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 24 

Rainfall events are globally becoming less frequent but more intense under a 25 

changing climate, thereby shifting climatic conditions for terrestrial vegetation 26 

independent of annual rainfall totals1–3. However, it remains uncertain how changes 27 

in daily rainfall variability are affecting global vegetation photosynthesis and 28 

growth3–17. Here, we use several satellite-based vegetation indices and field 29 

observations indicative of photosynthesis and growth, and find that global annual-30 

scale vegetation indices are sensitive to the daily frequency and intensity of 31 

rainfall, independent of the total amount of rainfall per year. Specifically, we find 32 

that satellite-based vegetation indices are sensitive to daily rainfall variability 33 

across 42% of the vegetated land surfaces. On average, vegetation’s sensitivity to 34 

daily rainfall variability is almost as large (95%) as vegetation’s sensitivity to annual 35 

rainfall totals. Moreover, we find that wet day frequency and intensity are projected 36 

to change with similar magnitudes and spatial extents compared to annual rainfall 37 

changes. Overall, our findings suggest that daily rainfall variability and its trends 38 

are affecting global vegetation photosynthesis, with potential implications for the 39 

carbon cycle and food security. 40 



 41 

Earth’s vegetation regulates the global water and carbon cycles, thus strongly 42 

influencing weather and climate18. Climate change is altering both rainfall mean and 43 

variability, which influences vegetation function including plants’ ability to provide food 44 

and take up atmospheric carbon dioxide19–22. Impacts of annual rainfall totals on 45 

vegetation have been extensively studied19,23–25. However, some studies have pointed 46 

out that annual rainfall totals only partially explain the interannual variability of 47 

photosynthesis, at times less than 50% even in water-limited ecosystems26–28. 48 

Furthermore, how plants respond to water availability in Earth system models is a 49 

dominant driver of global carbon cycle uncertainty21,29,30, and thus changes in moisture 50 

might be having a greater impact on greening trends relative to CO2 fertilization31–33. 51 

Potentially, there are overlooked aspects of rainfall’s influence on annually averaged 52 

vegetation function that limit prediction of plant behavior and influence on the carbon 53 

cycle. 54 

 55 

While trends in annual rainfall totals are heterogeneous and uncertain34, a more robust 56 

trend in rainfall variability has emerged: daily rain events, or wet days, are becoming 57 

less frequent, but more intense1–3 (Extended Data Figs. 1 and 2). As is evident from 58 

field experiments, plants are sensitive to this daily rainfall variability regardless of 59 

changes in annual rainfall totals10. More intense rainfall events generally increase 60 

infiltration and soil moisture4,10,35. Longer dry spells can also result in more plant stress 61 

from higher vapor pressure deficit and incoming surface solar radiation11,36. However, 62 

studies broadly conflict3,12, with less frequent, more intense rain events causing 63 

positive4, negative13, or no response14 in vegetation function (function refers here to 64 

photosynthesis and growth). Some studies indicate that these daily rainfall variability 65 

changes only marginally influence vegetation function11,13,15,16. Others show plant 66 

responses of up to 30%5,17, which could have a substantial impact on the carbon cycle. 67 

Furthermore, most methods are limited in their ability to determine global plant 68 

responses to daily rainfall variability. Field manipulation experiments have limited spatial 69 

scale and extent6. Satellite-based studies tend to evaluate spatial rather than temporal 70 

relationships7,8,11,13,16. Process models were developed to evaluate seasonal dynamics 71 

and might struggle to capture sub-weekly wetting and drying cycles37,38. Ultimately, 72 

despite large impacts of mean moisture availability on plants19,39, it is unclear how 73 

changes in daily-scale rainfall variability impact global vegetation and carbon budgets. 74 

 75 

Here, we ask: to what degree is global vegetation function sensitive to climatic shifts in 76 

daily rainfall frequency and intensity, especially when compared to variations in annual 77 

rainfall totals? Is global vegetation function higher or lower in years with less frequent, 78 

more intense rainfall?  79 

 80 



To address these questions, consensus is gained from four different satellite sources  81 

that are observational, have decade-long records, span global biomes, and vary in 82 

spectral range and resolution; two are normalized difference vegetation index (NDVI), 83 

and two are solar induced fluorescence (SIF) (Methods). We refer to satellite NDVI and 84 

SIF observations as vegetation indices for simplicity, acknowledging that their 85 

reflectance and emission properties are proxies, to varying degrees, of photosynthetic 86 

carbon uptake, greenness, vegetation cover, and biomass40,41. Furthermore, we 87 

evaluate multi-decadal globally observed and projected rainfall trends and estimate their 88 

influence on vegetation function. 89 

 90 

Global vegetation sensitivity estimates 91 

We use partial least square regressions to isolate the vegetation sensitivity to daily 92 

rainfall variability, while controlling for annual rainfall totals and several other climatic 93 

factors (including surface downwelling solar radiation, land surface temperature, and 94 

atmospheric humidity; see Methods). A challenge is that wet day frequency and 95 

intensity are inherently related to annual rainfall totals42. However, our tests reveal that 96 

wet day frequency (or wet day intensity) and annual rainfall total have enough 97 

uncorrelated variability that they can be statistically partitioned within our regressions 98 

(Methods; Extended Data Fig. 3). For our main analysis, we use wet day frequency 99 

alone to represent less frequent, more intense wet days. Specifically, by including both 100 

wet day frequency and annual rainfall total as regressors, a decrease in wet day 101 

frequency (longer dry spells) also represents greater wet day intensity because annual 102 

rainfall totals are simultaneously controlled for. Wet day frequency and other metrics 103 

used here thus broadly represent daily rainfall variability. Additionally, note that these 104 

daily rainfall variability metrics are lumped parameters in capturing the daily rainfall 105 

itself, but also post-rain drying factors that include sub-seasonal variability of solar 106 

radiation and humidity (See Methods; Figs. S1, S2).  107 

 108 

We find that global vegetation sensitivities to daily rainfall variability are similar in 109 

magnitude as the sensitivity to annual rainfall total (Fig. 1). Namely, a one standard 110 

deviation shift in daily rainfall variability (via wet day frequency or intensity) is related to 111 

between 20% to 50% changes in annual mean vegetation indices across a range of 112 

climatic conditions, similarly to annual rainfall total (Figs. 1a, 1b, S3). Consequently, 113 

daily rainfall variability explains 5-20% of the variance of mean vegetation indices, 114 

similarly to annual rainfall total (Fig. S4). In directly comparing their sensitivity 115 

magnitudes, the annual mean vegetation index sensitivity magnitude to daily rainfall 116 

variability is a factor of 0.95 (0.61-1.46, hereafter the range refers to 25th and 75th 117 

percentile bounds across space) of the magnitude of the vegetation sensitivity to annual 118 

rainfall total, based on our partial regression approach (Fig. 1c). Similar conclusions are 119 

drawn when using different daily rainfall variability metrics, using soil moisture variability 120 



instead of rainfall data, considering only the growing season, and when using a random 121 

forest regression approach (Fig. 1c). The ratio is even higher at 1.58 (1.08-2.28) when 122 

analyzing ground measurements, although this field network analysis relies on binning 123 

multiple sites and is thus more uncertain (see Methods).  124 

 125 

Additionally, vegetation sensitivity to daily rainfall variability is significant (p<0.05) across 126 

42% of Earth’s vegetated land surfaces (Fig. 1a). For comparison, this spatial extent is 127 

50% when considering vegetation sensitivity to annual rainfall totals (Fig. 1b). While 128 

there is some variability of the fractional area with significant sensitivities when 129 

repeating analyses across different wet day metrics and satellite datasets, it is always 130 

comparable to the fractional area with significant sensitivities to annual rainfall totals 131 

(Figs. S5, S6). 132 

 133 

An example of the vegetation sensitivity to daily rainfall variability is shown in dry 134 

savannas in Botswana (Fig. 2). There, NDVI was larger by 16% in a year that had more 135 

intense, less frequent rainfall events compared to another year, despite both years 136 

having nearly identical annual rainfall totals. 137 

 138 

Previous investigations have found that plant sensitivity to sub-seasonal rainfall 139 

variability is only a small fraction, often less than 20%, of the plant sensitivity to annual 140 

rainfall totals9,11,13,16. We instead find that plant sensitivity to changes in wet day 141 

frequency and intensity are 95% (61%-146%) as large as their sensitivity to annual 142 

rainfall totals (Fig. 1c), several times higher than previous estimates (Fig. 1c). We 143 

attribute these differences in part to our analysis relying directly on temporal patterns 144 

with decade long records of observed vegetation variables, rather than on mainly spatial 145 

relationships in previous studies13,16. Furthermore, despite some differences in results 146 

across datasets and approaches (see text in SI), we emphasize our findings about the 147 

sensitivity magnitudes and spatial extents are robust across many conditions (Figs. S5-148 

S12).  149 

 150 

Potential drivers of spatial patterns 151 

We evaluate vegetation sensitivities to less frequent, more intense wet days along a 152 

gradient of mean annual rainfall in order to provide a first-order understanding of 153 

differences in vegetation function between shorter, herbaceous plants that receive less 154 

annual rainfall and taller, woody plants that receive more annual rainfall. We find that in 155 

arid ecosystems, vegetation indices are higher in years with less frequent, more intense 156 

wet days, while in humid ecosystems, vegetation indices are typically lower in such 157 

years (Fig. 3a). Specifically, for dry ecosystems receiving less than 500 mm of annual 158 

rainfall, 23% of pixels show increased vegetation indices while 13% show decreases in 159 

years with less frequent, more intense wet days. By contrast, for humid ecosystems 160 



receiving more than 1,500 mm of annual rainfall, 22% of pixels show vegetation index 161 

increases while 31% show decreases in years with less frequent, more intense wet 162 

days. These patterns of changing signs of responses between dry and wet ecosystems 163 

are captured across most datasets and conditions (Fig. S13), though with some 164 

differences (see SI). They are also consistent with a previously posed theoretical 165 

paradigm and with results from field experiments3,6,43.  166 

 167 

Grasslands and shrublands, prevalent in drier regions, as well as croplands tend to 168 

experience increased vegetation indices in years with less frequent, more intense wet 169 

days (Fig. 3b). Boreal needleleaf forests occupying higher latitudes (Fig. S14) also show 170 

increased vegetation indices under these conditions, potentially due to increases in light 171 

availability over longer dry periods. Savannas which typically occupy transitional 172 

regions, tend to show both positive and negative vegetation sensitivities (Fig. 3b). 173 

Humid forests that occupy lower and mid-latitudes (Fig. S14; broadleaf forests) tend to 174 

have an opposing relation of lower vegetation indices in years with less frequent, more 175 

intense wet days (Fig. 2b). This decreasing vegetation index signal mainly comes from 176 

forests in the Indo-Pacific Islands (Fig. 1a) that might respond negatively to longer dry 177 

spells. In contrast, some portions of the Amazon and Congo rainforests have a positive 178 

response (Fig. 1a), likely because more light and higher vapor pressure deficit (VPD) 179 

benefit these ecosystems44.  180 

 181 

To gain further insights into diverging signs of plant responses, we use a regression and 182 

variance decomposition method to evaluate the degree to which several soil, plant, and 183 

atmospheric variables explain the spatial pattern of vegetation sensitivities to less 184 

frequent, more intense wet days (Methods). Several main explanatory variables arise 185 

(Extended Data Fig. 4; p<0.05). Specifically, drier ecosystems tend to have increased 186 

vegetation indices in years with less frequent, more intense wet days because these 187 

ecosystems spend more time below plant water stress thresholds and thus larger 188 

rainfall events are more ecologically advantageous by increasing soil moisture above 189 

these thresholds. Drier ecosystems also have greater plant response sensitivities to 190 

individual wet days, such that larger rain events can greatly increase plant 191 

function37,45,46 (Fig. S15). Finally, these ecosystems have smaller mean VPD increases 192 

with less frequent, more intense wet days (Fig. S15), meaning they will experience 193 

relatively less plant water stress during dry spells. We tested several other factors, such 194 

as mean annual soil moisture sensitivity to more intense, less frequent rainfall events, 195 

but they were not found to be significant drivers of global vegetation sensitivity patterns 196 

(Fig. S15).  197 

 198 

Daily rainfall variability trends 199 



Finally, we estimate the daily rainfall frequency and intensity trends over historical 200 

periods from merged observation-based datasets (1980-2020), extrapolated in-situ 201 

observations (1950-2016), and models (1940-2020) as well as model projections 202 

between 2020-2099 (Methods). Common features across all datasets and time periods 203 

are that wet day frequency and intensity trends are nearly as high in relative magnitude 204 

and of similar spatial prevalence as trends in annual rainfall totals (Fig. 4a). For 205 

example, based on CMIP6 projections from 27 models, wet day frequency and intensity 206 

are changing by 0.7% and 1.2% per decade, respectively (Fig. 4a), while annual rainfall 207 

total is changing by 1.2% per decade. The areal coverage of significant (p<0.05) CMIP6 208 

projected wet day frequency and intensity trends are 33% and 47% of global vegetated 209 

surfaces, respectively, which are similar to the 36% coverage for trends in annual 210 

rainfall totals. Trends over the historical period (pre-2020) are ultimately less spatially 211 

extensive; note that the areal percentages of significant trends have been reduced by 3-212 

5 times after conservative removal of false positive trends (see methods, Fig. S16). 213 

However, we emphasize that our focus is on the comparison between daily rainfall 214 

variability trends and annual rainfall total trends for a given dataset; the feature that 215 

daily rainfall variability trend extent and magnitude is similar to that of trends in annual 216 

rainfall totals holds across observations (CPC and REGEN), model reanalysis 217 

(MERRA2), and model simulations over a longer record (CMIP6 historical model 218 

scenarios) (Fig. 4a). Our findings thus hold across different precipitation products 219 

ranging from the past to the future, showing robustness of our arguments even 220 

considering the limitations of each dataset (see SI).  221 

 222 

Consequently, the presence of daily rainfall variability trends, together with widespread 223 

vegetation sensitivities to daily rainfall variability (Fig. 1), suggest an influence of daily 224 

rainfall variability trends on global vegetation photosynthesis and growth. We empirically 225 

estimate the impact of trends in daily rainfall variability on global vegetation indices (Fig. 226 

4b; Methods). While the magnitudes of empirically estimated vegetation trends 227 

themselves are uncertain (see SI), a feature that emerges from estimates from each 228 

rainfall dataset is that estimated vegetation index trend magnitudes due to daily rainfall 229 

variability are similar to those due to trends in annual rainfall totals (Fig. 4b). For 230 

example, based on CMIP6 projections between 2020-2099, vegetation index trends due 231 

to both daily rainfall variability and annual rainfall totals are both 0.1%/decade.  232 

 233 

The absolute trend magnitudes of vegetation indices due to changes in daily rainfall 234 

variability are |0.5%|/decade (|1.1%|/decade at 75th percentile) and |0.1%|/decade 235 

(|0.3%|/decade at 75th percentile) based on CPC and CMIP6 trends, respectively (Fig. 236 

4b). For comparison, mean global vegetation greening is estimated to be 1% to 3% per 237 

decade since 1980, where CO2 fertilization is expected to be playing a dominant role, 238 



with climate only driving a fraction of these changes31. Therefore, daily rainfall variability 239 

might be a dominant climate-based driver of global vegetation function changes.  240 

 241 

Mean vegetation trends across the globe are ultimately near zero (Extended Data Fig. 242 

5), attributable to averaging opposing vegetation sensitivities to less frequent, more 243 

intense wet days across dry to wet ecosystems (Figs. 1 and 2). As such, the global 244 

mean trend obscures large regional trends with estimated high magnitude vegetation 245 

trends present in the Western US, Australia, and Southern Africa (Extended Data Fig. 246 

5), where presumably disparate and pronounced rainfall trends are occurring because 247 

of regional changes in atmospheric patterns1, for example, the North American 248 

Monsoon and Walker Cell. 249 

 250 

Discussion 251 

In summary, we find robust, substantial, and globally widespread vegetation index 252 

sensitivities to how rainfall is delivered to the surface in terms of daily frequency and 253 

intensity, independent of total rainfall amounts. While the analysis is limited by statistical 254 

means to partition the relative plant sensitivities to daily rainfall variability, our 255 

uncertainty tests reveal robustness of our findings across a multitude of statistical 256 

approaches and across satellite and field datasets. Mean annual water availability has 257 

long been recognized as a major driver of vegetation function25,47, but we argue that 258 

daily rainfall variability is playing a similarly large role on vegetation function at annual 259 

scales across the globe. Since annual rainfall totals strongly drive interannual variability 260 

of global photosynthesis and the carbon cycle, daily rainfall variability is likely also a 261 

substantial driver of this variability48,49. Our results also imply that aggregating 262 

vegetation observations to monthly, seasonal, or annual timescales for many types of 263 

analyses would miss essential response variability. Furthermore, while we do not 264 

explicitly investigate the role of the most extreme wet days or longest dry spells here, 265 

this study is consistent with and broadens the existing hypothesis that the most extreme 266 

wet days and lengthening dry spells are increasing in intensity and having a substantial 267 

role on the carbon cycle50–52.  268 

 269 

We also find that trends in wet day frequency and intensity are nearly as large and as 270 

spatially prevalent as trends in annual rainfall totals. With both daily rainfall variability 271 

trends and strong vegetation sensitivity to this variability, there are likely globally 272 

prevalent vegetation function trends due to less frequent, more intense wet days that 273 

are playing a role in global greening and browning31,53,54. Vegetation trend attribution 274 

analyses do not typically consider impacts of daily rainfall variability, and will thus miss 275 

these plant responses1. Therefore, changes in daily rainfall variability need to be 276 

explicitly considered when projecting terrestrial carbon uptake and managing 277 

agricultural and natural ecosystems. 278 



 279 
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Figure Legends 417 

 418 
Fig. 1. | Sensitivity of vegetation function to daily rainfall variability is nearly as 419 

substantial and spatially extensive as its sensitivity to annual rainfall totals 420 

across much of the globe. (a) Satellite vegetation index sensitivity to less frequent, 421 

more intense wet days (represented by a one standard deviation decrease of wet day 422 

frequency; see Methods) based on a partial regression. Results are an ensemble mean 423 

of normalized sensitivities across MODIS NDVI, AVHRR NDVI, OCO-2 SIF, and 424 

GOME-2 SIF (Figs. S3, S5). Only significant values across all satellite datasets are 425 

shown (Methods). Percent areas refer to statistically significant sensitivities considering 426 

only vegetated pixels (p<0.05). High latitudes (>60 degrees) are not included in the 427 
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analysis (Methods). (b) Same as (a), but vegetation index sensitivities to a one standard 428 

deviation increase in annual rainfall total. (c) Ratio of vegetation sensitivity to less 429 

frequent, more intense wet days relative to sensitivity to annual rainfall totals. Boxplots 430 

are global spatial distributions. A random forest method applied to the satellite data and 431 

in-situ results from FLUXNET gross primary production are shown for comparison 432 

(Methods). Reported results are based on z-score annual anomalies of each dataset. 433 

The satellite data are available between 2003-2022, with 8 to 20 year date ranges, while 434 

the FLUXNET data include 178 sites with primarily data available between 1999-2014 435 

with a median of 7 year date ranges (Table S1). Data from these tower sites are 436 

processed similarly to the satellite data (Methods).  437 

 438 

Fig. 2. | Example time series of dry savanna in Botswana (23S, 22E) where 439 

vegetation indices tend to be higher in years with more intense, less frequent 440 

rainfall events (based on results in Fig. 1). Comparison of vegetation indices 441 

between 2005 and 2016 which had nearly identical annual rainfall totals, but fewer wet 442 

days and larger mean rainfall events in 2016.  443 
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 444 
Fig. 3. | Vegetation indices in years with less frequent, more intense wet days 445 

tend to increase in drier ecosystems and decrease in wetter ecosystems. (a) Mean 446 

annual rainfall gradient of sign of vegetation sensitivity to less frequent, more intense 447 

wet days based on ensemble average across vegetation metrics from MODIS NDVI, 448 

AVHRR NDVI, OCO-2 SIF, and GOME-2 SIF (Fig. S13). Significance is determined 449 

across all four satellite-based vegetation indices (Methods). Rainfall bins have nearly 450 

equal sample sizes. These relationships are reproduced using alternative regression 451 

model selection techniques and daily rainfall variability regressors (Fig. S13). (b) Same 452 

as (a) but conditioning on different vegetation types using IGBP land cover 453 

classifications (Fig. S14).  454 
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 455 
Fig. 4. | Daily rainfall variability trends are of similar absolute magnitude and 456 

spatial extent as shifts due to annual rainfall total, which consequently shifts 457 

annual mean vegetation function. (a) Absolute magnitude of trends in rainfall 458 

characteristics. Percentage of land area with significant trends are shown in text 459 

(p<0.05). All distributions have medians that are significantly different based on Mann-460 

Whitney U tests (p<0.05). Trends over a consistent 1980-2020 period are shown in Fig. 461 

S16. Projected rainfall trends for each individual CMIP6 model are shown in Fig. S17. 462 

(b) Same as (a) but empirically estimated absolute magnitude of significant vegetation 463 

trends due to rainfall trends. Maps of empirically estimated global vegetation index 464 

trends due to changes in daily rainfall variability are shown in Extended Data Fig. 5.  465 
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Datasets 475 

We use four retrieved vegetation indices from four different satellites. These include the 476 

Moderate Resolution Imaging Spectroradiometer (MODIS) Terra normalized difference 477 

vegetation index (NDVI) over 2003-2022 from MOD13C1 v061 at 0.05 degrees55, the 478 

Advanced Very High Resolution Radiometer (AVHRR) NDVI over 2003-2013 from 479 

AVH13C1 version 5 at 0.1 degrees56, the Orbiting Carbon Observatory 2 (OCO-2) solar 480 

induced fluorescence (SIF) level 2 version 11 product at a 1.3 x 2.25 km resolution over 481 

2015-202257, and Global Ozone Monitoring Experiment-2 (GOME-2) SIF level 2 version 482 

2.6.2 from MetOp-A at a 25km resolution over 2007-201758, which in this version is less 483 

sensitive to identified effects of sensor degradation. All datasets are linearly resampled 484 

to a 1x1 degree resolution and averaged to annual means. 485 

 486 

The primary rainfall dataset used in the analysis is GPM IMERG V7 final run 487 

precipitation from 2003-2022 at 0.1x0.1 degrees at the daily timescale59. While based 488 

on satellite observations, IMERG is also bias corrected with rain gauge measurements. 489 

We additionally use Climate Prediction Center (CPC) rainfall data60 from 1980-2020 as 490 

an alternative dataset used in place of GPM for our evaluation of vegetation sensitivity 491 

to daily rainfall variability. To evaluate observation-based trends of annual rainfall total 492 

and daily rainfall variability, we use this CPC dataset between 1980 and 2020 which 493 

aggregates both rain gauge and satellite based precipitation estimates, though with 494 

variable spatial coverage of the raw observation data and varying temporal coverages. 495 

Rainfall estimates on a gridded network (REGEN) was also obtained from the FROGS 496 

database which merges in-situ rainfall network measurements between 1950-201661,62. 497 

We also use MERRA2, a model reanalysis rainfall product, between 1980 and 2020, 498 

which uses similar observed data as CPC but within a data assimilation 499 

(“PRECTOTCORR”)63. For modeled rainfall from past to present, historical CMIP6 500 

model trends are used across 23 models which combine historical simulations between 501 

1940 to 2014 and projections from shared socioeconomic pathway (SSP) 245 for 2015 502 

to 2020 similarly to previous work52 (Table S2). Finally, considering rainfall trend 503 

projections, CMIP6 models under RCP4.5 and RCP8.5 scenarios with daily precipitation 504 

outputs are used between 2020-2099 (Table S2)64,65. CMIP6 datasets were linearly 505 

resampled to a 2x2 degree resolution. We use FLUXSAT gross primary production 506 

(GPP) to linearly rescale the empirical vegetation trend estimates to CO2 flux units66. 507 

 508 

Other variables are used to control for additional environmental factors or provide 509 

additional evidence of main results. Lower troposphere (850mb) humidity and vapor 510 

pressure deficit are obtained from NASA’s Atmospheric Infrared Sounder (AIRS) 511 

version 7 at 1x1 degrees between 2003-2022. Surface downwelling solar radiation is 512 

obtained from the Clouds and the Earth’s Radiant Energy System (CERES) dataset 513 

edition 4.1 (SYN1 deg level 3 “adj_atmos_sw_down_all_surface_daily” variable) based 514 



on MODIS Aqua and Terra instruments at a one degree resolution from 2003-202267. 515 

MERRA2 surface downwelling solar radiation was also used, but as an auxiliary test68. 516 

Land surface temperature is obtained at 1:30pm local time from the MODIS Aqua 517 

instrument MYD11C2 product v006 at 0.05 degrees from 2003-202269. SMAP soil 518 

moisture level 3 enhanced product v5 was obtained between 2016 and 202270. All 519 

datasets are resampled to a 1x1 degree resolution and averaged to annual means. 520 

 521 

Mechanistic drivers used in the study include clay fraction, which is based on the 522 

harmonized world soil database71, and maximum rooting depth obtained from a global 523 

model estimate that is validated with observations72. Other metrics include soil moisture 524 

thresholds for water uptake and plant response sensitivity to wet days determined from 525 

SMAP multi-temporal dual channel algorithm (MT-DCA) soil moisture and vegetation 526 

optical depth (VOD) version 5 at a 1-3 day timescale73. We also use International 527 

Geosphere Biosphere Programme (IGBP) land cover classifications to evaluate results 528 

in terms of different vegetation types74. 529 

 530 

Partial Least Squares Regression: Main Analysis  531 

To isolate the vegetation sensitivity to daily rainfall variability, we use the following 532 

multiple linear regression: 533 

𝑉𝑒𝑔𝑡  =  𝛽0 + 𝛽𝑃𝑃𝑡 + 𝛽𝐹𝑟𝑞𝐹𝑟𝑞𝑡 + 𝛽𝑅𝑠𝑅𝑠𝑡 + 𝛽𝐿𝑆𝑇𝐿𝑆𝑇𝑡 + 𝛽𝑞𝑞𝑡 + 𝜀  (1) 534 

where Veg represents the satellite-based vegetation indices, P is annual rainfall total 535 

(rainfall amount summed over a year) from GPM, Frq is wet day frequency which 536 

captures daily rainfall variability and is computed as the number of annual wet days 537 

from GPM, Rs is mean surface downwelling solar radiation over a year from MERRA2, 538 

LST is mean land surface temperature over a year from MODIS, and q is mean lower 539 

tropospheric humidity (at 850mb) over a year from AIRS. Each variable is at an annual 540 

timescale and t subscript denotes the year. 0 is the y-intercept while the other ’s are 541 

partial sensitivities of the vegetation index to the given variable.  are the residuals. All 542 

variables are converted to z-scores by subtracting by their mean and dividing by their 543 

time series standard deviation allowing the magnitude of each  to be directly 544 

compared. This analysis is repeated setting Veg as MODIS NDVI (2003-2022), AVHRR 545 

NDVI (2003-2013), GOME-2 SIF (2007-2017), and OCO-2 SIF (2016-2022). All 546 

regressors conform to these time ranges. Note that conversion to z-score does not 547 

influence the  magnitude-dependent results in Fig. 1 because the results are nearly 548 

identical if raw variable magnitudes are inserted into Eq. 1 and then normalized by their 549 

standard deviations in post-processing.  550 

 551 

Wet days are defined as days with daily rain totals above 1 mm in order to evaluate 552 

rainfall events that are large enough to influence vegetation75, to avoid false positive 553 

detection of rain events given noise in the rainfall products, and because this definition 554 



is widely used52,76. Results in Figure 1 are ultimately not sensitive to this wet day 555 

threshold with the qualitative findings remaining similar when using 0.25 mm and 0.5 556 

mm thresholds (Fig. S10).  557 

 558 

We conduct a partial least squares regression, which includes determining the optimal 559 

combination of regressors in Eq. 1. To avoid overfitting the model to the data by 560 

penalizing models with more regressors, we compute the Akaike information criterion 561 

(AIC) for each model: 562 

𝐴𝐼𝐶 = 2𝑘 + 𝑛 ∗ ln (𝑅𝑆𝑆/𝑛) (2) 563 

where k is the number of parameters, n is the number of data pairs, and RSS is the 564 

residual sum of squared errors or the sum of squared differences between the model 565 

estimation and data. The model with the lowest AIC is selected. Only combinations of 566 

regressors are evaluated that include both P and Frq, or neither, in order to address our 567 

research questions to partition the sensitivity of vegetation to less frequent, more 568 

intense wet days from sensitivity to annual rainfall totals. This procedure allows directly 569 

comparing the magnitudes of P and Frq. 570 

 571 

For the analysis on each pixel, we spatially aggregate the annual values from the 572 

adjacent 3x3 pixels to increase the sample size by a factor of 9. This is because each 573 

variable is at an annual timescale and the time series for each pixel is 8-to-20 time 574 

steps long, which results in a low sample size to carry out the partial regression analysis 575 

with Eq. 1. The effects of spatial aggregation are also tested (see Fig. S8 and “Spatial 576 

Aggregation Tests” below). 577 

 578 

Total variance explained (R2) of the regressors on Veg in Eq. 1 and partial variance 579 

explained of each regressor were computed. The Gromping method77 was used to 580 

compute the partial variance explained by computing the increase in R2 when removing 581 

the respective regressor from each combination of regressors in the model. The 582 

increased R2 is then averaged across models. Total R2 are typically around 0.6, a value 583 

expected when using noisy observations mainly from satellite retrievals in the 584 

regression (Fig. S4). It was thus not deemed necessary to remove pixels due to 585 

inadequate fit of annual vegetation indices. 586 

 587 

To evaluate sensitivities from field observations, we repeated the above procedures 588 

using FLUXNET gross primary production data representing plant uptake of carbon 589 

across 178 sites distributed mainly across North America and Europe (Table S1)78. Data 590 

are mainly available between 1999-2014, but extend back to 1991 in a few cases. Given 591 

that FLUXNET record lengths are often less than five years, the same partial regression 592 

procedure cannot be performed on a single site. Therefore, sites are sorted from low to 593 

high mean annual precipitation and divided into 35 bins based on percentile, resulting in 594 



bins with 5 sites within 50 mm of mean annual rainfall of each other and 36 total site-595 

years. Results are not broadly sensitive to bin size. The analysis in Eq. 1 is repeated on 596 

the site years within each bin including using the AIC model selection approach. A 597 

Monte Carlo approach is applied where the process is repeated on each bin 1,000 times 598 

to determine a distribution of P and Frq.  599 

 600 

Partial Least Squares Regression: Additional Regression Model and Model 601 

Selection Tests  602 

We chose to use AIC instead of cross validation, a commonly used model selection 603 

technique, because cross validation relies on the assumption of independent validation 604 

and training data, while spatial and temporal autocorrelation is expected for our 605 

application79–81. Since our approach relies on spatial aggregation, we use AIC for our 606 

main analysis, though we also test if our results remain the same using cross validation 607 

model selection. 608 

 609 

For our auxiliary test (Fig. S7), we use five-fold cross validation82. Specifically, within 610 

each pixel (and including its 3x3 nearest neighbors) and for a given combination of 611 

regressors in Eq. 1, data pair samples are randomly drawn and divided into five bins. 612 

Four of these bins are used for calibration to estimate the  values in Eq. 1. The 613 

remaining bin is used for out of sample validation to estimate the root mean square 614 

error (RMSE) between the estimated vegetation index (Veg) values from the Eq. 1 615 

model and the observed Veg values. This procedure is completed five times with each 616 

bin serving as the validation bin once. A Monte Carlo bootstrapping procedure is 617 

employed to repeat these steps 20 times to randomly generate 100 RMSE values, 618 

which are averaged to a single RMSE value. All combinations of regressors are 619 

considered. The regression model with the lowest RMSE is considered the most 620 

optimal. 621 

 622 

To also test the sensitivity of the results to model selection, we also report our results 623 

when prescribing, a priori, the full model (with all possible regressors in Eq. (1)) and a 624 

reduced model with only rainfall regressors (annual rainfall total and the daily rainfall 625 

variability metric). We find that Figure 1 results are similar when using the AIC model 626 

section, cross validation model selection, the prescribed full model, and the prescribed 627 

reduced model (Fig. S7). The reduced model tends to reduce the ratios shown in Fig. 1 628 

the most, though this is likely because vegetation is overly sensitive to annual rainfall 629 

total in this model since annual mean Rs, LST, and q, which tend to be correlated with 630 

mean annual rainfall, are not explicitly included in the model. 631 

 632 

The temporal autocorrelation was estimated for the rainfall regressors (wet day 633 

frequency, wet day intensity, dry spell length, and annual rainfall total) (Fig. S18) and 634 



the four vegetation indices (MODIS NDVI, AVHRR NDVI, OCO-2 SIF, and GOME2 SIF) 635 

(Fig. S19) using the AR(1) lag-1 autocorrelation coefficient. These magnitudes tend to 636 

be below 0.1, suggesting only minor influences of temporal autocorrelation on the model 637 

selection and regressions in Eq. 1. This is because a smaller temporal autocorrelation is 638 

expected for the annually aggregated data here than for shorter timescales and thus 639 

would have less impact on the regressions.  640 

 641 

To evaluate result dependence on the partial regression, including assumptions of 642 

linearity, we applied a random forest regression. The partial least squares regression in 643 

Eq. 1 assumes linear relationships between vegetation and each climatic variable, 644 

which approximately holds at annual timescales but might be violated in some 645 

conditions. We used the “RandomForestRegressor” package in python with the same 646 

predictors and predicted variables as the partial least squares regression83. As a 647 

modification, we prescribed the selected model using AIC instead of the random forest 648 

based model selection to avoid issues related to spatial and temporal autocorrelation 649 

that make the training and validation data not independent. This step also creates 650 

consistency with the partial regression approach in each pixel. We also test the random 651 

forest regression sensitivity to the choice of regression model by also prescribing 652 

reduced and full models (Fig. S7). This machine learning approach can capture 653 

nonlinear relationships between vegetation and climate variables, but has generally less 654 

interpretable outputs and it is more challenging to diagnose its errors. Therefore, the 655 

partial linear regression is featured in the main analysis with the random forest 656 

regression results shown as supporting evidence. 657 

 658 

Partial Least Squares Regression: Additional Rainfall Metrics 659 

Alternative daily rainfall variability metrics are also tested by replacing Frq in the 660 

regression with wet day intensity and dry spell length. Wet day intensity is defined here 661 

as the average daily rainfall depth during wet days in a given year (acknowledging 662 

intensity commonly refers to hourly rainfall rates). The dry spell length is the mean 663 

length of consecutive dry days between wet days within a given year. These metrics all 664 

represent daily rainfall variability when included in the regression along with annual 665 

rainfall totals. In other words, all metrics will capture both frequency and intensity of wet 666 

days when annual rainfall totals are simultaneously controlled for. This is because the 667 

wet day frequency multiplied by the wet day daily intensity can approximately equal the 668 

annual rainfall total.  669 

 670 

As an alternative daily rainfall variability metric that does not use rainfall data, we 671 

repeated the analysis using SMAP soil moisture daily variability and SMAP soil moisture 672 

annual mean in place of precipitation frequency and annual rainfall total, respectively. 673 

To compute soil moisture daily variability, we removed longer timescale monthly and 674 



seasonal variability from the soil moisture time series. Specifically, all years of SMAP 675 

data were averaged to create a mean climatology and a 30-day moving window was fit 676 

to the mean soil moisture time series. This smoothed soil moisture time series was 677 

subtracted from the raw soil moisture time series. The standard deviation was computed 678 

for each year of this anomaly time series to approximately obtain only variations on sub-679 

monthly timescales. We refer to these estimates as daily variability acknowledging 680 

some weekly and monthly variability will be integrated. Due to the SMAP record 681 

availability only beyond April 2015, the soil moisture variance analysis was only applied 682 

with MODIS NDVI and OCO-2 SIF as the predicted vegetation indices from 2016 to 683 

2022. Ultimately, changes in sub-weekly soil moisture variability between years might 684 

not directly capture, for example, a change to less frequent, more intense wet days, and 685 

thus mainly challenges interpretation of the sign of these results (Fig. S13). 686 

 687 

These daily rainfall variability metrics will appropriately capture some variability in 688 

atmospheric conditions that occur along with changing length of dry spells that might not 689 

be represented in an altered annual mean Rs, LST, or q. In other words, daily rainfall 690 

variability represents both sensitivity to the rain event as well as to the dry spells. To 691 

test the sensitivity of the analysis to the sub-seasonal variability of other factors, the 692 

sub-seasonal standard deviation of Rs, LST, and q are computed for each year, using 693 

the same approach for estimating the sub-seasonal variability of soil moisture. These 694 

three variability metrics are included in the regression in Eq. 1, where only the full model 695 

is considered without model selection to evaluate partitioning of sensitivities between all 696 

variables considering each variable’s annual mean and sub-seasonal variability. Across 697 

the globe, vegetation is sensitive to these other sub-seasonal variability factors, but has 698 

the highest sensitivity to daily rainfall variability (Fig. S2). Furthermore, a former causal-699 

regression analysis showed that vegetation water stress during post storm drying arises 700 

primarily from soil moisture drying and secondarily from temperature, atmospheric 701 

dryness, and incoming radiation increases36. Given these points and that daily rainfall 702 

variability shows some relation to these other factors (especially Rs variability; Fig. S1), 703 

we only consider daily rainfall variability in the regressions in our main analysis such 704 

that it acts as an aggregated parameter that effectively includes Rs, LST, and q 705 

variability. 706 

 707 

Partial Least Squares Regression: Spatial Aggregation Tests  708 

Given spatial autocorrelation in the variables used in the regression80, it is necessary to 709 

test the effects of our 3x3 pixel window spatial aggregation, which we do here using 710 

three different tests. First, we repeated the analysis only on individual pixels without 711 

spatial aggregation to only consider temporal variability. A model selection technique 712 

was not used and the full and reduced models were prescribed a priori. This test was 713 

attempted only for MODIS NDVI (20 years; 2003-2022), AVHRR NDVI (11 years; 2003-714 



2013), and GOME2 SIF (11 years; 2007-2017). The sample size reduces significantly 715 

because only 20, 11, and 11 data points, respectively, are evaluated on the multiple 716 

regressions with several regressors (these sample sizes increase by a factor of 9 when 717 

using 3x3 pixel aggregation). Second, we repeated the analysis by using a 5x5 pixel 718 

aggregation and applying the regression to only the first three years of data of the four 719 

satellite datasets, which evaluates how mainly the spatial relationships between the 720 

variables contribute to the results. Finally, we evaluated the results when weighting the 721 

neighboring pixels less than the central pixel. Specifically, a geographically weighted 722 

regression (GWR) was used84 which is a weighted linear regression that considers the 723 

center pixel as most impactful for the regression with a full 100% weight and the 724 

neighboring eight pixels as either 25% or 50% of the weight of the center pixel. In all 725 

cases, the ratios were close to those reported in Figure 1c based on the 3x3 pixel 726 

aggregation (Fig. S8). As such, we deem the results minimally sensitive to the spatial 727 

aggregation technique and remain with the 3x3 pixel aggregation in our main results. 728 

We have chosen to remain with the 3x3 spatial aggregation given that it produces 729 

similar results as the auxiliary tests and also sufficiently increases the sample size for 730 

our analysis. We chose to not show GWR in the main analysis given that it requires 731 

assumptions of different weights in the surrounding pixels, while producing similar 732 

results as the 3x3 pixel window aggregation technique.  733 

 734 

Partial Least Squares Regression: Uncertainty Tests 735 

To determine the variability of the vegetation sensitivity to daily rainfall variability (Frq) 736 

and its ratio to sensitivity to annual rainfall total (P), a bootstrapping procedure was 737 

employed in each pixel. For a given pixel and using the AIC selected model, a 738 

bootstrapping procedure is used where the regression pairs are randomly sampled with 739 

replacement and the regression coefficients are computed using these resampled pairs 740 

with Eq. 1. This procedure is repeated 5,000 times and the ratio of coefficients for the 741 

daily rainfall variability metric to that of the annual rainfall total (Frq/P) are computed. 742 

The 2.5th, 25th, 50th, 75th, and 97.5th percentile of the ratios are saved and their 743 

distributions across space are shown (Fig. S9).  744 

 745 

Additionally, to compare these ratios to that produced entirely by white noise, the daily 746 

rainfall variability metric is replaced by a randomly generated standard normal time 747 

series. The regression is run with this daily rainfall variability metric being white noise 748 

while all other variables are held the same for each pixel. The rate of significance and 749 

magnitude of Frq due to random noise are computed and compared against that 750 

computed with the raw data and bootstrapping procedure.  751 

 752 

Considering MODIS NDVI and only significant sensitivities (p<0.05), the 25th, 50th, and 753 

75th percentile of the Frq/P ratios (spatial medians across the globe) are 0.77, 0.96, 754 



1.19, respectively. Of the few significant (p<0.05) cases of the random noise test (2-4% 755 

of cases), this ratio is 0.49. When considering all data (any p-value), the 25th, 50th, and 756 

75th percentile of the Frq/P ratios (spatial medians across the globe) are 0.61, 0.84, 757 

1.14, respectively, while it is 0.15 for random noise. As such, the ratios determined in 758 

our analysis have magnitudes substantially greater than those due to noise. 759 

 760 

Partial Least Squares Regression: Impact of Phenology 761 

Phenology results in only parts of the year with substantial vegetation function, which 762 

can confound averaging function over the year. While the main analysis is with respect 763 

to vegetation indices averaged over the full year, we also repeat the partial regressions 764 

by evaluating growing season averages to evaluate the robustness of results to 765 

differences in vegetation function over the full year and only the growing season. 766 

Several growing season definitions were tested. Our first definition, “Growing Season 767 

Method 1”, is times of year when the NDVI mean climatology is above its median, which 768 

is held constant across years. Specifically, the MODIS NDVI climatology was computed 769 

by averaging across all years between 2003-2022 into a mean seasonal cycle. This 770 

seasonal cycle was smoothed using a moving average window of 90 days. Our second 771 

definition, “Growing Season Method 2a”, is based on estimating the start and end of the 772 

growing season similar to previous studies85. Specifically, the start and end of season 773 

are defined as the day when NDVI increases above and decreases below, respectively, 774 

the NDVI minimum plus 30% of its seasonal amplitude. The start and end of the 775 

growing season are allowed to change each year. In “Growing Season Method 2b,” this 776 

same Growing Season Method 2a is repeated but with the same definition across all 777 

years. In all growing season analyses, the daily rainfall variability metrics are insensitive 778 

to the growing season length given that the rainfall total regressor is the seasonal total 779 

rainfall (which is sensitive to the growing season length) while the daily rainfall variability 780 

metrics are all normalized by the length of the growing season. We reported Growing 781 

Season Method 1 in Fig. 1 because it considers multiple growing seasons, though the 782 

other methods show similar results (Fig. S11). 783 

 784 

The fact that the growing season analysis produces similar patterns as the presented 785 

annual mean analysis suggests phenology and changing interactions between seasons 786 

do not confound our findings. Some effects of non-linearity are also removed when 787 

considering only the growing season, thus further supporting our assumptions of linear 788 

interactions in the partial regression approach. We nevertheless choose to primarily 789 

report the annual mean results in the main text because daily rainfall variability includes 790 

effects both during rain events and during dry spells, the latter of which can influence 791 

vegetation outside of a growing season. Furthermore, growing season definitions vary 792 

and are inconsistent across the literature and thus our several definitions are provided 793 

as auxiliary analyses for reference. 794 



 795 

Partial Least Squares Regression: Multi-collinearity and Causality 796 

Several other limitations and confounding effects were addressed. First, multi-797 

collinearity, or correlation between regressors that inflates the variance of their  798 

estimates, are partly reduced by use of the partial regression technique to select the 799 

model with the optimal regressors86. However, annual rainfall total and wet day rainfall 800 

frequency are correlated, but are still kept together within the regression in order to 801 

address our research questions about their partitioned relation with vegetation function. 802 

Variance inflation factors (VIF) were therefore assessed between annual rainfall total 803 

(P) and wet day frequency (Frq) in each pixel to determine whether P and Frq have 804 

multi-collinearity that greatly increases the variances of P and Frq. VIF is generally less 805 

than 5 meaning that it is acceptable to include both P and Frq in the regression 806 

(Extended Data Fig. S3). In the case when mean annual precipitation is below 400 807 

mm/year, the VIF increases to between 5 and 10. However, VIF is below 5 when using 808 

wet day intensity in place of wet day frequency in this lower rainfall bin and results are 809 

ultimately qualitatively the same when using intensity in place of frequency. As such, 810 

multi-collinearity is not expected to be substantially influencing results here. Including 811 

wet day intensity as an additional regressor to P and Frq in Eq. 1 creates an 812 

overdetermined problem and results in very high VIF (>>10). Therefore, only wet day 813 

frequency is used as a regressor along with P. However, to gain confidence in results, 814 

the analysis is repeated using wet day intensity and dry spell length (mean number of 815 

dry days between wet days) each in place of wet day frequency as validation of wet day 816 

frequency results.  817 

 818 

Our analysis does not directly consider effects of different types of wet day timing 819 

patterns (e.g. concentrated in certain periods of spread out uniformly across the year), 820 

since these timing effects were found to be secondary in importance to wet day 821 

frequency and intensity at a field scale analysis87. 822 

 823 

Another key limitation is that the regression-based relationships do not indicate 824 

causality. The direction of causality is presumably that the daily rainfall variability is 825 

impacting vegetation, with feedback effects in the opposite direction of vegetation on the 826 

atmosphere likely smaller88. However, the regressions do not allow us to make a 827 

stronger argument that daily rainfall variability is causing the vegetation function 828 

responses. Nevertheless, the partial regressions are sufficient for addressing our 829 

questions of vegetation sensitivity to daily rainfall variability compared to other factors. 830 

Much of the understanding of vegetation relation to climate variables comes from such 831 

regression and non-causal relationship analyses24,25,89. 832 

 833 

Analysis of Vegetation Sensitivity to Wet Day Frequency and Intensity 834 



The global spatial distribution of absolute values P and Frq and their explained 835 

variances were compared. For the satellite data, we computed an ensemble average P 836 

and Frq in each pixel across the four satellites. For the partial regression analysis on 837 

both satellite and field data, the ratio between Frq and P was computed. For the 838 

random forest regression on satellite data, the SHAP values (Shapley Additive 839 

Explanation) were computed to interpret the random forest outputs using the SHAP 840 

package in python90. The mean absolute SHAP values have a similar interpretation as 841 

normalized Frq and P do, specifically the relative magnitude of sensitivity of a 842 

vegetation index to a given predictor variable. When averaging across the metrics 843 

across the four satellites, it is assumed here that the vegetation sensitivity to the 844 

environmental factors are constant between 2003-2022, given the dataset ranges 845 

occupy different years in this range. Therefore, this allows the effects from different 846 

ranges of satellite records to be averaged.  847 

 848 

Consistency in the spatial pattern of the sign and statistical significance of Frq 849 

sensitivity across the four vegetation datasets provides another form of confidence in 850 

the results. A such, we define a “degree of agreement” metric to be evaluated in each 851 

pixel as the count of satellite-based vegetation datasets with positive, significant 𝛽𝐹𝑟𝑞 852 

minus the count of satellite-based vegetation datasets with negative, significant 𝛽𝐹𝑟𝑞. 853 

Only pixels with an absolute value Degree of Agreement of greater than or equal to 2 854 

are considered statistically significant when considering the ensembles across the four 855 

datasets. Higher absolute values result from several of the four satellite datasets 856 

agreeing in statistical significance (p<0.05) and sign of sensitivity. Positive Degree of 857 

Agreement values indicate positive relationships of wet day frequency with annual 858 

vegetation indices across most of the datasets. When 𝛽𝐹𝑟𝑞 show no statistically 859 

significance or they have opposing signs across the four satellites, the Degree of 860 

Agreement approaches zero.  861 

 862 

The percentage of global pixels with statistically significant vegetation sensitivities to 863 

wet day frequency and intensity as well as annual rainfall total were also computed. 864 

These areal percentages are based on ensemble mean P and Frq across the four 865 

satellite-based vegetation indices that are statistically significant based on the degree of 866 

agreement. Only pixels were considered that are dominantly vegetated (non-bare soil 867 

based on IGBP classification), below 60 degrees latitude, non-mountainous (based on 868 

IGBP classification), and have at least 20 annual data points used in their regression. 869 

Screening mountainous regions partially removes pixels with snowmelt, though we 870 

acknowledge that snowmelt and runoff will influence non-mountainous adjacent pixels.  871 

 872 

Mechanistic Analysis 873 



Given the differing signs of vegetation sensitivity to wet day frequency and intensity, we 874 

also evaluated the percentage of pixels with statistically significant positive and negative 875 

vegetation sensitivities to less frequent, more intense wet days. We evaluated these 876 

relations across a mean annual precipitation gradient where the bins are partitioned 877 

such that there are the same number of global pixels in each of the five bins 878 

(approximately 800). We also compute the same percentages across pixels with the 879 

same IGBP classes to evaluate effects of vegetation type. 880 

 881 

We evaluate which observable mechanistic drivers explain the spatial gradient of 882 

vegetation sensitivities to less frequent, more intense wet days. We specifically chose 883 

variables that would directly modulate how plants respond to a more intense rain event 884 

and/or longer dry spell as well as are observed or estimated at global scales. The 885 

potential drivers we evaluate include clay fraction (soil texture), plant response 886 

sensitivity to wet days, soil moisture mean relative to its soil moisture thresholds for 887 

plant water uptake, maximum rooting depth, and the sensitivity of mean annual soil 888 

moisture, surface downwelling solar radiation, and VPD to less frequent, more intense 889 

wet days.  890 

 891 

Plant response sensitivity to wet days and soil moisture thresholds for plant water 892 

uptake are determined in the same manner as from previous work37. In summary, 893 

SMAP soil moisture at 9km is used to identify interstorm periods when the soil is drying, 894 

defined as at least three consecutive SMAP satellite overpasses of decreasing soil 895 

moisture. It was previously found that VOD tends to increase at higher soil moisture and 896 

decrease at lower soil moisture values during drydowns37. As such, the soil moisture 897 

value for which VOD on average begins decreasing during drydowns is the estimated 898 

soil moisture threshold. The plant response sensitivity to wet days is the median 899 

dVOD/dt rate of change above the soil moisture threshold. To decouple relations to 900 

determined soil moisture threshold and to plant response sensitivities to wet days, in the 901 

determination of plant response sensitivities to wet days, the soil moisture threshold is 902 

set as the median soil moisture for each pixel. The plant response sensitivities to wet 903 

days are normalized by the mean VOD over the 2015-2020 time series to create a 904 

fractional rate of VOD increase over an interstorm. These metrics are determined from 905 

all drydowns at 9km pixels, but are aggregated to a one degree resolution for 906 

consistency with the analysis in this paper. See ref. 37 for more details.  907 

 908 

The soil moisture mean relative to the soil moisture threshold is computed by 909 

subtracting the soil moisture threshold from the mean soil moisture. This relative mean 910 

soil moisture is deemed more related to effects of daily rainfall variability (than annual 911 

rainfall total or mean soil moisture) because it assesses the degree to which rainfall 912 

pulses and dry spells are generally occurring under plant water stress conditions for that 913 



location. Evaluating mean soil moisture by itself would otherwise not provide information 914 

on whether plants are stressed. 915 

 916 

The relationship of wet day frequency with mean annual soil moisture, mean annual 917 

surface downwelling solar radiation, and mean annual VPD are determined by: 918 

 𝑌 =  𝛽0 + 𝛾𝑃𝑃 + 𝛾𝑌𝐹𝑟𝑞 + 𝜀   (3) 919 

where Y is mean annual SMAP soil moisture, mean annual CERES surface 920 

downwelling solar radiation, or mean annual AIRS vapor pressure deficit. 𝛾Y is the 921 

sensitivity of the respective climatic variable to wet day frequency, analogously to Frq, 922 

as partitioned from sensitivities to annual rainfall total. The analysis is repeated similarly 923 

to that of Eq. 1. With less frequent, more intense wet days, annual mean VPD is higher 924 

(79% pixels positive, 2% pixels negative), annual mean surface downwelling solar 925 

radiation is higher (64% pixels positive, 9% pixels negative), and annual mean soil 926 

moisture tends to be lower (12% pixels positive, 24% pixels negative) (Fig. S15). 927 

 928 

We aim to determine the degree to which the spatial rainfall gradient of the ensemble 929 

mean Frq is sensitive to each factor and why Frq tends to switch in sign with increasing 930 

annual rainfall totals (Fig. 3). Thus, Frq and each mechanistic factor is binned into 50 931 

equally sized mean annual precipitation bins and the median of each variable is 932 

computed. Conditioning on these bins in this way allows for controlling for the mean 933 

annual precipitation gradient, or effectively conditioning on the rainfall gradient. Each 934 

variable is converted to its z-score by subtracting by its bin average and dividing by its 935 

binned standard deviation. The following is then computed: 936 

𝛽𝐹𝑟𝑞 =  𝛽0 + 𝛽𝐶𝑙𝑎𝑦𝐶𝑙𝑎𝑦 + 𝛽𝑃𝑢𝑙𝑠𝑒𝑃𝑢𝑙𝑠𝑒 + 𝛽𝑅𝑜𝑜𝑡𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑜𝑡𝐷𝑒𝑝𝑡ℎ +937 

𝛽𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + 𝛽𝑉𝑃𝐷𝛾𝑉𝑃𝐷 + 𝛽𝑆𝑀𝛾𝑆𝑀 + 𝛽𝑅𝑠𝛾𝑅𝑠 + 𝜀   (4) 938 

The analysis therefore estimates which climate variables explain the annual rainfall total 939 

driven gradient of Frq. Uncertainty bounds and statistical significance are determined 940 

via bootstrapping by randomly sampling with replacement pixels across the globe and 941 

repeating the analysis in a Monte Carlo format with 200 iterations. Statistical 942 

significance is determined if the  of the explanatory variable has the same sign for its 943 

2.5th and 97.5th percentiles. The main analysis was performed on the 𝛽𝐹𝑟𝑞 ensemble 944 

mean across MODIS NDVI, AVHRR NDVI, OCO-2 SIF, and GOME-2 SIF. However, 945 

there is little variability of results when performing the analysis on each individual 946 

satellite vegetation index. We also obtain the same results when performing the 947 

regression on the Frq spatial area of significant sensitivities (p<0.05). 948 

 949 

Trend Analysis 950 

Temporal trends in annual rainfall total, wet day frequency, and wet day intensity are 951 

computed by regressing the z-score anomalies of these annual-scale properties across 952 

the years of their time series in each pixel. For historical trends from 1980 to 2020, we 953 



use CPC observation-based rainfall, to account for complex climate changes features 954 

that might create uncertainty in models91, and MERRA2 model reanalysis rainfall. We 955 

also evaluate historical CMIP6 model-based precipitation from 23 models, but the 1940-956 

2020 period was chosen for CMIP6 historical trends to be of consistent time length as 957 

the CMIP6 projections and reduce effects of internal and decadal variability. As an 958 

additional observation-based dataset, we evaluate trends in spatially gridded rain gauge 959 

data from the REGEN dataset between 1950-2016. For projections, these properties 960 

are computed using CMIP6 models with daily outputs over 2020-2099. This includes 27 961 

models for RCP8.5 (Table S2). Note that we also evaluate trends alternatively with 962 

RCP4.5 and find that the trend magnitude and spatial extent is reduced (not shown). 963 

However, our same conclusions in Figure 4 hold about relative extent and magnitude of 964 

daily rainfall variability. The CPC and MERRA2 datasets were rescaled to one-degree 965 

grids using linear resampling. Since most CMIP6 model resolutions are lower than one 966 

degree resolution, CMIP6 models were rescaled to two-degree grids.  967 

 968 

Temporal autocorrelation can artificially induce trends in a time series92,93. To remove 969 

temporal autocorrelation from the time series of annual rainfall total for each dataset, 970 

the autoregressive lag-1 (AR(1)) coefficient is removed by computing Pt – rt-1Pt-1, where 971 

rt-1 is the AR(1) coefficient or correlation between Pt and Pt-1. Next, in each pixel, 972 

statistical significance is determined through Mann-Kendall trend tests of whether the 973 

trend magnitudes are different from zero (p<0.05). Then, following a nearly identical 974 

procedure to previous work92–95, multiple hypothesis testing is applied to further remove 975 

false positive trend detections given that false positives will occur in isolated cases with 976 

inherent spatial autocorrelation in the dataset creating a cluster of false positives95. The 977 

test thus finds a threshold for spatial cluster size of significant trends, below which the 978 

cluster is likely formed by false positive rainfall trends. To compute this critical cluster 979 

size, a joint permutation is applied where the time series in each pixel are randomly re-980 

ordered without replacement and a trend is computed along with a Mann-Kendall trend 981 

test for each pixel. This same random permutation is applied throughout all global pixels 982 

to conserve the spatial autocorrelation structure of the data and determine false positive 983 

cluster sizes. Clusters of these false positives are counted considering first order 984 

(queen) neighbors. The largest cluster size is recorded based on this randomized time 985 

series ordering. This process is repeated 1,000 times for each dataset and the 95th 986 

percentile of maximum cluster size is the determined threshold. For a given dataset, it 987 

was determined that after approximately 500 iterations, the maximum cluster size and 988 

consequently the percent area of significant trends tended to converge to the same 989 

value. Finally, the cluster sizes are determined for the trend computation on the raw 990 

data (1980-2020 or 2020-2099) and clusters of statistically significant trends smaller 991 

than this cluster threshold are considered not statistically significant and likely due to 992 



false positive trends. Note that this process is carried out for each of the CMIP6 models 993 

individually. 994 

 995 

We evaluate trends across several rainfall datasets not as a comparison of trends, but 996 

rather to determine whether our main arguments about relative differences in daily 997 

rainfall variability and annual rainfall total trends hold under limitations presented by 998 

each dataset (see SI text for discussion of limitations). We note that the datasets 999 

between the 1980-2020 periods all show the same overarching results about the trend 1000 

magnitude and spatial area of significant trends (p<0.05) when comparing trends of 1001 

daily rainfall variability and trends of total annual rainfall (Figs. S16, S20). For REGEN 1002 

and CMIP6 historical record, when shortening the time series to only after 1980, the 1003 

spatial extent of significant trends is reduced, but the same conclusion remains of the 1004 

similarity of magnitude and spatial extent of trends is similar between daily rainfall 1005 

variability and total annual rainfall. 1006 

 1007 

To empirically estimate vegetation function trends, these aforementioned rainfall trends 1008 

are multiplied by the partitioned vegetation sensitivities to these rainfall features (P and 1009 

Frq), which are mean sensitivities from the different satellites. These trend estimates 1010 

are uncertain because they assume that vegetation sensitivity to the rainfall metrics are 1011 

constant in time, which would not hold under CO2 fertilization96. Nevertheless, we 1012 

expect that the regressions would partition the sensitivity of the vegetation index due to 1013 

daily rainfall variability and would only have minor biases due to the likely smaller 1014 

influences of CO2 fertilization. These vegetation sensitivities are computed using 20-1015 

year and less time periods which are influenced by sub-decadal variability like El Nino 1016 

Southern Oscillation (ENSO). Since atmospheric CO2 has increased monotonically, we 1017 

expect less of an impact on interannual variability of the vegetation indices, which we 1018 

show is strongly driven by year-to-year changes in annual rainfall and daily rainfall 1019 

variability among other factors. The estimated trends are rescaled to obtain a percent 1020 

change per year using FLUXSAT GPP units66. The vegetation trend is in standard 1021 

normalized format (GPP-E[GPP])/[GPP]). To approximate percent change units, the 1022 

vegetation trend is multiplied by GPP interannual mean standard deviation then divided 1023 

by GPP mean. Therefore, the units are in mean percent change of GPP per year (or 1024 

(GPP-E[GPP])/E[GPP]). 1025 

 1026 

 1027 

 1028 

 1029 

 1030 
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Data Availability Statement 1153 

The data used and created in the study are available in two repositories. The processed 1154 

data inputs are available on Zenodo at https://zenodo.org/records/10947071. The output 1155 

data and reduced-size example input data are available on Zenodo at 1156 

https://zenodo.org/records/13551521. All datasets used in the study are freely available 1157 

and were obtained as follows. The MODIS NDVI product can be obtained 1158 

from https://modis.gsfc.nasa.gov/data/dataprod/mod13.php. AVHRR NDVI can be 1159 

obtained from https://www.ncei.noaa.gov/data/land-normalized-difference-vegetation-1160 

index/access/. GOME-2 SIF can be downloaded from https://daac.ornl.gov/SIF-1161 

ESDR/guides/MetOpA_GOME2_SIF.html. OCO-2 SIF can be obtained from 1162 

https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_SIF_10r/summary. The MT-DCA 1163 

vegetation optical depth dataset retrieved from SMAP is freely available 1164 

at https://doi.org/10.5281/zenodo.5579549. AIRS humidity and air temperature data are 1165 

available at https://airs.jpl.nasa.gov/data/get-data/standard-data/. The MODIS land 1166 

surface temperature product can obtained 1167 
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https://www.ncei.noaa.gov/data/land-normalized-difference-vegetation-index/access/
https://daac.ornl.gov/SIF-ESDR/guides/MetOpA_GOME2_SIF.html
https://daac.ornl.gov/SIF-ESDR/guides/MetOpA_GOME2_SIF.html
https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_SIF_10r/summary
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.5281%2Fzenodo.5579549&data=05%7C01%7Candrew.feldman%40nasa.gov%7Ce25a556049164ade5cff08dbb3cca097%7C7005d45845be48ae8140d43da96dd17b%7C0%7C0%7C638301463728317813%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=hgByn%2F2sL%2B2yi5Q8RVkBcesiAUouRsQmMsOaaNeqWi4%3D&reserved=0
https://airs.jpl.nasa.gov/data/get-data/standard-data/


from https://lpdaac.usgs.gov/products/myd11c2v006/. MERRA2 precipitation data can 1168 

be accessed at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/. CERES 1169 

radiation can be accessed at: 1170 

https://asdc.larc.nasa.gov/project/CERES/CER_SYN1deg-Day_Terra-Aqua-1171 

MODIS_Edition4A. SMAP soil moisture can be obtained from 1172 

https://nsidc.org/data/smap/data. GPM precipitation outputs are available at 1173 

https://gpm.nasa.gov/data/directory. CPC precipitation data are available at 1174 

https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html. REGEN precipitation data 1175 

are available at https://thredds-x.ipsl.fr/thredds/catalog/FROGs/REGEN_ALL_V1-1176 

2019/catalog.html. FLUXNET gross primary production observations can be obtained 1177 

from https://fluxnet.org. CMIP6 rainfall projections can be obtained from 1178 

https://cds.climate.copernicus.eu.  1179 
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The code is available on a Zenodo repository at https://zenodo.org/records/13551521 to 1182 

both create the figures and conduct the analysis. This repository includes the main 1183 

analysis outputs and example input data. The full processed data inputs are available 1184 

on another Zenodo repository at https://zenodo.org/records/10947071.  1185 
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 1222 

Extended Data Figure Captions 1223 

Extended Data Fig. 1. | Across historical simulations and projections, rainfall is 1224 

becoming less frequent, but more intense. Historical and projected rainfall trends of 1225 

(a, b) wet day frequency, and (c, d) wet day intensity, and (e, f) annual rainfall total 1226 

using CMIP6 historical simulations (1940-2020) and CMIP6 RCP8.5 models (2020-1227 

2099).  1228 

 1229 

Extended Data Fig. 2. | Across observation-based rainfall datasets, rainfall is 1230 

becoming less frequent, but more intense. Rainfall trends of (a, b) wet day 1231 

frequency, and (c, d) wet day intensity, and (e, f) annual rainfall total using CPC gridded 1232 

observations (1980-2020) and MERRA2 model reanalysis (1980-2020). 1233 

 1234 

Extended Data Fig. 3. | Wet day frequency and annual rainfall amount have 1235 

enough uncorrelated information to be included together and partitioned in a 1236 

regression. (a) Variance inflation factor of wet day frequency and intensity. Higher 1237 

values (especially much over 5) indicate multi-collinearity with annual rainfall mean and 1238 

thus higher uncertainty partitioning effects between the variables. (b) Interannual 1239 

coefficient of variation computed as the interannual standard deviation divided by 1240 

interannual mean for each respective rainfall characteristic. Similar magnitudes between 1241 

variables suggest variability of one variable is not dominating the regression. 1242 

 1243 

Extended Data Fig. 4. | Mechanistic explanation of vegetation sensitivity to more 1244 

intense, less frequent wet days across the global mean rainfall gradient (in Fig. 3). 1245 

(a) Effect of soil, plant, and atmospheric factors on vegetation sensitivity to more 1246 

intense, less frequent wet days. ** indicates significance (p<0.05). Positive values 1247 

suggest that increasing the respective driver promotes higher vegetation behavior in 1248 



years with more intense, less frequent wet days. Computation of individual mechanistic 1249 

factors is discussed in the Methods and their relationships with mean annual rainfall are 1250 

shown in Fig. S15. Mean VPD, Soil Moisture, and Solar Radiation “Sensitivity” refers to 1251 

the response of these climate variables to more intense, less frequent wet days (see 1252 

text and Methods). (b) Variance explained of factors in (a).  1253 

 1254 

Extended Data Fig. 5. | Empirically estimated vegetation trends due to daily 1255 

rainfall variability trends. Spatial maps of empirically estimated vegetation trends due 1256 

to trends in daily rainfall variability from (a) CPC, (b) MERRA2, (c) CMIP6 historical 1257 

simulations, and (d) CMIP6 RCP8.5 projections. 1258 
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