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Chapter 1
MIMO Radar Technology

Shungiao Sun’

Automotive radar with a small number of antennas has been used for advanced
driver-assistance systems (ADAS) purposes since the late of 1990s. These early
automotive radars mostly provided target detection and velocity information. How-
ever, current generation of automotive radar for ADAS has rather limited ability to
resolve closely spaced targets. LiDAR systems have better angular resolution (less
than 1 degree) and have been introduced in Level 4 and Level 5 autonomous driving
systems. LiDAR can provide point clouds. Via use of deep neural networks, such as
PointNet [1] and PointNet++ [2], the point clouds can lead to target identification.
However, due to its use of light spectrum wavelength, LiDAR is susceptible to bad
weather conditions, such as fog, rain, snow and dust in the air. In addition, the cost of
LiDAR is high. On the other hand, automotive radar with millimeter waveform tech-
nology has the potential to provide point clouds at much lower cost than LiDAR, and
with more robustness to weather conditions. Such radar is referred to as a "high end
radar," or imaging radar [3]. Computer vision techniques [1, 2] that were previously
reserved for high resolution camera sensors and LiDAR systems, can be applied to
imaging radar data to identify targets. For example, a car can be identified based on
two-dimensional (2D) radar points of an imaging radar using PointNet [4]. Imag-
ing radars have been attracting the interest of those developing fully autonomous
vehicles, major Tier-1 suppliers, and automotive radar startups.

In addition to sensitivity, the important requirements for automotive radar are
high resolution, low hardware cost and small size. Multiple-input multiple-output
(MIMO) radar technology has been receiving considerable attention by the automo-
tive radar community because it can achieve high angular resolution with relatively
small numbers of antennas and receivers. For that ability, it has been exploited in
current generation automotive radar for ADAS as well as in next generation high
resolution imaging radar for autonomous driving. For autonomous driving, informa-
tion in both azimuth and elevation is crucial. In particular, the height information of
targets is required to enable drive-over and drive-under functions. Two typical sce-
narios are shown in Fig. 1.1. It is safe to drive over a metal beverage can on the road
and to drive under a steel pedestrian bridge over the road. To meet such requirement,
the array is required to have a large aperture in both azimuth and elevation. MIMO
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Figure 1.1 Automotive radars need to provide elevation resolution to enable
drive-over and drive-under functions. © [2021] IEEE. Reprinted, with
permission, from [5].

radar is a good candidate for high resolution imaging radar for autonomous driving.
In MIMO radar the targets are first distinguished in range and Doppler domains.
Then, large virtual arrays with hundreds of elements can be synthesized to provide
high resolution in both azimuth and elevation. As a result, point clouds with similar
performance as LiDAR can be generated at a much lower cost.

In this Chapter, we introduce the concept of imaging radars using MIMO tech-
nology, present some examples for synthesizing hundreds of virtual array elements
by cascading multiple radar transceivers with each supporting a small number of
antennas, and discuss design challenges.

1.1 Virtual Array Synthesis via MIMO Radar

In state-of-the-art automotive FMCW radar, the range and Doppler parameters of tar-
gets can be estimated by using single receive antenna. However, to estimate the angle
parameter of targets, a receive antenna array is needed. In MIMO radar, the antennas
transmit waveforms in a way that guarantees their orthogonality. At each receive an-
tenna, the contribution of each transmit antenna is extracted by exploiting waveform
orthogonality. For a uniform transmit antenna array with M, transmit antennas and
element spacing of d, and a uniform receive antenna array with M, receive antennas
and element spacing of d,, a virtual array with M,M, elements can be synthesized.
The array response of the synthesized array, i.e., the array corresponding to a MIMO
radar can be expressed as a, (6,) ®a, (6,). Here, ® denotes the Kronecker product,
and a, (6,) and a, (6,) are respectively the transmit and receive array steering vectors,
corresponding to direction of departure (DOD) 6, and direction of arrival (DOA) 6,,
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Figure 1.2 Illustration of different MIMO radar virtual array configurations using
TDM or DDM scheme with M, = 2 transmit antennas and M, receive
antennas: (a) interleaved with d, = 2d, and d, = %; (b) stacked with
d=M.d,andd, = ’21 Different colors indicate the transmit antenna
either transmits different time slots or codes. © [2020] IEEE.
Reprinted, with permission, from [6].
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defined below.

; (1.1)

)

- T
a,(6,) = [l,eﬂ”j’Si““’t),... eﬂﬂ(M’ll)d' sin((-)t)]

—l)a, . T
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Figure 1.2 shows two MIMO radar configurations with M, = 2 transmit and M,

receive antennas [6]. One is in interleaved mode with d, = 2d; and d, = % and the
2 -

It can be verified that for the both array configurations, the synthetic virtual arrays

are equivalent to uniform linear arrays (ULAs) with M, M, elements and spacing of

d, when 6, = 0,.

It should be noted that because MIMO radar transmits orthogonality waveform,
when isotropic array elements are used, the array beampattern - also referred to as
the MIMO radar array factor - is omnidirectional. Thus, MIMO radar loses the
coherent array processing gain advantage enjoyed by traditional phased-array radar
systems, which is 10logN for a phased-array with N elements [7]; the SNR of the
array response at a given angular direction is less than that of phased-array radar
with transmit beamforming. Still, in the automotive application scenario, the high
resolution angle finding ability of MIMO radar coupled with its low cost are viewed
as more important than the loss of coherent processing gain.

other is in stacked mode with d, = M,d, and d, = % Here, A = ;— is the wavelength.

1.2 Waveform Orthogonality Strategies in Automotive MIMO
Radar

Virtual array synthesis in automotive radar using MIMO radar technology relies on
the separability of the transmit signals of the different antennas. The separation is
easier when the transmit signals of different antennas are orthogonal. In the fol-
lowing, we review techniques to achieve waveform orthogonality while transmitting
FMCW, such as time division multiplexing (TDM), Doppler division multiplexing
(DDM) and frequency division multiplexing (FDM).

1.2.1 Waveform orthogonality via time division multiplexing (TDM)

In TDM MIMO radar [8, 9, 10, 11, 12], only one transmit antenna is scheduled to
transmit at each time slot. In Fig. 1.3, a signal processing example of a MIMO radar
in TDM is given by NXP Semiconductors [13], where M, = 2 transmit antennas
emit FMCW chirps alternatively. The switch delay between transmit antennas is
At = Tpgy. At each receive antenna, range FFTs of length N, are conducted for each
chirp and the FFT outputs of 2N, chirps are assembled in two matrices corresponding
to odd and even chirp sequences, respectively. The receive array corresponding to
odd and even chirp sequences form two subarrays, which can be used to synthesize
a virtual array according to interleaved or stacked configurations.
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Figure 1.3 Example of radar signal processing with TDM scheme, where M; =2
transmit antennas transmit FMCW chirp sequences alternatively. The
red and green color denote the odd and even echo chirp sequences,
respectively. The range FFTs are conducted for each chirp and the
FFT outputs are stored in two matrices corresponding to odd and even
sequences, respectively for further processing. © [2020] IEEE.
Reprinted, with permission, from [6].

For a moving target with velocity of v, the switching delays of transmit antennas
introduce a target phase migration from chirp to chirp, which is defined as ¢ =
27 fpAt = a—”vAt. As aresult, the virtual array pattern would be distorted [10]. In Fig.
1.3, the phase difference between corresponding columns in the two matrices is ¢ =

‘%VTPRI. If v=—0.5v, and v = —v,, where v, is the maximum unambiguous
detectable radial speed and v, = ﬁ, the phase shifts are ¢ = —7x / 2and ¢ =

—, respectively. The array beampattern distortion is demonstrated in Fig. 1.4 for
a moving target with range of 35m and azimuth angle of 8 = 0° [10]. Here, MIMO
radar with M, = 2, M, = 8 operates in TDM fashion. As stated in [10], and can
also be seen in Fig. 1.4, for interleaved MIMO array configuration, when the target
velocity increases, the grating lobes at the edge of FOV show up, while the peak at
the target direction decreases and totally disappears when v = —v,,,... For stacked
MIMO array configuration, as the target velocity increases, the peak is slightly off
the boresight with a mirror grating lobe at the opposite direction.

The phase migration introduced by every moving target in the virtual array re-
sponse needs to be compensated for before angle finding. The phase shift estimate ¢,
can be obtained after each target velocity has been estimated based on the 2D-FFT of
a single receive antenna, or non-coherent 2D-FFT integration of the same subarray.
For example, in the example of Fig. 1.3, the phase in the beam vector of the subarray
obtained from the even chirps needs to be compensated by multiplying them with
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Figure 1.4 Examples of MIMO radar range and azimuth images using TDM with
M, =2,M, = 8 for a single target with range of 35m, azimuth angle of
0 = 0°. Two MIMO array configurations, interleaved (left column) and
stacked (right column) are considered. The radial velocity of (a-b)
V==V (c-d) v=—0.5v,, and (e-f) v=10. © [2020] IEEE.
Reprinted, with permission, from [6].

e’ ‘P, while the phase in the beam vector of the subarray corresponding to odd chirps
is kept unchanged.

It should be noted that, in TDM MIMO radar, the pulse repetition interval is
enlarged by the transmit antenna number M,. As a result, the maximum unambiguous
detectable velocity will be reduced by a factor of M, [14].

1.2.2  Waveform orthogonality via Doppler division multiplexing
(DDM)

In one look, a total of N chirps (i.e., pulses) are transmitted sequentially, with pulse
repetition interval Tpgy. All transmit antennas transmit simultaneously the same
FMCW waveform, after multiplying it with a phase code that is different for each
antenna, and changes between pulses, i.e., x, (n) = eﬂm’"("),m =1, ,M,n=
1,---,N [15]. To separate the h-th transmit signal at the /-th receiver, after range
FFT, a slow time Doppler demodulation is applied to all range bins corresponding to
the same chirp. The Doppler demodulated outputs of N chirps are assembled into a
vector s;‘. Then, the Doppler FFT is applied on the vector sf’. To separate the trans-
mit signals in the Doppler domain, one for the two methods described below can be
applied.

The first approach is to design phase codes such that the Doppler FFT of the in-
terference e/2% (%" =% (") i shifted to a frequency that is higher than the maximum
detectable Doppler frequency fp"*. Therefore, a LPF can be applied to remove the
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interference [15]. One example of such phase codes is
o, (n)=o,nm=1,..M,n=1,...N, (1.3)

where the starting phase o, is linear across different transmit antennas, i.e., o, =
agm. Figure 1.5 (a) shows the range and Doppler spectrum of a target with range of
75m and velocity of 10m/s. The automotive MIMO radar has two transmit antennas
and transmit phase codes given in (1.3) with gy = 1 and N = 512. It can be seen
that signals from different transmit antennas are shifted to higher Doppler spectrum,
which can be removed via a LPF in Doppler domain. Under this approach, the
radar pulse repetition frequency fprp should be larger than M, f5,** [16]. Thus, if the
frrr 1s kept unchanged, the maximum detectable unambiguous Doppler frequency is
reduced by a factor of M,. In practice, a Doppler unfolding, or de-aliasing algorithm
needs to be developed with different fprr in different looks.

The second approach is to design phase codes so that the Doppler FFT of the
interference can be distributed into the entire Doppler spectrum as pseudo noise. It
is desired to minimize the peak interference residual (PIR) in the Doppler spectrum

[17] calculated using the discrete-time Fourier transform (DTFT) form=1,--- , M,
i.e.,
2, (-0 () 2mf
PIR = max e T O =) gIoRI (1.4)
ek

where f € [— % JPRES % fPRF] Following equation (1.4), the cross-correlation of the
spectra of two codes needs to be flat [17], since the Fourier transform of multipli-
cation of two codes in the time domain is equivalent to convolution of spectrum of
one code with time reversed and complex conjugate of the other. The maximum
auto-correlation value of an unimodular sequence of length N is N. The ideal cross-
correlation of two unimodular sequences of length N has magnitude of V/N. Thus, in
the ideal case, according to [17] the maximum power gain of the currently transmit-
ted signal over other signals is v/N. For example, the maximum achievable waveform
attenuation is about 27.1dB for unimodular sequence set with N = 512.

Constant amplitude zero auto-correlation codes are good candidates for DDM.
The discrete Fourier transform (DFT) of a constant amplitude zero auto-correlation
code has also constant amplitude and zero auto correlation[18]. One of such exam-

ples is the Chu sequence [19], which is defined as x,, (n) = e%m("H)",m =1,...M,,;n=
1,...,N, where N is a prime number. In practice, the Chu sequence of prime length

is first generated and then truncated into a length for efficient FFT. For example,
we generate Chu codes of prime length 521 and truncate them to length N = 512.
By calculation with FFT, the peak interference residual defined in (1.4) is 1.08 V/N.
Therefore, the waveform attenuation for Chu sequence of length N = 512 is about
26.4dB. In Fig. 1.5 (b), we show the range and Doppler spectrum of a target with
range of 75m and velocity of 10m/s. The automotive radar has two transmit antennas
and two Chu sequences of length N = 512 are applied for slow time DDM. It can be
seen that the waveform attenuation is about 26dB.

In practice, binary phase codes are used due to hardware constraint [20]. The
binary phase code sequences are obtained via exhaustive search such that the peak
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Figure 1.5 The range and Doppler spectra of a target with range of 715m and
velocity of 10m/s. The automotive MIMO radar has two transmit
antennas and slow time phase coding of length N = 512 is applied for
DDM. (a) phase shift codes defined in equation (1.3); (b) two Chu
sequences. © [2020] IEEE. Reprinted, with permission, from [6].
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interference residual in (1.4) is low. As the code length increases, the search time
will grow exponentially.

The benefit of slow time phase coding is that the interference from other trans-
mitters does not affect different range bins. The range resolution is only determined
by the bandwdith of FMCW chirp. Therefore, it avoids the range sidelobe issue us-
ing fast time phase coding. However, the Doppler sidelobes would be high due to
the residual of the slow time phase coding. As a result, targets with low radar cross
section (RCS), e.g., pedestrians, that are close to the target with strong reflections,
e.g., trucks, might be masked by the waveform residual. In other words, the wave-
form residual reduces the radar dynamic range. Given the code length, the number of
phase codes with good correlation properties is limited, or equivalently, the number
of antennas that can transmit simultaneously is limited.

1.2.3  Waveform orthogonality via frequency division multiplexing
(FDM)

In the FDM scheme, the transmitted signals are modulated by different carrier fre-
quencies. According to [21], the separation of multiple transmit FMCW signals is
achieved by shifting the m-th transmit FMCW chirp by an offset frequency fog -
If the differences between all f 4, are larger than twice of the cut-off frequency
of the anti-aliasing BPF f; ", which is determined by the maximum unambiguous
detectable range and Doppler, the transmitted signals can be separated at the receive
end. Specifically, the received signal at each receiver is first mixed with the same
starting carrier frequency f.. The separation of transmit signals in the mixer output
can be implemented by a frequency shift followed by a low pass filter with cut-off
frequency f; " [21]. Each receiver needs to carry out such frequency shift and fil-
tering operation M, times. As a result, high range resolution can be realized using a
typical FMCW chirp with large bandwidth. Meanwhile, after FMCW demodulation,
frequency shift and filtering operation, the FDM MIMO scheme can still utilize a
low sampling rate determined by the beat signal.

Let us consider the FDM scheme in the context of the example in Section II, i.e.,
a FMCW LRR radar with maximum detectable range of 250 meters and maximum
detectable velocity of 120 mph. For bandwidth B = 150 MHz and chirp duration
T = 50 us, the maximum beat frequency is f;— = fr + fp = 5.0274 MHz.
Therefore, the frequency shift for the m-th transmit antenna in the FDM scheme can
be chosen as fy,, = 12 (m — 1) MHz. The intermediate frequency (IF) should have
a bandwidth of 12M, MHz to hold the mixer output.

1.3 Angle Finding in Automotive MIMO Radar

In automotive MIMO radar with M, transmit and M, receive antennas, a virtual uni-
form linear array of M, M, elements can be synthesized with inter-element spacing d.
The array response can be written as

y=A(6)s+n, (1.5)
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where A (0) =[a(0,),---,a(6g)] is the virtual array steering matrix with

a(8,) = l’ejaldsin(ek)’___

7ej27”(MtMr*1)dSin(9k)} T_ (1.6)
Here, n is a noise term and s = [B;,---,Bk]", where B, denotes the target reflec-
tion coefficient for the k-th target. The array response at a particular time instance
consisting of data obtained at all the virtual receivers and corresponding to the same
range-Doppler bin is defined as the array snapshot. In highly dynamic automotive
scenarios, usually, only a small number of array snapshots, or even a single snapshot
in the worst case is available [22].

In automotive MIMO radar with virtual ULA, angle finding can be done with
digital beamforming (DBF) [23, 24, 25] by performing FFTs on snapshots taken
across the array elements, , i.e., y in equation (1.16) (see Fig. 1.6). DBF can be
implemented efficiently in an embedded DSP with a single snapshot. However,
DBEF is not a high resolution angle finding method. Higher resolution angle find-
ing can be achieved with subspace based methods, such as MUSIC [26] and ESPRIT
[27, 28, 29, 30], sparse sensing based methods [31, 32, 33, 34, 35, 36, 37, 38, 39],
or the iterative adaptive approach (IAA) of [40] and [41]. The performance of sub-
space based angle finding methods relies on accurate estimation of the array co-
variance matrix with multiple snapshots, which is a challenging task in the highly
non-stationary automotive radar scenarios. In such context, spatial smoothing [42]
is applied for introducing virtual snapshots for array covariance matrix estimation.
While sparse sensing based methods and IAA have high computational cost, they
yield angle estimates based on a single snapshot, which is important for snapshot-
limited automotive radar.

Achieving high angular resolution for L4 and L5 autonomous driving require-
ment using ULA withd = % is very expensive. According to [43], the 3dB beamwidth

of antenna array with aperture size D is A@ = 2arcsin (%). To achieve 3dB

beamwidth of 1 degree, the antenna array aperture should be about D ~ 51A. If
the antenna array is ULA with inter-element spacing as half wavelength, it should be
composed of about 100 array elements. Even with the help of MIMO radar technol-
ogy, the cost of synthesizing such a large virtual ULA with half wavelength element
spacing is very high. One way to further reduce the cost without sacrificing the
high angular resolution is via the use of nonuniform, or sparse linear arrays (SLAs)
[44, 45, 46, 47, 48, 49], synthesized with MIMO radar technology. In that context,
selecting the locations of array elements and carrying out angle finding with the vir-
tual sparse array are key problems.

1.3.1 High resolution angle finding with uniform linear array (ULA)

1.3.1.1 Subspace methods with spatial smoothing

The performance of subspace based angle finding methods requires an estimate of
the array covariance matrix. Such estimate is typically obtained based on multiple
snapshots. However, in highly dynamic automotive environment, it is not possible
to obtain enough snapshots before the model of (1.16) changes. In such scenarios,
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Figure 1.6 Digital beamforming (DBF). © [2020] IEEE. Reprinted, with
permission, from [6].

spatial smoothing [42] can introduce virtual snapshots for array covariance matrix
estimation. In spatial smoothing, the array snapshot, y, is divided into overlapped
sub-arrays of length L and a new sampled array covariance matrix R € CctE s ob-
tained based on the sub-array snapshots.

Eigenvalue decomposition of R, along with the Akaike information criteria
(AIC) metric [50], or the minimum description length (MDL) metric [51], can be
used to identify the number of targets. It should be noted, however, that many ideal
assumptions in the deduction of these criteria, including additive white Gaussian
noise that is uncorrelated with source signal, and the availability of enough snap-
shots for an accurate covariance matrix estimation, might not be satisfied in practice.
To this end, forward backward spatial smoothing techniques [52] have been widely
applied to estimate the subarray covariance matrix for subspace methods based angle
estimation. When the subarray length is shorter, more subarrays are available for co-
variance matrix calculation, and thus a more accurate subspace estimation would be
expected. However, when subarray length is shorter, the DOA estimation resolution
is reduced, so a tradeoff between obtaining the number of subarrays and length of
subarray should be considered [53].

The target angles can be found by identifying the locations of peaks of the MU-
SIC pseudo spectrum [26], P (6;), computed at all possible 6;s, i.e.,

1
P(6,) = 1.7
(@) aj (6)U,Ufa, (6) (47

where U, is the noise subspace of R and a; (6;) is the array steering vector of length
L corresponding to search direction 6;. The computation cost of the MUSIC algo-
rithm is high due to the angle search process. Alternatively, the ESPRIT algorithm
could be used for angle estimation [27]. ESPRIT is also a subspace method, which
exploits the array shift invariance properties, and has been widely used in practice.
It has lower complexity than MUSIC, which, however, comes at the cost of reduced
angular resolution. ESPRIT requires 2L sensors with L > K. To achieve the same an-
gular resolution as MUSIC, ESPRIT needs twice as many sensors as MUSIC. As 2D
arrays are needed in automotive radar in order to estimate both azimuth and elevation
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angles, 2D ESPRIT algorithms [30] can be applied if the array element spacing is
uniform rectangular.

1.3.1.2 Compressive sensing

MIMO radars equipped with millimeter wave technology offer wide bandwidth, thus
achieving high range resolution. As a result, there are only a small number of targets
that fall in the same range-Doppler bin, and thus, the targets are sparse in the DOA
space. This property can be exploited by sparse sensing based high resolution meth-
ods for target angle estimation. To apply compressive sensing for DOA estimation,
the whole DOA field of view is discretized into a fine grid. Assume that the DOA
space is discretized on a fine grid with N points and there are K targets on the grid.
The array response in (1.16) can be re-written as

y =Ax-+n, (1.8)
where A =[a(6,),---,a(60y)] is the basis matrix with a (6;) denoting the array steer-
ing vector corresponding to the i-th grid point and x = [B;,B,,---,By]” is a sparse

vector with K non-zero elements. The value of f3; is non-zero if there is a target at
the i-th grid point. The coherence of the basis matrix, defined as

A ’aH(Gi)a(el)‘
U = max

. 1.9
X Ta @), T @), (1%

needs to be low for obtaining uniform recovery guarantees [54]. When meeting
the required coherence conditions, the DOA can be found by solving a ¢; norm
optimization problem, such as Dantzig selector [55] defined below

min x|,

s.t. HAH (y — Ax)

, <n (1.10)

or greedy methods, such as orthogonal matching pursuit (OMP) [56].

In the above formulation, targets are assumed to be on the grid, which is not
always possible in practice. While one can make the grid finer in order to capture
the targets, the coherence of matrix A would increase, which would make the ¢;
norm solution invalid [57]. Thus, the performance of compressive sensing based
methods is sensitive to targets appearing off the grid [58]. Sparse sensing and matrix
completion based methods [38, 39] can avoid grid issues without sacrificing the high
resolution performance.

1.3.1.3 Iterative adaptive approach (IAA)

The covariance matrix of M array snapshots y;,/ = 1,---,M, can be written as
R = A (0)PA” (), where P is a K x K diagonal matrix whose diagonal elements
contains the power of target reflections. Angle finding in the IAA algorithm [40, 41]
is carried out by iteratively estimating the reflection coefficient ;. The estimate is
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found by minimizing the weighted least square (WLS) cost function

Z Iy =B (1)a (80l (1.11)
where ||| Q =x"Q ' (6,)x and the interference and noise covariance matrix
Q(6,) = (Gk a’” (6,). The solution is given by [40]

H -1
A 6,)R
B = o OJR (1.12)

a” (9)R 'a(6,)

R . 2

Then matrix P can be updated as P, = ﬁ Y, ’ B (1) ‘ . In TAA algorithm implemen-
tation, the DOA space is discretized into a fine grid of N points and steering matrix
A is constructed in the same way as in compressive sensing. In addition, a standard
delay and sum (DAS) beamformer is used to initialize P,

M | H 2

Yo ’a (ek)YI‘

ma" (8)a(8)

(1.13)

1.3.2  High resolution angle finding with sparse linear array (SLA)

As stated before, the cost of synthesizing a large virtual ULA of D elements with half
wavelength element spacing is very high. One way to further reduce the cost without
sacrificing the high angular resolution is via the use of nonuniform, or sparse linear
arrays [59, 45, 44]. With MIMO radar technology, M, M, < D virtual array elements
can be synthesized. To make sparse linear array (SLA) aperture the same as the
ULA, two virtual array elements should be deployed at the edge locations of the
ULA. For the remaining virtual array elements, there are multiple possibilities to
deploy. The main issue with SLA is that the grating lobes may introduce ambiguity
in angle finding.

In automotive MIMO radar with virtual SLA, angle finding can still be done with
conventional FFT or ESPRIT methods if the holes in the virtual SLA can be filled
via interpolation or extrapolation techniques to mitigate the grating lobes [60, 61].

To mitigate the high sidelobes introduced by the sparse arrays, we utilize the
matrix completion technology to interpolate/extrapolate the holes in the sparse ar-
rays. Furthermore, matrix completion improves the SNR of array response as there
is no loss/holes in the fully recovered arrays.

During one CPI of a typical automotive radar scenario, a dense point cloud
with a high volume of targets could be detected in the range-Doppler spectrum [62].
The success of applying matrix completion in irregular one-dimensional (1D) or 2D
sparse arrays relies on the following two facts:

F1) The number of targets in the same range-Doppler bin that need angle estimation
is small since the targets are first separated in range-Doppler domain. In other
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words, the targets are sparsely present in the angular domain and, as a result, the
Hankel matrix constructed using the array response is low rank.

F2) The SNR in the array snapshot is much higher than that in the echo signal, since
energy has been accumulated in both range and Doppler domains via the IDFT
and DFT operations. The high SNR in the array snapshot help reduce the matrix
completion error and improve the accuracy of angle estimation.

We will illustrate the array interpolation concept through matrix completion in
one-dimensional sparse arrays and then extend it to two-dimensional sparse arrays.

1.3.2.1 One Dimensional Sparse Array Interpolation via Matrix
Completion

Fig. 1.7 shows an example of the physical array configuration of an automotive radar
which is a cascaded of 2 MIMO transceivers, where all transmit and receive antennas
are clock synchronized. Let A denote the wavelength of the carrier frequency. In this
example, M, = 6 transmit and M, = 8 receive antennas are deployed on discretized
grid points along the azimuth direction with an interval of length equal to 504. The
interval is discretized uniformly with half-wavelength spacing. The transmit anten-
nas transmit waveform in a way that, at each receive antenna, the contribution of each
transmit antenna can be separated via DDM. Therefore, with MIMO radar technol-
ogy, a virtual SLA with 48 array elements and aperture of 751 is synthesized, as
shown in Fig. 1.7. Compared to a ULA with half-wavelength interelement spacing
and the same aperture, a high number of elements at certain locations are “missing”
at the rednered virtual SLA (denoted by zeros in the virtual array of Fig. 1.7). How-
ever, the SLA approach uses only M, + M, = 14 physical antennas with significantly
reduced mutual coupling effects [6].

Suppose an array snapshot contains K targets with DOAs 6, k=1,--- ,K. With-
out noise, the SLA response can be expressed as

yS == ASS, (114)
where Ag = [ag(0;),---,ag(0k)] is the manifold matrix with
2w . P21 i r
ag (6,) = l,edel Sln(ek)7... el dyg -1 5n(6;) 7 (1.15)

and d; is the distance between the i-th element of SLA and the reference element. In
addition, s = [B,--- , Bx]" . where B, denotes the amplitude associated with the k-th
target.

Consider a virtual ULA that spans the entire array aperture and is filled with
antennas spaced by interelement spacing d = 4 / 2. The total number of antennas in
this virtual ULA is M, and the noiseless array response is expressed as

Yo = AyS, (1.16)
where A, =[a,(0,), - ,a,(0)] is the array manifold matrix with
a,(6,) = [17ejﬂsin(6k)’“_ /M= D)sin(@y) T. (1.17)
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Physical Array

Horizontal [Half Wavelength]
Virtual Array

Horizontal [Half Wavelength]

Figure 1.7 Example of an automotive radar cascaded with two transceivers. The
virtual array has 48 elements. © [2021] IEEE. Reprinted, with
permission, from [5].

Let N, = |My/2| and N; = My — N, > N,. We can formulate y € C**! into
N, overlapped subarrays of length N;. Based on those subarrays, we formulate a
Hankel matrix Y € CM™ with its (i, j)-th element given as Y; j = Yiyj1 fori=
1,---,N; and j = 1,--- | N,. The Hankel matrix Y has a Vandermonde factorization
[63], expressed as

Y = BB, (1.18)

where B=[b(6,), - ,b(0k)] is the subarray manifold matrix with

b(ek) = 1vejo”dSin<6k>a' e

jz)Tn(N*I)dSin(ek)}T, (1.19)
and X = diag (B, -, Bg) is a diagonal matrix. Thus, the rank of Hankel matrix Y is
Kif N, > K.

We can similarly construct a Hankel matrix X from the SLA configuration. Un-
like matrix Y constructed from a full ULA, however, matrix X has many missing
entries and thus can be viewed as a subsampled version of Y. Under certain condi-
tions, the missing elements can be fully recovered by solving a relaxed nuclear norm
optimization problem conditioned on the observed entries [64]

min | X||, st Pq(X)= P (Y) (1.20)
where || - ||, denotes the nuclear norm of a matrix, and Yq (Y) is the sampling

operator with Q being the set of indices of observed entries that is determined by the
SLA. In practice, the samples are corrupted by noise, i.e., [X];; = [Y];; +[E];;, (i, /) €
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Q, where [E];; denotes the noise. In this case, the matrix completion problem is
formulated as

min X[, st [ Pq(X-Y)|p<5 121

where ||| denotes the Frobenius norm of a matrix and § is a constant determined
by the noise power.

Once the matrix Y is recovered, the full array response is obtained by averag-
ing its anti-diagonal entries. DOAs can be estimated via standard array processing
methods based on the array response corresponding to the completed matrix Y.

To achieve high azimuth angular resolution, multiple automotive radar transceivers
are cascaded together to synthesize a large sparse array in azimuth. Here, we con-
sider the same physical array shown in Fig. 1.7, where M, = 6 transmit and M, = 8
receive antennas are placed in an interleaved way along the horizontal direction at

lrx =[1,19,37,55,79,91] A /2,
lrx = [12,22,25,39,58,62,70,73] A /2.

A virtual array with total 48 elements is synthesized. The transmit and receive an-
tennas as well as the virtual array are plotted in Fig. 1.7.

Two targets are at the same range R = 100 m with velocity of v = —10 m/s.
Their respective azimuth angles are 8, = 0° and 8, = 20°. The two targets are first
separated in range-Doppler. The complex peak values in the range-Doppler spectrum
corresponding to every virtual sparse array consists of an array snapshot for azimuth
angle finding.

The virtual SLA shown in Fig. 1.7 acts as a deterministic sampler of a rank-
2 Hankel matrix Y € CVV with N = 76, which is constructed based on the array
response of a ULA with 152 elements. The array response of the SLA is normal-
ized by its first element. Based on the observed SLA response, the Hankel matrix
Y is completed via the SVT algorithm [65]. Let Y denote the completed Hankel
matrix. The full ULA response can be reconstructed by taking the average of the
anti-diagonal elements of matrix Y. The completed full array has an aperture size
of 76A. Intuitively, in this simulation setting, matrix completion contributes around
101og 10 (152/48) ~ 5 dB SNR improvement for array processing.

In Fig. 1.8, we plot the angle spectrum for the two targets. The two azimuth
angle spectra are obtained by applying FFT to the original SLA with the holes filled
with zeros and to the full array completed via matrix completion, respectively. It
is found that the FFT of the SLA generates two peaks corresponding to the correct
azimuth directions at a cost of high sidelobes, and thus it is difficult to detect the two
targets in azimuth directions under the original SLA. On the contrary, the completed
full array shows two clear peaks corresponding to correct azimuth locations in the
angle spectrum, and the sidelobes are greatly suppressed in the completed full array.

1.3.2.2 Two Dimensional Sparse Array Interpolation via Matrix
Completion

To enable driver-over and driver-under functions, automotive radar must measure
target’s elevation angles accurately. As a result, automotive radar needs to provide
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Figure 1.8 The spectrum of two targets with azimuth angles of 0, = 0° and
0, = 20° degree under MIMO sparse array and fully completed array.
© [2021] IEEE. Reprinted, with permission, from [5].

point clouds with high angular resolution in both azimuth and elevation directions.
Fig. 1.9 shows a MIMO radar with 12 transmit antennas and 16 receive antennas
that are obtained by cascading 4 automotive radar transceivers, and the transmit and
receive antennas are randomly deployed in an area of [0, 100] (1/2) x [0,120] (4 /2)
to synthesize a MIMO 2D virtual sparse array of 196 elements. The 2D physical
array corresponds to a form factor of about 20 x 24 cm when the carrier frequency is
f. =77 GHz. It should be noted that a tradeoff between the angular resolution and
the radar form factor should be considered in practice so that the radar can be in-
corporated behind vehicle bumper. The dimension of the rendered 2D virtual sparse
array is Dy x D, = 183(A/2) x 194(A /2), which can be viewed as a spatial sub-
Nyquist sampling of a uniform rectangular arrays (URA) of the same dimension with
half-wavelength spacing in both horizontal and vertical directions. The azimuth and
elevation angular resolutions are respectively expressed as [43]

1.4 o
ABO = 2arcsin < ) ~0.53", (1.22)
D,
1.4 o
A¢ = 2arcsi ~0.56 . 1.23
¢ arcsin < 7D, > ( )

The angular resolution of imaging radar in this example is comparable to the Velo-
dyne LiDAR HDL-32E whose horizontal resolution is between 0.1° and 0.4° de-
pending on the rotation rate, and the vertical resolution is 1.33° [66].

Consider a general case of an M; x M, URA with half-wavelength spacing,
shown in Fig. 1.10, where the URA is on the x-y plane. Assume the k-th point
target with azimuth angle 6, and elevation angle ¢,. Let ) denote the angle between
the k-th target and the x axis, and ¢, denote the angle between the k-th target and the
y axis. Then, it holds that cos (x;) = sin(¢)cos(6;), cos(@,) = sin(¢)sin(6;).
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Figure 1.9 A MIMO radar with 12 transmit antennas and 16 receive antennas by
cascading 4 automotive radar transceivers. The transmit and receive
antennas are randomly deployed in an area of
[0,100] (A/2) x [0,120] (A /2) to synthesize a MIMO 2D virtual array
of 196 elements. © [2021] IEEE. Reprinted, with permission, from [5].
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Figure 1.10 Geometry of URA. © [2021] IEEE. Reprinted, with permission, from
[5].
Therefore,
6, — arctan (COS ((p")) , (1.24)
cos (%)
. 2 2
¢ = arcsin <\/cos (Xy) + cos ((pk)) . (1.25)

Once the angles y; and ¢, are known, the azimuth angle 6, and elevation angle ¢,
can be uniquely determined. To simplify the signal modeling, we use angles J; and
¢, for signal modeling in URA.

The (m;,m,)-th element of the URA array on the x-y plane response with respect
to K targets with angle to the x-axis x; and angle to the y-axis ¢, k = 1,...,K, can
be written as

K ; . .
_ Z ﬁke]”((ml —1)sin(y)+(my—1) sin(¢y)) (1.26)
k=1

xml My

for1<my <M;and 1 <my, <M, Let M= {x be the data

m *’"2] 0<m, <M, ,0<my<M,
matrix with entries as the URA array response defined in (1.26). We can construct
an N; x (M; — N; + 1) block Hankel matrix as

Y, Y o Yy oy,
Y, Y, o Yy onn
Yp = . . . ) (1.27)
Yy -1 Yy, o Yy
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where
Xm,0 Xm1 xm,Mz—L
Xm, 1 Xm2 xm,Mz —L+1
Y, = . . . , (1.28)
Xmi—1 KmlL " XmM,—1

isan L x (M, — L+ 1) Hankel matrix. It can be verified that the rank of matrix Y is
Kif Ny > K and L > K [67].

By choosing the locations of the transmit and receive antennas, we aim to syn-
thesize a sparse 2D array, which can be viewed as spatial subsampling of the URA.
The array response of the URA can be obtained via completing the block Hankel
matrix Yz based on the array response of sparse arrays. The block Hankel matrix
completion problem is formulated as

min || Xg|, st Po(X)=Po (M) (1.29)

where Q denotes the observation set consisting of the location of 2D sparse virtual
array elements, and X is the block Hankel matrix constructed from matrix X fol-
lowing equations (1.27) and (1.28). In the noisy observation scenario, M is replaced

o__ |0 . o _ 0
by M" = [xml With X, ) = X, my +omy my» Where X, - de-

2 | 0<m, <M, 0<my<M,

notes the observed signal and E = {n is the noise term. We

" *mZ} 0<m, <M, ,0<m,<M,
assume the noise is bounded, i.e., || Zq (E)||p < 6. The noisy block Hankel matrix
completion problem is formulated as

min [[Xg|, st |[Pq(X-M)[,<6. (1.30)

The above optimization problem can be solved in CVX toolbox [68]. In the
simulation, we adopt the singular value thresholding (SVT) algorithm [65] to solve
the matrix completion problems, whose computation cost of updating the low-rank
matrix in each iteration is of order m with m being the cardinality of the observation
set Q,i.e.,m=1Q].

We consider the same 2D physical array shown in Fig. 1.9 for joint high-
resolution azimuth and elevation angle estimation, by cascading 4 automotive radar
transceivers. These 12 transmit antennas and 16 receive antennas are randomly de-
ployed in an area of [0,100(4/2)] x [0,120(4 /2)] to synthesize a 2D MIMO virtual
array of 196 elements. The cascaded automotive radar form factor is around 20 x 24
cm. In Fig. 1.9, the dimension of the 2D sparse array is D, x D, = 183(1/2) x
194(A / 2). A total number of 35,502 elements are required to construct a URA of
the same dimension with half-wavelength interelement spacing. In other words, the
virtual sparse array only occupies 0.54% the total elements of the URA.

Two targets with the same range and Doppler bin are considered. Their angles to
the x and y directions are (), ¢;) = (—=20°,5°), (2, ¢2) = (20°,10°), respectively.
The sparse array snapshot is consisted of the complex peak values in the range-
Doppler spectrum corresponding to each sparse array element. The input SNR of
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Figure 1.11 The spectrum of two targets with azimuth and elevation angles of
(x1,91) = (—20°,5°), (X2, 9,) = (20°,10°) under the sparse array.
The targets’ angles are marked with crosses. There are high sidelobes
in the spectrum due to the existing of large number of holes in the
sparse array. © [2021] IEEE. Reprinted, with permission, from [5].
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Figure 1.12  The spectrum of two targets with azimuth and elevation angles of

(x1,91) = (—20°,5°) , (X2, 92) = (20°,10°) under the completed full
URA. The targets’ angles are marked with crosses. © [2021] IEEE.
Reprinted, with permission, from [5].
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the array response is set to 20 dB, which is reasonable in automotive radar because
the fast-time and slow-time coherent processing provides a high processing gain. We
then construct a block Hankel matrix Y of dimension 9,009 x 8,928 using one array
snapshot of this 2D sparse array with 196 elements. Only 0.78% of the Hankel matrix
entires are non-zero. Based on one snapshot of 2D sparse array, the block Hankel
matrix is completed via the SVT algorithm and the full URA is then obtained. In this
simulation setting, matrix completion contributes around 10log 10 (35,502 / 196) ~
22.5 dB SNR gain for array processing.

Figs. 1.11 and 1.12 plot the azimuth-elevation spectra of the two targets under
the 2D sparse array and the completed full URA, respectively. It is found that both
sparse array and URA generate two peaks corresponding to the correct azimuth and
elevation angles of the targets. However, in the azimuth-elevation spectrum of 2D
sparse array, there are high sidelobes over the entire azimuth and elevation FOVs.
On the contrary, the high sidelobes are mitigated in the completed URA.

1.3.2.3 Sparse Linear Array Optimization

Alternatively, instead of filling the holes, angle finding of the sparse array can be
done using spatial compressive sensing (CS) ideas [69]. In that context, the key
problems are how to select the locations of array elements such that the peak sidelobe
level (PSL) of the virtual SLA beampattern is low, and how to carry out angle finding.
There is no analytical solution to determining the antenna locations that achieve a
minimum PSL for a given number of antennas [70]. Optimal sparse array design
requires global optimization techniques, such as particle swarm optimization [71,
45, 72].

In the SLA scenario, it can be easily verified that the coherence of the basis
matrix (see (1.9)), is the PSL of the SLA array beampattern [44]. Therefore, the
coherence, or equivalently, the PSL of a sparse array plays a key role in obtaining
uniform recovery guarantees for compressive sensing [54]. If the PSL of SLAs is
low, angle finding using SLAs can be done via compressive sensing or [AA.

In Fig. 1.13, we give an example of a virtual SLA with aperture of 191, syn-
thesized with MIMO radar technology using 4 transmit 4 receive antennas. The first
and fourth of transmit/receive antennas are deployed at the edge of the physical aper-
ture, while the remaining antennas are chosen such that the PSL is —9.1dB. Angle
estimation via IAA when using the sparse linear array of Fig. 1.13 is illustrated in
Fig. 1.14. The ground truth involves two targets with azimuth 5° and 10°. The SNR
of the received beamvector is set to 30dB. For comparison, the FFT spectrum is also
plotted. One can observe the sharper peaks around the target azimuth angles and the
more attenuated sidelobe in the IAA spectrum, as compared to the FFT spectrum.

1.4 High Resolution Imaging Radar for Autonomous Driving

Nowadays, many of the automotive radar transceivers designed for ADAS function-
ality, such as MR3003 of NXP Semiconductor, and AWR2243 of Texas Instruments,
can support up to 3 transmit and 4 receive antennas. Therefore, using a single au-
tomotive radar transceiver with MIMO radar technology, only 12 virtual array ele-
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Figure 1.13  Simulated example of a SLA synthesized with MIMO radar
technology using four transmit and four receive antennas. The
physical limitation of array aperture is 10A. We fix the locations of
first and fourth transmit/receive antennas at 0A,0.5A and 101,9.51,
respectively such that a maximum virtual array aperture of 194 is
achieved. The remaining transmit/receive antennas are chosen such
that the PSL of the synthetic virtual array beampattern is —9.1dB. ©
[2020] IEEE. Reprinted, with permission, from [6].
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Figure 1.14 Angle finding via the IAA method and the FFT spectrum using the
SLA of Fig. 1.13, synthesized by MIMO radar technology. There are
two targets with azimuth of 5° and 10°. The SNR is set to 30dB. ©
[2020] IEEE. Reprinted, with permission, from [6].
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ments can be synthesized. In this section, we introduce the high resolution imaging
radar with hundreds of virtual antenna array elements synthesized via MIMO radar
technology.

1.4.1 Cascade of multiple radar transceivers

To meet the requirement for Level 4 and Level 5 autonomous driving, multiple auto-
motive radar transceivers would need to be cascaded together, with all transceivers
synchronized as a single unit. The received data from all receive antennas would
be processed coherently. Cascading provides a cost effective and scalable solution
to achieve high angular resolution. In [73], General Motors and Texas Instruments
successfully demonstrated that up to 4 Texas Instruments AWR 1243 radar chips can
be cascaded together to provide 12 transmit and 16 receive antennas, enabling a syn-
thesis of 192 virtual array elements. In [74], a prototype of cascading 5 Infineon
radar chips has been built to synthesize a virtual array of 128 x 4 elements. Such
high number of virtual array elements provides a lot of opportunities in array design.
Several azimuth and elevation arrays configurations can be found in [60]. Several
commercial imaging radar products are available with different array configurations,
such as forward-looking full-range radar of ZF and ARS540 of Continental [75, 76].
Usually, a trade-off of balancing angular resolution in azimuth and elevation needs
to be considered.

1.4.2  Examples of cascaded imaging radars

Figure 1.15 shows an imaging radar design reference board which has 12 transmit
and 16 receive antennas, formed by cascading 4 Texas Instruments AWR2243 radar
transceivers [77]. The azimuth FOV is [—700,700]. One transceiver is selected as
master and all the others as slaves for clock distribution. In this way, synchronization
can be achieved among 4 transceivers, allowing coherent FMCW transmission from
the 12 transmit antennas and joint data processing from the 16 receive antennas. The
array configuration of cascaded imaging radar is shown in Fig. 1.15. There are 3
transmit antennas placed along the vertical direction for elevation angle finding, and
9 transmit antennas placed along the horizontal direction for azimuth angle finding.
The virtual array in the horizontal direction is a dense ULA with half wavelength
spacing, and consists of 86 virtual array elements (the overlapped virtual array ele-
ments are not shown). The array aperture in the azimuth direction is D, = 42.51.
In antenna theory, the 3dB beamwidth defines the angular resolution. According to
[43], the 3dB beamwidth of the azimuth angle is

1.44 °
ABy, =2 i ~1.2". 1.31
IAZ arcsin ( - ) ( )

X

In the vertical direction, the antennas in three elevation positions form multiple min-
imum redundancy arrays (MRAs) [78] along the horizontal direction. The angle
finding in MRA requires multiple snapshots. These MRAs along the horizontal di-
rection can be used as snapshots for elevation angle finding. The elevation array
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Figure 1.15 Texas Instruments AWR2243 imaging radar board (top figure) [77]. 4
TI AWR2243 radar transceivers are cascaded together, providing 12
transmit and 16 receive antennas (middle figure), enabling the
synthesis of 192 virtual array elements (bottom figure). © [2020]
IEEE. Reprinted, with permission, from [6].
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Figure 1.16 Direct path and vertical multipath. © [2020] IEEE. Reprinted, with
permission, from [6].

aperture is D, = 31 and the 3dB beamwidth of elevation is

1.44
A =2 in[ — | =~ 17°. 1.32
651 arcsin < =D ) ( )

y

1.4.3  Design challenges of imaging radar

Achieving waveform orthogonality in imaging radars using FMCW with a large of
number transmit antennas is quite challenging. One strategy could be to divide the
transmit antennas into several subgroups. In each subgroup, the transmit antennas
would transmit simultaneously with slow-time phase coding (DDM), while antennas
of different subgroups would be scheduled to transmit in different time slots (TDM).

Clock distribution among multiple cascaded transceivers is also challenging.
For FMCW mixer operation, an LO is shared among master and slaves, and the
LO routing from master to all slaves in the circuit should be matched. Also, the
additional ADC sampling and data transmission among different transceivers needs
to be synchronized. It is desirable to develop automotive radar transceiver that can
incorporate a large number of transmit and receive antennas. For example, Uhnder
has developed a radar system-on-chip (SoC), which has 12 transmit and 16 receive
antennas, enabling synthesis of 192 virtual array elements [79] (discussed in more
detail in later chapters) . Thus, the 4 current automotive radar transceivers in the
cascaded imaging radar shown in Fig. 1.15 can be replaced with a single SoC radar
chip. The radar on chip (RoC) developed by Vayyar has 48 transceivers at 76-81GHz,
which can provide synthesis over 2000 virtual array elements [80].

1.5 Challenges in Automotive MIMO radar

In this section, we discuss the design challenges in automotive MIMO radar, includ-
ing angle finding in the presence of multipath reflections, waveform orthogonality
and efficient high resolution angle estimation algorithm development.

1.5.1 Angle finding in the presence of multipath reflections

Automotive radar runs in multipath scenarios [81]. In general, radio propagation
in the presence of multipath occurs along four possible routes, i.e., direct/direct,
direct/indirect, indirect/direct and indirect/indirect routes.
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Figure 1.16 shows a vertical multipath scenario, where the height of radar and
target are iy and hy, respectively. The length of the direct/direct path is d; = 2ry, the
length of the direct/indirect or indirect/direct path is d, = d3 = r| + r, + r3, and the
length of the indirect/indirect path is d, = 2 (r, +r3). The received signal, having
gone through the four paths can be written as

4 21
v =Y BT, (133)
i=1

where the amplitude term f; is function of the antenna gain, the path loss, the road
reflection coefficient and the target RCS. The signal from the indirect paths and that
from the direct path would most probably arrive out of phase and thus add up destruc-
tively. As aresult, the power of the received signal would fluctuate with distance [81]
and thus angle finding at SNR nulls would be unstable.

MIMO radar with colocated transmit and receive antennas, also referred to as
monostatic MIMO radar, is based on the assumption that DOD and DOA are equal.
However, in the presence of multipath, that assumption does not hold and the system
becomes bistatic [82, 83], i.e., the transmit and receive antenna view the target from
different aspect angles. Fig. 1.17 shows a vehicle moving parallel to the guardrail,
with an SRR sensor mounted at its front left corner. The length of the direct path of
the radar signal is d,, = ry, corresponding to 6, = 6, = 6. There are also multipath
reflections due to the guardrail. The range of the first multipath reflection is d, =
(ri+ry+r3)/2, corresponding to 6, = 6,,6, = 6, or 6, = 6,,6, = 6,. The range
of the second multipath reflection is d,, = r, +r3, corresponding to 6, = 6, = 6,.
Compared to the direct path, multipath reflections result in longer range and smaller
Doppler. For the first type of multipath, the range and Doppler bin is the same as
in mirror image target detection. However, as 6, # 0,, it turns out that the phase
of each virtual array element is corrupted. In other words, the monostatic MIMO
radar assumption does not hold, which results in a “ghost” target whose direction is
different from the mirror target.

To solve this issue, some ideas have been proposed in [82, 83, 84]. For exam-
ple, joint estimation of DOD and DOA is proposed in [82], however, by ignoring the
structure of the transmit array, that method cannot not enjoy the benefit of the syn-
thesized virtual array. Polarimetric features are exploited in [83] to separate objects
in a multipath scenario. However, the approach in [83] can only separate certain real
target cases from their mirror targets, for example, when the real target is known and
the polarization state change of the multipaths can be recognized. The method of
[83] does not work when the ghost target direction is different than that of the mir-
ror target. Doppler information can be exploited to detect moving vehicles in urban
areas under multipath [84]. However, Doppler information is not always available
when both objects and host vehicles are stationary. In general, there is a need for
more research addressing ghost target issue in MIMO radar due to multipath.
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Figure 1.17 A typical multipath reflection scenario along a guardrail for a short
range radar sensor mounted at the front left corner. © [2020] IEEE.
Reprinted, with permission, from [6].

1.5.2  Waveform orthogonality in automotive MIMO radar

Different strategies, such as TDM, DDM and FDM can be adopted in automotive
FMCW radars to achieve waveform orthogonality. However, several challenges asso-
ciated with each strategy need to be addressed. For example, in the TDM scheme, the
scheduling delay between transmit antennas may introduce phase error for a moving
target, which needs to be compensated for, otherwise, the synthesized array beam-
pattern will be distorted. Further, the maximum unambiguous detectable velocity
under TDM is reduced by a factor of M,. In the DDM scheme, the Doppler sidelobes
are high due to the residual of the phase coding. As a result, targets with small RCSs,
e.g., pedestrians, that are close to the target with strong reflections, e.g., trucks, might
be masked. The search time for phase codes using stochastic algorithms increases
exponentially as the code length increases. Computationally efficient algorithms are
needed to address this problem. In the FDM scheme, though a randomization of
frequency shift among transmit antennas could reduce the range-angle coupling, a
large number of transmit antennas would be needed for the improvement to be no-
table [16].

Recently, PMCW has been proposed for achieving orthogonality [85, 86, 87,
88]. Each antenna transmits a sequence of phase coded pulses. Let

X = [t (1), 2 (V)] (1.34)

be the complex unimodular code sequence of the m-th transmit antenna, where

X, (n) = /%™ is the n-th code of x,, and N, is the code length. Here, the phase
,, (n) can be chosen arbitrarily in [—x, r]. The duration of a single code sequence
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is T, = N, T, with T, the duration of a sub-pulse. In practice, binary code sequences

have been widely used due to their simplicity. The bandwidth of PMCW is B =1 / T..
The time-bandwidth product of a code sequence is BT, = N,. Since the pulses
are transmitted continuously, the code sequences should have good periodic auto-
correlation and cross-correlation properties [85]. The periodic cross-correlation of

two code sequences X,, and x; at lag k is defined as
P N
rot (k) =Y x, () x] ((n+k) mod (N,)). (1.35)
n=1

When m = [, r;fl) (k) becomes the periodic auto-correlation function of x,,. Good
correlation properties require the values of the periodic auto-correlation at non-zero
lags, and the values of the cross-correlation at any lag to be low. The Welch lower
bound on the cross-correlation between any pair of binary sequences with period of
N, in a set of M, sequences equals [89]

5 [ M, —1
rop (k) >N, =1 =N (1.36)
tVp

Good periodic cross-correlation properties help achieve waveform orthogonality,
while good periodic auto-correlation properties make it easier to use matched fil-
ters to extract signals reflected from the range bin of interest and suppress signals
reflected from other range bins.

As compared to FMCW, PMCW radar has several advantages. PMCW radar is
better suited for achieving waveform orthogonality in imaging radars with a large of
number of transmit antennas. PMCW radar can take advantage of existing sequences
with good auto-correlation and cross-correlation properties, previously developed for
code-division multiple accessing (CDMA) communications, such as Gold, Kasami
and m-sequences [90, 91, 92]. Further, in PMCW radar, each automotive radar sen-
sor can have a unique digital sequence, which may help reduce the automotive radar
mutual interference. As a bonus, PMCW radar also provides certain communica-
tion capability [93], thus can be explored as a dual functional radar communication
system [94].

However, PMCW radar has many implementation challenges. First, the sam-
pling rate of ADC should satisfy the Nyquist rule, i.e., f; > 2B =2 / T.. The high
bandwidth required for high range resolution necessitates high speed ADC and high
speed processing hardware. In practice, it is required to keep the resolution of ADC
as low as possible [95]. Second, according to the Welch bound of (1.36), the cross-

correlation lower bound of any pair of binary sequences is of the order of & (, /N, p) ,

which might not provide sufficient separation of transmit waveforms of different an-
tennas. In practice, the auto-correlation and cross-correlation of code sequences are
desired to have low sidelobes within a low correlation zone (LCZ). Furthermore, be-
cause there is no mapping relationship between range and beat signal in PMCW, it
would be difficult to use high-pass analog filters to reject or attenuate ultra-close-
range return signals, including direct path signals from transmit antennas, reflections
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from Radome, and vehicle bumpers. This escalates the dynamic range challenge,
especially when the resolution of ADC must be kept as low as possible [95].

1.5.3  Efficient, high resolution angle finding algorithms are needed

A typical duration of a look in automotive radar is around 50 ms, corresponding to
detection update rate of 20 Hz [96]. In such short duration, the current generation
of automotive radar for ADAS can report a maximum of 64 — 200 detections. With
high resolution imaging radar, the number of cells that can be selected for angle
finding from the 2D range and Doppler spectrum is around 10,000 in a single look
for a typical road scenario [62]. To achieve point clouds for autonomous driving,
angle finding needs to be performed thousands of times in a single look, which is a
great challenge for imaging radar with hundreds of virtual array elements. Compu-
tationally efficient, high resolution angle finding algorithms are highly desirable for
real-time implementation in automotive radar.

To reduce computation complexity, beamspace ESPRIT [28] and unitary ES-
PRIT [29] algorithms have been proposed. The idea of beamspace ESPRIT is to
decompose the original ULA vector into several low-dimensional beamspaces via a
transform such as the FFT. Then, if the beamspace transform matrix has the same
shift invariance structure, angle finding can be carried out via ESPRIT on each
beamspace in parallel, with reduced computational time [28]. The unitary ESPRIT
algorithm takes advantage of the unit magnitude property of the phase factors rep-
resenting the phase delays between the two subarrays and is formulated in terms of
real-valued computations. As a result, it achieves great reduction of computational
complexity [29].

The computation cost of each IAA iteration is 2NM 2 +NM+M 3, where M is
the number of array snapshots and N is the number of discretized grids. Fast and
superfast IAA algorithms have been proposed in [97, 98, 99], respectively. The
fast IAA algorithm exploits the FFT operation as well as Gohberg-Semencul (GS)
representation of matrix R As a result, the computation cost of each fast JAA
iteration is M* 4 12¢ (2M) + 3¢ (N), where  (N) stands for the computation cost of
performing FFT of size N, i.e., O (NlogN) [98]. The superfast IAA uses a conjugate
gradient (CG) algorithm to approximate the matrix R, which further reduces the
computation cost.

The strengths and limitations of each DOA estimation algorithm discussed in
Section 1.3 when applied to the automotive radar scenario are summarized in Table
1.1. For subspace based high resolution DOA estimation methods, such as MUSIC
and ESPRIT, the automotive radar array needs to be ULA, and multiple snapshots
are required to estimate the array covariance matrix accurately. However, automotive
radar operating in a highly dynamic environment typically rely on a single snapshot.
While multiple snapshots can generated via spatial smoothing or by dividing a chirp
into sub-chirps, the associated cost is respectively reduced array aperture, or reduced
SNR. SLAs have been widely used in automotive radar to further reduce the hard-
ware cost. However, it is not straightforward to apply MUSIC or ESPRIT to SLA
based automotive radar. On the other hand, DBF and sparsity based high resolution
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Algorithms | Resolution | Snap Arrays Grid Free | Rank Estimation | Robustness | Complexity
DBF low single ULA/SLA no no strong low
MUSIC high multiple ULA no yes medium high
ESPRIT high multiple ULA yes yes medium medium
OMP high single ULA/SLA no no medium high
TIAA high single ULA/SLA no no strong high

Table 1.1 Summary of different DOA estimation algorithms in automotive radar
scenario.

methods, such as OMP and TAA, apply to SLA- as well as ULA-based automotive
radar, and work with a single snapshot. In the DBF method, the number of targets can
be estimated by counting the number of peaks in the DOA spectrum. DBF is not sen-
sitive to coherent or correlated signals, which in subspace based methods [100] need
special preprocessing via spatial smoothing. It has been shown that DBF is robust to
array element position errors and has low computational cost [100]. However, DBF
is not a high resolution method. Also, as OMP and IAA are iterative schemes, they
involve high computation cost, which limits their applicability in low-cost embedded
DSPs typically used in current generation automotive radar. Further, the methods of
DBF, MUSIC, OMP and TAA assume targets are on the grid, and suffer from errors
when the targets arise between grid points. In summary, more research is needed
on developing computationally efficient, high resolution DOA estimation algorithms
that are robust to noise, and are applicable to automotive radar using SLAs with low
PSL under a single snapshot.
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