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Large global scale vegetation sensitivity to daily rainfall variability
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Rainfall events are globally becoming less frequent but more intense under a
changing climate, thereby shifting climatic conditions for terrestrial vegetation
independent of annual rainfall totals'-3. However, it remains uncertain how changes
in daily rainfall variability are affecting global vegetation photosynthesis and
growth®'7. Here, we use several satellite-based vegetation indices and field
observations indicative of photosynthesis and growth, and find that global annual-
scale vegetation indices are sensitive to the daily frequency and intensity of
rainfall, independent of the total amount of rainfall per year. Specifically, we find
that satellite-based vegetation indices are sensitive to daily rainfall variability
across 42% of the vegetated land surfaces. On average, vegetation’s sensitivity to
daily rainfall variability is almost as large (95%) as vegetation’s sensitivity to annual
rainfall totals. Moreover, we find that wet day frequency and intensity are projected
to change with similar magnitudes and spatial extents compared to annual rainfall
changes. Overall, our findings suggest that daily rainfall variability and its trends
are affecting global vegetation photosynthesis, with potential implications for the
carbon cycle and food security.
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Earth’s vegetation regulates the global water and carbon cycles, thus strongly
influencing weather and climate'®. Climate change is altering both rainfall mean and
variability, which influences vegetation function including plants’ ability to provide food
and take up atmospheric carbon dioxide'%-?2. Impacts of annual rainfall totals on
vegetation have been extensively studied'%23-2%. However, some studies have pointed
out that annual rainfall totals only partially explain the interannual variability of
photosynthesis, at times less than 50% even in water-limited ecosystems?6-28,
Furthermore, how plants respond to water availability in Earth system models is a
dominant driver of global carbon cycle uncertainty?'2°30, and thus changes in moisture
might be having a greater impact on greening trends relative to CO2 fertilization3'-33,
Potentially, there are overlooked aspects of rainfall’s influence on annually averaged
vegetation function that limit prediction of plant behavior and influence on the carbon
cycle.

While trends in annual rainfall totals are heterogeneous and uncertain®*, a more robust
trend in rainfall variability has emerged: daily rain events, or wet days, are becoming
less frequent, but more intense’2 (Extended Data Figs. 1 and 2). As is evident from
field experiments, plants are sensitive to this daily rainfall variability regardless of
changes in annual rainfall totals'®. More intense rainfall events generally increase
infiltration and soil moisture*1%-3%, Longer dry spells can also result in more plant stress
from higher vapor pressure deficit and incoming surface solar radiation'"-36. However,
studies broadly conflict®'2, with less frequent, more intense rain events causing
positive*, negative'3, or no response'* in vegetation function (function refers here to
photosynthesis and growth). Some studies indicate that these daily rainfall variability
changes only marginally influence vegetation function’*13.15.16_ Qthers show plant
responses of up to 30%°>"7, which could have a substantial impact on the carbon cycle.
Furthermore, most methods are limited in their ability to determine global plant
responses to daily rainfall variability. Field manipulation experiments have limited spatial
scale and extent®. Satellite-based studies tend to evaluate spatial rather than temporal
relationships’-811-13.16_ Process models were developed to evaluate seasonal dynamics
and might struggle to capture sub-weekly wetting and drying cycles®”-38. Ultimately,
despite large impacts of mean moisture availability on plants®3°, it is unclear how
changes in daily-scale rainfall variability impact global vegetation and carbon budgets.

Here, we ask: to what degree is global vegetation function sensitive to climatic shifts in
daily rainfall frequency and intensity, especially when compared to variations in annual
rainfall totals? Is global vegetation function higher or lower in years with less frequent,
more intense rainfall?
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To address these questions, consensus is gained from four different satellite sources
that are observational, have decade-long records, span global biomes, and vary in
spectral range and resolution; two are normalized difference vegetation index (NDVI),
and two are solar induced fluorescence (SIF) (Methods). We refer to satellite NDVI and
SIF observations as vegetation indices for simplicity, acknowledging that their
reflectance and emission properties are proxies, to varying degrees, of photosynthetic
carbon uptake, greenness, vegetation cover, and biomass*%4!. Furthermore, we
evaluate multi-decadal globally observed and projected rainfall trends and estimate their
influence on vegetation function.

Global vegetation sensitivity estimates

We use partial least square regressions to isolate the vegetation sensitivity to daily
rainfall variability, while controlling for annual rainfall totals and several other climatic
factors (including surface downwelling solar radiation, land surface temperature, and
atmospheric humidity; see Methods). A challenge is that wet day frequency and
intensity are inherently related to annual rainfall totals*?. However, our tests reveal that
wet day frequency (or wet day intensity) and annual rainfall total have enough
uncorrelated variability that they can be statistically partitioned within our regressions
(Methods; Extended Data Fig. 3). For our main analysis, we use wet day frequency
alone to represent less frequent, more intense wet days. Specifically, by including both
wet day frequency and annual rainfall total as regressors, a decrease in wet day
frequency (longer dry spells) also represents greater wet day intensity because annual
rainfall totals are simultaneously controlled for. Wet day frequency and other metrics
used here thus broadly represent daily rainfall variability. Additionally, note that these
daily rainfall variability metrics are lumped parameters in capturing the daily rainfall
itself, but also post-rain drying factors that include sub-seasonal variability of solar
radiation and humidity (See Methods; Figs. S1, S2).

We find that global vegetation sensitivities to daily rainfall variability are similar in
magnitude as the sensitivity to annual rainfall total (Fig. 1). Namely, a one standard
deviation shift in daily rainfall variability (via wet day frequency or intensity) is related to
between 20% to 50% changes in annual mean vegetation indices across a range of
climatic conditions, similarly to annual rainfall total (Figs. 1a, 1b, S3). Consequently,
daily rainfall variability explains 5-20% of the variance of mean vegetation indices,
similarly to annual rainfall total (Fig. S4). In directly comparing their sensitivity
magnitudes, the annual mean vegetation index sensitivity magnitude to daily rainfall
variability is a factor of 0.95 (0.61-1.46, hereafter the range refers to 25" and 75t
percentile bounds across space) of the magnitude of the vegetation sensitivity to annual
rainfall total, based on our partial regression approach (Fig. 1c¢). Similar conclusions are
drawn when using different daily rainfall variability metrics, using soil moisture variability
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instead of rainfall data, considering only the growing season, and when using a random
forest regression approach (Fig. 1c). The ratio is even higher at 1.58 (1.08-2.28) when
analyzing ground measurements, although this field network analysis relies on binning
multiple sites and is thus more uncertain (see Methods).

Additionally, vegetation sensitivity to daily rainfall variability is significant (p<0.05) across
42% of Earth’s vegetated land surfaces (Fig. 1a). For comparison, this spatial extent is
50% when considering vegetation sensitivity to annual rainfall totals (Fig. 1b). While
there is some variability of the fractional area with significant sensitivities when
repeating analyses across different wet day metrics and satellite datasets, it is always
comparable to the fractional area with significant sensitivities to annual rainfall totals
(Figs. S5, S6).

An example of the vegetation sensitivity to daily rainfall variability is shown in dry
savannas in Botswana (Fig. 2). There, NDVI was larger by 16% in a year that had more
intense, less frequent rainfall events compared to another year, despite both years
having nearly identical annual rainfall totals.

Previous investigations have found that plant sensitivity to sub-seasonal rainfall
variability is only a small fraction, often less than 20%, of the plant sensitivity to annual
rainfall totals®11.13.16, We instead find that plant sensitivity to changes in wet day
frequency and intensity are 95% (61%-146%) as large as their sensitivity to annual
rainfall totals (Fig. 1c), several times higher than previous estimates (Fig. 1c). We
attribute these differences in part to our analysis relying directly on temporal patterns
with decade long records of observed vegetation variables, rather than on mainly spatial
relationships in previous studies'® 6. Furthermore, despite some differences in results
across datasets and approaches (see text in Sl), we emphasize our findings about the
sensitivity magnitudes and spatial extents are robust across many conditions (Figs. S5-
S12).

Potential drivers of spatial patterns

We evaluate vegetation sensitivities to less frequent, more intense wet days along a
gradient of mean annual rainfall in order to provide a first-order understanding of
differences in vegetation function between shorter, herbaceous plants that receive less
annual rainfall and taller, woody plants that receive more annual rainfall. We find that in
arid ecosystems, vegetation indices are higher in years with less frequent, more intense
wet days, while in humid ecosystems, vegetation indices are typically lower in such
years (Fig. 3a). Specifically, for dry ecosystems receiving less than 500 mm of annual
rainfall, 23% of pixels show increased vegetation indices while 13% show decreases in
years with less frequent, more intense wet days. By contrast, for humid ecosystems
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receiving more than 1,500 mm of annual rainfall, 22% of pixels show vegetation index
increases while 31% show decreases in years with less frequent, more intense wet
days. These patterns of changing signs of responses between dry and wet ecosystems
are captured across most datasets and conditions (Fig. S13), though with some
differences (see Sl). They are also consistent with a previously posed theoretical
paradigm and with results from field experiments3643,

Grasslands and shrublands, prevalent in drier regions, as well as croplands tend to
experience increased vegetation indices in years with less frequent, more intense wet
days (Fig. 3b). Boreal needleleaf forests occupying higher latitudes (Fig. S14) also show
increased vegetation indices under these conditions, potentially due to increases in light
availability over longer dry periods. Savannas which typically occupy transitional
regions, tend to show both positive and negative vegetation sensitivities (Fig. 3b).
Humid forests that occupy lower and mid-latitudes (Fig. S14; broadleaf forests) tend to
have an opposing relation of lower vegetation indices in years with less frequent, more
intense wet days (Fig. 2b). This decreasing vegetation index signal mainly comes from
forests in the Indo-Pacific Islands (Fig. 1a) that might respond negatively to longer dry
spells. In contrast, some portions of the Amazon and Congo rainforests have a positive
response (Fig. 1a), likely because more light and higher vapor pressure deficit (VPD)
benefit these ecosystems*4.

To gain further insights into diverging signs of plant responses, we use a regression and
variance decomposition method to evaluate the degree to which several soil, plant, and
atmospheric variables explain the spatial pattern of vegetation sensitivities to less
frequent, more intense wet days (Methods). Several main explanatory variables arise
(Extended Data Fig. 4; p<0.05). Specifically, drier ecosystems tend to have increased
vegetation indices in years with less frequent, more intense wet days because these
ecosystems spend more time below plant water stress thresholds and thus larger
rainfall events are more ecologically advantageous by increasing soil moisture above
these thresholds. Drier ecosystems also have greater plant response sensitivities to
individual wet days, such that larger rain events can greatly increase plant
function37:4546 (Fig. S15). Finally, these ecosystems have smaller mean VPD increases
with less frequent, more intense wet days (Fig. S15), meaning they will experience
relatively less plant water stress during dry spells. We tested several other factors, such
as mean annual soil moisture sensitivity to more intense, less frequent rainfall events,
but they were not found to be significant drivers of global vegetation sensitivity patterns
(Fig. S15).

Daily rainfall variability trends
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Finally, we estimate the daily rainfall frequency and intensity trends over historical
periods from merged observation-based datasets (1980-2020), extrapolated in-situ
observations (1950-2016), and models (1940-2020) as well as model projections
between 2020-2099 (Methods). Common features across all datasets and time periods
are that wet day frequency and intensity trends are nearly as high in relative magnitude
and of similar spatial prevalence as trends in annual rainfall totals (Fig. 4a). For
example, based on CMIP6 projections from 27 models, wet day frequency and intensity
are changing by 0.7% and 1.2% per decade, respectively (Fig. 4a), while annual rainfall
total is changing by 1.2% per decade. The areal coverage of significant (p<0.05) CMIP6
projected wet day frequency and intensity trends are 33% and 47% of global vegetated
surfaces, respectively, which are similar to the 36% coverage for trends in annual
rainfall totals. Trends over the historical period (pre-2020) are ultimately less spatially
extensive; note that the areal percentages of significant trends have been reduced by 3-
5 times after conservative removal of false positive trends (see methods, Fig. S16).
However, we emphasize that our focus is on the comparison between daily rainfall
variability trends and annual rainfall total trends for a given dataset; the feature that
daily rainfall variability trend extent and magnitude is similar to that of trends in annual
rainfall totals holds across observations (CPC and REGEN), model reanalysis
(MERRAZ2), and model simulations over a longer record (CMIP6 historical model
scenarios) (Fig. 4a). Our findings thus hold across different precipitation products
ranging from the past to the future, showing robustness of our arguments even
considering the limitations of each dataset (see Sl).

Consequently, the presence of daily rainfall variability trends, together with widespread
vegetation sensitivities to daily rainfall variability (Fig. 1), suggest an influence of daily
rainfall variability trends on global vegetation photosynthesis and growth. We empirically
estimate the impact of trends in daily rainfall variability on global vegetation indices (Fig.
4b; Methods). While the magnitudes of empirically estimated vegetation trends
themselves are uncertain (see Sl), a feature that emerges from estimates from each
rainfall dataset is that estimated vegetation index trend magnitudes due to daily rainfall
variability are similar to those due to trends in annual rainfall totals (Fig. 4b). For
example, based on CMIP6 projections between 2020-2099, vegetation index trends due
to both daily rainfall variability and annual rainfall totals are both 0.1%/decade.

The absolute trend magnitudes of vegetation indices due to changes in daily rainfall
variability are |0.5%|/decade (|1.1%|/decade at 75™" percentile) and |0.1%|/decade
(|0.3%|/decade at 75" percentile) based on CPC and CMIP6 trends, respectively (Fig.
4b). For comparison, mean global vegetation greening is estimated to be 1% to 3% per
decade since 1980, where CO: fertilization is expected to be playing a dominant role,
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with climate only driving a fraction of these changes3'. Therefore, daily rainfall variability
might be a dominant climate-based driver of global vegetation function changes.

Mean vegetation trends across the globe are ultimately near zero (Extended Data Fig.
5), attributable to averaging opposing vegetation sensitivities to less frequent, more
intense wet days across dry to wet ecosystems (Figs. 1 and 2). As such, the global
mean trend obscures large regional trends with estimated high magnitude vegetation
trends present in the Western US, Australia, and Southern Africa (Extended Data Fig.
5), where presumably disparate and pronounced rainfall trends are occurring because
of regional changes in atmospheric patterns’, for example, the North American
Monsoon and Walker Cell.

Discussion

In summary, we find robust, substantial, and globally widespread vegetation index
sensitivities to how rainfall is delivered to the surface in terms of daily frequency and
intensity, independent of total rainfall amounts. While the analysis is limited by statistical
means to partition the relative plant sensitivities to daily rainfall variability, our
uncertainty tests reveal robustness of our findings across a multitude of statistical
approaches and across satellite and field datasets. Mean annual water availability has
long been recognized as a major driver of vegetation function?>4’, but we argue that
daily rainfall variability is playing a similarly large role on vegetation function at annual
scales across the globe. Since annual rainfall totals strongly drive interannual variability
of global photosynthesis and the carbon cycle, daily rainfall variability is likely also a
substantial driver of this variability*®4°. Our results also imply that aggregating
vegetation observations to monthly, seasonal, or annual timescales for many types of
analyses would miss essential response variability. Furthermore, while we do not
explicitly investigate the role of the most extreme wet days or longest dry spells here,
this study is consistent with and broadens the existing hypothesis that the most extreme
wet days and lengthening dry spells are increasing in intensity and having a substantial
role on the carbon cycle®-52,

We also find that trends in wet day frequency and intensity are nearly as large and as
spatially prevalent as trends in annual rainfall totals. With both daily rainfall variability
trends and strong vegetation sensitivity to this variability, there are likely globally
prevalent vegetation function trends due to less frequent, more intense wet days that
are playing a role in global greening and browning3'.53:%4_ Vegetation trend attribution
analyses do not typically consider impacts of daily rainfall variability, and will thus miss
these plant responses’. Therefore, changes in daily rainfall variability need to be
explicitly considered when projecting terrestrial carbon uptake and managing
agricultural and natural ecosystems.
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418
419  Fig. 1. | Sensitivity of vegetation function to daily rainfall variability is nearly as

420 substantial and spatially extensive as its sensitivity to annual rainfall totals

421 across much of the globe. (a) Satellite vegetation index sensitivity to less frequent,
422  more intense wet days (represented by a one standard deviation decrease of wet day
423  frequency; see Methods) based on a partial regression. Results are an ensemble mean
424  of normalized sensitivities across MODIS NDVI, AVHRR NDVI, OCO-2 SIF, and

425  GOME-2 SIF (Figs. S3, S5). Only significant values across all satellite datasets are

426  shown (Methods). Percent areas refer to statistically significant sensitivities considering
427  only vegetated pixels (p<0.05). High latitudes (>60 degrees) are not included in the
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analysis (Methods). (b) Same as (a), but vegetation index sensitivities to a one standard
deviation increase in annual rainfall total. (c) Ratio of vegetation sensitivity to less
frequent, more intense wet days relative to sensitivity to annual rainfall totals. Boxplots
are global spatial distributions. A random forest method applied to the satellite data and
in-situ results from FLUXNET gross primary production are shown for comparison
(Methods). Reported results are based on z-score annual anomalies of each dataset.
The satellite data are available between 2003-2022, with 8 to 20 year date ranges, while
the FLUXNET data include 178 sites with primarily data available between 1999-2014
with a median of 7 year date ranges (Table S1). Data from these tower sites are
processed similarly to the satellite data (Methods).
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Fig. 2. | Example time series of dry savanna in Botswana (23°S, 22°E) where
vegetation indices tend to be higher in years with more intense, less frequent
rainfall events (based on results in Fig. 1). Comparison of vegetation indices
between 2005 and 2016 which had nearly identical annual rainfall totals, but fewer wet
days and larger mean rainfall events in 2016.
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Fig. 3. | Vegetation indices in years with less frequent, more intense wet days
tend to increase in drier ecosystems and decrease in wetter ecosystems. (a) Mean
annual rainfall gradient of sign of vegetation sensitivity to less frequent, more intense
wet days based on ensemble average across vegetation metrics from MODIS NDVI,
AVHRR NDVI, OCO-2 SIF, and GOME-2 SIF (Fig. S13). Significance is determined
across all four satellite-based vegetation indices (Methods). Rainfall bins have nearly
equal sample sizes. These relationships are reproduced using alternative regression
model selection techniques and daily rainfall variability regressors (Fig. S13). (b) Same
as (a) but conditioning on different vegetation types using IGBP land cover
classifications (Fig. S14).
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Fig. 4. | Daily rainfall variability trends are of similar absolute magnitude and
spatial extent as shifts due to annual rainfall total, which consequently shifts
annual mean vegetation function. (a) Absolute magnitude of trends in rainfall
characteristics. Percentage of land area with significant trends are shown in text
(p<0.05). All distributions have medians that are significantly different based on Mann-
Whitney U tests (p<0.05). Trends over a consistent 1980-2020 period are shown in Fig.
S16. Projected rainfall trends for each individual CMIP6 model are shown in Fig. S17.
(b) Same as (a) but empirically estimated absolute magnitude of significant vegetation
trends due to rainfall trends. Maps of empirically estimated global vegetation index
trends due to changes in daily rainfall variability are shown in Extended Data Fig. 5.

Methods



475  Datasets

476  We use four retrieved vegetation indices from four different satellites. These include the
477  Moderate Resolution Imaging Spectroradiometer (MODIS) Terra normalized difference
478  vegetation index (NDVI) over 2003-2022 from MOD13C1 v061 at 0.05 degrees®®, the
479  Advanced Very High Resolution Radiometer (AVHRR) NDVI over 2003-2013 from

480  AVH13C1 version 5 at 0.1 degrees®®, the Orbiting Carbon Observatory 2 (OCO-2) solar
481  induced fluorescence (SIF) level 2 version 11 product at a 1.3 x 2.25 km resolution over
482  2015-2022%, and Global Ozone Monitoring Experiment-2 (GOME-2) SIF level 2 version
483  2.6.2 from MetOp-A at a 25km resolution over 2007-2017%8, which in this version is less
484  sensitive to identified effects of sensor degradation. All datasets are linearly resampled
485  to a 1x1 degree resolution and averaged to annual means.

486

487  The primary rainfall dataset used in the analysis is GPM IMERG V7 final run

488  precipitation from 2003-2022 at 0.1x0.1 degrees at the daily timescale®®. While based
489  on satellite observations, IMERG is also bias corrected with rain gauge measurements.
490  We additionally use Climate Prediction Center (CPC) rainfall data®® from 1980-2020 as
491 an alternative dataset used in place of GPM for our evaluation of vegetation sensitivity
492  to daily rainfall variability. To evaluate observation-based trends of annual rainfall total
493  and daily rainfall variability, we use this CPC dataset between 1980 and 2020 which
494  aggregates both rain gauge and satellite based precipitation estimates, though with

495 variable spatial coverage of the raw observation data and varying temporal coverages.
496 Rainfall estimates on a gridded network (REGEN) was also obtained from the FROGS
497  database which merges in-situ rainfall network measurements between 1950-201661-62,
498 We also use MERRAZ2, a model reanalysis rainfall product, between 1980 and 2020,
499  which uses similar observed data as CPC but within a data assimilation

500 (“PRECTOTCORR”)®3. For modeled rainfall from past to present, historical CMIP6

501 model trends are used across 23 models which combine historical simulations between
502 1940 to 2014 and projections from shared socioeconomic pathway (SSP) 245 for 2015
503  to 2020 similarly to previous work®? (Table S2). Finally, considering rainfall trend

504  projections, CMIP6 models under RCP4.5 and RCP8.5 scenarios with daily precipitation
505 outputs are used between 2020-2099 (Table S2)465. CMIP6 datasets were linearly

506 resampled to a 2x2 degree resolution. We use FLUXSAT gross primary production

507 (GPP) to linearly rescale the empirical vegetation trend estimates to CO2 flux units®®.
508

509  Other variables are used to control for additional environmental factors or provide

510 additional evidence of main results. Lower troposphere (850mb) humidity and vapor
511  pressure deficit are obtained from NASA’s Atmospheric Infrared Sounder (AIRS)

512  version 7 at 1x1 degrees between 2003-2022. Surface downwelling solar radiation is
513  obtained from the Clouds and the Earth’s Radiant Energy System (CERES) dataset
514 edition 4.1 (SYN1 deg level 3 “adj_atmos_sw_down_all_surface_daily” variable) based
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on MODIS Aqua and Terra instruments at a one degree resolution from 2003-2022°".
MERRAZ2 surface downwelling solar radiation was also used, but as an auxiliary test®®.
Land surface temperature is obtained at 1:30pm local time from the MODIS Aqua
instrument MYD11C2 product v006 at 0.05 degrees from 2003-2022%°. SMAP soil
moisture level 3 enhanced product v5 was obtained between 2016 and 20227°. All
datasets are resampled to a 1x1 degree resolution and averaged to annual means.

Mechanistic drivers used in the study include clay fraction, which is based on the
harmonized world soil database’', and maximum rooting depth obtained from a global
model estimate that is validated with observations”2. Other metrics include soil moisture
thresholds for water uptake and plant response sensitivity to wet days determined from
SMAP multi-temporal dual channel algorithm (MT-DCA) soil moisture and vegetation
optical depth (VOD) version 5 at a 1-3 day timescale’3. We also use International
Geosphere Biosphere Programme (IGBP) land cover classifications to evaluate results
in terms of different vegetation types’.

Partial Least Squares Regression: Main Analysis

To isolate the vegetation sensitivity to daily rainfall variability, we use the following
multiple linear regression:

Veg: = Bo + BpPr + BrrqFrar + PrsRSe + BrstLST, + Bqq: + € (1)

where Veg represents the satellite-based vegetation indices, P is annual rainfall total
(rainfall amount summed over a year) from GPM, Frq is wet day frequency which
captures daily rainfall variability and is computed as the number of annual wet days
from GPM, Rs is mean surface downwelling solar radiation over a year from MERRA2,
LST is mean land surface temperature over a year from MODIS, and q is mean lower
tropospheric humidity (at 850mb) over a year from AIRS. Each variable is at an annual
timescale and t subscript denotes the year. o is the y-intercept while the other ’s are
partial sensitivities of the vegetation index to the given variable. ¢ are the residuals. All
variables are converted to z-scores by subtracting by their mean and dividing by their
time series standard deviation allowing the magnitude of each 3 to be directly
compared. This analysis is repeated setting Veg as MODIS NDVI (2003-2022), AVHRR
NDVI (2003-2013), GOME-2 SIF (2007-2017), and OCO-2 SIF (2016-2022). All
regressors conform to these time ranges. Note that conversion to z-score does not
influence the B magnitude-dependent results in Fig. 1 because the results are nearly
identical if raw variable magnitudes are inserted into Eq. 1 and then normalized by their
standard deviations in post-processing.

Wet days are defined as days with daily rain totals above 1 mm in order to evaluate
rainfall events that are large enough to influence vegetation’®, to avoid false positive
detection of rain events given noise in the rainfall products, and because this definition
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is widely used®?76, Results in Figure 1 are ultimately not sensitive to this wet day
threshold with the qualitative findings remaining similar when using 0.25 mm and 0.5
mm thresholds (Fig. S10).

We conduct a partial least squares regression, which includes determining the optimal
combination of regressors in Eq. 1. To avoid overfitting the model to the data by
penalizing models with more regressors, we compute the Akaike information criterion
(AIC) for each model:

AIC = 2k +n*In (RSS/n) (2)

where k is the number of parameters, n is the number of data pairs, and RSS is the
residual sum of squared errors or the sum of squared differences between the model
estimation and data. The model with the lowest AIC is selected. Only combinations of
regressors are evaluated that include both P and Frq, or neither, in order to address our
research questions to partition the sensitivity of vegetation to less frequent, more
intense wet days from sensitivity to annual rainfall totals. This procedure allows directly
comparing the magnitudes of Bp and Brrq.

For the analysis on each pixel, we spatially aggregate the annual values from the
adjacent 3x3 pixels to increase the sample size by a factor of 9. This is because each
variable is at an annual timescale and the time series for each pixel is 8-to-20 time
steps long, which results in a low sample size to carry out the partial regression analysis
with Eq. 1. The effects of spatial aggregation are also tested (see Fig. S8 and “Spatial
Aggregation Tests” below).

Total variance explained (R?) of the regressors on Veg in Eq. 1 and partial variance
explained of each regressor were computed. The Gromping method’” was used to
compute the partial variance explained by computing the increase in R? when removing
the respective regressor from each combination of regressors in the model. The
increased R? is then averaged across models. Total R? are typically around 0.6, a value
expected when using noisy observations mainly from satellite retrievals in the
regression (Fig. S4). It was thus not deemed necessary to remove pixels due to
inadequate fit of annual vegetation indices.

To evaluate sensitivities from field observations, we repeated the above procedures
using FLUXNET gross primary production data representing plant uptake of carbon
across 178 sites distributed mainly across North America and Europe (Table S1)78. Data
are mainly available between 1999-2014, but extend back to 1991 in a few cases. Given
that FLUXNET record lengths are often less than five years, the same partial regression
procedure cannot be performed on a single site. Therefore, sites are sorted from low to
high mean annual precipitation and divided into 35 bins based on percentile, resulting in
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bins with 5 sites within 50 mm of mean annual rainfall of each other and 36 total site-
years. Results are not broadly sensitive to bin size. The analysis in Eq. 1 is repeated on
the site years within each bin including using the AIC model selection approach. A
Monte Carlo approach is applied where the process is repeated on each bin 1,000 times
to determine a distribution of r and Brrq.

Partial Least Squares Regression: Additional Regression Model and Model
Selection Tests

We chose to use AIC instead of cross validation, a commonly used model selection
technique, because cross validation relies on the assumption of independent validation
and training data, while spatial and temporal autocorrelation is expected for our
application”®-8'. Since our approach relies on spatial aggregation, we use AIC for our
main analysis, though we also test if our results remain the same using cross validation
model selection.

For our auxiliary test (Fig. S7), we use five-fold cross validation®. Specifically, within
each pixel (and including its 3x3 nearest neighbors) and for a given combination of
regressors in Eq. 1, data pair samples are randomly drawn and divided into five bins.
Four of these bins are used for calibration to estimate the 3 values in Eq. 1. The
remaining bin is used for out of sample validation to estimate the root mean square
error (RMSE) between the estimated vegetation index (Veg) values from the Eq. 1
model and the observed Veg values. This procedure is completed five times with each
bin serving as the validation bin once. A Monte Carlo bootstrapping procedure is
employed to repeat these steps 20 times to randomly generate 100 RMSE values,
which are averaged to a single RMSE value. All combinations of regressors are
considered. The regression model with the lowest RMSE is considered the most
optimal.

To also test the sensitivity of the results to model selection, we also report our results
when prescribing, a priori, the full model (with all possible regressors in Eq. (1)) and a
reduced model with only rainfall regressors (annual rainfall total and the daily rainfall
variability metric). We find that Figure 1 results are similar when using the AIC model
section, cross validation model selection, the prescribed full model, and the prescribed
reduced model (Fig. S7). The reduced model tends to reduce the ratios shown in Fig. 1
the most, though this is likely because vegetation is overly sensitive to annual rainfall
total in this model since annual mean Rs, LST, and q, which tend to be correlated with
mean annual rainfall, are not explicitly included in the model.

The temporal autocorrelation was estimated for the rainfall regressors (wet day
frequency, wet day intensity, dry spell length, and annual rainfall total) (Fig. S18) and
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the four vegetation indices (MODIS NDVI, AVHRR NDVI, OCO-2 SIF, and GOME2 SIF)
(Fig. S19) using the AR(1) lag-1 autocorrelation coefficient. These magnitudes tend to
be below 0.1, suggesting only minor influences of temporal autocorrelation on the model
selection and regressions in Eq. 1. This is because a smaller temporal autocorrelation is
expected for the annually aggregated data here than for shorter timescales and thus
would have less impact on the regressions.

To evaluate result dependence on the partial regression, including assumptions of
linearity, we applied a random forest regression. The partial least squares regression in
Eq. 1 assumes linear relationships between vegetation and each climatic variable,
which approximately holds at annual timescales but might be violated in some
conditions. We used the “RandomForestRegressor”’ package in python with the same
predictors and predicted variables as the partial least squares regression®. As a
modification, we prescribed the selected model using AIC instead of the random forest
based model selection to avoid issues related to spatial and temporal autocorrelation
that make the training and validation data not independent. This step also creates
consistency with the partial regression approach in each pixel. We also test the random
forest regression sensitivity to the choice of regression model by also prescribing
reduced and full models (Fig. S7). This machine learning approach can capture
nonlinear relationships between vegetation and climate variables, but has generally less
interpretable outputs and it is more challenging to diagnose its errors. Therefore, the
partial linear regression is featured in the main analysis with the random forest
regression results shown as supporting evidence.

Partial Least Squares Regression: Additional Rainfall Metrics

Alternative daily rainfall variability metrics are also tested by replacing Frq in the
regression with wet day intensity and dry spell length. Wet day intensity is defined here
as the average daily rainfall depth during wet days in a given year (acknowledging
intensity commonly refers to hourly rainfall rates). The dry spell length is the mean
length of consecutive dry days between wet days within a given year. These metrics all
represent daily rainfall variability when included in the regression along with annual
rainfall totals. In other words, all metrics will capture both frequency and intensity of wet
days when annual rainfall totals are simultaneously controlled for. This is because the
wet day frequency multiplied by the wet day daily intensity can approximately equal the
annual rainfall total.

As an alternative daily rainfall variability metric that does not use rainfall data, we
repeated the analysis using SMAP soil moisture daily variability and SMAP soil moisture
annual mean in place of precipitation frequency and annual rainfall total, respectively.
To compute soil moisture daily variability, we removed longer timescale monthly and
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seasonal variability from the soil moisture time series. Specifically, all years of SMAP
data were averaged to create a mean climatology and a 30-day moving window was fit
to the mean soil moisture time series. This smoothed soil moisture time series was
subtracted from the raw soil moisture time series. The standard deviation was computed
for each year of this anomaly time series to approximately obtain only variations on sub-
monthly timescales. We refer to these estimates as daily variability acknowledging
some weekly and monthly variability will be integrated. Due to the SMAP record
availability only beyond April 2015, the soil moisture variance analysis was only applied
with MODIS NDVI and OCO-2 SIF as the predicted vegetation indices from 2016 to
2022. Ultimately, changes in sub-weekly soil moisture variability between years might
not directly capture, for example, a change to less frequent, more intense wet days, and
thus mainly challenges interpretation of the sign of these results (Fig. S13).

These daily rainfall variability metrics will appropriately capture some variability in
atmospheric conditions that occur along with changing length of dry spells that might not
be represented in an altered annual mean Rs, LST, or q. In other words, daily rainfall
variability represents both sensitivity to the rain event as well as to the dry spells. To
test the sensitivity of the analysis to the sub-seasonal variability of other factors, the
sub-seasonal standard deviation of Rs, LST, and q are computed for each year, using
the same approach for estimating the sub-seasonal variability of soil moisture. These
three variability metrics are included in the regression in Eq. 1, where only the full model
is considered without model selection to evaluate partitioning of sensitivities between all
variables considering each variable’s annual mean and sub-seasonal variability. Across
the globe, vegetation is sensitive to these other sub-seasonal variability factors, but has
the highest sensitivity to daily rainfall variability (Fig. S2). Furthermore, a former causal-
regression analysis showed that vegetation water stress during post storm drying arises
primarily from soil moisture drying and secondarily from temperature, atmospheric
dryness, and incoming radiation increases?®. Given these points and that daily rainfall
variability shows some relation to these other factors (especially Rs variability; Fig. S1),
we only consider daily rainfall variability in the regressions in our main analysis such
that it acts as an aggregated parameter that effectively includes Rs, LST, and q
variability.

Partial Least Squares Regression: Spatial Aggregation Tests

Given spatial autocorrelation in the variables used in the regression®, it is necessary to
test the effects of our 3x3 pixel window spatial aggregation, which we do here using
three different tests. First, we repeated the analysis only on individual pixels without
spatial aggregation to only consider temporal variability. A model selection technique
was not used and the full and reduced models were prescribed a priori. This test was
attempted only for MODIS NDVI (20 years; 2003-2022), AVHRR NDVI (11 years; 2003-
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2013), and GOME2 SIF (11 years; 2007-2017). The sample size reduces significantly
because only 20, 11, and 11 data points, respectively, are evaluated on the multiple
regressions with several regressors (these sample sizes increase by a factor of 9 when
using 3x3 pixel aggregation). Second, we repeated the analysis by using a 5x5 pixel
aggregation and applying the regression to only the first three years of data of the four
satellite datasets, which evaluates how mainly the spatial relationships between the
variables contribute to the results. Finally, we evaluated the results when weighting the
neighboring pixels less than the central pixel. Specifically, a geographically weighted
regression (GWR) was used® which is a weighted linear regression that considers the
center pixel as most impactful for the regression with a full 100% weight and the
neighboring eight pixels as either 25% or 50% of the weight of the center pixel. In all
cases, the ratios were close to those reported in Figure 1c based on the 3x3 pixel
aggregation (Fig. S8). As such, we deem the results minimally sensitive to the spatial
aggregation technique and remain with the 3x3 pixel aggregation in our main results.
We have chosen to remain with the 3x3 spatial aggregation given that it produces
similar results as the auxiliary tests and also sufficiently increases the sample size for
our analysis. We chose to not show GWR in the main analysis given that it requires
assumptions of different weights in the surrounding pixels, while producing similar
results as the 3x3 pixel window aggregation technique.

Partial Least Squares Regression: Uncertainty Tests

To determine the variability of the vegetation sensitivity to daily rainfall variability (Brrq)
and its ratio to sensitivity to annual rainfall total (Br), a bootstrapping procedure was
employed in each pixel. For a given pixel and using the AIC selected model, a
bootstrapping procedure is used where the regression pairs are randomly sampled with
replacement and the regression coefficients are computed using these resampled pairs
with Eq. 1. This procedure is repeated 5,000 times and the ratio of coefficients for the
daily rainfall variability metric to that of the annual rainfall total (Brro/Br) are computed.
The 2.5t 25% 50t 751 and 97.5" percentile of the ratios are saved and their
distributions across space are shown (Fig. S9).

Additionally, to compare these ratios to that produced entirely by white noise, the daily
rainfall variability metric is replaced by a randomly generated standard normal time
series. The regression is run with this daily rainfall variability metric being white noise
while all other variables are held the same for each pixel. The rate of significance and
magnitude of Brrq due to random noise are computed and compared against that
computed with the raw data and bootstrapping procedure.

Considering MODIS NDVI and only significant sensitivities (p<0.05), the 25", 50*", and
75 percentile of the Brro/pr ratios (spatial medians across the globe) are 0.77, 0.96,
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1.19, respectively. Of the few significant (p<0.05) cases of the random noise test (2-4%
of cases), this ratio is 0.49. When considering all data (any p-value), the 25, 50", and
75" percentile of the Brro/pp ratios (spatial medians across the globe) are 0.61, 0.84,
1.14, respectively, while it is 0.15 for random noise. As such, the ratios determined in
our analysis have magnitudes substantially greater than those due to noise.

Partial Least Squares Regression: Impact of Phenology

Phenology results in only parts of the year with substantial vegetation function, which
can confound averaging function over the year. While the main analysis is with respect
to vegetation indices averaged over the full year, we also repeat the partial regressions
by evaluating growing season averages to evaluate the robustness of results to
differences in vegetation function over the full year and only the growing season.
Several growing season definitions were tested. Our first definition, “Growing Season
Method 17, is times of year when the NDVI mean climatology is above its median, which
is held constant across years. Specifically, the MODIS NDVI climatology was computed
by averaging across all years between 2003-2022 into a mean seasonal cycle. This
seasonal cycle was smoothed using a moving average window of 90 days. Our second
definition, “Growing Season Method 2a”, is based on estimating the start and end of the
growing season similar to previous studies®. Specifically, the start and end of season
are defined as the day when NDVI increases above and decreases below, respectively,
the NDVI minimum plus 30% of its seasonal amplitude. The start and end of the
growing season are allowed to change each year. In “Growing Season Method 2b,” this
same Growing Season Method 2a is repeated but with the same definition across all
years. In all growing season analyses, the daily rainfall variability metrics are insensitive
to the growing season length given that the rainfall total regressor is the seasonal total
rainfall (which is sensitive to the growing season length) while the daily rainfall variability
metrics are all normalized by the length of the growing season. We reported Growing
Season Method 1 in Fig. 1 because it considers multiple growing seasons, though the
other methods show similar results (Fig. S11).

The fact that the growing season analysis produces similar patterns as the presented
annual mean analysis suggests phenology and changing interactions between seasons
do not confound our findings. Some effects of non-linearity are also removed when
considering only the growing season, thus further supporting our assumptions of linear
interactions in the partial regression approach. We nevertheless choose to primarily
report the annual mean results in the main text because daily rainfall variability includes
effects both during rain events and during dry spells, the latter of which can influence
vegetation outside of a growing season. Furthermore, growing season definitions vary
and are inconsistent across the literature and thus our several definitions are provided
as auxiliary analyses for reference.



795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

Partial Least Squares Regression: Multi-collinearity and Causality

Several other limitations and confounding effects were addressed. First, multi-
collinearity, or correlation between regressors that inflates the variance of their 3
estimates, are partly reduced by use of the partial regression technique to select the
model with the optimal regressors®. However, annual rainfall total and wet day rainfall
frequency are correlated, but are still kept together within the regression in order to
address our research questions about their partitioned relation with vegetation function.
Variance inflation factors (VIF) were therefore assessed between annual rainfall total
(P) and wet day frequency (Frq) in each pixel to determine whether P and Frq have
multi-collinearity that greatly increases the variances of Bp and Brrq. VIF is generally less
than 5 meaning that it is acceptable to include both P and Frq in the regression
(Extended Data Fig. S3). In the case when mean annual precipitation is below 400
mm/year, the VIF increases to between 5 and 10. However, VIF is below 5 when using
wet day intensity in place of wet day frequency in this lower rainfall bin and results are
ultimately qualitatively the same when using intensity in place of frequency. As such,
multi-collinearity is not expected to be substantially influencing results here. Including
wet day intensity as an additional regressor to P and Frq in Eq. 1 creates an
overdetermined problem and results in very high VIF (>>10). Therefore, only wet day
frequency is used as a regressor along with P. However, to gain confidence in results,
the analysis is repeated using wet day intensity and dry spell length (mean number of
dry days between wet days) each in place of wet day frequency as validation of wet day
frequency results.

Our analysis does not directly consider effects of different types of wet day timing
patterns (e.g. concentrated in certain periods of spread out uniformly across the year),
since these timing effects were found to be secondary in importance to wet day
frequency and intensity at a field scale analysis®’.

Another key limitation is that the regression-based relationships do not indicate
causality. The direction of causality is presumably that the daily rainfall variability is
impacting vegetation, with feedback effects in the opposite direction of vegetation on the
atmosphere likely smaller®®. However, the regressions do not allow us to make a
stronger argument that daily rainfall variability is causing the vegetation function
responses. Nevertheless, the partial regressions are sufficient for addressing our
questions of vegetation sensitivity to daily rainfall variability compared to other factors.
Much of the understanding of vegetation relation to climate variables comes from such
regression and non-causal relationship analyses?42589,

Analysis of Vegetation Sensitivity to Wet Day Frequency and Intensity
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The global spatial distribution of absolute values Bp and Brrq and their explained
variances were compared. For the satellite data, we computed an ensemble average Bp
and Brrq in each pixel across the four satellites. For the partial regression analysis on
both satellite and field data, the ratio between Brrq and Br was computed. For the
random forest regression on satellite data, the SHAP values (Shapley Additive
Explanation) were computed to interpret the random forest outputs using the SHAP
package in python®. The mean absolute SHAP values have a similar interpretation as
normalized Brrq and PBp do, specifically the relative magnitude of sensitivity of a
vegetation index to a given predictor variable. When averaging across the metrics
across the four satellites, it is assumed here that the vegetation sensitivity to the
environmental factors are constant between 2003-2022, given the dataset ranges
occupy different years in this range. Therefore, this allows the effects from different
ranges of satellite records to be averaged.

Consistency in the spatial pattern of the sign and statistical significance of Brrq
sensitivity across the four vegetation datasets provides another form of confidence in
the results. A such, we define a “degree of agreement” metric to be evaluated in each
pixel as the count of satellite-based vegetation datasets with positive, significant S,
minus the count of satellite-based vegetation datasets with negative, significant fr,.,.
Only pixels with an absolute value Degree of Agreement of greater than or equal to 2
are considered statistically significant when considering the ensembles across the four
datasets. Higher absolute values result from several of the four satellite datasets
agreeing in statistical significance (p<0.05) and sign of sensitivity. Positive Degree of
Agreement values indicate positive relationships of wet day frequency with annual
vegetation indices across most of the datasets. When g, show no statistically
significance or they have opposing signs across the four satellites, the Degree of
Agreement approaches zero.

The percentage of global pixels with statistically significant vegetation sensitivities to
wet day frequency and intensity as well as annual rainfall total were also computed.
These areal percentages are based on ensemble mean fp and Brrq across the four
satellite-based vegetation indices that are statistically significant based on the degree of
agreement. Only pixels were considered that are dominantly vegetated (non-bare soil
based on IGBP classification), below 60 degrees latitude, non-mountainous (based on
IGBP classification), and have at least 20 annual data points used in their regression.
Screening mountainous regions partially removes pixels with snowmelt, though we
acknowledge that snowmelt and runoff will influence non-mountainous adjacent pixels.

Mechanistic Analysis



874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913

Given the differing signs of vegetation sensitivity to wet day frequency and intensity, we
also evaluated the percentage of pixels with statistically significant positive and negative
vegetation sensitivities to less frequent, more intense wet days. We evaluated these
relations across a mean annual precipitation gradient where the bins are partitioned
such that there are the same number of global pixels in each of the five bins
(approximately 800). We also compute the same percentages across pixels with the
same IGBP classes to evaluate effects of vegetation type.

We evaluate which observable mechanistic drivers explain the spatial gradient of
vegetation sensitivities to less frequent, more intense wet days. We specifically chose
variables that would directly modulate how plants respond to a more intense rain event
and/or longer dry spell as well as are observed or estimated at global scales. The
potential drivers we evaluate include clay fraction (soil texture), plant response
sensitivity to wet days, soil moisture mean relative to its soil moisture thresholds for
plant water uptake, maximum rooting depth, and the sensitivity of mean annual soil
moisture, surface downwelling solar radiation, and VPD to less frequent, more intense
wet days.

Plant response sensitivity to wet days and soil moisture thresholds for plant water
uptake are determined in the same manner as from previous work®’. In summary,
SMAP soil moisture at 9km is used to identify interstorm periods when the soil is drying,
defined as at least three consecutive SMAP satellite overpasses of decreasing soil
moisture. It was previously found that VOD tends to increase at higher soil moisture and
decrease at lower soil moisture values during drydowns®’. As such, the soil moisture
value for which VOD on average begins decreasing during drydowns is the estimated
soil moisture threshold. The plant response sensitivity to wet days is the median
dVOD/dt rate of change above the soil moisture threshold. To decouple relations to
determined soil moisture threshold and to plant response sensitivities to wet days, in the
determination of plant response sensitivities to wet days, the soil moisture threshold is
set as the median soil moisture for each pixel. The plant response sensitivities to wet
days are normalized by the mean VOD over the 2015-2020 time series to create a
fractional rate of VOD increase over an interstorm. These metrics are determined from
all drydowns at 9km pixels, but are aggregated to a one degree resolution for
consistency with the analysis in this paper. See ref. 37 for more details.

The soil moisture mean relative to the soil moisture threshold is computed by
subtracting the soil moisture threshold from the mean soil moisture. This relative mean
soil moisture is deemed more related to effects of daily rainfall variability (than annual
rainfall total or mean soil moisture) because it assesses the degree to which rainfall
pulses and dry spells are generally occurring under plant water stress conditions for that
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location. Evaluating mean soil moisture by itself would otherwise not provide information
on whether plants are stressed.

The relationship of wet day frequency with mean annual soil moisture, mean annual
surface downwelling solar radiation, and mean annual VPD are determined by:

Y= Bo+vpP +yyFrq+e (3)
where Y is mean annual SMAP soil moisture, mean annual CERES surface
downwelling solar radiation, or mean annual AIRS vapor pressure deficit. yy is the
sensitivity of the respective climatic variable to wet day frequency, analogously to Brrq,
as partitioned from sensitivities to annual rainfall total. The analysis is repeated similarly
to that of Eq. 1. With less frequent, more intense wet days, annual mean VPD is higher
(79% pixels positive, 2% pixels negative), annual mean surface downwelling solar
radiation is higher (64% pixels positive, 9% pixels negative), and annual mean soil
moisture tends to be lower (12% pixels positive, 24% pixels negative) (Fig. S15).

We aim to determine the degree to which the spatial rainfall gradient of the ensemble
mean Prrq is sensitive to each factor and why Brrq tends to switch in sign with increasing
annual rainfall totals (Fig. 3). Thus, Brrq and each mechanistic factor is binned into 50
equally sized mean annual precipitation bins and the median of each variable is
computed. Conditioning on these bins in this way allows for controlling for the mean
annual precipitation gradient, or effectively conditioning on the rainfall gradient. Each
variable is converted to its z-score by subtracting by its bin average and dividing by its
binned standard deviation. The following is then computed:
ﬂFrq = fo+ ﬁClayClay + BpuisePulse + ,BRootDepthROOtDepth +

BrhreshoraThreshold + ByppYyvpp + BsuYsmu + BrsYrs + € (4)
The analysis therefore estimates which climate variables explain the annual rainfall total
driven gradient of Brrq. Uncertainty bounds and statistical significance are determined
via bootstrapping by randomly sampling with replacement pixels across the globe and
repeating the analysis in a Monte Carlo format with 200 iterations. Statistical
significance is determined if the p of the explanatory variable has the same sign for its
2.5" and 97.5" percentiles. The main analysis was performed on the Br,, ensemble
mean across MODIS NDVI, AVHRR NDVI, OCO-2 SIF, and GOME-2 SIF. However,
there is little variability of results when performing the analysis on each individual
satellite vegetation index. We also obtain the same results when performing the
regression on the PBrrq spatial area of significant sensitivities (p<0.05).

Trend Analysis

Temporal trends in annual rainfall total, wet day frequency, and wet day intensity are
computed by regressing the z-score anomalies of these annual-scale properties across
the years of their time series in each pixel. For historical trends from 1980 to 2020, we
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use CPC observation-based rainfall, to account for complex climate changes features
that might create uncertainty in models®', and MERRA2 model reanalysis rainfall. We
also evaluate historical CMIP6 model-based precipitation from 23 models, but the 1940-
2020 period was chosen for CMIP6 historical trends to be of consistent time length as
the CMIP6 projections and reduce effects of internal and decadal variability. As an
additional observation-based dataset, we evaluate trends in spatially gridded rain gauge
data from the REGEN dataset between 1950-2016. For projections, these properties
are computed using CMIP6 models with daily outputs over 2020-2099. This includes 27
models for RCP8.5 (Table S2). Note that we also evaluate trends alternatively with
RCP4.5 and find that the trend magnitude and spatial extent is reduced (not shown).
However, our same conclusions in Figure 4 hold about relative extent and magnitude of
daily rainfall variability. The CPC and MERRAZ2 datasets were rescaled to one-degree
grids using linear resampling. Since most CMIP6 model resolutions are lower than one
degree resolution, CMIP6 models were rescaled to two-degree grids.

Temporal autocorrelation can artificially induce trends in a time series®2%. To remove
temporal autocorrelation from the time series of annual rainfall total for each dataset,
the autoregressive lag-1 (AR(1)) coefficient is removed by computing Pt — r-1Pt1, where
r-1 is the AR(1) coefficient or correlation between Ptand Pt1. Next, in each pixel,
statistical significance is determined through Mann-Kendall trend tests of whether the
trend magnitudes are different from zero (p<0.05). Then, following a nearly identical
procedure to previous work®?-%5 multiple hypothesis testing is applied to further remove
false positive trend detections given that false positives will occur in isolated cases with
inherent spatial autocorrelation in the dataset creating a cluster of false positives®. The
test thus finds a threshold for spatial cluster size of significant trends, below which the
cluster is likely formed by false positive rainfall trends. To compute this critical cluster
size, a joint permutation is applied where the time series in each pixel are randomly re-
ordered without replacement and a trend is computed along with a Mann-Kendall trend
test for each pixel. This same random permutation is applied throughout all global pixels
to conserve the spatial autocorrelation structure of the data and determine false positive
cluster sizes. Clusters of these false positives are counted considering first order
(queen) neighbors. The largest cluster size is recorded based on this randomized time
series ordering. This process is repeated 1,000 times for each dataset and the 95t
percentile of maximum cluster size is the determined threshold. For a given dataset, it
was determined that after approximately 500 iterations, the maximum cluster size and
consequently the percent area of significant trends tended to converge to the same
value. Finally, the cluster sizes are determined for the trend computation on the raw
data (1980-2020 or 2020-2099) and clusters of statistically significant trends smaller
than this cluster threshold are considered not statistically significant and likely due to
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false positive trends. Note that this process is carried out for each of the CMIP6 models
individually.

We evaluate trends across several rainfall datasets not as a comparison of trends, but
rather to determine whether our main arguments about relative differences in daily
rainfall variability and annual rainfall total trends hold under limitations presented by
each dataset (see Sl text for discussion of limitations). We note that the datasets
between the 1980-2020 periods all show the same overarching results about the trend
magnitude and spatial area of significant trends (p<0.05) when comparing trends of
daily rainfall variability and trends of total annual rainfall (Figs. S16, S20). For REGEN
and CMIP6 historical record, when shortening the time series to only after 1980, the
spatial extent of significant trends is reduced, but the same conclusion remains of the
similarity of magnitude and spatial extent of trends is similar between daily rainfall
variability and total annual rainfall.

To empirically estimate vegetation function trends, these aforementioned rainfall trends
are multiplied by the partitioned vegetation sensitivities to these rainfall features (Br and
Brrq), Which are mean sensitivities from the different satellites. These trend estimates
are uncertain because they assume that vegetation sensitivity to the rainfall metrics are
constant in time, which would not hold under CO: fertilization%. Nevertheless, we
expect that the regressions would partition the sensitivity of the vegetation index due to
daily rainfall variability and would only have minor biases due to the likely smaller
influences of COz2 fertilization. These vegetation sensitivities are computed using 20-
year and less time periods which are influenced by sub-decadal variability like El Nino
Southern Oscillation (ENSO). Since atmospheric CO2 has increased monotonically, we
expect less of an impact on interannual variability of the vegetation indices, which we
show is strongly driven by year-to-year changes in annual rainfall and daily rainfall
variability among other factors. The estimated trends are rescaled to obtain a percent
change per year using FLUXSAT GPP units®®. The vegetation trend is in standard
normalized format (GPP-E[GPP])/c[GPP]). To approximate percent change units, the
vegetation trend is multiplied by GPP interannual mean standard deviation then divided
by GPP mean. Therefore, the units are in mean percent change of GPP per year (or
(GPP-E[GPP])E[GPP)).
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https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.5281%2Fzenodo.5579549&data=05%7C01%7Candrew.feldman%40nasa.gov%7Ce25a556049164ade5cff08dbb3cca097%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638301463728317813%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=hgByn%2F2sL%2B2yi5Q8RVkBcesiAUouRsQmMsOaaNeqWi4%3D&reserved=0
https://airs.jpl.nasa.gov/data/get-data/standard-data/
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from https://Ipdaac.usgs.gov/products/myd11c2v006/. MERRAZ2 precipitation data can
be accessed at https://gmao.gsfc.nasa.gov/reanalysissMERRA-2/data_access/. CERES
radiation can be accessed at:

https://asdc.larc.nasa.gov/project/ CERES/CER_SYN1deg-Day Terra-Aqua-

MODIS Edition4A. SMAP soil moisture can be obtained from
https://nsidc.org/data/smap/data. GPM precipitation outputs are available at
https://gpm.nasa.gov/data/directory. CPC precipitation data are available at
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html. REGEN precipitation data
are available at https://thredds-x.ipsl.fr/thredds/catalog/FROGs/REGEN ALL V1-
2019/catalog.html. FLUXNET gross primary production observations can be obtained
from https:/fluxnet.org. CMIPG6 rainfall projections can be obtained from
https://cds.climate.copernicus.eu.

Code Availability Statement

The code is available on a Zenodo repository at https://zenodo.org/records/13551521 to
both create the figures and conduct the analysis. This repository includes the main
analysis outputs and example input data. The full processed data inputs are available
on another Zenodo repository at https://zenodo.org/records/10947071.
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Extended Data Figure Captions

Extended Data Fig. 1. | Across historical simulations and projections, rainfall is
becoming less frequent, but more intense. Historical and projected rainfall trends of
(a, b) wet day frequency, and (c, d) wet day intensity, and (e, f) annual rainfall total
using CMIP6 historical simulations (1940-2020) and CMIP6 RCP8.5 models (2020-
2099).

Extended Data Fig. 2. | Across observation-based rainfall datasets, rainfall is
becoming less frequent, but more intense. Rainfall trends of (a, b) wet day
frequency, and (c, d) wet day intensity, and (e, f) annual rainfall total using CPC gridded
observations (1980-2020) and MERRA2 model reanalysis (1980-2020).

Extended Data Fig. 3. | Wet day frequency and annual rainfall amount have
enough uncorrelated information to be included together and partitioned in a
regression. (a) Variance inflation factor of wet day frequency and intensity. Higher
values (especially much over 5) indicate multi-collinearity with annual rainfall mean and
thus higher uncertainty partitioning effects between the variables. (b) Interannual
coefficient of variation computed as the interannual standard deviation divided by
interannual mean for each respective rainfall characteristic. Similar magnitudes between
variables suggest variability of one variable is not dominating the regression.

Extended Data Fig. 4. | Mechanistic explanation of vegetation sensitivity to more
intense, less frequent wet days across the global mean rainfall gradient (in Fig. 3).
(a) Effect of soil, plant, and atmospheric factors on vegetation sensitivity to more
intense, less frequent wet days. ** indicates significance (p<0.05). Positive values
suggest that increasing the respective driver promotes higher vegetation behavior in
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years with more intense, less frequent wet days. Computation of individual mechanistic
factors is discussed in the Methods and their relationships with mean annual rainfall are
shown in Fig. S15. Mean VPD, Soil Moisture, and Solar Radiation “Sensitivity” refers to
the response of these climate variables to more intense, less frequent wet days (see
text and Methods). (b) Variance explained of factors in (a).

Extended Data Fig. 5. | Empirically estimated vegetation trends due to daily
rainfall variability trends. Spatial maps of empirically estimated vegetation trends due
to trends in daily rainfall variability from (a) CPC, (b) MERRAZ2, (c) CMIP6 historical
simulations, and (d) CMIP6 RCP8.5 projections.



