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Chapter 1

MIMO Radar Technology

Shunqiao Sun
1

Automotive radar with a small number of antennas has been used for advanced

driver-assistance systems (ADAS) purposes since the late of 1990s. These early

automotive radars mostly provided target detection and velocity information. How-

ever, current generation of automotive radar for ADAS has rather limited ability to

resolve closely spaced targets. LiDAR systems have better angular resolution (less

than 1 degree) and have been introduced in Level 4 and Level 5 autonomous driving

systems. LiDAR can provide point clouds. Via use of deep neural networks, such as

PointNet [1] and PointNet++ [2], the point clouds can lead to target identification.

However, due to its use of light spectrum wavelength, LiDAR is susceptible to bad

weather conditions, such as fog, rain, snow and dust in the air. In addition, the cost of

LiDAR is high. On the other hand, automotive radar with millimeter waveform tech-

nology has the potential to provide point clouds at much lower cost than LiDAR, and

with more robustness to weather conditions. Such radar is referred to as a "high end

radar," or imaging radar [3]. Computer vision techniques [1, 2] that were previously

reserved for high resolution camera sensors and LiDAR systems, can be applied to

imaging radar data to identify targets. For example, a car can be identified based on

two-dimensional (2D) radar points of an imaging radar using PointNet [4]. Imag-

ing radars have been attracting the interest of those developing fully autonomous

vehicles, major Tier-1 suppliers, and automotive radar startups.

In addition to sensitivity, the important requirements for automotive radar are

high resolution, low hardware cost and small size. Multiple-input multiple-output

(MIMO) radar technology has been receiving considerable attention by the automo-

tive radar community because it can achieve high angular resolution with relatively

small numbers of antennas and receivers. For that ability, it has been exploited in

current generation automotive radar for ADAS as well as in next generation high

resolution imaging radar for autonomous driving. For autonomous driving, informa-

tion in both azimuth and elevation is crucial. In particular, the height information of

targets is required to enable drive-over and drive-under functions. Two typical sce-

narios are shown in Fig. 1.1. It is safe to drive over a metal beverage can on the road

and to drive under a steel pedestrian bridge over the road. To meet such requirement,

the array is required to have a large aperture in both azimuth and elevation. MIMO

1
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Figure 1.1 Automotive radars need to provide elevation resolution to enable

drive-over and drive-under functions. © [2021] IEEE. Reprinted, with

permission, from [5].

radar is a good candidate for high resolution imaging radar for autonomous driving.

In MIMO radar the targets are first distinguished in range and Doppler domains.

Then, large virtual arrays with hundreds of elements can be synthesized to provide

high resolution in both azimuth and elevation. As a result, point clouds with similar

performance as LiDAR can be generated at a much lower cost.

In this Chapter, we introduce the concept of imaging radars using MIMO tech-

nology, present some examples for synthesizing hundreds of virtual array elements

by cascading multiple radar transceivers with each supporting a small number of

antennas, and discuss design challenges.

1.1 Virtual Array Synthesis via MIMO Radar

In state-of-the-art automotive FMCW radar, the range and Doppler parameters of tar-

gets can be estimated by using single receive antenna. However, to estimate the angle

parameter of targets, a receive antenna array is needed. In MIMO radar, the antennas

transmit waveforms in a way that guarantees their orthogonality. At each receive an-

tenna, the contribution of each transmit antenna is extracted by exploiting waveform

orthogonality. For a uniform transmit antenna array with Mt transmit antennas and

element spacing of dt and a uniform receive antenna array with Mr receive antennas

and element spacing of dr, a virtual array with MtMr elements can be synthesized.

The array response of the synthesized array, i.e., the array corresponding to a MIMO

radar can be expressed as at (θt)¹ ar (θr). Here, ¹ denotes the Kronecker product,

and at (θt) and ar (θr) are respectively the transmit and receive array steering vectors,

corresponding to direction of departure (DOD) θt and direction of arrival (DOA) θr,
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Figure 1.2 Illustration of different MIMO radar virtual array configurations using

TDM or DDM scheme with Mt = 2 transmit antennas and Mr receive

antennas: (a) interleaved with dr = 2dt and dt =
λ
2

; (b) stacked with

dt = Mrdr and dr =
λ
2

. Different colors indicate the transmit antenna

either transmits different time slots or codes. © [2020] IEEE.

Reprinted, with permission, from [6].
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defined below.

at (θt) =

[

1,e j2π
dt
λ

sin(θt ), · · · ,e j2π
(Mt−1)dt

λ
sin(θt )

]T

, (1.1)

ar (θr) =

[

1,e j2π
dr
λ

sin(θr), · · · ,e j2π
(Mr−1)dr

λ
sin(θr)

]T

. (1.2)

Figure 1.2 shows two MIMO radar configurations with Mt = 2 transmit and Mr

receive antennas [6]. One is in interleaved mode with dr = 2dt and dt =
λ
2

and the

other is in stacked mode with dt = Mrdr and dr =
λ
2

. Here, λ = c
fc

is the wavelength.

It can be verified that for the both array configurations, the synthetic virtual arrays

are equivalent to uniform linear arrays (ULAs) with MtMr elements and spacing of

dr when θt = θr.

It should be noted that because MIMO radar transmits orthogonality waveform,

when isotropic array elements are used, the array beampattern - also referred to as

the MIMO radar array factor - is omnidirectional. Thus, MIMO radar loses the

coherent array processing gain advantage enjoyed by traditional phased-array radar

systems, which is 10logN for a phased-array with N elements [7]; the SNR of the

array response at a given angular direction is less than that of phased-array radar

with transmit beamforming. Still, in the automotive application scenario, the high

resolution angle finding ability of MIMO radar coupled with its low cost are viewed

as more important than the loss of coherent processing gain.

1.2 Waveform Orthogonality Strategies in Automotive MIMO
Radar

Virtual array synthesis in automotive radar using MIMO radar technology relies on

the separability of the transmit signals of the different antennas. The separation is

easier when the transmit signals of different antennas are orthogonal. In the fol-

lowing, we review techniques to achieve waveform orthogonality while transmitting

FMCW, such as time division multiplexing (TDM), Doppler division multiplexing

(DDM) and frequency division multiplexing (FDM).

1.2.1 Waveform orthogonality via time division multiplexing (TDM)

In TDM MIMO radar [8, 9, 10, 11, 12], only one transmit antenna is scheduled to

transmit at each time slot. In Fig. 1.3, a signal processing example of a MIMO radar

in TDM is given by NXP Semiconductors [13], where Mt = 2 transmit antennas

emit FMCW chirps alternatively. The switch delay between transmit antennas is

∆t = TPRI. At each receive antenna, range FFTs of length Nr are conducted for each

chirp and the FFT outputs of 2Nd chirps are assembled in two matrices corresponding

to odd and even chirp sequences, respectively. The receive array corresponding to

odd and even chirp sequences form two subarrays, which can be used to synthesize

a virtual array according to interleaved or stacked configurations.
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Figure 1.3 Example of radar signal processing with TDM scheme, where Mt = 2

transmit antennas transmit FMCW chirp sequences alternatively. The

red and green color denote the odd and even echo chirp sequences,

respectively. The range FFTs are conducted for each chirp and the

FFT outputs are stored in two matrices corresponding to odd and even

sequences, respectively for further processing. © [2020] IEEE.

Reprinted, with permission, from [6].

For a moving target with velocity of v, the switching delays of transmit antennas

introduce a target phase migration from chirp to chirp, which is defined as φ =
2π fD∆t = 4π

λ
v∆t. As a result, the virtual array pattern would be distorted [10]. In Fig.

1.3, the phase difference between corresponding columns in the two matrices is φ =
4π
λ

vTPRI. If v =−0.5vmax and v =−vmax, where vmax is the maximum unambiguous

detectable radial speed and vmax =
c

4 fcTPRI
, the phase shifts are φ = −π

/

2 and φ =

−π , respectively. The array beampattern distortion is demonstrated in Fig. 1.4 for

a moving target with range of 35m and azimuth angle of θ = 0
◦

[10]. Here, MIMO

radar with Mt = 2,Mr = 8 operates in TDM fashion. As stated in [10], and can

also be seen in Fig. 1.4, for interleaved MIMO array configuration, when the target

velocity increases, the grating lobes at the edge of FOV show up, while the peak at

the target direction decreases and totally disappears when v = −vmax. For stacked

MIMO array configuration, as the target velocity increases, the peak is slightly off

the boresight with a mirror grating lobe at the opposite direction.

The phase migration introduced by every moving target in the virtual array re-

sponse needs to be compensated for before angle finding. The phase shift estimate φ̂ ,

can be obtained after each target velocity has been estimated based on the 2D-FFT of

a single receive antenna, or non-coherent 2D-FFT integration of the same subarray.

For example, in the example of Fig. 1.3, the phase in the beam vector of the subarray

obtained from the even chirps needs to be compensated by multiplying them with
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Figure 1.4 Examples of MIMO radar range and azimuth images using TDM with

Mt = 2,Mr = 8 for a single target with range of 35m, azimuth angle of

θ = 0
◦
. Two MIMO array configurations, interleaved (left column) and

stacked (right column) are considered. The radial velocity of (a-b)

v =−vmax , (c-d) v =−0.5vmax and (e-f) v = 0. © [2020] IEEE.

Reprinted, with permission, from [6].

e
− jφ̂

, while the phase in the beam vector of the subarray corresponding to odd chirps

is kept unchanged.

It should be noted that, in TDM MIMO radar, the pulse repetition interval is

enlarged by the transmit antenna number Mt . As a result, the maximum unambiguous

detectable velocity will be reduced by a factor of Mt [14].

1.2.2 Waveform orthogonality via Doppler division multiplexing
(DDM)

In one look, a total of N chirps (i.e., pulses) are transmitted sequentially, with pulse

repetition interval TPRI. All transmit antennas transmit simultaneously the same

FMCW waveform, after multiplying it with a phase code that is different for each

antenna, and changes between pulses, i.e., xm (n) = e
j2παm(n),m = 1, · · · ,Mt ,n =

1, · · · ,N [15]. To separate the h-th transmit signal at the l-th receiver, after range

FFT, a slow time Doppler demodulation is applied to all range bins corresponding to

the same chirp. The Doppler demodulated outputs of N chirps are assembled into a

vector s
h
l . Then, the Doppler FFT is applied on the vector s

h
l . To separate the trans-

mit signals in the Doppler domain, one for the two methods described below can be

applied.

The first approach is to design phase codes such that the Doppler FFT of the in-

terference e
j2π(αm(n)−αh(n)) is shifted to a frequency that is higher than the maximum

detectable Doppler frequency f
max
D . Therefore, a LPF can be applied to remove the
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interference [15]. One example of such phase codes is

αm (n) = αmn,m = 1, . . .Mt ,n = 1, . . .N, (1.3)

where the starting phase αm is linear across different transmit antennas, i.e., αm =
a0m. Figure 1.5 (a) shows the range and Doppler spectrum of a target with range of

75m and velocity of 10m/s. The automotive MIMO radar has two transmit antennas

and transmit phase codes given in (1.3) with a0 = 1 and N = 512. It can be seen

that signals from different transmit antennas are shifted to higher Doppler spectrum,

which can be removed via a LPF in Doppler domain. Under this approach, the

radar pulse repetition frequency fPRF should be larger than Mt f
max
D [16]. Thus, if the

fPRF is kept unchanged, the maximum detectable unambiguous Doppler frequency is

reduced by a factor of Mt . In practice, a Doppler unfolding, or de-aliasing algorithm

needs to be developed with different fPRF in different looks.

The second approach is to design phase codes so that the Doppler FFT of the

interference can be distributed into the entire Doppler spectrum as pseudo noise. It

is desired to minimize the peak interference residual (PIR) in the Doppler spectrum

[17] calculated using the discrete-time Fourier transform (DTFT) for m = 1, · · · ,Mt ,

i.e.,

PIR = max
f ,m ̸=h

∣

∣

∣

∣

∣

N

∑
n=1

e
j2π(αm(n)−αh(n))e

j2π f n

∣

∣

∣

∣

∣

, (1.4)

where f ∈
[

− 1
2

fPRF,
1
2

fPRF

]

. Following equation (1.4), the cross-correlation of the

spectra of two codes needs to be flat [17], since the Fourier transform of multipli-

cation of two codes in the time domain is equivalent to convolution of spectrum of

one code with time reversed and complex conjugate of the other. The maximum

auto-correlation value of an unimodular sequence of length N is N. The ideal cross-

correlation of two unimodular sequences of length N has magnitude of
√

N. Thus, in

the ideal case, according to [17] the maximum power gain of the currently transmit-

ted signal over other signals is
√

N. For example, the maximum achievable waveform

attenuation is about 27.1dB for unimodular sequence set with N = 512.

Constant amplitude zero auto-correlation codes are good candidates for DDM.

The discrete Fourier transform (DFT) of a constant amplitude zero auto-correlation

code has also constant amplitude and zero auto correlation[18]. One of such exam-

ples is the Chu sequence [19], which is defined as xm (n)= e
jπ
N m(n+1)n,m= 1, . . .Mt ,n=

1, . . . ,N, where N is a prime number. In practice, the Chu sequence of prime length

is first generated and then truncated into a length for efficient FFT. For example,

we generate Chu codes of prime length 521 and truncate them to length N = 512.

By calculation with FFT, the peak interference residual defined in (1.4) is 1.08
√

N.

Therefore, the waveform attenuation for Chu sequence of length N = 512 is about

26.4dB. In Fig. 1.5 (b), we show the range and Doppler spectrum of a target with

range of 75m and velocity of 10m/s. The automotive radar has two transmit antennas

and two Chu sequences of length N = 512 are applied for slow time DDM. It can be

seen that the waveform attenuation is about 26dB.

In practice, binary phase codes are used due to hardware constraint [20]. The

binary phase code sequences are obtained via exhaustive search such that the peak
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(a)

(b)

Figure 1.5 The range and Doppler spectra of a target with range of 75m and

velocity of 10m/s. The automotive MIMO radar has two transmit

antennas and slow time phase coding of length N = 512 is applied for

DDM. (a) phase shift codes defined in equation (1.3); (b) two Chu

sequences. © [2020] IEEE. Reprinted, with permission, from [6].
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interference residual in (1.4) is low. As the code length increases, the search time

will grow exponentially.

The benefit of slow time phase coding is that the interference from other trans-

mitters does not affect different range bins. The range resolution is only determined

by the bandwdith of FMCW chirp. Therefore, it avoids the range sidelobe issue us-

ing fast time phase coding. However, the Doppler sidelobes would be high due to

the residual of the slow time phase coding. As a result, targets with low radar cross

section (RCS), e.g., pedestrians, that are close to the target with strong reflections,

e.g., trucks, might be masked by the waveform residual. In other words, the wave-

form residual reduces the radar dynamic range. Given the code length, the number of

phase codes with good correlation properties is limited, or equivalently, the number

of antennas that can transmit simultaneously is limited.

1.2.3 Waveform orthogonality via frequency division multiplexing
(FDM)

In the FDM scheme, the transmitted signals are modulated by different carrier fre-

quencies. According to [21], the separation of multiple transmit FMCW signals is

achieved by shifting the m-th transmit FMCW chirp by an offset frequency foff,m.

If the differences between all foff,m are larger than twice of the cut-off frequency

of the anti-aliasing BPF f
max
b , which is determined by the maximum unambiguous

detectable range and Doppler, the transmitted signals can be separated at the receive

end. Specifically, the received signal at each receiver is first mixed with the same

starting carrier frequency fc. The separation of transmit signals in the mixer output

can be implemented by a frequency shift followed by a low pass filter with cut-off

frequency f
max
b [21]. Each receiver needs to carry out such frequency shift and fil-

tering operation Mt times. As a result, high range resolution can be realized using a

typical FMCW chirp with large bandwidth. Meanwhile, after FMCW demodulation,

frequency shift and filtering operation, the FDM MIMO scheme can still utilize a

low sampling rate determined by the beat signal.

Let us consider the FDM scheme in the context of the example in Section II, i.e.,

a FMCW LRR radar with maximum detectable range of 250 meters and maximum

detectable velocity of 120 mph. For bandwidth B = 150 MHz and chirp duration

T = 50 µs, the maximum beat frequency is f
max
b = f

max
R + f

max
D = 5.0274 MHz.

Therefore, the frequency shift for the m-th transmit antenna in the FDM scheme can

be chosen as foff,m = 12(m−1) MHz. The intermediate frequency (IF) should have

a bandwidth of 12Mt MHz to hold the mixer output.

1.3 Angle Finding in Automotive MIMO Radar

In automotive MIMO radar with Mt transmit and Mr receive antennas, a virtual uni-

form linear array of MtMr elements can be synthesized with inter-element spacing d.

The array response can be written as

y = A(θ)s+n, (1.5)
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where A(θ) = [a(θ1) , · · · ,a(θK)] is the virtual array steering matrix with

a(θk) =
[

1,e j 2π
λ

d sin(θk), · · · ,e j 2π
λ
(Mt Mr−1)d sin(θk)

]T

. (1.6)

Here, n is a noise term and s = [β1, · · · ,βK ]
T

, where βk denotes the target reflec-

tion coefficient for the k-th target. The array response at a particular time instance

consisting of data obtained at all the virtual receivers and corresponding to the same

range-Doppler bin is defined as the array snapshot. In highly dynamic automotive

scenarios, usually, only a small number of array snapshots, or even a single snapshot

in the worst case is available [22].

In automotive MIMO radar with virtual ULA, angle finding can be done with

digital beamforming (DBF) [23, 24, 25] by performing FFTs on snapshots taken

across the array elements, , i.e., y in equation (1.16) (see Fig. 1.6). DBF can be

implemented efficiently in an embedded DSP with a single snapshot. However,

DBF is not a high resolution angle finding method. Higher resolution angle find-

ing can be achieved with subspace based methods, such as MUSIC [26] and ESPRIT

[27, 28, 29, 30], sparse sensing based methods [31, 32, 33, 34, 35, 36, 37, 38, 39],

or the iterative adaptive approach (IAA) of [40] and [41]. The performance of sub-

space based angle finding methods relies on accurate estimation of the array co-

variance matrix with multiple snapshots, which is a challenging task in the highly

non-stationary automotive radar scenarios. In such context, spatial smoothing [42]

is applied for introducing virtual snapshots for array covariance matrix estimation.

While sparse sensing based methods and IAA have high computational cost, they

yield angle estimates based on a single snapshot, which is important for snapshot-

limited automotive radar.

Achieving high angular resolution for L4 and L5 autonomous driving require-

ment using ULA with d = λ
2

is very expensive. According to [43], the 3dB beamwidth

of antenna array with aperture size D is ∆θ = 2arcsin
(

1.4λ
πD

)

. To achieve 3dB

beamwidth of 1 degree, the antenna array aperture should be about D ≈ 51λ . If

the antenna array is ULA with inter-element spacing as half wavelength, it should be

composed of about 100 array elements. Even with the help of MIMO radar technol-

ogy, the cost of synthesizing such a large virtual ULA with half wavelength element

spacing is very high. One way to further reduce the cost without sacrificing the

high angular resolution is via the use of nonuniform, or sparse linear arrays (SLAs)

[44, 45, 46, 47, 48, 49], synthesized with MIMO radar technology. In that context,

selecting the locations of array elements and carrying out angle finding with the vir-

tual sparse array are key problems.

1.3.1 High resolution angle finding with uniform linear array (ULA)

1.3.1.1 Subspace methods with spatial smoothing

The performance of subspace based angle finding methods requires an estimate of

the array covariance matrix. Such estimate is typically obtained based on multiple

snapshots. However, in highly dynamic automotive environment, it is not possible

to obtain enough snapshots before the model of (1.16) changes. In such scenarios,
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Figure 1.6 Digital beamforming (DBF). © [2020] IEEE. Reprinted, with

permission, from [6].

spatial smoothing [42] can introduce virtual snapshots for array covariance matrix

estimation. In spatial smoothing, the array snapshot, y, is divided into overlapped

sub-arrays of length L and a new sampled array covariance matrix R ∈ C
L×L

is ob-

tained based on the sub-array snapshots.

Eigenvalue decomposition of R, along with the Akaike information criteria

(AIC) metric [50], or the minimum description length (MDL) metric [51], can be

used to identify the number of targets. It should be noted, however, that many ideal

assumptions in the deduction of these criteria, including additive white Gaussian

noise that is uncorrelated with source signal, and the availability of enough snap-

shots for an accurate covariance matrix estimation, might not be satisfied in practice.

To this end, forward backward spatial smoothing techniques [52] have been widely

applied to estimate the subarray covariance matrix for subspace methods based angle

estimation. When the subarray length is shorter, more subarrays are available for co-

variance matrix calculation, and thus a more accurate subspace estimation would be

expected. However, when subarray length is shorter, the DOA estimation resolution

is reduced, so a tradeoff between obtaining the number of subarrays and length of

subarray should be considered [53].

The target angles can be found by identifying the locations of peaks of the MU-

SIC pseudo spectrum [26], P(θi), computed at all possible θi’s, i.e.,

P(θi) =
1

a
H
L (θi)UnU

H
n aL (θi)

, (1.7)

where Un is the noise subspace of R and aL (θi) is the array steering vector of length

L corresponding to search direction θi. The computation cost of the MUSIC algo-

rithm is high due to the angle search process. Alternatively, the ESPRIT algorithm

could be used for angle estimation [27]. ESPRIT is also a subspace method, which

exploits the array shift invariance properties, and has been widely used in practice.

It has lower complexity than MUSIC, which, however, comes at the cost of reduced

angular resolution. ESPRIT requires 2L sensors with L >K. To achieve the same an-

gular resolution as MUSIC, ESPRIT needs twice as many sensors as MUSIC. As 2D

arrays are needed in automotive radar in order to estimate both azimuth and elevation
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angles, 2D ESPRIT algorithms [30] can be applied if the array element spacing is

uniform rectangular.

1.3.1.2 Compressive sensing

MIMO radars equipped with millimeter wave technology offer wide bandwidth, thus

achieving high range resolution. As a result, there are only a small number of targets

that fall in the same range-Doppler bin, and thus, the targets are sparse in the DOA

space. This property can be exploited by sparse sensing based high resolution meth-

ods for target angle estimation. To apply compressive sensing for DOA estimation,

the whole DOA field of view is discretized into a fine grid. Assume that the DOA

space is discretized on a fine grid with N points and there are K targets on the grid.

The array response in (1.16) can be re-written as

y = Ax+n, (1.8)

where A= [a(θ1) , · · · ,a(θN)] is the basis matrix with a(θi) denoting the array steer-

ing vector corresponding to the i-th grid point and x = [β1,β2, · · · ,βN ]
T

is a sparse

vector with K non-zero elements. The value of βi is non-zero if there is a target at

the i-th grid point. The coherence of the basis matrix, defined as

µ ≜ max
i̸=l

∣

∣

∣
a

H (θi)a(θl)
∣

∣

∣

∥a(θi)∥ℓ2
∥a(θl)∥ℓ2

. (1.9)

needs to be low for obtaining uniform recovery guarantees [54]. When meeting

the required coherence conditions, the DOA can be found by solving a ℓ1 norm

optimization problem, such as Dantzig selector [55] defined below

min ∥x∥ℓ1

s.t.
∥

∥

∥
A

H (y−Ax)
∥

∥

∥

ℓ∞

< η . (1.10)

or greedy methods, such as orthogonal matching pursuit (OMP) [56].

In the above formulation, targets are assumed to be on the grid, which is not

always possible in practice. While one can make the grid finer in order to capture

the targets, the coherence of matrix A would increase, which would make the ℓ1

norm solution invalid [57]. Thus, the performance of compressive sensing based

methods is sensitive to targets appearing off the grid [58]. Sparse sensing and matrix

completion based methods [38, 39] can avoid grid issues without sacrificing the high

resolution performance.

1.3.1.3 Iterative adaptive approach (IAA)

The covariance matrix of M array snapshots yl , l = 1, · · · ,M, can be written as

R = A(θ)PA
H (θ), where P is a K ×K diagonal matrix whose diagonal elements

contains the power of target reflections. Angle finding in the IAA algorithm [40, 41]

is carried out by iteratively estimating the reflection coefficient βk. The estimate is
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found by minimizing the weighted least square (WLS) cost function

M

∑
l=1

∥yl −βk (l)a(θk)∥2

Q
−1(θk)

, (1.11)

where ∥x∥2

Q
−1(θk)

= x
H

Q
−1 (θk)x and the interference and noise covariance matrix

Q(θk) = R− P̂ka(θk)a
H (θk). The solution is given by [40]

β̂k (l) =
a

H (θk)R
−1

yl

a
H (θk)R

−1
a(θk)

. (1.12)

Then matrix P can be updated as P̂k =
1
M ∑

M
l=1

∣

∣

∣
β̂k (l)

∣

∣

∣

2

. In IAA algorithm implemen-

tation, the DOA space is discretized into a fine grid of N points and steering matrix

A is constructed in the same way as in compressive sensing. In addition, a standard

delay and sum (DAS) beamformer is used to initialize P,

P̂k =
∑

M
l=1

∣

∣

∣
a

H (θk)yl

∣

∣

∣

2

M

∣

∣

∣
a

H (θk)a(θk)
∣

∣

∣

2
. (1.13)

1.3.2 High resolution angle finding with sparse linear array (SLA)

As stated before, the cost of synthesizing a large virtual ULA of D elements with half

wavelength element spacing is very high. One way to further reduce the cost without

sacrificing the high angular resolution is via the use of nonuniform, or sparse linear

arrays [59, 45, 44]. With MIMO radar technology, MtMr < D virtual array elements

can be synthesized. To make sparse linear array (SLA) aperture the same as the

ULA, two virtual array elements should be deployed at the edge locations of the

ULA. For the remaining virtual array elements, there are multiple possibilities to

deploy. The main issue with SLA is that the grating lobes may introduce ambiguity

in angle finding.

In automotive MIMO radar with virtual SLA, angle finding can still be done with

conventional FFT or ESPRIT methods if the holes in the virtual SLA can be filled

via interpolation or extrapolation techniques to mitigate the grating lobes [60, 61].

To mitigate the high sidelobes introduced by the sparse arrays, we utilize the

matrix completion technology to interpolate/extrapolate the holes in the sparse ar-

rays. Furthermore, matrix completion improves the SNR of array response as there

is no loss/holes in the fully recovered arrays.

During one CPI of a typical automotive radar scenario, a dense point cloud

with a high volume of targets could be detected in the range-Doppler spectrum [62].

The success of applying matrix completion in irregular one-dimensional (1D) or 2D

sparse arrays relies on the following two facts:

F1) The number of targets in the same range-Doppler bin that need angle estimation

is small since the targets are first separated in range-Doppler domain. In other
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words, the targets are sparsely present in the angular domain and, as a result, the

Hankel matrix constructed using the array response is low rank.

F2) The SNR in the array snapshot is much higher than that in the echo signal, since

energy has been accumulated in both range and Doppler domains via the IDFT

and DFT operations. The high SNR in the array snapshot help reduce the matrix

completion error and improve the accuracy of angle estimation.

We will illustrate the array interpolation concept through matrix completion in

one-dimensional sparse arrays and then extend it to two-dimensional sparse arrays.

1.3.2.1 One Dimensional Sparse Array Interpolation via Matrix
Completion

Fig. 1.7 shows an example of the physical array configuration of an automotive radar

which is a cascaded of 2 MIMO transceivers, where all transmit and receive antennas

are clock synchronized. Let λ denote the wavelength of the carrier frequency. In this

example, Mt = 6 transmit and Mr = 8 receive antennas are deployed on discretized

grid points along the azimuth direction with an interval of length equal to 50λ . The

interval is discretized uniformly with half-wavelength spacing. The transmit anten-

nas transmit waveform in a way that, at each receive antenna, the contribution of each

transmit antenna can be separated via DDM. Therefore, with MIMO radar technol-

ogy, a virtual SLA with 48 array elements and aperture of 75λ is synthesized, as

shown in Fig. 1.7. Compared to a ULA with half-wavelength interelement spacing

and the same aperture, a high number of elements at certain locations are “missing”

at the rednered virtual SLA (denoted by zeros in the virtual array of Fig. 1.7). How-

ever, the SLA approach uses only Mt +Mr = 14 physical antennas with significantly

reduced mutual coupling effects [6].

Suppose an array snapshot contains K targets with DOAs θk, k= 1, · · · ,K. With-

out noise, the SLA response can be expressed as

yS = ASs, (1.14)

where AS = [aS (θ1) , · · · ,aS (θK)] is the manifold matrix with

aS (θk) =

[

1,e j 2π
λ

d1 sin(θk), · · · ,e j 2π
λ

dMt Mr−1 sin(θk)
]T

, (1.15)

and di is the distance between the i-th element of SLA and the reference element. In

addition, s = [β1, · · · ,βK ]
T

, where βk denotes the amplitude associated with the k-th

target.

Consider a virtual ULA that spans the entire array aperture and is filled with

antennas spaced by interelement spacing d = λ
/

2. The total number of antennas in

this virtual ULA is Mo and the noiseless array response is expressed as

yo = Aos, (1.16)

where Ao = [ao (θ1) , · · · ,ao (θK)] is the array manifold matrix with

ao (θk) =
[

1,e jπ sin(θk), · · · ,e jπ(Mo−1)sin(θk)
]T

. (1.17)
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Figure 1.7 Example of an automotive radar cascaded with two transceivers. The

virtual array has 48 elements. © [2021] IEEE. Reprinted, with

permission, from [5].

Let N2 = +M0/2, and N1 = M0 −N2 g N2. We can formulate y ∈ C
Mo×1

into

N2 overlapped subarrays of length N1. Based on those subarrays, we formulate a

Hankel matrix Y ∈ C
N1×N2 with its (i, j)-th element given as Yi j = yi+ j−1 for i =

1, · · · ,N1 and j = 1, · · · ,N2. The Hankel matrix Y has a Vandermonde factorization

[63], expressed as

Y = BΣB
T , (1.18)

where B = [b(θ1) , · · · ,b(θK)] is the subarray manifold matrix with

b(θk) =
[

1,e j 2π
λ

d sin(θk), · · · ,e j 2π
λ
(N−1)d sin(θk)

]T

, (1.19)

and Σ = diag(β1, · · · ,βK) is a diagonal matrix. Thus, the rank of Hankel matrix Y is

K if N2 g K.

We can similarly construct a Hankel matrix X from the SLA configuration. Un-

like matrix Y constructed from a full ULA, however, matrix X has many missing

entries and thus can be viewed as a subsampled version of Y. Under certain condi-

tions, the missing elements can be fully recovered by solving a relaxed nuclear norm

optimization problem conditioned on the observed entries [64]

min ∥X∥∗ s.t. PΩ (X) = PΩ (Y) (1.20)

where || · ||∗ denotes the nuclear norm of a matrix, and PΩ (Y) is the sampling

operator with Ω being the set of indices of observed entries that is determined by the

SLA. In practice, the samples are corrupted by noise, i.e., [X]i j = [Y]i j+[E]i j,(i, j)∈
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Ω, where [E]i j denotes the noise. In this case, the matrix completion problem is

formulated as

min ∥X∥∗ s.t. ∥PΩ (X−Y)∥F f δ (1.21)

where ∥·∥F denotes the Frobenius norm of a matrix and δ is a constant determined

by the noise power.

Once the matrix Y is recovered, the full array response is obtained by averag-

ing its anti-diagonal entries. DOAs can be estimated via standard array processing

methods based on the array response corresponding to the completed matrix Y.

To achieve high azimuth angular resolution, multiple automotive radar transceivers

are cascaded together to synthesize a large sparse array in azimuth. Here, we con-

sider the same physical array shown in Fig. 1.7, where Mt = 6 transmit and Mr = 8

receive antennas are placed in an interleaved way along the horizontal direction at

lTX = [1,19,37,55,79,91]λ
/

2,

lRX = [12,22,25,39,58,62,70,73]λ
/

2.

A virtual array with total 48 elements is synthesized. The transmit and receive an-

tennas as well as the virtual array are plotted in Fig. 1.7.

Two targets are at the same range R = 100 m with velocity of v = −10 m/s.

Their respective azimuth angles are θ1 = 0
◦

and θ2 = 20
◦
. The two targets are first

separated in range-Doppler. The complex peak values in the range-Doppler spectrum

corresponding to every virtual sparse array consists of an array snapshot for azimuth

angle finding.

The virtual SLA shown in Fig. 1.7 acts as a deterministic sampler of a rank-

2 Hankel matrix Y ∈ C
N×N

with N = 76, which is constructed based on the array

response of a ULA with 152 elements. The array response of the SLA is normal-

ized by its first element. Based on the observed SLA response, the Hankel matrix

Y is completed via the SVT algorithm [65]. Let Ŷ denote the completed Hankel

matrix. The full ULA response can be reconstructed by taking the average of the

anti-diagonal elements of matrix Ŷ. The completed full array has an aperture size

of 76λ . Intuitively, in this simulation setting, matrix completion contributes around

10log10
(

152
/

48
)

≈ 5 dB SNR improvement for array processing.

In Fig. 1.8, we plot the angle spectrum for the two targets. The two azimuth

angle spectra are obtained by applying FFT to the original SLA with the holes filled

with zeros and to the full array completed via matrix completion, respectively. It

is found that the FFT of the SLA generates two peaks corresponding to the correct

azimuth directions at a cost of high sidelobes, and thus it is difficult to detect the two

targets in azimuth directions under the original SLA. On the contrary, the completed

full array shows two clear peaks corresponding to correct azimuth locations in the

angle spectrum, and the sidelobes are greatly suppressed in the completed full array.

1.3.2.2 Two Dimensional Sparse Array Interpolation via Matrix
Completion

To enable driver-over and driver-under functions, automotive radar must measure

target’s elevation angles accurately. As a result, automotive radar needs to provide
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Figure 1.8 The spectrum of two targets with azimuth angles of θ1 = 0
◦

and

θ2 = 20
◦

degree under MIMO sparse array and fully completed array.

© [2021] IEEE. Reprinted, with permission, from [5].

point clouds with high angular resolution in both azimuth and elevation directions.

Fig. 1.9 shows a MIMO radar with 12 transmit antennas and 16 receive antennas

that are obtained by cascading 4 automotive radar transceivers, and the transmit and

receive antennas are randomly deployed in an area of [0,100] (λ/2)× [0,120] (λ
/

2)
to synthesize a MIMO 2D virtual sparse array of 196 elements. The 2D physical

array corresponds to a form factor of about 20×24 cm when the carrier frequency is

fc = 77 GHz. It should be noted that a tradeoff between the angular resolution and

the radar form factor should be considered in practice so that the radar can be in-

corporated behind vehicle bumper. The dimension of the rendered 2D virtual sparse

array is Dy ×Dx = 183(λ/2)× 194(λ
/

2), which can be viewed as a spatial sub-

Nyquist sampling of a uniform rectangular arrays (URA) of the same dimension with

half-wavelength spacing in both horizontal and vertical directions. The azimuth and

elevation angular resolutions are respectively expressed as [43]

∆θ = 2arcsin

(

1.4λ

πDx

)

≈ 0.53
◦, (1.22)

∆φ = 2arcsin

(

1.4λ

πDy

)

≈ 0.56
◦. (1.23)

The angular resolution of imaging radar in this example is comparable to the Velo-

dyne LiDAR HDL-32E whose horizontal resolution is between 0.1◦ and 0.4◦ de-

pending on the rotation rate, and the vertical resolution is 1.33
◦

[66].

Consider a general case of an M1 × M2 URA with half-wavelength spacing,

shown in Fig. 1.10, where the URA is on the x-y plane. Assume the k-th point

target with azimuth angle θk and elevation angle φk. Let χk denote the angle between

the k-th target and the x axis, and ϕk denote the angle between the k-th target and the

y axis. Then, it holds that cos(χk) = sin(φk)cos(θk) , cos(ϕk) = sin(φk)sin(θk) .
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Figure 1.9 A MIMO radar with 12 transmit antennas and 16 receive antennas by

cascading 4 automotive radar transceivers. The transmit and receive

antennas are randomly deployed in an area of

[0,100] (λ/2)× [0,120] (λ
/

2) to synthesize a MIMO 2D virtual array

of 196 elements. © [2021] IEEE. Reprinted, with permission, from [5].
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Figure 1.10 Geometry of URA. © [2021] IEEE. Reprinted, with permission, from
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Therefore,

θk = arctan

(

cos(ϕk)

cos(χk)

)

, (1.24)

φk = arcsin

(
√

cos
2 (χk)+ cos

2 (ϕk)

)

. (1.25)

Once the angles χk and ϕk are known, the azimuth angle θk and elevation angle φk

can be uniquely determined. To simplify the signal modeling, we use angles χk and

ϕk for signal modeling in URA.

The (m1,m2)-th element of the URA array on the x-y plane response with respect

to K targets with angle to the x-axis χk and angle to the y-axis ϕk, k = 1, ...,K, can

be written as

xm1,m2
=

K

∑
k=1

βke
jπ((m1−1)sin(χk)+(m2−1)sin(ϕk)) (1.26)

for 1 f m1 f M1 and 1 f m2 f M2. Let M =
[

xm1,m2

]

0fm1fM1,0fm2fM2

be the data

matrix with entries as the URA array response defined in (1.26). We can construct

an N1 × (M1 −N1 +1) block Hankel matrix as

YE =











Y0 Y1 · · · YM1−N1

Y1 Y2 · · · YM1−N1+1

...
...

. . .
...

YN1−1 YN1
· · · YM1−1











, (1.27)
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where

Ym =











xm,0 xm,1 · · · xm,M2−L

xm,1 xm,2 · · · xm,M2−L+1

...
...

. . .
...

xm,L−1 xm,L · · · xm,M2−1











, (1.28)

is an L× (M2 −L+1) Hankel matrix. It can be verified that the rank of matrix YE is

K if N1 g K and L g K [67].

By choosing the locations of the transmit and receive antennas, we aim to syn-

thesize a sparse 2D array, which can be viewed as spatial subsampling of the URA.

The array response of the URA can be obtained via completing the block Hankel

matrix YE based on the array response of sparse arrays. The block Hankel matrix

completion problem is formulated as

min∥XE∥∗ s.t. PΩ (X) = PΩ (M) (1.29)

where Ω denotes the observation set consisting of the location of 2D sparse virtual

array elements, and XE is the block Hankel matrix constructed from matrix X fol-

lowing equations (1.27) and (1.28). In the noisy observation scenario, M is replaced

by M
o =

[

x
o
m1,m2

]

0fm1fM1,0fm2fM2

with x
o
m1,m2

= xm1,m2
+nm1,m2

, where x
o
m1,m2

de-

notes the observed signal and E =
[

nm1,m2

]

0fm1fM1,0fm2fM2

is the noise term. We

assume the noise is bounded, i.e., ∥PΩ (E)∥F f δ . The noisy block Hankel matrix

completion problem is formulated as

min ∥XE∥∗ s.t.
∥

∥PΩ

(

X−M
o)
∥

∥

F
f δ . (1.30)

The above optimization problem can be solved in CVX toolbox [68]. In the

simulation, we adopt the singular value thresholding (SVT) algorithm [65] to solve

the matrix completion problems, whose computation cost of updating the low-rank

matrix in each iteration is of order m with m being the cardinality of the observation

set Ω, i.e., m = |Ω|.
We consider the same 2D physical array shown in Fig. 1.9 for joint high-

resolution azimuth and elevation angle estimation, by cascading 4 automotive radar

transceivers. These 12 transmit antennas and 16 receive antennas are randomly de-

ployed in an area of [0,100(λ/2)]× [0,120(λ/2)] to synthesize a 2D MIMO virtual

array of 196 elements. The cascaded automotive radar form factor is around 20×24

cm. In Fig. 1.9, the dimension of the 2D sparse array is Dy ×Dx = 183(λ/2)×

194(λ
/

2). A total number of 35,502 elements are required to construct a URA of

the same dimension with half-wavelength interelement spacing. In other words, the

virtual sparse array only occupies 0.54% the total elements of the URA.

Two targets with the same range and Doppler bin are considered. Their angles to

the x and y directions are (χ1,ϕ1) =
(

−20
◦,5◦

)

,(χ2,ϕ2) =
(

20
◦,10

◦)
, respectively.

The sparse array snapshot is consisted of the complex peak values in the range-

Doppler spectrum corresponding to each sparse array element. The input SNR of
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Figure 1.11 The spectrum of two targets with azimuth and elevation angles of

(χ1,ϕ1) =
(

−20
◦,5◦

)

,(χ2,ϕ2) =
(

20
◦,10

◦)
under the sparse array.

The targets’ angles are marked with crosses. There are high sidelobes

in the spectrum due to the existing of large number of holes in the

sparse array. © [2021] IEEE. Reprinted, with permission, from [5].

Figure 1.12 The spectrum of two targets with azimuth and elevation angles of

(χ1,ϕ1) =
(

−20
◦,5◦

)

,(χ2,ϕ2) =
(

20
◦,10

◦)
under the completed full

URA. The targets’ angles are marked with crosses. © [2021] IEEE.

Reprinted, with permission, from [5].
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the array response is set to 20 dB, which is reasonable in automotive radar because

the fast-time and slow-time coherent processing provides a high processing gain. We

then construct a block Hankel matrix YE of dimension 9,009×8,928 using one array

snapshot of this 2D sparse array with 196 elements. Only 0.78% of the Hankel matrix

entires are non-zero. Based on one snapshot of 2D sparse array, the block Hankel

matrix is completed via the SVT algorithm and the full URA is then obtained. In this

simulation setting, matrix completion contributes around 10log10
(

35,502
/

196
)

≈
22.5 dB SNR gain for array processing.

Figs. 1.11 and 1.12 plot the azimuth-elevation spectra of the two targets under

the 2D sparse array and the completed full URA, respectively. It is found that both

sparse array and URA generate two peaks corresponding to the correct azimuth and

elevation angles of the targets. However, in the azimuth-elevation spectrum of 2D

sparse array, there are high sidelobes over the entire azimuth and elevation FOVs.

On the contrary, the high sidelobes are mitigated in the completed URA.

1.3.2.3 Sparse Linear Array Optimization

Alternatively, instead of filling the holes, angle finding of the sparse array can be

done using spatial compressive sensing (CS) ideas [69]. In that context, the key

problems are how to select the locations of array elements such that the peak sidelobe

level (PSL) of the virtual SLA beampattern is low, and how to carry out angle finding.

There is no analytical solution to determining the antenna locations that achieve a

minimum PSL for a given number of antennas [70]. Optimal sparse array design

requires global optimization techniques, such as particle swarm optimization [71,

45, 72].

In the SLA scenario, it can be easily verified that the coherence of the basis

matrix (see (1.9)), is the PSL of the SLA array beampattern [44]. Therefore, the

coherence, or equivalently, the PSL of a sparse array plays a key role in obtaining

uniform recovery guarantees for compressive sensing [54]. If the PSL of SLAs is

low, angle finding using SLAs can be done via compressive sensing or IAA.

In Fig. 1.13, we give an example of a virtual SLA with aperture of 19λ , syn-

thesized with MIMO radar technology using 4 transmit 4 receive antennas. The first

and fourth of transmit/receive antennas are deployed at the edge of the physical aper-

ture, while the remaining antennas are chosen such that the PSL is −9.1dB. Angle

estimation via IAA when using the sparse linear array of Fig. 1.13 is illustrated in

Fig. 1.14. The ground truth involves two targets with azimuth 5
◦

and 10
◦
. The SNR

of the received beamvector is set to 30dB. For comparison, the FFT spectrum is also

plotted. One can observe the sharper peaks around the target azimuth angles and the

more attenuated sidelobe in the IAA spectrum, as compared to the FFT spectrum.

1.4 High Resolution Imaging Radar for Autonomous Driving

Nowadays, many of the automotive radar transceivers designed for ADAS function-

ality, such as MR3003 of NXP Semiconductor, and AWR2243 of Texas Instruments,

can support up to 3 transmit and 4 receive antennas. Therefore, using a single au-

tomotive radar transceiver with MIMO radar technology, only 12 virtual array ele-
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Figure 1.13 Simulated example of a SLA synthesized with MIMO radar

technology using four transmit and four receive antennas. The

physical limitation of array aperture is 10λ . We fix the locations of

first and fourth transmit/receive antennas at 0λ ,0.5λ and 10λ ,9.5λ ,

respectively such that a maximum virtual array aperture of 19λ is

achieved. The remaining transmit/receive antennas are chosen such

that the PSL of the synthetic virtual array beampattern is −9.1dB. ©

[2020] IEEE. Reprinted, with permission, from [6].
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Figure 1.14 Angle finding via the IAA method and the FFT spectrum using the

SLA of Fig. 1.13, synthesized by MIMO radar technology. There are

two targets with azimuth of 5
◦

and 10
◦
. The SNR is set to 30dB. ©

[2020] IEEE. Reprinted, with permission, from [6].
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ments can be synthesized. In this section, we introduce the high resolution imaging

radar with hundreds of virtual antenna array elements synthesized via MIMO radar

technology.

1.4.1 Cascade of multiple radar transceivers

To meet the requirement for Level 4 and Level 5 autonomous driving, multiple auto-

motive radar transceivers would need to be cascaded together, with all transceivers

synchronized as a single unit. The received data from all receive antennas would

be processed coherently. Cascading provides a cost effective and scalable solution

to achieve high angular resolution. In [73], General Motors and Texas Instruments

successfully demonstrated that up to 4 Texas Instruments AWR1243 radar chips can

be cascaded together to provide 12 transmit and 16 receive antennas, enabling a syn-

thesis of 192 virtual array elements. In [74], a prototype of cascading 5 Infineon

radar chips has been built to synthesize a virtual array of 128× 4 elements. Such

high number of virtual array elements provides a lot of opportunities in array design.

Several azimuth and elevation arrays configurations can be found in [60]. Several

commercial imaging radar products are available with different array configurations,

such as forward-looking full-range radar of ZF and ARS540 of Continental [75, 76].

Usually, a trade-off of balancing angular resolution in azimuth and elevation needs

to be considered.

1.4.2 Examples of cascaded imaging radars

Figure 1.15 shows an imaging radar design reference board which has 12 transmit

and 16 receive antennas, formed by cascading 4 Texas Instruments AWR2243 radar

transceivers [77]. The azimuth FOV is
[

−70
◦,70

◦]
. One transceiver is selected as

master and all the others as slaves for clock distribution. In this way, synchronization

can be achieved among 4 transceivers, allowing coherent FMCW transmission from

the 12 transmit antennas and joint data processing from the 16 receive antennas. The

array configuration of cascaded imaging radar is shown in Fig. 1.15. There are 3

transmit antennas placed along the vertical direction for elevation angle finding, and

9 transmit antennas placed along the horizontal direction for azimuth angle finding.

The virtual array in the horizontal direction is a dense ULA with half wavelength

spacing, and consists of 86 virtual array elements (the overlapped virtual array ele-

ments are not shown). The array aperture in the azimuth direction is Dx = 42.5λ .

In antenna theory, the 3dB beamwidth defines the angular resolution. According to

[43], the 3dB beamwidth of the azimuth angle is

∆θAZ = 2arcsin

(

1.4λ

πDx

)

≈ 1.2◦. (1.31)

In the vertical direction, the antennas in three elevation positions form multiple min-

imum redundancy arrays (MRAs) [78] along the horizontal direction. The angle

finding in MRA requires multiple snapshots. These MRAs along the horizontal di-

rection can be used as snapshots for elevation angle finding. The elevation array
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Figure 1.15 Texas Instruments AWR2243 imaging radar board (top figure) [77]. 4

TI AWR2243 radar transceivers are cascaded together, providing 12

transmit and 16 receive antennas (middle figure), enabling the

synthesis of 192 virtual array elements (bottom figure). © [2020]

IEEE. Reprinted, with permission, from [6].
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Figure 1.16 Direct path and vertical multipath. © [2020] IEEE. Reprinted, with

permission, from [6].

aperture is Dy = 3λ and the 3dB beamwidth of elevation is

∆θEL = 2arcsin

(

1.4λ

πDy

)

≈ 17
◦. (1.32)

1.4.3 Design challenges of imaging radar

Achieving waveform orthogonality in imaging radars using FMCW with a large of

number transmit antennas is quite challenging. One strategy could be to divide the

transmit antennas into several subgroups. In each subgroup, the transmit antennas

would transmit simultaneously with slow-time phase coding (DDM), while antennas

of different subgroups would be scheduled to transmit in different time slots (TDM).

Clock distribution among multiple cascaded transceivers is also challenging.

For FMCW mixer operation, an LO is shared among master and slaves, and the

LO routing from master to all slaves in the circuit should be matched. Also, the

additional ADC sampling and data transmission among different transceivers needs

to be synchronized. It is desirable to develop automotive radar transceiver that can

incorporate a large number of transmit and receive antennas. For example, Uhnder

has developed a radar system-on-chip (SoC), which has 12 transmit and 16 receive

antennas, enabling synthesis of 192 virtual array elements [79] (discussed in more

detail in later chapters) . Thus, the 4 current automotive radar transceivers in the

cascaded imaging radar shown in Fig. 1.15 can be replaced with a single SoC radar

chip. The radar on chip (RoC) developed by Vayyar has 48 transceivers at 76-81GHz,

which can provide synthesis over 2000 virtual array elements [80].

1.5 Challenges in Automotive MIMO radar

In this section, we discuss the design challenges in automotive MIMO radar, includ-

ing angle finding in the presence of multipath reflections, waveform orthogonality

and efficient high resolution angle estimation algorithm development.

1.5.1 Angle finding in the presence of multipath reflections

Automotive radar runs in multipath scenarios [81]. In general, radio propagation

in the presence of multipath occurs along four possible routes, i.e., direct/direct,

direct/indirect, indirect/direct and indirect/indirect routes.
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Figure 1.16 shows a vertical multipath scenario, where the height of radar and

target are hS and hT , respectively. The length of the direct/direct path is d1 = 2r1, the

length of the direct/indirect or indirect/direct path is d2 = d3 = r1 + r2 + r3, and the

length of the indirect/indirect path is d4 = 2(r2 + r3). The received signal, having

gone through the four paths can be written as

yr =
4

∑
i=1

βie
j 2π

λ
di , (1.33)

where the amplitude term βi is function of the antenna gain, the path loss, the road

reflection coefficient and the target RCS. The signal from the indirect paths and that

from the direct path would most probably arrive out of phase and thus add up destruc-

tively. As a result, the power of the received signal would fluctuate with distance [81]

and thus angle finding at SNR nulls would be unstable.

MIMO radar with colocated transmit and receive antennas, also referred to as

monostatic MIMO radar, is based on the assumption that DOD and DOA are equal.

However, in the presence of multipath, that assumption does not hold and the system

becomes bistatic [82, 83], i.e., the transmit and receive antenna view the target from

different aspect angles. Fig. 1.17 shows a vehicle moving parallel to the guardrail,

with an SRR sensor mounted at its front left corner. The length of the direct path of

the radar signal is dr1
= r1, corresponding to θt = θr = θ1. There are also multipath

reflections due to the guardrail. The range of the first multipath reflection is dr2
=

(r1 + r2 + r3)
/

2, corresponding to θt = θ1,θr = θ2 or θt = θ2,θr = θ1. The range

of the second multipath reflection is dr3
= r2 + r3, corresponding to θt = θr = θ2.

Compared to the direct path, multipath reflections result in longer range and smaller

Doppler. For the first type of multipath, the range and Doppler bin is the same as

in mirror image target detection. However, as θt ̸= θr, it turns out that the phase

of each virtual array element is corrupted. In other words, the monostatic MIMO

radar assumption does not hold, which results in a “ghost” target whose direction is

different from the mirror target.

To solve this issue, some ideas have been proposed in [82, 83, 84]. For exam-

ple, joint estimation of DOD and DOA is proposed in [82], however, by ignoring the

structure of the transmit array, that method cannot not enjoy the benefit of the syn-

thesized virtual array. Polarimetric features are exploited in [83] to separate objects

in a multipath scenario. However, the approach in [83] can only separate certain real

target cases from their mirror targets, for example, when the real target is known and

the polarization state change of the multipaths can be recognized. The method of

[83] does not work when the ghost target direction is different than that of the mir-

ror target. Doppler information can be exploited to detect moving vehicles in urban

areas under multipath [84]. However, Doppler information is not always available

when both objects and host vehicles are stationary. In general, there is a need for

more research addressing ghost target issue in MIMO radar due to multipath.
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Figure 1.17 A typical multipath reflection scenario along a guardrail for a short

range radar sensor mounted at the front left corner. © [2020] IEEE.

Reprinted, with permission, from [6].

1.5.2 Waveform orthogonality in automotive MIMO radar

Different strategies, such as TDM, DDM and FDM can be adopted in automotive

FMCW radars to achieve waveform orthogonality. However, several challenges asso-

ciated with each strategy need to be addressed. For example, in the TDM scheme, the

scheduling delay between transmit antennas may introduce phase error for a moving

target, which needs to be compensated for, otherwise, the synthesized array beam-

pattern will be distorted. Further, the maximum unambiguous detectable velocity

under TDM is reduced by a factor of Mt . In the DDM scheme, the Doppler sidelobes

are high due to the residual of the phase coding. As a result, targets with small RCSs,

e.g., pedestrians, that are close to the target with strong reflections, e.g., trucks, might

be masked. The search time for phase codes using stochastic algorithms increases

exponentially as the code length increases. Computationally efficient algorithms are

needed to address this problem. In the FDM scheme, though a randomization of

frequency shift among transmit antennas could reduce the range-angle coupling, a

large number of transmit antennas would be needed for the improvement to be no-

table [16].

Recently, PMCW has been proposed for achieving orthogonality [85, 86, 87,

88]. Each antenna transmits a sequence of phase coded pulses. Let

xm =
[

xm (1) , · · · ,xm

(

Np

)]T
(1.34)

be the complex unimodular code sequence of the m-th transmit antenna, where

xm (n) = e
jφm(n) is the n-th code of xm and Np is the code length. Here, the phase

φm (n) can be chosen arbitrarily in [−π,π]. The duration of a single code sequence
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is Tp = NpTc with Tc the duration of a sub-pulse. In practice, binary code sequences

have been widely used due to their simplicity. The bandwidth of PMCW is B= 1
/

Tc.

The time-bandwidth product of a code sequence is BTp = Np. Since the pulses

are transmitted continuously, the code sequences should have good periodic auto-

correlation and cross-correlation properties [85]. The periodic cross-correlation of

two code sequences xm and xl at lag k is defined as

r
P

ml (k) =
N

∑
n=1

xm (n)x
∗
l

(

(n+ k) mod
(

Np

))

. (1.35)

When m = l, r
P

ml (k) becomes the periodic auto-correlation function of xm. Good

correlation properties require the values of the periodic auto-correlation at non-zero

lags, and the values of the cross-correlation at any lag to be low. The Welch lower

bound on the cross-correlation between any pair of binary sequences with period of

Np in a set of Mt sequences equals [89]

r
P

ml (k)g Np

√

Mt −1

MtNp −1
≈
√

Np. (1.36)

Good periodic cross-correlation properties help achieve waveform orthogonality,

while good periodic auto-correlation properties make it easier to use matched fil-

ters to extract signals reflected from the range bin of interest and suppress signals

reflected from other range bins.

As compared to FMCW, PMCW radar has several advantages. PMCW radar is

better suited for achieving waveform orthogonality in imaging radars with a large of

number of transmit antennas. PMCW radar can take advantage of existing sequences

with good auto-correlation and cross-correlation properties, previously developed for

code-division multiple accessing (CDMA) communications, such as Gold, Kasami

and m-sequences [90, 91, 92]. Further, in PMCW radar, each automotive radar sen-

sor can have a unique digital sequence, which may help reduce the automotive radar

mutual interference. As a bonus, PMCW radar also provides certain communica-

tion capability [93], thus can be explored as a dual functional radar communication

system [94].

However, PMCW radar has many implementation challenges. First, the sam-

pling rate of ADC should satisfy the Nyquist rule, i.e., fs g 2B = 2
/

Tc. The high

bandwidth required for high range resolution necessitates high speed ADC and high

speed processing hardware. In practice, it is required to keep the resolution of ADC

as low as possible [95]. Second, according to the Welch bound of (1.36), the cross-

correlation lower bound of any pair of binary sequences is of the order of O

(

√

Np

)

,

which might not provide sufficient separation of transmit waveforms of different an-

tennas. In practice, the auto-correlation and cross-correlation of code sequences are

desired to have low sidelobes within a low correlation zone (LCZ). Furthermore, be-

cause there is no mapping relationship between range and beat signal in PMCW, it

would be difficult to use high-pass analog filters to reject or attenuate ultra-close-

range return signals, including direct path signals from transmit antennas, reflections
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from Radome, and vehicle bumpers. This escalates the dynamic range challenge,

especially when the resolution of ADC must be kept as low as possible [95].

1.5.3 Efficient, high resolution angle finding algorithms are needed

A typical duration of a look in automotive radar is around 50 ms, corresponding to

detection update rate of 20 Hz [96]. In such short duration, the current generation

of automotive radar for ADAS can report a maximum of 64−200 detections. With

high resolution imaging radar, the number of cells that can be selected for angle

finding from the 2D range and Doppler spectrum is around 10,000 in a single look

for a typical road scenario [62]. To achieve point clouds for autonomous driving,

angle finding needs to be performed thousands of times in a single look, which is a

great challenge for imaging radar with hundreds of virtual array elements. Compu-

tationally efficient, high resolution angle finding algorithms are highly desirable for

real-time implementation in automotive radar.

To reduce computation complexity, beamspace ESPRIT [28] and unitary ES-

PRIT [29] algorithms have been proposed. The idea of beamspace ESPRIT is to

decompose the original ULA vector into several low-dimensional beamspaces via a

transform such as the FFT. Then, if the beamspace transform matrix has the same

shift invariance structure, angle finding can be carried out via ESPRIT on each

beamspace in parallel, with reduced computational time [28]. The unitary ESPRIT

algorithm takes advantage of the unit magnitude property of the phase factors rep-

resenting the phase delays between the two subarrays and is formulated in terms of

real-valued computations. As a result, it achieves great reduction of computational

complexity [29].

The computation cost of each IAA iteration is 2NM
2 +NM +M

3
, where M is

the number of array snapshots and N is the number of discretized grids. Fast and

superfast IAA algorithms have been proposed in [97, 98, 99], respectively. The

fast IAA algorithm exploits the FFT operation as well as Gohberg-Semencul (GS)

representation of matrix R
−1

. As a result, the computation cost of each fast IAA

iteration is M
2 +12ζ (2M)+3ζ (N), where ζ (N) stands for the computation cost of

performing FFT of size N, i.e., O(N logN) [98]. The superfast IAA uses a conjugate

gradient (CG) algorithm to approximate the matrix R
−1

, which further reduces the

computation cost.

The strengths and limitations of each DOA estimation algorithm discussed in

Section 1.3 when applied to the automotive radar scenario are summarized in Table

1.1. For subspace based high resolution DOA estimation methods, such as MUSIC

and ESPRIT, the automotive radar array needs to be ULA, and multiple snapshots

are required to estimate the array covariance matrix accurately. However, automotive

radar operating in a highly dynamic environment typically rely on a single snapshot.

While multiple snapshots can generated via spatial smoothing or by dividing a chirp

into sub-chirps, the associated cost is respectively reduced array aperture, or reduced

SNR. SLAs have been widely used in automotive radar to further reduce the hard-

ware cost. However, it is not straightforward to apply MUSIC or ESPRIT to SLA

based automotive radar. On the other hand, DBF and sparsity based high resolution
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Algorithms Resolution Snapshot Arrays Grid Free Rank Estimation Robustness Complexity

DBF low single ULA/SLA no no strong low

MUSIC high multiple ULA no yes medium high

ESPRIT high multiple ULA yes yes medium medium

OMP high single ULA/SLA no no medium high

IAA high single ULA/SLA no no strong high

Table 1.1 Summary of different DOA estimation algorithms in automotive radar

scenario.

methods, such as OMP and IAA, apply to SLA- as well as ULA-based automotive

radar, and work with a single snapshot. In the DBF method, the number of targets can

be estimated by counting the number of peaks in the DOA spectrum. DBF is not sen-

sitive to coherent or correlated signals, which in subspace based methods [100] need

special preprocessing via spatial smoothing. It has been shown that DBF is robust to

array element position errors and has low computational cost [100]. However, DBF

is not a high resolution method. Also, as OMP and IAA are iterative schemes, they

involve high computation cost, which limits their applicability in low-cost embedded

DSPs typically used in current generation automotive radar. Further, the methods of

DBF, MUSIC, OMP and IAA assume targets are on the grid, and suffer from errors

when the targets arise between grid points. In summary, more research is needed

on developing computationally efficient, high resolution DOA estimation algorithms

that are robust to noise, and are applicable to automotive radar using SLAs with low

PSL under a single snapshot.
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