z-scores by subtracting by their mean and dividing by their
544 time series standard deviation allowing the magnitude of each β to be directly
545 compared. This analysis is repeated setting Veg as MODIS NDVI (2003-2022), AVHRR
546 NDVI (2003-2013), GOME-2 SIF (2007-2017), and OCO-2 SIF (2016-2022). All
547 regressors conform to these time ranges. Note that conversion to z-score does not
548 influence the β magnitude-dependent results in Fig. 1 because the results are nearly
549 identical if raw variable magnitudes are inserted into Eq. 1 and then normalized by their
550 standard deviations in post-processing.

551
552 Wet days are defined as days with daily rain totals above 1 mm in order to evaluate
553 rainfall events that are large enough to influence vegetation⁷⁵, to avoid false positive
554 detection of rain events given noise in the rainfall products, and because this definition

555 is widely used^{52,76}. Results in Figure 1 are ultimately not sensitive to this wet day
556 threshold with the qualitative findings remaining similar when using 0.25 mm and 0.5
557 mm thresholds (Fig. S10).

558
559 We conduct a partial least squares regression, which includes determining the optimal
560 combination of regressors in Eq. 1. To avoid overfitting the model to the data by
561 penalizing models with more regressors, we compute the Akaike information criterion
562 (AIC) for each model:

563 $AIC = 2k + n * \ln(RSS/n)$ (2)

564 where k is the number of parameters, n is the number of data pairs, and RSS is the
565 residual sum of squared errors or the sum of squared differences between the model
566 estimation and data. The model with the lowest AIC is selected. Only combinations of
567 regressors are evaluated that include both P and Frq, or neither, in order to address our
568 research questions to partition the sensitivity of vegetation to less frequent, more
569 intense wet days from sensitivity to annual rainfall totals. This procedure allows directly
570 comparing the magnitudes of β_P and β_{Frq} .

571
572 For the analysis on each pixel, we spatially aggregate the annual values from the
573 adjacent 3x3 pixels to increase the sample size by a factor of 9. This is because each
574 variable is at an annual timescale and the time series for each pixel is 8-to-20 time
575 steps long, which results in a low sample size to carry out the partial regression analysis
576 with Eq. 1. The effects of spatial aggregation are also tested (see Fig. S8 and “Spatial
577 Aggregation Tests” below).

578
579 Total variance explained (R^2) of the regressors on Veg in Eq. 1 and partial variance
580 explained of each regressor were computed. The Gromping method⁷⁷ was used to
581 compute the partial variance explained by computing the increase in R^2 when removing
582 the respective regressor from each combination of regressors in the model. The
583 increased R^2 is then averaged across models. Total R^2 are typically around 0.6, a value
584 expected when using noisy observations mainly from satellite retrievals in the
585 regression (Fig. S4). It was thus not deemed necessary to remove pixels due to
586 inadequate fit of annual vegetation indices.

587
588 To evaluate sensitivities from field observations, we repeated the above procedures
589 using FLUXNET gross primary production data representing plant uptake of carbon
590 across 178 sites distributed mainly across North America and Europe (Table S1)⁷⁸. Data
591 are mainly available between 1999-2014, but extend back to 1991 in a few cases. Given
592 that FLUXNET record lengths are often less than five years, the same partial regression
593 procedure cannot be performed on a single site. Therefore, sites are sorted from low to
594 high mean annual precipitation and divided into 35 bins based on percentile, resulting in

595 bins with 5 sites within 50 mm of mean annual rainfall of each other and 36 total site-
596 years. Results are not broadly sensitive to bin size. The analysis in Eq. 1 is repeated on
597 the site years within each bin including using the AIC model selection approach. A
598 Monte Carlo approach is applied where the process is repeated on each bin 1,000 times
599 to determine a distribution of β_P and β_{Frq} .

600

601 ***Partial Least Squares Regression: Additional Regression Model and Model***
602 ***Selection Tests***

603 We chose to use AIC instead of cross validation, a commonly used model selection
604 technique, because cross validation relies on the assumption of independent validation
605 and training data, while spatial and temporal autocorrelation is expected for our
606 application⁷⁹⁻⁸¹. Since our approach relies on spatial aggregation, we use AIC for our
607 main analysis, though we also test if our results remain the same using cross validation
608 model selection.

609

610 For our auxiliary test (Fig. S7), we use five-fold cross validation⁸². Specifically, within
611 each pixel (and including its 3x3 nearest neighbors) and for a given combination of
612 regressors in Eq. 1, data pair samples are randomly drawn and divided into five bins.
613 Four of these bins are used for calibration to estimate the β values in Eq. 1. The
614 remaining bin is used for out of sample validation to estimate the root mean square
615 error (RMSE) between the estimated vegetation index (Veg) values from the Eq. 1
616 model and the observed Veg values. This procedure is completed five times with each
617 bin serving as the validation bin once. A Monte Carlo bootstrapping procedure is
618 employed to repeat these steps 20 times to randomly generate 100 RMSE values,
619 which are averaged to a single RMSE value. All combinations of regressors are
620 considered. The regression model with the lowest RMSE is considered the most
621 optimal.

622

623 To also test the sensitivity of the results to model selection, we also report our results
624 when prescribing, a priori, the full model (with all possible regressors in Eq. (1)) and a
625 reduced model with only rainfall regressors (annual rainfall total and the daily rainfall
626 variability metric). We find that Figure 1 results are similar when using the AIC model
627 section, cross validation model selection, the prescribed full model, and the prescribed
628 reduced model (Fig. S7). The reduced model tends to reduce the ratios shown in Fig. 1
629 the most, though this is likely because vegetation is overly sensitive to annual rainfall
630 total in this model since annual mean Rs, LST, and q, which tend to be correlated with
631 mean annual rainfall, are not explicitly included in the model.

632

633 The temporal autocorrelation was estimated for the rainfall regressors (wet day
634 frequency, wet day intensity, dry spell length, and annual rainfall total) (Fig. S18) and

635 the four vegetation indices (MODIS NDVI, AVHRR NDVI, OCO-2 SIF, and GOME2 SIF)
636 (Fig. S19) using the AR(1) lag-1 autocorrelation coefficient. These magnitudes tend to
637 be below 0.1, suggesting only minor influences of temporal autocorrelation on the model
638 selection and regressions in Eq. 1. This is because a smaller temporal autocorrelation is
639 expected for the annually aggregated data here than for shorter timescales and thus
640 would have less impact on the regressions.

641
642 To evaluate result dependence on the partial regression, including assumptions of
643 linearity, we applied a random forest regression. The partial least squares regression in
644 Eq. 1 assumes linear relationships between vegetation and each climatic variable,
645 which approximately holds at annual timescales but might be violated in some
646 conditions. We used the “RandomForestRegressor” package in python with the same
647 predictors and predicted variables as the partial least squares regression⁸³. As a
648 modification, we prescribed the selected model using AIC instead of the random forest
649 based model selection to avoid issues related to spatial and temporal autocorrelation
650 that make the training and validation data not independent. This step also creates
651 consistency with the partial regression approach in each pixel. We also test the random
652 forest regression sensitivity to the choice of regression model by also prescribing
653 reduced and full models (Fig. S7). This machine learning approach can capture
654 nonlinear relationships between vegetation and climate variables, but has generally less
655 interpretable outputs and it is more challenging to diagnose its errors. Therefore, the
656 partial linear regression is featured in the main analysis with the random forest
657 regression results shown as supporting evidence.

658
659 **Partial Least Squares Regression: Additional Rainfall Metrics**
660 Alternative daily rainfall variability metrics are also tested by replacing Frq in the
661 regression with wet day intensity and dry spell length. Wet day intensity is defined here
662 as the average daily rainfall depth during wet days in a given year (acknowledging
663 intensity commonly refers to hourly rainfall rates). The dry spell length is the mean
664 length of consecutive dry days between wet days within a given year. These metrics all
665 represent daily rainfall variability when included in the regression along with annual
666 rainfall totals. In other words, all metrics will capture both frequency and intensity of wet
667 days when annual rainfall totals are simultaneously controlled for. This is because the
668 wet day frequency multiplied by the wet day daily intensity can approximately equal the
669 annual rainfall total.

670
671 As an alternative daily rainfall variability metric that does not use rainfall data, we
672 repeated the analysis using SMAP soil moisture daily variability and SMAP soil moisture
673 annual mean in place of precipitation frequency and annual rainfall total, respectively.
674 To compute soil moisture daily variability, we removed longer timescale monthly and

675 seasonal variability from the soil moisture time series. Specifically, all years of SMAP
676 data were averaged to create a mean climatology and a 30-day moving window was fit
677 to the mean soil moisture time series. This smoothed soil moisture time series was
678 subtracted from the raw soil moisture time series. The standard deviation was computed
679 for each year of this anomaly time series to approximately obtain only variations on sub-
680 monthly timescales. We refer to these estimates as daily variability acknowledging
681 some weekly and monthly variability will be integrated. Due to the SMAP record
682 availability only beyond April 2015, the soil moisture variance analysis was only applied
683 with MODIS NDVI and OCO-2 SIF as the predicted vegetation indices from 2016 to
684 2022. Ultimately, changes in sub-weekly soil moisture variability between years might
685 not directly capture, for example, a change to less frequent, more intense wet days, and
686 thus mainly challenges interpretation of the sign of these results (Fig. S13).

687
688 These daily rainfall variability metrics will appropriately capture some variability in
689 atmospheric conditions that occur along with changing length of dry spells that might not
690 be represented in an altered annual mean Rs , LST , or q . In other words, daily rainfall
691 variability represents both sensitivity to the rain event as well as to the dry spells. To
692 test the sensitivity of the analysis to the sub-seasonal variability of other factors, the
693 sub-seasonal standard deviation of Rs , LST , and q are computed for each year, using
694 the same approach for estimating the sub-seasonal variability of soil moisture. These
695 three variability metrics are included in the regression in Eq. 1, where only the full model
696 is considered without model selection to evaluate partitioning of sensitivities between all
697 variables considering each variable's annual mean and sub-seasonal variability. Across
698 the globe, vegetation is sensitive to these other sub-seasonal variability factors, but has
699 the highest sensitivity to daily rainfall variability (Fig. S2). Furthermore, a former causal-
700 regression analysis showed that vegetation water stress during post storm drying arises
701 primarily from soil moisture drying and secondarily from temperature, atmospheric
702 dryness, and incoming radiation increases³⁶. Given these points and that daily rainfall
703 variability shows some relation to these other factors (especially Rs variability; Fig. S1),
704 we only consider daily rainfall variability in the regressions in our main analysis such
705 that it acts as an aggregated parameter that effectively includes Rs , LST , and q
706 variability.

707

708 **Partial Least Squares Regression: Spatial Aggregation Tests**

709 Given spatial autocorrelation in the variables used in the regression⁸⁰, it is necessary to
710 test the effects of our 3x3 pixel window spatial aggregation, which we do here using
711 three different tests. First, we repeated the analysis only on individual pixels without
712 spatial aggregation to only consider temporal variability. A model selection technique
713 was not used and the full and reduced models were prescribed a priori. This test was
714 attempted only for MODIS NDVI (20 years; 2003-2022), AVHRR NDVI (11 years; 2003-

715 2013), and GOME2 SIF (11 years; 2007-2017). The sample size reduces significantly
716 because only 20, 11, and 11 data points, respectively, are evaluated on the multiple
717 regressions with several regressors (these sample sizes increase by a factor of 9 when
718 using 3x3 pixel aggregation). Second, we repeated the analysis by using a 5x5 pixel
719 aggregation and applying the regression to only the first three years of data of the four
720 satellite datasets, which evaluates how mainly the spatial relationships between the
721 variables contribute to the results. Finally, we evaluated the results when weighting the
722 neighboring pixels less than the central pixel. Specifically, a geographically weighted
723 regression (GWR) was used⁸⁴ which is a weighted linear regression that considers the
724 center pixel as most impactful for the regression with a full 100% weight and the
725 neighboring eight pixels as either 25% or 50% of the weight of the center pixel. In all
726 cases, the ratios were close to those reported in Figure 1c based on the 3x3 pixel
727 aggregation (Fig. S8). As such, we deem the results minimally sensitive to the spatial
728 aggregation technique and remain with the 3x3 pixel aggregation in our main results.
729 We have chosen to remain with the 3x3 spatial aggregation given that it produces
730 similar results as the auxiliary tests and also sufficiently increases the sample size for
731 our analysis. We chose to not show GWR in the main analysis given that it requires
732 assumptions of different weights in the surrounding pixels, while producing similar
733 results as the 3x3 pixel window aggregation technique.
734

735 ***Partial Least Squares Regression: Uncertainty Tests***

736 To determine the variability of the vegetation sensitivity to daily rainfall variability (β_{Frq})
737 and its ratio to sensitivity to annual rainfall total (β_P), a bootstrapping procedure was
738 employed in each pixel. For a given pixel and using the AIC selected model, a
739 bootstrapping procedure is used where the regression pairs are randomly sampled with
740 replacement and the regression coefficients are computed using these resampled pairs
741 with Eq. 1. This procedure is repeated 5,000 times and the ratio of coefficients for the
742 daily rainfall variability metric to that of the annual rainfall total (β_{Frq}/β_P) are computed.
743 The 2.5th, 25th, 50th, 75th, and 97.5th percentile of the ratios are saved and their
744 distributions across space are shown (Fig. S9).
745

746 Additionally, to compare these ratios to that produced entirely by white noise, the daily
747 rainfall variability metric is replaced by a randomly generated standard normal time
748 series. The regression is run with this daily rainfall variability metric being white noise
749 while all other variables are held the same for each pixel. The rate of significance and
750 magnitude of β_{Frq} due to random noise are computed and compared against that
751 computed with the raw data and bootstrapping procedure.
752

753 Considering MODIS NDVI and only significant sensitivities ($p < 0.05$), the 25th, 50th, and
754 75th percentile of the β_{Frq}/β_P ratios (spatial medians across the globe) are 0.77, 0.96,

755 1.19, respectively. Of the few significant ($p < 0.05$) cases of the random noise test (2-4%
756 of cases), this ratio is 0.49. When considering all data (any p -value), the 25th, 50th, and
757 75th percentile of the $\beta_{\text{Frq}}/\beta_{\text{P}}$ ratios (spatial medians across the globe) are 0.61, 0.84,
758 1.14, respectively, while it is 0.15 for random noise. As such, the ratios determined in
759 our analysis have magnitudes substantially greater than those due to noise.

760

761 **Partial Least Squares Regression: Impact of Phenology**

762 Phenology results in only parts of the year with substantial vegetation function, which
763 can confound averaging function over the year. While the main analysis is with respect
764 to vegetation indices averaged over the full year, we also repeat the partial regressions
765 by evaluating growing season averages to evaluate the robustness of results to
766 differences in vegetation function over the full year and only the growing season.
767 Several growing season definitions were tested. Our first definition, "Growing Season
768 Method 1", is times of year when the NDVI mean climatology is above its median, which
769 is held constant across years. Specifically, the MODIS NDVI climatology was computed
770 by averaging across all years between 2003-2022 into a mean seasonal cycle. This
771 seasonal cycle was smoothed using a moving average window of 90 days. Our second
772 definition, "Growing Season Method 2a", is based on estimating the start and end of the
773 growing season similar to previous studies⁸⁵. Specifically, the start and end of season
774 are defined as the day when NDVI increases above and decreases below, respectively,
775 the NDVI minimum plus 30% of its seasonal amplitude. The start and end of the
776 growing season are allowed to change each year. In "Growing Season Method 2b," this
777 same Growing Season Method 2a is repeated but with the same definition across all
778 years. In all growing season analyses, the daily rainfall variability metrics are insensitive
779 to the growing season length given that the rainfall total regressor is the seasonal total
780 rainfall (which is sensitive to the growing season length) while the daily rainfall variability
781 metrics are all normalized by the length of the growing season. We reported Growing
782 Season Method 1 in Fig. 1 because it considers multiple growing seasons, though the
783 other methods show similar results (Fig. S11).

784

785 The fact that the growing season analysis produces similar patterns as the presented
786 annual mean analysis suggests phenology and changing interactions between seasons
787 do not confound our findings. Some effects of non-linearity are also removed when
788 considering only the growing season, thus further supporting our assumptions of linear
789 interactions in the partial regression approach. We nevertheless choose to primarily
790 report the annual mean results in the main text because daily rainfall variability includes
791 effects both during rain events and during dry spells, the latter of which can influence
792 vegetation outside of a growing season. Furthermore, growing season definitions vary
793 and are inconsistent across the literature and thus our several definitions are provided
794 as auxiliary analyses for reference.

795

796 **Partial Least Squares Regression: Multi-collinearity and Causality**

797 Several other limitations and confounding effects were addressed. First, multi-
798 collinearity, or correlation between regressors that inflates the variance of their β
799 estimates, are partly reduced by use of the partial regression technique to select the
800 model with the optimal regressors⁸⁶. However, annual rainfall total and wet day rainfall
801 frequency are correlated, but are still kept together within the regression in order to
802 address our research questions about their partitioned relation with vegetation function.
803 Variance inflation factors (VIF) were therefore assessed between annual rainfall total
804 (P) and wet day frequency (Frq) in each pixel to determine whether P and Frq have
805 multi-collinearity that greatly increases the variances of β_P and β_{Frq} . VIF is generally less
806 than 5 meaning that it is acceptable to include both P and Frq in the regression
807 (Extended Data Fig. S3). In the case when mean annual precipitation is below 400
808 mm/year, the VIF increases to between 5 and 10. However, VIF is below 5 when using
809 wet day intensity in place of wet day frequency in this lower rainfall bin and results are
810 ultimately qualitatively the same when using intensity in place of frequency. As such,
811 multi-collinearity is not expected to be substantially influencing results here. Including
812 wet day intensity as an additional regressor to P and Frq in Eq. 1 creates an
813 overdetermined problem and results in very high VIF (>10). Therefore, only wet day
814 frequency is used as a regressor along with P. However, to gain confidence in results,
815 the analysis is repeated using wet day intensity and dry spell length (mean number of
816 dry days between wet days) each in place of wet day frequency as validation of wet day
817 frequency results.

818

819 Our analysis does not directly consider effects of different types of wet day timing
820 patterns (e.g. concentrated in certain periods of spread out uniformly across the year),
821 since these timing effects were found to be secondary in importance to wet day
822 frequency and intensity at a field scale analysis⁸⁷.

823

824 Another key limitation is that the regression-based relationships do not indicate
825 causality. The direction of causality is presumably that the daily rainfall variability is
826 impacting vegetation, with feedback effects in the opposite direction of vegetation on the
827 atmosphere likely smaller⁸⁸. However, the regressions do not allow us to make a
828 stronger argument that daily rainfall variability is causing the vegetation function
829 responses. Nevertheless, the partial regressions are sufficient for addressing our
830 questions of vegetation sensitivity to daily rainfall variability compared to other factors.
831 Much of the understanding of vegetation relation to climate variables comes from such
832 regression and non-causal relationship analyses^{24,25,89}.

833

834 **Analysis of Vegetation Sensitivity to Wet Day Frequency and Intensity**

835 The global spatial distribution of absolute values β_P and β_{Frq} and their explained
836 variances were compared. For the satellite data, we computed an ensemble average β_P
837 and β_{Frq} in each pixel across the four satellites. For the partial regression analysis on
838 both satellite and field data, the ratio between β_{Frq} and β_P was computed. For the
839 random forest regression on satellite data, the SHAP values (Shapley Additive
840 Explanation) were computed to interpret the random forest outputs using the SHAP
841 package in python⁹⁰. The mean absolute SHAP values have a similar interpretation as
842 normalized β_{Frq} and β_P do, specifically the relative magnitude of sensitivity of a
843 vegetation index to a given predictor variable. When averaging across the metrics
844 across the four satellites, it is assumed here that the vegetation sensitivity to the
845 environmental factors are constant between 2003-2022, given the dataset ranges
846 occupy different years in this range. Therefore, this allows the effects from different
847 ranges of satellite records to be averaged.

848
849 Consistency in the spatial pattern of the sign and statistical significance of β_{Frq}
850 sensitivity across the four vegetation datasets provides another form of confidence in
851 the results. A such, we define a “degree of agreement” metric to be evaluated in each
852 pixel as the count of satellite-based vegetation datasets with positive, significant β_{Frq}
853 minus the count of satellite-based vegetation datasets with negative, significant β_{Frq} .
854 Only pixels with an absolute value Degree of Agreement of greater than or equal to 2
855 are considered statistically significant when considering the ensembles across the four
856 datasets. Higher absolute values result from several of the four satellite datasets
857 agreeing in statistical significance ($p < 0.05$) and sign of sensitivity. Positive Degree of
858 Agreement values indicate positive relationships of wet day frequency with annual
859 vegetation indices across most of the datasets. When β_{Frq} show no statistically
860 significance or they have opposing signs across the four satellites, the Degree of
861 Agreement approaches zero.

862
863 The percentage of global pixels with statistically significant vegetation sensitivities to
864 wet day frequency and intensity as well as annual rainfall total were also computed.
865 These areal percentages are based on ensemble mean β_P and β_{Frq} across the four
866 satellite-based vegetation indices that are statistically significant based on the degree of
867 agreement. Only pixels were considered that are dominantly vegetated (non-bare soil
868 based on IGBP classification), below 60 degrees latitude, non-mountainous (based on
869 IGBP classification), and have at least 20 annual data points used in their regression.
870 Screening mountainous regions partially removes pixels with snowmelt, though we
871 acknowledge that snowmelt and runoff will influence non-mountainous adjacent pixels.

872
873 **Mechanistic Analysis**

874 Given the differing signs of vegetation sensitivity to wet day frequency and intensity, we
875 also evaluated the percentage of pixels with statistically significant positive and negative
876 vegetation sensitivities to less frequent, more intense wet days. We evaluated these
877 relations across a mean annual precipitation gradient where the bins are partitioned
878 such that there are the same number of global pixels in each of the five bins
879 (approximately 800). We also compute the same percentages across pixels with the
880 same IGBP classes to evaluate effects of vegetation type.

881

882 We evaluate which observable mechanistic drivers explain the spatial gradient of
883 vegetation sensitivities to less frequent, more intense wet days. We specifically chose
884 variables that would directly modulate how plants respond to a more intense rain event
885 and/or longer dry spell as well as are observed or estimated at global scales. The
886 potential drivers we evaluate include clay fraction (soil texture), plant response
887 sensitivity to wet days, soil moisture mean relative to its soil moisture thresholds for
888 plant water uptake, maximum rooting depth, and the sensitivity of mean annual soil
889 moisture, surface downwelling solar radiation, and VPD to less frequent, more intense
890 wet days.

891

892 Plant response sensitivity to wet days and soil moisture thresholds for plant water
893 uptake are determined in the same manner as from previous work³⁷. In summary,
894 SMAP soil moisture at 9km is used to identify interstorm periods when the soil is drying,
895 defined as at least three consecutive SMAP satellite overpasses of decreasing soil
896 moisture. It was previously found that VOD tends to increase at higher soil moisture and
897 decrease at lower soil moisture values during drydowns³⁷. As such, the soil moisture
898 value for which VOD on average begins decreasing during drydowns is the estimated
899 soil moisture threshold. The plant response sensitivity to wet days is the median
900 dVOD/dt rate of change above the soil moisture threshold. To decouple relations to
901 determined soil moisture threshold and to plant response sensitivities to wet days, in the
902 determination of plant response sensitivities to wet days, the soil moisture threshold is
903 set as the median soil moisture for each pixel. The plant response sensitivities to wet
904 days are normalized by the mean VOD over the 2015-2020 time series to create a
905 fractional rate of VOD increase over an interstorm. These metrics are determined from
906 all drydowns at 9km pixels, but are aggregated to a one degree resolution for
907 consistency with the analysis in this paper. See ref. ³⁷ for more details.

908

909 The soil moisture mean relative to the soil moisture threshold is computed by
910 subtracting the soil moisture threshold from the mean soil moisture. This relative mean
911 soil moisture is deemed more related to effects of daily rainfall variability (than annual
912 rainfall total or mean soil moisture) because it assesses the degree to which rainfall
913 pulses and dry spells are generally occurring under plant water stress conditions for that

914 location. Evaluating mean soil moisture by itself would otherwise not provide information
915 on whether plants are stressed.

916

917 The relationship of wet day frequency with mean annual soil moisture, mean annual
918 surface downwelling solar radiation, and mean annual VPD are determined by:

919
$$Y = \beta_0 + \gamma_P P + \gamma_Y Frq + \varepsilon \quad (3)$$

920 where Y is mean annual SMAP soil moisture, mean annual CERES surface
921 downwelling solar radiation, or mean annual AIRS vapor pressure deficit. γ_Y is the
922 sensitivity of the respective climatic variable to wet day frequency, analogously to β_{Frq} ,
923 as partitioned from sensitivities to annual rainfall total. The analysis is repeated similarly
924 to that of Eq. 1. With less frequent, more intense wet days, annual mean VPD is higher
925 (79% pixels positive, 2% pixels negative), annual mean surface downwelling solar
926 radiation is higher (64% pixels positive, 9% pixels negative), and annual mean soil
927 moisture tends to be lower (12% pixels positive, 24% pixels negative) (Fig. S15).

928

929 We aim to determine the degree to which the spatial rainfall gradient of the ensemble
930 mean β_{Frq} is sensitive to each factor and why β_{Frq} tends to switch in sign with increasing
931 annual rainfall totals (Fig. 3). Thus, β_{Frq} and each mechanistic factor is binned into 50
932 equally sized mean annual precipitation bins and the median of each variable is
933 computed. Conditioning on these bins in this way allows for controlling for the mean
934 annual precipitation gradient, or effectively conditioning on the rainfall gradient. Each
935 variable is converted to its z-score by subtracting by its bin average and dividing by its
936 binned standard deviation. The following is then computed:

937
$$\beta_{Frq} = \beta_0 + \beta_{Clay} Clay + \beta_{Pulse} Pulse + \beta_{RootDepth} RootDepth +$$

938
$$\beta_{Threshold} Threshold + \beta_{VPD} \gamma_{VPD} + \beta_{SM} \gamma_{SM} + \beta_{RS} \gamma_{RS} + \varepsilon \quad (4)$$

939 The analysis therefore estimates which climate variables explain the annual rainfall total
940 driven gradient of β_{Frq} . Uncertainty bounds and statistical significance are determined
941 via bootstrapping by randomly sampling with replacement pixels across the globe and
942 repeating the analysis in a Monte Carlo format with 200 iterations. Statistical
943 significance is determined if the β of the explanatory variable has the same sign for its
944 2.5th and 97.5th percentiles. The main analysis was performed on the β_{Frq} ensemble
945 mean across MODIS NDVI, AVHRR NDVI, OCO-2 SIF, and GOME-2 SIF. However,
946 there is little variability of results when performing the analysis on each individual
947 satellite vegetation index. We also obtain the same results when performing the
948 regression on the β_{Frq} spatial area of significant sensitivities ($p < 0.05$).

949

950 **Trend Analysis**

951 Temporal trends in annual rainfall total, wet day frequency, and wet day intensity are
952 computed by regressing the z-score anomalies of these annual-scale properties across
953 the years of their time series in each pixel. For historical trends from 1980 to 2020, we

954 use CPC observation-based rainfall, to account for complex climate changes features
955 that might create uncertainty in models⁹¹, and MERRA2 model reanalysis rainfall. We
956 also evaluate historical CMIP6 model-based precipitation from 23 models, but the 1940-
957 2020 period was chosen for CMIP6 historical trends to be of consistent time length as
958 the CMIP6 projections and reduce effects of internal and decadal variability. As an
959 additional observation-based dataset, we evaluate trends in spatially gridded rain gauge
960 data from the REGEN dataset between 1950-2016. For projections, these properties
961 are computed using CMIP6 models with daily outputs over 2020-2099. This includes 27
962 models for RCP8.5 (Table S2). Note that we also evaluate trends alternatively with
963 RCP4.5 and find that the trend magnitude and spatial extent is reduced (not shown).
964 However, our same conclusions in Figure 4 hold about relative extent and magnitude of
965 daily rainfall variability. The CPC and MERRA2 datasets were rescaled to one-degree
966 grids using linear resampling. Since most CMIP6 model resolutions are lower than one
967 degree resolution, CMIP6 models were rescaled to two-degree grids.
968

969 Temporal autocorrelation can artificially induce trends in a time series^{92,93}. To remove
970 temporal autocorrelation from the time series of annual rainfall total for each dataset,
971 the autoregressive lag-1 (AR(1)) coefficient is removed by computing $P_t - r_{t-1}P_{t-1}$, where
972 r_{t-1} is the AR(1) coefficient or correlation between P_t and P_{t-1} . Next, in each pixel,
973 statistical significance is determined through Mann-Kendall trend tests of whether the
974 trend magnitudes are different from zero ($p < 0.05$). Then, following a nearly identical
975 procedure to previous work⁹²⁻⁹⁵, multiple hypothesis testing is applied to further remove
976 false positive trend detections given that false positives will occur in isolated cases with
977 inherent spatial autocorrelation in the dataset creating a cluster of false positives⁹⁵. The
978 test thus finds a threshold for spatial cluster size of significant trends, below which the
979 cluster is likely formed by false positive rainfall trends. To compute this critical cluster
980 size, a joint permutation is applied where the time series in each pixel are randomly re-
981 ordered without replacement and a trend is computed along with a Mann-Kendall trend
982 test for each pixel. This same random permutation is applied throughout all global pixels
983 to conserve the spatial autocorrelation structure of the data and determine false positive
984 cluster sizes. Clusters of these false positives are counted considering first order
985 (queen) neighbors. The largest cluster size is recorded based on this randomized time
986 series ordering. This process is repeated 1,000 times for each dataset and the 95th
987 percentile of maximum cluster size is the determined threshold. For a given dataset, it
988 was determined that after approximately 500 iterations, the maximum cluster size and
989 consequently the percent area of significant trends tended to converge to the same
990 value. Finally, the cluster sizes are determined for the trend computation on the raw
991 data (1980-2020 or 2020-2099) and clusters of statistically significant trends smaller
992 than this cluster threshold are considered not statistically significant and likely due to

993 false positive trends. Note that this process is carried out for each of the CMIP6 models
994 individually.

995
996 We evaluate trends across several rainfall datasets not as a comparison of trends, but
997 rather to determine whether our main arguments about relative differences in daily
998 rainfall variability and annual rainfall total trends hold under limitations presented by
999 each dataset (see SI text for discussion of limitations). We note that the datasets
1000 between the 1980-2020 periods all show the same overarching results about the trend
1001 magnitude and spatial area of significant trends ($p < 0.05$) when comparing trends of
1002 daily rainfall variability and trends of total annual rainfall (Figs. S16, S20). For REGEN
1003 and CMIP6 historical record, when shortening the time series to only after 1980, the
1004 spatial extent of significant trends is reduced, but the same conclusion remains of the
1005 similarity of magnitude and spatial extent of trends is similar between daily rainfall
1006 variability and total annual rainfall.

1007
1008 To empirically estimate vegetation function trends, these aforementioned rainfall trends
1009 are multiplied by the partitioned vegetation sensitivities to these rainfall features (β_P and
1010 β_{Frq}), which are mean sensitivities from the different satellites. These trend estimates
1011 are uncertain because they assume that vegetation sensitivity to the rainfall metrics are
1012 constant in time, which would not hold under CO₂ fertilization⁹⁶. Nevertheless, we
1013 expect that the regressions would partition the sensitivity of the vegetation index due to
1014 daily rainfall variability and would only have minor biases due to the likely smaller
1015 influences of CO₂ fertilization. These vegetation sensitivities are computed using 20-
1016 year and less time periods which are influenced by sub-decadal variability like El Nino
1017 Southern Oscillation (ENSO). Since atmospheric CO₂ has increased monotonically, we
1018 expect less of an impact on interannual variability of the vegetation indices, which we
1019 show is strongly driven by year-to-year changes in annual rainfall and daily rainfall
1020 variability among other factors. The estimated trends are rescaled to obtain a percent
1021 change per year using FLUXSAT GPP units⁶⁶. The vegetation trend is in standard
1022 normalized format ($GPP-E[GPP]/\sigma[GPP]$). To approximate percent change units, the
1023 vegetation trend is multiplied by GPP interannual mean standard deviation then divided
1024 by GPP mean. Therefore, the units are in mean percent change of GPP per year (or
1025 $(GPP-E[GPP])/E[GPP]$).

1026
1027
1028
1029
1030
1031
1032 **Methods References**

1033 55. Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05 Deg CMG
1034 V061. 2021, distributed by NASA EOSDIS Land Processes DAAC,
1035 <https://doi.org/10.5067/MODIS/MOD13C1.061>. (2021).

1036 56. Vermote, E. *et al.* NOAA CDR Program. (2014): NOAA Climate Data Record
1037 (CDR) of Normalized Difference Vegetation Index (NDVI), Version 4. AVH13C1.
1038 NOAA National Centers for Environmental Information.
1039 <https://doi.org/10.7289/V5PZ56R6>. Accessed 01/15/2023. (2014).

1040 57. OCO-2-Science-Team, Gunson, M. & Eldering, A. OCO-2 Level 2 bias-corrected
1041 solar-induced fluorescence and other select fields from the IMAP-DOAS algorithm
1042 aggregated as daily files, Retrospective processing V10r, Greenbelt, MD, USA,
1043 Goddard Earth Sciences Data and Information Services Center (GES DIS). (2020).

1044 58. Joiner, J. *et al.* Global monitoring of terrestrial chlorophyll fluorescence from
1045 moderate-spectral-resolution near-infrared satellite measurements: methodology,
1046 simulations, and application to GOME-2. *Atmos. Meas. Tech.* **6**, 2803–2823
1047 (2013).

1048 59. Huffman, G. ., Stocker, E. F., Bolvin, D. T., Nelkin, E. J. & Tan, J. GPM IMERG
1049 Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06, Greenbelt, MD,
1050 Goddard Earth Sciences Data and Information Services Center (GES DISC),
1051 Accessed: [03.01.20. (2019).

1052 60. Xie, P. *et al.* A gauge-based analysis of daily precipitation over East Asia. *J.
1053 Hydrometeorol.* **8**, 607–626 (2007).

1054 61. Contractor, S. *et al.* Rainfall Estimates on a Gridded Network (REGEN) - A global
1055 land-based gridded dataset of daily precipitation from 1950 to 2016. *Hydrol. Earth
1056 Syst. Sci.* **24**, 919–943 (2020).

1057 62. Roca, R. *et al.* FROGS: A daily 1° × 1° gridded precipitation database of rain
1058 gauge, satellite and reanalysis products. *Earth Syst. Sci. Data* **11**, 1017–1035
1059 (2019).

1060 63. Reichle, R. H. *et al.* Land Surface Precipitation in MERRA-2. *J. Clim.* **30**, 1643–
1061 1664 (2017).

1062 64. Eyring, V. *et al.* Overview of the Coupled Model Intercomparison Project Phase 6
1063 (CMIP6) experimental design and organization. *Geosci. Model Dev.* **9**, 1937–1958
1064 (2016).

1065 65. Copernicus Climate Change Service Climate Data Store. CMIP6 climate
1066 projections. Copernicus Climate Change Service (C3S) Climate Data Store
1067 (CDS). DOI: 10.24381/cds.c866074c (Accessed on 15-04-2023). (2021).

1068 66. Joiner, J. *et al.* Estimation of terrestrial global gross primary production (GPP)
1069 with satellite data-driven models and eddy covariance flux data. *Remote Sens.*
1070 **10**, 1–38 (2018).

1071 67. NASA/LARC/SD/ASDC. CERES and GEO-Enhanced TOA, Within-Atmosphere
1072 and Surface Fluxes, Clouds and Aerosols Daily Terra-Aqua Edition4A [Data set].
1073 NASA Langley Atmospheric Science Data Center DAAC. Retrieved from
1074 https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A. (2017).

1075 68. Gelaro, R. *et al.* The modern-era retrospective analysis for research and
1076 applications, version 2 (MERRA-2). *J. Clim.* **30**, 5419–5454 (2017).

1077 69. Wan, Z., Hook, S. & Hulley., G. MYD11C2 MODIS/Aqua Land Surface
1078 Temperature/Emissivity 8-Day L3 Global 0.05 Deg CMG V006. 2015, distributed

1079 by NASA EOSDIS Land Processes DAAC,
1080 <https://doi.org/10.5067/MODIS/MYD11C2.006>. (2015).

1081 70. O'Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, R. Bindlish, and J. Chaubell.
1082 (2019). SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil
1083 Moisture, Version 3 [Data Set]. Boulder, Colorado USA. NASA National Snow and
1084 Ice Data Center Distributed .

1085 71. O'Neill, P. Soil Moisture Active Passive (SMAP) Algorithm Theoretical Basis
1086 Document (ATBD) SMAP Level 2 & 3 Soil Moisture (Passive). 1–75 (2012).

1087 72. Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C.
1088 Hydrologic regulation of plant rooting depth. *Proc. Natl. Acad. Sci. U. S. A.* **114**,
1089 10572–10577 (2017).

1090 73. Feldman, A. F., Konings, A., Piles, M. & Entekhabi, D. The Multi-Temporal Dual
1091 Channel Algorithm (MT-DCA) (Version 5) [Data set]. Zenodo (2021).
1092 doi:<https://doi.org/10.5281/zenodo.5619583>

1093 74. Kim, S. Ancillary Data Report: Landcover Classification. *Jet Propuls. Lab. Calif.*
1094 *Inst. Technol.*, JPL D-53057. (2013).

1095 75. Sala, O. E. & Lauenroth, W. K. Small Rainfall Events: An Ecological Role in
1096 Semiarid Regions. *Oecologia* **53**, 301–304 (1982).

1097 76. Giorgi, F., Raffaele, F. & Coppola, E. The response of precipitation characteristics
1098 to global warming from climate projections. *Earth Syst. Dyn.* **10**, 73–89 (2019).

1099 77. Grömping, U. Estimators of relative importance in linear regression based on
1100 variance decomposition. *Am. Stat.* **61**, 139–147 (2007).

1101 78. Pastorello, G., Trotta, C., Canfora, E. & Authors), (284 more. The FLUXNET2015
1102 dataset and the ONEFlux processing pipeline for eddy covariance data. *Sci. Data*
1103 **7**, 225 (2020).

1104 79. Ploton, P. *et al.* Spatial validation reveals poor predictive performance of large-
1105 scale ecological mapping models. *Nat. Commun.* **11**, 1–11 (2020).

1106 80. Lewińska, K. E. *et al.* Beyond “greening” and “browning”: Trends in grassland
1107 ground cover fractions across Eurasia that account for spatial and temporal
1108 autocorrelation. *Glob. Chang. Biol.* **29**, 4620–4637 (2023).

1109 81. Ludwig, M., Moreno-Martinez, A., Hözel, N., Pebesma, E. & Meyer, H. Assessing
1110 and improving the transferability of current global spatial prediction models. *Glob.*
1111 *Ecol. Biogeogr.* **32**, 356–368 (2023).

1112 82. James, G., Witten, D., Hastie, T. & Tibshirani, and R. *An Introduction to*
1113 *Statistical Learning: With Applications in R*. (Springer, 2014).

1114 83. Pedregosa, F. *et al.* Scikit-learn: Machine Learning in Python. *J. Mach. Learn.*
1115 *Res.* **12**, 2825–2830 (2011).

1116 84. Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted
1117 regression: a method for exploring spatial nonstationarity. *Geogr. Anal.* **28**, 281–
1118 298 (1996).

1119 85. Li, Y. *et al.* Widespread spring phenology effects on drought recovery of Northern
1120 Hemisphere ecosystems. *Nat. Clim. Chang.* **13**, 182–188 (2023).

1121 86. Greene, W. H. *Econometric Analysis*. (Prentice Hall, 2003).

1122 87. Griffin-Nolan, R. J., Slette, I. J. & Knapp, A. K. Deconstructing precipitation
1123 variability: Rainfall event size and timing uniquely alter ecosystem dynamics. *J.*
1124 *Ecol.* 1–14 (2021). doi:10.1080/10643389.2012.728825

1125 88. Green, J. K. *et al.* Regionally strong feedbacks between the atmosphere and
1126 terrestrial biosphere. *Nat. Geosci.* **10**, 410–414 (2017).

1127 89. Madani, N., Kimball, J. S., Jones, L. A., Parazoo, N. C. & Guan, K. Global
1128 analysis of bioclimatic controls on ecosystem productivity using satellite
1129 observations of solar-induced chlorophyll fluorescence. *Remote Sens.* **9**, 530
1130 (2017).

1131 90. Lundberg, S. M. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions.
1132 in *31st Conference on Neural Information Processing System* (2017).

1133 91. Andrews, T. *et al.* On the Effect of Historical SST Patterns on Radiative
1134 Feedback. *J. Geophys. Res. Atmos.* **127**, (2022).

1135 92. Bueso, D. *et al.* Soil and vegetation water content identify the main terrestrial
1136 ecosystem changes. *Natl. Sci. Rev.* (2023).

1137 93. Ives, A. R. *et al.* Statistical inference for trends in spatiotemporal data. *Remote*
1138 *Sens. Environ.* **266**, 112678 (2021).

1139 94. Cortés, J. *et al.* Where Are Global Vegetation Greening and Browning Trends
1140 Significant? *Geophys. Res. Lett.* **48**, 1–9 (2021).

1141 95. Cortés, J., Mahecha, M., Reichstein, M. & Brenning, A. Accounting for multiple
1142 testing in the analysis of spatio-temporal environmental data. *Environ. Ecol. Stat.*
1143 **27**, 293–318 (2020).

1144 96. Keenan, T. F. *et al.* Increase in forest water-use efficiency as atmospheric carbon
1145 dioxide concentrations rise. *Nature* **499**, 324–327 (2013).

1146

1147

1148

1149

1150

1151

1152

1153 Data Availability Statement

1154 The data used and created in the study are available in two repositories. The processed
1155 data inputs are available on Zenodo at <https://zenodo.org/records/10947071>. The output
1156 data and reduced-size example input data are available on Zenodo at
1157 <https://zenodo.org/records/13551521>. All datasets used in the study are freely available
1158 and were obtained as follows. The MODIS NDVI product can be obtained
1159 from <https://modis.gsfc.nasa.gov/data/dataproducts/mod13.php>. AVHRR NDVI can be
1160 obtained from [https://www.ncei.noaa.gov/data/land-normalized-difference-vegetation-
1161 index/access/](https://www.ncei.noaa.gov/data/land-normalized-difference-vegetation-index/access/). GOME-2 SIF can be downloaded from [https://daac.ornl.gov/SIF-
1163 ESDR/guides/MetOpA_GOME2_SIF.html](https://daac.ornl.gov/SIF-
1162 ESDR/guides/MetOpA_GOME2_SIF.html). OCO-2 SIF can be obtained from
1164 https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_SIF_10r/summary. The MT-DCA
1165 vegetation optical depth dataset retrieved from SMAP is freely available
1166 at <https://doi.org/10.5281/zenodo.5579549>. AIRS humidity and air temperature data are
1167 available at <https://airs.jpl.nasa.gov/data/get-data/standard-data/>. The MODIS land
surface temperature product can be obtained

1168 from <https://lpdaac.usgs.gov/products/myd11c2v006/>. MERRA2 precipitation data can
1169 be accessed at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/. CERES
1170 radiation can be accessed at:
1171 https://asdc.larc.nasa.gov/project/CERES/CER_SYN1deg-Day_Terra-Aqua-
1172 [MODIS Edition4A](https://nsidc.org/data/smap/data). SMAP soil moisture can be obtained from
1173 <https://nsidc.org/data/smap/data>. GPM precipitation outputs are available at
1174 <https://gpm.nasa.gov/data/directory>. CPC precipitation data are available at
1175 <https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html>. REGEN precipitation data
1176 are available at https://thredds-x.ipsl.fr/thredds/catalog/FROGs/REGEN_ALL_V1-2019/catalog.html. FLUXNET gross primary production observations can be obtained
1177 from <https://fluxnet.org>. CMIP6 rainfall projections can be obtained from
1178 <https://cds.climate.copernicus.eu>.
1179

1180

1181 **Code Availability Statement**

1182 The code is available on a Zenodo repository at <https://zenodo.org/records/13551521> to
1183 both create the figures and conduct the analysis. This repository includes the main
1184 analysis outputs and example input data. The full processed data inputs are available
1185 on another Zenodo repository at <https://zenodo.org/records/10947071>.
1186

1187

Acknowledgements

1188 A.F.F. was supported by an appointment to the NASA Postdoctoral Program at the
1189 NASA Goddard Space Flight Center, administered by Oak Ridge Associated
1190 Universities under contract with NASA. A.F.F. was also partly supported by a NASA
1191 Terrestrial Ecology Program scoping study for dryland ecosystems. A.G.K was
1192 supported by the Alfred P. Sloan Foundation and by NSF DEB 1942133. W.K.S. and
1193 B.P. acknowledge support from the NASA Carbon Cycle Science grant no.
1194 80NSSC23K0109. M.A. acknowledges Swiss National Science Foundation grant
1195 no. 206603. L.W. acknowledges partial support from the US National Science
1196 Foundation (DEB-2307257, DEB-2406931). USDA is an equal-opportunity employer
1197 and provider. We acknowledge the World Climate Research Programme, which,
1198 through its Working Group on Coupled Modelling, coordinated and promoted CMIP6.
1199 We thank the climate modeling groups for producing and making available their model
1200 output, the Earth System Grid Federation (ESGF) for archiving the data and providing
1201 access, and the multiple funding agencies who support CMIP6 and ESGF. This work
1202 used eddy covariance data acquired and shared by the FLUXNET community, including
1203 these networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly,
1204 CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC,
1205 OzFlux-TERN, TCOS-Siberia, and USCCC. The FLUXNET eddy covariance data
1206 processing and harmonization was carried out by the ICOS Ecosystem Thematic

1207 Center, AmeriFlux Management Project and Fluxdata project of FLUXNET, with the
1208 support of CDIAC, and the OzFlux, ChinaFlux and AsiaFlux offices.

1209

1210 **Author Contributions**

1211 A.F.F. conceived the study with input from B.P. A.F.F. conducted the analysis and wrote
1212 the initial manuscript. A.G.K., P.G., J.J., A.C., and B.P. provided guidance on the
1213 methods throughout the analysis. M.A., L.W., W.K.S., and J.A.B. provided guidance in
1214 part on methods and mainly on the interpretation of results. All authors contributed
1215 substantial revisions to the text and figures.

1216

1217 **Competing Interests**

1218 The authors declare no competing interests

1220

1221

1222

1223 **Extended Data Figure Captions**

1224 **Extended Data Fig. 1. | Across historical simulations and projections, rainfall is**
1225 **becoming less frequent, but more intense.** Historical and projected rainfall trends of
1226 (a, b) wet day frequency, and (c, d) wet day intensity, and (e, f) annual rainfall total
1227 using CMIP6 historical simulations (1940-2020) and CMIP6 RCP8.5 models (2020-
1228 2099).

1229

1230 **Extended Data Fig. 2. | Across observation-based rainfall datasets, rainfall is**
1231 **becoming less frequent, but more intense.** Rainfall trends of (a, b) wet day
1232 frequency, and (c, d) wet day intensity, and (e, f) annual rainfall total using CPC gridded
1233 observations (1980-2020) and MERRA2 model reanalysis (1980-2020).

1234

1235 **Extended Data Fig. 3. | Wet day frequency and annual rainfall amount have**
1236 **enough uncorrelated information to be included together and partitioned in a**
1237 **regression.** (a) Variance inflation factor of wet day frequency and intensity. Higher
1238 values (especially much over 5) indicate multi-collinearity with annual rainfall mean and
1239 thus higher uncertainty partitioning effects between the variables. (b) Interannual
1240 coefficient of variation computed as the interannual standard deviation divided by
1241 interannual mean for each respective rainfall characteristic. Similar magnitudes between
1242 variables suggest variability of one variable is not dominating the regression.

1243

1244 **Extended Data Fig. 4. | Mechanistic explanation of vegetation sensitivity to more**
1245 **intense, less frequent wet days across the global mean rainfall gradient (in Fig. 3).**
1246 (a) Effect of soil, plant, and atmospheric factors on vegetation sensitivity to more
1247 intense, less frequent wet days. ** indicates significance ($p < 0.05$). Positive values
1248 suggest that increasing the respective driver promotes higher vegetation behavior in

1249 years with more intense, less frequent wet days. Computation of individual mechanistic
1250 factors is discussed in the Methods and their relationships with mean annual rainfall are
1251 shown in Fig. S15. Mean VPD, Soil Moisture, and Solar Radiation “Sensitivity” refers to
1252 the response of these climate variables to more intense, less frequent wet days (see
1253 text and Methods). (b) Variance explained of factors in (a).

1254

1255 **Extended Data Fig. 5. | Empirically estimated vegetation trends due to daily**
1256 **rainfall variability trends.** Spatial maps of empirically estimated vegetation trends due
1257 to trends in daily rainfall variability from (a) CPC, (b) MERRA2, (c) CMIP6 historical
1258 simulations, and (d) CMIP6 RCP8.5 projections.

1259