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1 Introduction

In the context of the AdS/CFT correspondence, entanglement entropy has provided key
insights as to how geometry emerges from conformal field theories. The Ryu-Takayanagi
(RT) formula [1] (and its covariant generalization [2]) has played an essential role in these
developments as it relates CFT entanglement entropy to the area of bulk minimal surfaces.
Of course, the RT formula is just one example that demonstrates how some piece of geometric
information is encoded in the CFT. A promising approach towards understanding how more
general geometric properties emerge from holographic CFTs is modular transport.

This method, pioneered in [3, 4] and inspired by related work on kinematic space [5–8],
defines a parallel transport problem for modular Hamiltonians that are deformed by changing
CFT subregions (see also [9, 10] for other approaches to Berry transport in holography,
and [11–13] for other methods for reconstructing the bulk geometry). The transport process
admits a redundancy in the form of zero modes that commute with the modular Hamiltonian.
This redundancy is analogous to the Berry phase in quantum mechanics and was therefore
referred to as a modular Berry phase. By gauging this redundancy one finds a modular
curvature, again analogous to the well-known Berry curvature. One key result of [4] was
to show how — in holography — geometry is encoded in the modular curvature. In many
cases of interest, the action of the modular Hamiltonian reduces to a boost isometry near
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the edge of the entanglement wedge. Exploiting this relation, it was demonstrated that the
modular curvature is related to the Riemann tensor [4, 14].

Subsequent work not only considered changes in the modular Hamiltonian due to changing
CFT subregions (known as shape deformations), but also changes due to modifying the
state (referred to as state deformations) [15, 16]. The references [15, 16] showed that the
modular curvature associated to state deformations is related to a bulk symplectic form.
What these different examples have in common is that the modular curvature probes some
piece of interesting bulk geometric information.

When considering a subregion in the CFT, we only have access to the portion of the
bulk covered by the entanglement wedge [17]. So-called “entanglement shadow regions” were
shown to be impenetrable by boundary-anchored minimal surfaces [18, 19], while surfaces of
nonpositive extrinsic curvature dubbed “barriers” were shown to obstruct boundary-anchored
extremal surfaces in the covariant description [20]. Since the modular transport approach
to bulk reconstruction uses bulk extremal surfaces to probe the Riemann curvature, it has
the seeming drawback that barriers may prevent reconstruction in arbitrary bulk regions,
for instance deep inside a black hole.

One motivation of this work is to see how this obstruction can be partly overcome by
making use of quantum extremal surfaces (QESs) [21]. Studies on the black hole information
paradox revealed that the entanglement wedge of black hole radiation can include an ‘island’
QES region that is disconnected from the boundary and can lie behind the horizon [22, 23]. In
this paper, we therefore focus on modular transport in the presence of an island which involves
performing modular flow on two disjoint subregions. We are interested in understanding if
and what geometrical information about the bulk is encoded in the modular curvature in
the presence of a non-trivial QES: a quantity which we refer to as the ‘Quantum Extremal
Modular Curvature’ (QEMC).

We focus on a 1 + 1-dimensional free fermion theory coupled to JT gravity, since there
is a closed-form expression for its modular Hamiltonian for n disjoint subregions [24]. The
modular Hamiltonian of the free fermion was used in the context of islands in [25], and its
modular curvature on flat space backgrounds has been studied in [26]. Our contribution is to
put these results to work in our setup of interest, which is JT gravity on an AdS2 background
coupled to a non-gravitating bath region. The free fermion theory lives on this background
and allows us to analytically study modular transport in the presence of islands.

Our setup is somewhat different than the one considered in previous studies of modular
transport in holography. Typically, a subregion in the CFTd is used to define bulk entangle-
ment wedges in AdSd+1: modular flow in the CFTd has a direct analog in AdSd+1. However,
the dual of JT gravity coupled to a non-gravitational bath is a quantum mechanical (QM)
theory. Instead of defining subregions in this QM theory we work directly in the semi-classical
‘gravitational picture’ and define a subregion in the two-dimensional non-gravitational bath
which, via the QES condition, also identifies a subregion in the bulk. This is the same as the
setup for computing the entanglement entropy of Hawking radiation in the presence of islands.

A main result of our paper is that — in an OPE limit — the QEMC still probes
bulk Riemann curvature including near the island region. This yields a method to access
geometrical information, possibly behind a horizon, from the non-gravitational bath region.
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Away from this simplifying limit, the curvature contains non-local terms that have their origin
in the non-local nature of the modular Hamiltonian for disjoint intervals. It is tempting to
speculate that these non-local corrections signal some sort of breakdown of the semi-classical
EFT along the lines of [27, 28], but we leave further interpretation to future work.

The rest of this paper is organized is follows. In section 2, we review the process of
modular transport and explain how it probes bulk Riemann curvature. As a concrete and
illustrative example we focus on AdS3/CFT2, generalizing some of the results in [15, 16]. In
section 3, we focus on JT gravity and consider a solution that contains a non-trivial quantum
extremal surface. We then introduce modular flow in this background and compute various
components of the QEMC. We end with a discussion of our results in section 4.

2 Modular transport and Berry curvature

We start with a short review of modular Hamiltonians and the transport process that probes
the bulk geometry.

2.1 Introduction to modular transport

Given a quantum state |ψ⟩ and a spatial subregion A the reduced density matrix is defined as

ρA = trĀ |ψ⟩ ⟨ψ| , (2.1)

where we perform a trace over Ā, the complement of A. The formal definition of the modular
Hamiltonian H of this subregion is

H = − ln ρA . (2.2)

Using s to denote the modular ‘time’ parameter, the evolution of an operator under modular
flow is given by

O(s) → O(s′) = e
i(s′−s)

2π
HO(s)e−

i(s′−s)
2π

H . (2.3)

For general states and subregions, the modular Hamiltonian is a complicated and
possibly non-local operator. However, in certain special cases such as a single interval in
the Minkowski vacuum [29], it obeys the local expression

H =
∫

A
dΣ ζµnνTµν . (2.4)

Here ζµ is the boost vector that preserves the causal diamond defined by the subregion A

(see figure 1), nµ is the unit normal to A, and Tµν is the stress tensor.
As explained in [30], locality of the modular Hamiltonian is directly related to ultralocality

of correlation functions, in the vacuum. More generally, for states that are perturbations
away from the vacuum, the modular Hamiltonian acts as a local boost close to the horizons
of the diamond [31]. Intuitively, excited states like those considered in [31] look like the
vacuum at short distances. For multiple subregions in the vacuum, the modular Hamiltonian
again is non-local.
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Figure 1. Causal diamond associated to the subregion A. The vector field ζµ is a boost vector that
preserves the diamond.

When changing the subregion or the state, the modular Hamiltonian also changes.
As studied in depth in [4, 14–16], we can define a modular transport problem by parallel
transporting the modular Hamiltonian. In holographic setups, modular transport is a useful
probe of local bulk physics. To define this transport problem, we consider a family of nearby
modular Hamiltonians H(λ) labeled by λ. Assuming we can diagonalize the Hamiltonian
using a unitary vector U(λ) as

D(λ) = U(λ)H(λ)U †(λ) , (2.5)

then a change in the modular Hamiltonian can be expressed as:

∂λH = [∂λU
†U,H] + U †∂λDU . (2.6)

The second term on the right-hand side commutes with the modular Hamiltonian and is
known as a modular zero mode. We can explicitly represent the zero modes as O = ei

∑
a

caQa ,
where ca are constant coefficients and [Qa, H] = 0.

Transforming the modular Hamiltonian by a zero mode as

H̃ = Ũ †DŨ , (2.7)

with Ũ = UO, leaves (2.6) invariant. Thus the choice of zero mode frame is a gauge
redundancy with an associated connection Γ := P0[∂λU

†U ], where P0 is a projector onto the
zero mode. If we transform U by a zero mode U → Ũ = UO, the connection changes as

Γ → Γ̃ = P0[O†ΓO −O†∂λO] = P0[−O†DλO] , (2.8)

where Dλ is a covariant derivative given by

DλO = (∂λ − Γ)O . (2.9)

If we fix a gauge by setting Γ̃ = 0 we obtain

DλO = (∂λ − Γ)O = 0 . (2.10)
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Dropping the tildes, this leads to the following modular transport equations:

∂λH − P0[∂λH] = [∂λU
†U,H ]

P0[∂λU
†U ] = 0 .

(2.11)

Considering different connections obtained by different variations and projecting out the
zero mode, the modular transport equations are solved by

Vi = (1− P0)∂λi
U †U . (2.12)

We refer to Vi as the generator of modular transport. The modular curvature is then
given by [15]1

Rij := [Vi, Vj ] . (2.13)

2.2 Modular transport in holography

In AdSd+1/CFTd, modular transport is a probe of the bulk geometry from a boundary
perspective. The relation between the bulk and boundary modular Hamiltonian is given
by the JLMS formula [32],

Hbdy = Â

4Gd+1
+Hbulk +O(Gd+1) . (2.14)

Gd+1 is the (d + 1)-dimensional Newton constant and Â is the area operator of the bulk
entanglement wedge associated to the subregion in the CFT. As mentioned before, when we
consider vacuum states or take the limit of being close to the entangling surface, modular
flow reduces to the boost Killing vector associated to the causal diamond of the subregion.
We’ve drawn the example of AdS3/CFT2 in figure 2.

The area operator Â is localized to the boundary of the entanglement wedge and spacelike
separated from operators inside the entanglement wedge. As a consequence, the area operator
commutes with any operator φ(x) defined inside the entanglement and boundary modular
flow equals bulk modular flow [32]:

[Hbdy, φ] = [Hbulk, φ] . (2.15)

As explained in detail in [4] (see also [14–16]), we can interpret the zero mode redundancy
of the modular Hamiltonian in the bulk as a choice of a particular zero mode frame attached
to an entanglement wedge. Comparing relative zero mode frames for different entanglement
wedges then gives us information about the bulk curvature. Accordingly, the modular
curvature can be used to directly obtain information about the bulk Riemann curvature. [4, 14]
provides a formal derivation of this relationship. Our example in the context of AdS3/CFT2
is (hopefully) instructive to see explicitly how the Riemann curvature appears in the modular
curvature.

1In [15], the general expression for the curvature also has an overall zero mode projector. We choose to
omit this, since there are no non-zero mode contributions in the examples we consider in this paper.
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Figure 2. An interval A in a two dimensional CFT defines a causal diamond on the AdS boundary.
The entanglement wedge of A defines the bulk subregion where the bulk modular Hamiltonian acts.
Near the bulk entangling surface the modular Hamiltonian reduces to the (bulk) boost Killing vector ζµ.

Modular transport in CFT2. We now show how to obtain the bulk Riemann curvature
using modular transport in AdS3/CFT2. We first consider the modular Hamiltonian and
transport in a two-dimensional CFT, and then construct the dual quantities in pure AdS3,
following [4].

For a two-dimensional CFT in the vacuum, the modular Hamiltonian can be constructed
from the generators of the conformal algebra. We put the CFT on a cylinder and work with
lightcone coordinates x± = τ ± θ, where τ is the time parameter and θ is the angle on the
cylinder. The modular Hamiltonian decomposes into a left-moving and right-moving piece:

H = H(+) +H(−) . (2.16)

Defining a conformal Killing vector (CKV) as ζ = ζ+∂+ + ζ−∂− the modular Hamiltonian
is given by

H(±) = 2π
∫

dx± ζ±T±± , (2.17)

where we choose a normalization of 2π in front. We use brackets in the subscript to avoid
confusion with the vector components. Explicitly, we have

ζ± = s±1 L
±
1 + s±0 L

±
0 + s±−1L

±
−1 , (2.18)

where the components of the generators LN = L+
N∂+ + L−

N∂− can be compactly written as

L±
N = eiNx±

. (2.19)

Here, N runs over 0,±1. The generators are CKVs and therefore obey

LLN
gµν − (∂ρL

ρ
N )gµν = 0 . (2.20)
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We now specify an interval in the CFT. We label the left endpoint by x±i = a± and the
right endpoint by x±f = b±. Next, we construct the modular Hamiltonian of this interval by
finding the CKV that preserves the causal diamond, i.e. we want the norm of the CKV to
vanish at the horizons. This vector is given by (2.18) with the coefficients

s±1 = ±
cot

[
b±−a±

2

]
eia± + eib±

,

s±0 = ∓ cot
[
b± − a±

2

]
,

s±−1 = ±
cot

[
b±−a±

2

]
e−ia± + e−ib±

.

(2.21)

By taking derivatives of the modular Hamiltonian, we can construct the generators
of modular transport. Instead of working with the integral representation (2.17), we opt
to directly use the CKV

K := 2πζ . (2.22)

The generators of modular transport are then given by

Va± = ± 1
2π∂a±K , Vb± = ∓ 1

2π∂b±K , (2.23)

and it is straightforward to check that they solve the modular transport equations:

[Va± ,K] = ∂a±K , [Vb± ,K] = ∂b±K . (2.24)

There is no zero mode that needs to be projected out, as there is no part of ∂λK that
commutes with K.

Just as in the integral representation of the modular Hamiltonian, we find it convenient
to split K = K(+) + K(−) where

K(+) := 2πξ+∂+ , K(−) := 2πξ−∂− . (2.25)

In two dimensions, this notation is rather redundant since it just labels the ± components of
K. However, next when we consider AdS3 K(±) will also involve the radial direction. The
non-zero components of the modular curvature are now given by

Ra+b+ = [Va+ , Vb+ ] = + 1
2 sin2

[
a+−b+

2

]K(+)
2π ,

Ra−b− = [Va− , Vb− ] = − 1
2 sin2

[
a−−b−

2

]K(−)
2π .

(2.26)

We use λ = (a+, a−, b+, b−) to refer to the four parameters that define our interval.
We then consider an infinitesimal change λ′ = λ + dλ. We can parameterize all possible
changes via the following basis:

λ1 = (a+ − dλ, a− − dλ, b+ − dλ, b− − dλ) ,
λ2 = (a+ − dλ, a− + dλ, b+ − dλ, b− + dλ) ,
λ3 = (a+ − dλ, a− − dλ, b+ − dλ, b− + dλ) ,
λ4 = (a+ − dλ, a− − dλ, b+ + dλ, b− − dλ) .

(2.27)
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Figure 3. Global AdS3 corresponds to a cylinder. We choose an interval in the CFT2 that covers
half of the cylinder. The Ryu-Takayanagi surface is then given by a simple diagonal geodesic.

The generator of modular transport for any infinitesimal deformation is a linear combination
of the four generators

Vλi
=
(
∂a+

∂λi

)
Va+ +

(
∂a−

∂λi

)
Va− +

(
∂b+

∂λi

)
Vb+ +

(
∂b−

∂λi

)
Vb− . (2.28)

We now specify to an interval given by τ = 0 and θ = [0, π] which covers half of the
cylinder. This choice has the advantage that the minimal surface in the bulk corresponds
to a simple diagonal geodesic, see figure 3. In lightcone coordinates the interval is given by
[a±, b±] = [0,±π]. For this choice of interval the generators for the basis (2.27) become

Vλ1 = ∂+ + ∂− ,

Vλ2 = ∂+ − ∂− ,

Vλ3 = ∂+ + cos
(
x−
)
∂− ,

Vλ4 = cos
(
x+
)
∂+ − ∂− .

(2.29)

The first two generators have an especially simple interpretation as they correspond to a
translation in the τ and θ direction respectively.

Modular transport in AdS3. We now turn to the bulk dual of the modular transport
problem described in the two-dimensional CFT. We consider the AdS3 metric in global
coordinates,

ds2 = ℓ2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dθ2) . (2.30)

Lightcone coordinates in the bulk are similarly defined as x± = τ ± θ. The AdS boundary
is located at ρ → ∞.

The bulk modular Hamiltonian can be found by extending the CKV’s of the causal
diamond in the boundary to the bulk. In fact, the conformal algebra satisfied by (2.19)
corresponds to the algebra satisfied by the Killing vectors (KVs) of AdS3. The CKV in
the CFT2 is therefore the boundary value of the full bulk KV in AdS3 that preserves the
entanglement wedge.

– 8 –
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With a slight abuse of notation, we again write K = 2πζ. K splits into K(+) +K(−)
which are given by

K(±) = 2π
(
s±1 J

±
1 + s±0 J

±
0 + s±−1J

±
−1

)
, (2.31)

with
J±

1 = eix± coth(2ρ)∂± − eix± csch(2ρ)∂∓ − i

2e
ix±

∂ρ ,

J±
0 = ∂± ,

J±
−1 = 1

2e
−ix±(coth ρ+ tanh ρ)∂± − e−ix± csch(2ρ)∂∓ + i

2e
−ix±

∂ρ .

(2.32)

It is straightforward to check that J±
N are KVs of AdS3 and satisfy

lim
ρ→∞

J±
N

∣∣∣∣
∂ρ=0

= L±
N . (2.33)

We want the KV to preserve the entanglement wedge, thus its norm needs to vanish at
the horizons. This requirement is equivalent to the requirement that the CKV in the CFT2
preserves the causal diamond, so the coefficients are again given by (2.21).

Again defining the generators of modular transport Va± , Vb± as in (2.23), but with K as
in (2.31), as before we find the modular transport equations (2.24). Additionally we can use
the same basis (2.28) to express a general infinitesimal deformation. Similarly, the modular
curvature components are given by (2.26). Explicitly:2

Ra+b+ = [Va+ , Vb+ ] = + 1
2 sin2

[
a+−b+

2

]K(+)
2π ,

Ra−b− = [Va− , Vb− ] = − 1
2 sin2

[
a−−b−

2

]K(−)
2π .

(2.34)

Now, K(±) refers to (2.31).
As before, choosing the diagonal geodesic (a±, b±) = (0,±π), the entangling surface in

the bulk is given by the diagonal geodesic that connects these two endpoints (as we displayed
in figure 3). For this geodesic, the generators in our basis take the form

Vλ1 = ∂+ + ∂− ,

Vλ2 = ∂+ − ∂− ,

Vλ3 = (1− cosx− csch(2ρ))∂+ + cosx− coth(2ρ)∂− + 1
2 sin x−∂ρ ,

Vλ4 = cosx+ coth(2ρ)∂+ + (1− cosx+ csch(2ρ))∂− + 1
2 sin x+∂ρ .

(2.35)

Relation between modular and Riemann curvature. As explained in [4], the modular
curvature is a probe of the Riemann curvature in the bulk. Since the modular Hamiltonian
implements a boost isometry that preserves the entanglement wedge (at least near its edge),

2As explained in the beginning of section 2.2, the area operator does not appear in bulk modular flow and
similarly is absent from the modular curvature.
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it is perhaps unsurprising that we can probe the bulk geometry by studying how this
Hamiltonian changes under modular transport.

For modular Hamiltonians that reduce to a boost only near the edge of the entanglement
wedge, it is convenient to set up a Riemann normal coordinate system in which the metric
is flat at the boundary of the entanglement wedge. In this coordinate system, [14] derived
the relation between the modular curvature and the Riemann tensor.3 We demonstrate
this method to obtain the Riemann curvature for three-dimensional theories using Fermi
normal coordinates in appendix A.

In this paper we will also consider modular flow for subregions that are not attached
to the boundary. For a single subregion that is not attached to the boundary the modular
Hamiltonian is not given by a Killing vector, but a conformal Killing vector.

We will only study situations where the modular Hamiltonian is an exact (conformal)
Killing vector. In this case, the relation between the modular curvature and Riemann curvature
follows more directly. It is no longer necessary to make use of a Riemann normal coordinate
system. Accordingly, we define the modular Hamiltonian K of the entanglement wedge
associated to a CFT2 interval with endpoints (a±, b±). We then consider an infinitesimal
displacement of the entanglement wedge in the + direction described by the generators Va+

and Vb+ . For convenience, we define

K ′
a+ ≡ 1

(2π)2∂a+K = 1
(2π)2 [Va+ ,K] ,

K ′
b+ ≡ 1

(2π)2∂b+K = 1
(2π)2 [Vb+ ,K] .

(2.36)

Absorbing the factors of 2π here results in a nice looking expression for the modular cur-
vature below.

Using the definition of the generators (2.24), we can express

Va+ = [K ′
a+ ,K] , Vb+ = −[K ′

b+ ,K] . (2.37)

By working out the commutators, the modular curvature can now be expressed as

(Ra+b+)µ = [Va+ , Vb+ ]µ = V ν
a+

(
2R µ

σνρ K ′[ρ
b+K

σ] +∇νK
′ρ
b+∇ρK

µ −∇νK
ρ∇ρK

′µ
b+

)
−∇νV

µ
a+V

ν
b+ .

(2.38)

The appearance of the Riemann tensor is a direct consequence of the fact that K and K ′
b+

are Killing vectors. This follows from the fact that for a general Killing vector Y we can
use the identity ∇µ∇νY

ρ = R ρ
σµν Y

σ, assuming the metric is torsion-free. This expression
therefore gives a relation between the modular curvature and bulk Riemann curvature in
addition to terms involving the (change of the) modular Hamiltonian.

Later on, we will study modular transport for an interval in a 1 + 1-dimensional gravita-
tional theory. In that case, the modular Hamiltonian is given by a CKV. For that purpose,

3See (3.20) of [14]. It should be noted however that this expression contains a typo that we correct in
appendix A.
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we also denote the relation when instead of Killing vectors, we only have CKVs. In that case
we obtain an additional term Ωµ (in d + 1-spacetime dimensions):

[Va+ , Vb+ ]µ = V ν
a+

(
2R µ

σνρ K ′[ρ
b+K

σ] +∇νK
′ρ
b+∇ρK

µ −∇νK
ρ∇ρK

′µ
b+

)
−∇νV

µ
a+V

ν
b+ + 1

d+ 1Ω
µ .

(2.39)

Ωµ is defined as

Ωµ = V ν
a+
[
Kρ∇µ(∇ ·K ′

b+)gνρ −Kρ∇ρ(∇ ·K ′
b+)g µ

ν −Kρ∇ν(∇ ·K ′
b+)g µ

ρ −
(
K ↔ K ′

b+
) ]
,

(2.40)
and vanishes when K and K ′

b+ are Killing vectors.4

This finishes our discussion of modular transport in the context of AdS3/CFT2 and the
relation between the modular curvature and the Riemann curvature. Next, we specialize to a
(1+1)-dimensional bulk and consider modular transport in JT gravity.

3 Modular transport in JT gravity

Now that we have seen how modular transport probes bulk curvature, we shift our focus
to two-dimensional JT gravity. This choice has the advantage that we can incorporate the
effect of quantum extremal surfaces and see — in the presence of an island — how modular
transport probes geometry and entanglement of disconnected entanglement wedges. In
certain simplifying limits, modular flow becomes local and the modular curvature is directly
related to the Riemann curvature of the quantum extremal surface. However, in general the
‘Quantum Extremal Modular Curvature’ is a non-geometric object that captures non-local
effects in the entanglement structure.

First, we start with a review of JT gravity.

3.1 JT gravity on AdS2

We now review a two-dimensional black hole solution in JT gravity. We start with the action
of JT gravity on an AdS2 background:

I = 1
16πG2

∫
d2x

√
−g

(
ϕR+ 2

ℓ2
(ϕ− ϕ0)

)
+ ICFT + Ibdy . (3.1)

Here ICFT corresponds to a coupling to a CFT and Ibdy contains a boundary term. The
equations of motion are

−∇µ∇νϕ+ gµν□ϕ− (ϕ− ϕ0)
ℓ2

gµν − 8πG2Tµν = 0 ,

R+ 2/ℓ2 = 0 .
(3.2)

4To derive this relation, we used the following identity for a CKV ζ, which can be derived from the definition
of curvature from parallel transport of a vector field combined with the algebraic Bianchi identity:

∇µ∇νζρ = R ρ
σµν ζσ − 1

d

(
∇ρ(∇ · ζ)gµν −∇ν(∇ · ζ)g ρ

µ −∇µ(∇ · ζ)g ρ
ν

)
, (2.41)

again assuming the metric is torsion-free.
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If we are interested in solutions where the dilaton exhibits a symmetry, then it is easiest to work
in coordinates that preserve the same symmetry. In our case, we focus on time-independent
solutions so it is appropriate to consider the AdS2 metric in Poincaré coordinates:

ds2 = ℓ2

x2 (−dt2 + dx2) . (3.3)

We take x ≤ 0 with x = 0 the AdS boundary. With this choice the non-gravitating bath
region that we couple to is located at x > 0. This metric has a timelike Killing vector
and imposing the dilaton to be invariant under this symmetry, the vacuum solution (i.e.
Tµν = 0) for the dilaton is given by

ϕ = ϕ0 −
ϕr

x
, (3.4)

where ϕ0 and ϕr are constants.
Because left-movers and right-movers decouple in two dimensions it is convenient to

introduce Kruskal coordinates

x± = t± x , (3.5)

in which the metric and dilaton solution become

ds2 = − 4ℓ2

(x+ − x−)2dx
+dx− ,

ϕ = ϕ0 −
2ϕr

x+ − x−
.

(3.6)

Now we allow the stress tensor to be nonzero. First, we treat this matter coupling
classically. Conformal invariance then implies that the trace of the stress tensor vanishes. In
this case, the equations of motion can be integrated to obtain the general solution [33, 34]

ϕ = ϕ0 −
2ϕr

x+ − x−
+ 8πG2 (I+ − I−) . (3.7)

Here we defined the two functions

I+ =
∫ x+

x+
0

ds(x
+ − s)(x− − s)
(x+ − x−) T++(s) ,

I− =
∫ x−

x−
0

ds(x
+ − s)(x− − s)
(x+ − x−) T−−(s) ,

(3.8)

where the location x0 with coordinates (x+
0 , x

−
0 ) is a reference point. Adjusting this point

simply changes the constant ϕ0 in (3.7).
Treating the matter sector quantum mechanically, the trace of the stress tensor no longer

vanishes. Instead, for a metric written in conformal gauge,

ds2 = −e2ω(x+,x−)dx+dx− , (3.9)

the conformal anomaly leads to a non-zero off-diagonal component on curved backgrounds:

⟨T+−⟩ = − c

12π∂+∂−ω . (3.10)
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Using the conformal anomaly as input, the diagonal components can be found by integrating
the continuity equation ∇µT

µν = 0 [35]

⟨T±±⟩ = − c

12π
(
∂2
±ω − (∂±ω)2

)
+ : T±± : . (3.11)

The left-hand side is the covariant stress tensor that appears on the right-hand side of the
semi-classical equations of motion and the second term on the right denotes the normal-
ordered stress tensor.5 This quantity depends on the choice of state and corresponds to left
and right-moving radiation as measured by a local observer.

Using the AdS metric (3.6) we see that

⟨T±±⟩ =: T±± : ,

⟨T±∓⟩ =
c

12π(x+ − x−)2 .
(3.12)

Taking into account the conformal anomaly the dilaton solution is just modified by a constant:

ϕ = ϕ0 −
2ϕr

x+ − x−
+ 8πG2

(
I+ − I− + c

24π

)
. (3.13)

Extremal black hole solution. We now couple this JT gravity solution to a non-
gravitational Minkowski region described by metric ds2 = −dx+dx−. For simplicity, we
consider the CFT to be at zero temperature, which sets : T±± := 0 and is appropriate to
describe an extremal black hole [37]. We then consider an interval R whose endpoints we
denote with [ai, bi], where i = (1, 2). In Kruskal coordinates a point denoted by ai or bi is
shorthand for x± = a±i or x± = b±i . When we are working at a t = 0 slice, we write x = ai

or x = bi to denote the endpoints and drop the ± superscript. Note that a1 and b1 are
negative as they are located in the AdS2 region.

We now consider an interval R at t = 0 given by x ∈ [a2, b2] that is entangled with the bulk
gravity region. To compute the fine-grained entropy of R, we use the island formula [22, 23],

S(R) = min, exta1,b1

(Area(∂I)
4G2

+ SvN(R ∪ I)
)
. (3.14)

Here we allow for an island region I located at t = 0 and x ∈ [a1, b1] whose endpoints we
extremize. This setup is depicted in figure 4.

The von Neumann entropy of n disjoint intervals in a CFT consisting of free fermions in
flat space was derived in [24]. In our case, we have two intervals; one is located in the flat
bath region and the other in the AdS region. The resulting entropy can be obtained by a
Weyl transformation of the flat space result. For two intervals x = [a1, b1] and x = [a2, b2]
the flat space entropy is [24]6

Sflat
vN = c

3 log
[(b1 − a1)(a2 − b1)(b2 − a1)(b2 − a2)

(a2 − a1)(b2 − b1)ϵ2
]
. (3.15)

5Strictly speaking, normal ordering is only defined for free theories which is the case considered in this
paper. More generally, one could replace : T±± : by a function t±(x±) that parametrizes the flux seen by a
local observer [36].

6Note that (63) of [24] has a minor typo. The first sum on the second line should read:
∑

ij
log |bi − aj |.
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x = 0

a±1 I b±1 a±2 R b±2

x+x− t

x

Figure 4. AdS2 region (shaded gray) at x ≤ 0 coupled to a flat non-gravitational bath region at
x > 0. Two intervals are located at t = 0 with x ∈ [a1, b1] and x ∈ [a2, b2]. The two diamonds indicate
the domain of dependence of the two intervals.

Transforming this result such that the interval x = [a1, b1] is located on a background with
non-trivial conformal factor we write the result in terms of the cross ratio

z = (b2 − a2)(b1 − a1)
(b2 − b1)(a2 − a1)

, (3.16)

in two different ways:

SvN(R ∪ I) = c

3 log

 (b2 − a2)(b1 − a1)
ϵ2 exp

(
−1

2 [ω(a1) + ω(b1)]
)
+ c

3 log(1− z) ,

= c

3 log

 (a2 − b1)(b2 − a1)
ϵ2 exp

(
−1

2 [ω(a1) + ω(b1)]
)
+ c

3 log z .

(3.17)

The first line makes the limit z → 0 easy to see, while the second does the same for the
limit z → 1. Here eω(x) is the conformal factor of the metric which in Poincaré coordinates
in AdS2 takes the form

eω(x) = − ℓ

x
. (3.18)

This expression for the von Neumann entropy for two intervals is specific to the free fermion
theory and only takes a universal form in particular limits.

One such limit is the OPE limit z → 1 where the von Neumann entropy reduces to
the sum of the individual entropies of the complementary regions. Alternatively, we can
consider a limit of large central charge where the entropy takes a similar form depending
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whether z ≶ 1
2 [38]:

SvN(R ∪ I) =


c
3 log

[
(b2−a2)(b1−a1)

ϵ2 exp(− 1
2 [ω(a1)+ω(b1)])

]
(z < 1

2)

c
3 log

[
(a2−b1)(b2−a1)

ϵ2 exp(− 1
2 [ω(a1)+ω(b1)])

]
(z > 1

2) .
(3.19)

Corrections to this large central charge result have been studied in [39]. A non-trivial island
only contributes for the case z > 1/2 [40]. Thus, working in this regime, the fine-grained
entropy is given by

S(R) = min,exta1,b1

ϕ(a1) + ϕ(b1)
4G2

+ c

3 log

 (a2 − b1)(b2 − a1)
ϵ2 exp

(
−1

2 [ω(a1) + ω(b1)]
)
 . (3.20)

Extremizing over (a1, b1) we find that there is only one (consistent) solution in which the
entropy is real and the island located in the bulk region.

The location of the quantum extremal surface expressed in terms of the length scale
L := 3ϕr/(2cG2) is

a1 = −1
2

(
b2 + L+

√
b2

2 + 6b2L+ L2
)
,

b1 = −1
2

(
a2 + L+

√
a2

2 + 6a2L+ L2
)
.

(3.21)

As usual in JT gravity, L measures the deviation away from pure AdS2.
Note that when the interval in the bulk region includes the ‘natural length’ L, we can

take the limit a2 ≪ L ≪ b2, where the island simplifies to

a1 = −b2 , b1 = −L . (3.22)

In addition to the non-trivial QES there is always a trivial (vanishing) island. In that
case, the fine-grained entropy is just given by SvN(R). The fine-grained entropy is given
by the minimum of these two contributions:

S(R) = min (SvN(R), SQES(R)) , (3.23)

with
SvN(R) =

c

3 log
[
b2 − a2

ϵ

]
,

SQES(R) =
ϕ0 + ϕr/L

2G2
+ ϕr

4G2L
log

[
4b2ℓ

2L

ϵ4

]
.

(3.24)

One peculiar feature of this two-dimensional model of an extremal black hole is that its island
lies outside the black hole horizon [37]. Consequently, the modular curvature we will study
later also only probes the region outside the horizon. However, for a generic model of an
evaporating black hole in JT gravity, such as originally studied in [22, 23], the location of
the island is behind an horizon. Applying our method to these (more complicated) models
should yield (geometrical) information behind horizons.

Now that we have reviewed JT gravity including its islands, we will next construct the
associated modular Hamiltonian. We will perform modular transport in two cases; both
for a single interval and for the two-interval island case.
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x = 0

a±

t = a−

t = a+

Figure 5. Two-dimensional analogue of an RT surface, which is a single point. From this point we
shoot two lightrays to define a causal diamond. This defines a time interval on the AdS boundary.

3.2 Modular transport for a single interval

Similar to holography in higher dimensions, in JT gravity we can consider the bulk AdS2
dual of the boundary modular Hamiltonian defined in the CFT1. The relation between
the bulk and boundary modular Hamiltonians is given by a two-dimensional version of the
JLMS formula [32]:

Hbdy = Â

4G2
+Hbulk +O(G2) . (3.25)

Here Â is the area operator and Hbulk is the bulk modular Hamiltonian which acts on
the matter fields.

To get some intuition for this expression, we consider the two-dimensional analogue of
an RT surface, which is a single point that we denote by x± = a±. From this point, we
shoot lightrays to the boundary to form a causal diamond, as in figure 5. Taking the state
of the two-dimensional bulk matter to be the vacuum, i.e. : T±± := 0, the bulk modular
Hamiltonian acts as the boost Killing vector that leaves the diamond invariant. We note
that in this section we do not impose that the interval defining the diamond lies on a t = 0
slice. The vector field preserving the diamond is given by

ζµ∂µ = (a+ − x+)(a− − x+)
a+ − a−

∂+ + (a+ − x−)(a− − x−)
a+ − a−

∂− . (3.26)

Thus, using (2.4), the bulk modular Hamiltonian takes the form

Hbulk =2π
(∫ 1

2 (a++a−)

a+
ds(a

+−s)(a−−s)
a+−a−

T++(s)−
∫ 1

2 (a++a−)

a−
ds(a

+−s)(a−−s)
a+−a−

T−−(s)
)
,

(3.27)
which we recognize as the part of the dilaton solution coupled to the CFT2 evaluated at
(x+, x−) = (a+, a−). We can now make the following identification [41, 42]:

Hbdy = ϕ̂

4G2
, (3.28)
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which relates

⟨Â⟩ = ϕ0 −
2ϕr

a+ − a−
,

⟨Hbulk⟩ = 2π (I+ − I−) .
(3.29)

Here we dropped the constant piece given by the central charge, which will drop out of the
generators of modular transport. The area term is the Noether charge associated with the
Killing vector that preserves the diamond, evaluated at the bulk point (see e.g. appendix
C of [43]). Thus, just as in higher-dimensional cases, boundary modular flow equals bulk
modular flow.

We are now interested in studying the behavior of the modular Hamiltonian in the
presence of an island. As before, we couple the AdS2 bulk to a non-gravitating bath region,
see figure 4. When we consider an interval in the bath in the presence of an island, the
boundary modular Hamiltonian is given by an expression similar to the island formula for
the fine-grained entropy [25]:

Hbdy = Â(∂I)
4G2

+Hbulk(A ∪ I) . (3.30)

A remarkable property of this island generalization of the JLMS formula is that the left-hand
side is proposed to be the exact fine-grained modular Hamiltonian associated to the quantum
state of the boundary theory, but the right-hand side is an expression evaluated in the semi-
classical gravity theory. Apparently, semi-classical gravity has access to some fine-grained
information of the full theory. Accordingly, we can evaluate the modular Hamiltonian, just
by knowing its form in the semi-classical theory. As before, the area operator defined on
∂I commutes with operators defined on A ∪ I and the area term drops out of bulk modular
flow and the modular curvature.

Evaluated on a trivial island (I = ∅), (3.30) reduces to the matter modular Hamiltonian
in the non-gravitational bath. In the presence of a non-trivial island, we instead have to
understand the modular Hamiltonian of two disjoint intervals. In general, this two-interval
modular Hamiltonian is a complicated non-local expression whose closed form is only known
in special cases. In section 3.3 we therefore consider a matter sector which consists of free
massless fermions, for which the modular Hamiltonian has been derived in [24]. Before doing
so, we first consider a single interval in the bulk and explicitly show how (bulk) modular
transport probes the Riemann curvature.

Modular curvature of a bulk interval. We now fix an interval in the bulk that defines
a causal diamond. We then consider the modular Hamiltonian associated to this diamond
and show how its modular curvature is related to the Riemann curvature. We stress that
this is a toy example, because we define the bulk diamond just by fixing its endpoints in
a gravitational theory. This is not diffeomorphism invariant and the resulting expressions
might therefore be gauge dependent. Still, this will be an instructive example because the
resulting expressions will naturally translate to the situation where we consider an island
which we do define in a diff-invariant manner by specifying an interval in the bath region.

Keeping in mind this subtlety, we now show how the bulk Riemann curvature can be
obtained from modular transport when we consider a causal diamond in the bulk. The
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x = 0

a± b±

Figure 6. Causal diamond in the bulk associated to the interval x± = [a±, b±].

endpoints of the interval specifying the causal diamond are given by x± = [a±, b±], see
figure 6. In vacuum, the matter modular Hamiltonian is given by the expression (2.4) where
ζµ is the conformal Killing vector that preserves the diamond, i.e.

ζµ∂µ = (a+ − x+)(b+ − x+)
a+ − b+ ∂+ − (a− − x−)(b− − x−)

a− − b−
∂− . (3.31)

We note that the KV (3.26) that preserves the half diamond attached to the boundary is
a special case of this general CKV evaluated at b± = a∓. (3.31) is the conformal Killing
vector for any two-dimensional metric written in conformal gauge:

ds2 = −e2ω(x+,x−)dx+dx− . (3.32)

We will now show how the bulk modular Hamiltonian can be used to probe the curvature.
As before, we choose to represent the modular Hamiltonian directly by the conformal Killing
vector, i.e.

K = 2πζµ∂µ . (3.33)

We split this vector into a left-moving and right-moving piece:

K = K(+) +K(−) . (3.34)

Focusing on the + sector the generators of modular transport are now given by

Va+ = + 1
2π∂a+K ,

Vb+ = − 1
2π∂b+K ,

(3.35)

with similar expressions for Va− , Vb− . They obey the expected commutation relations of
modular scrambling modes [14],

[Va+ ,K] = +2π Va+ , [Vb+ ,K] = −2π Vb+ . (3.36)

The modular curvature is now computed to be

Ra+b+ := [Va+ , Vb+ ] = 2
(a+ − b+)2

(
K(+)
2π

)
. (3.37)
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To relate the modular curvature to the Riemann curvature, we can use (2.39). Be-
cause (3.31) is the CKV of a causal diamond in any two-dimensional metric, this gives a
result that is valid in general. As before, we express the change in the modular Hamiltonian
in terms of K ′

a+ , K ′
b+ defined as:

K ′
a+ = 1

(2π)2 [Va+ ,K] , K ′
b+ = 1

(2π)2 [Vb+ ,K] . (3.38)

Evaluating the right-hand side of (2.39) we find that this expression simplifies and reduces to

R+
a+b+ = V +

a+R
+

−++ K ′+
b+K

− −∇+V
+

a+V
+

b+ + 1
2Ω

+ . (3.39)

This equation relates the modular curvature of a single interval in any two-dimensional
spacetime to its Riemann curvature.

We will now show how the presence of an island modifies the modular curvature.

3.3 Modular transport in the presence of an island

We will now study modular transport in the presence of a non-trivial quantum extremal
surface. Before doing so, let us first reiterate the general idea. We consider a gravitating
two-dimensional AdS space glued to a non-gravitating flat ‘bath’ region. Using modular
transport in the bath region we want to understand if we can extract the bulk Riemann
curvature associated to an island region, using the JLMS relation including the possibility
of an island (3.30).

Similar to the island formula that computes the fine-grained entropy of Hawking radia-
tion, (3.30) states that the exact modular Hamiltonian of a subregion of the bath (which is
unknown in general) equals a simpler semi-classical expression involving the semi-classical bulk
modular Hamiltonian of two disjoint intervals. For generic matter, the modular Hamiltonian
of disjoint intervals is unknown. However, for free fermion theories, [24] derived an explicit
formula. Consequently, we will now restrict to this case.

Modular Hamiltonian of disjoint intervals. The modular Hamiltonian of free fermions
on n disjoint intervals in 1 + 1-dimensional flat space was derived in [24]. This model has
been studied in the context of quantum extremal surfaces in [25] and modular transport
in [26]. The latter reference makes use of an isomorphism — referred to as a multi-local
symmetry — to transform the complicated non-local expression of the modular Hamiltonian
of two disjoint intervals into a tractable local expression for two fermions on a half line
where modular flow acts as a boost.

We focus on two intervals and label the endpoints as indicated in figure 7. We first
consider the non-gravitational case where these two intervals are located on flat space. As we
will argue, the generalization to AdS2 is straightforward; for our purpose of studying modular
flow, it is actually essentially unmodified from the flat space case. The modular Hamiltonian
splits into two pieces: H = H(+) +H(−). In two dimensions the left and right-moving sector
completely decouple so it suffices to just consider one sector. We focus on the x+ sector, and
instead of keeping track of the superscript, we just write x. We then have [24, 26]

H(+) = 2π
∫

dx
(
hT (x)T (x) + hC(x)ψ†(x)ψ(x̃)

)
. (3.40)
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x+

−x−

a+
1

a−1

b+
1

b−1

a+
2

b+
2

a−2

b−2

Figure 7. Two disjoint intervals whose endpoints are labeled by lightcone coordinates.

The coefficients of the operators and the map x̃(x) are

hT (x) = (∂xy(x))−1 ,

hC(x) =
∂xx̃

x− x̃
hT (x) ,

y(x) = log
[
−(x− a1)(x− a2)
(x− b1)(x− b2)

]
,

x̃(x) = a1a2(x− b1 − b2)− b1b2(x− a1 − a2)
(a1 + a2 − b1 − b2)x− a1a2 + b1b2

,

(3.41)

and the fermion stress tensor is given by

T (x) = 1
2
(
∂xψ

†ψ − ψ†∂xψ
)
. (3.42)

Since we are focusing on the + sector, the coefficients ai, bi refer to the + components.
The map x̃(x) is quasi-local in the sense that it exchanges points in the two intervals. The
second term in the modular Hamiltonian therefore couples fermions non-locally, but point
wise. This fact was used in [25] to understand how an operator in an island region can be
mapped to a bath region under modular flow.7

To highlight the difference between the local modular Hamiltonian for a single interval
and its non-locality for disjoint intervals, we display the evolution of the local fermion
operators under modular flow. For this purpose it is useful to consider the function y(x)
defined in (3.41). This function runs from [−∞,+∞] in each interval [a1, b1] and [a2, b2]. A
value of y(x) corresponds to one point in each interval, which we denote by xi(y). We can
then define a fermion operator in each interval as

ψ̃i(y) :=
√
dxi

dy
ψ(xi(y)) . (3.43)

7The reference [25] uses different conventions to label the intervals. The relation between our and their
conventions is given by (a+

1,2, b+
1,2)us → (a+

1,2, b+
1,2)them and (a−

1,2, b−1,2)us → (b−2,1, a−
2,1)them. Thus, for our focus

on the + sector, the two conventions coincide.
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Figure 8. Behavior of the position of the operators ψ̃i(y) under modular flow. The blue line
corresponds to the modular flow trajectory and the orange trajectory corresponds to the CKV of each
diamond. We see that, in general, modular flow in the bulk of the diamond does not coincide with the
flow of the CKV of the diamond. Close to the edge of the diamond, however, they do coincide. We
took [a1, b1] = [−0.01, 0.99], [a2, b2] = [1.1, 2.1] and y(0) = −1.

Under modular flow, the positions of the operators evolve with the modular time parameter
s as y(s) = y(0) + 2πs and the operators transform as [24]

ψi(y(s)) = R j
i ψj(y(0)) . (3.44)

Here R is a rotation matrix

R j
i =

(
cos θ(s) − sin θ(s)
sin θ(s) cos θ(s)

)
, (3.45)

with angle

θ(s) =
[
arctan

(
(b1 + b2 − a1 − a2)x1(s) + (a1a2 − b1b2)√

(b1 − a1)(a2 − b1)(b2 − a1)(b2 − a2)

)
− (s = 0)

]
. (3.46)

Specifying an initial condition y(0), this relation can be inverted to obtain the position of
the operators under modular flow.

Fixing the length of both diamonds to be equal, we demonstrate the behavior of modular
flow in three illustrative examples in figures 8, 9 and 10. We notice that for diamonds that
are far away from other, modular flow follows the trajectory of the CKV of the diamond.
Indeed, this is also easy to see analytically. In the limit where the cross-ratio z → 0, the
non-local piece of the modular Hamiltonian vanishes. One way of taking this limit is by
shrinking one of the intervals to zero size, let’s say a2 → b2. The modular Hamiltonian then
becomes the CKV of the remaining interval:

lim
a2→b2

hT (x) =
(a1 − x)(b1 − x)

a1 − b1
,

lim
a2→b2

hC(x) = 0 .
(3.47)

In addition, the figures also make it clear that modular flow follows the trajectory of a
CKV when we consider an operator that is close to the edge of the diamond. This behavior
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Figure 9. Behavior of the position of the operators ψ̃i(y) under modular flow. The blue line
corresponds to the modular flow trajectory and the orange trajectory corresponds to the CKV of each
diamond. If we consider operators close to the edge of the diamond, the modular flow trajectory coin-
cides with the CKV of the diamond. We took [a1, b1] = [−0.01, 0.99], [a2, b2] = [1.1, 2.1] and y(0) = 0.

Figure 10. Behavior of the position of the operators ψ̃i(y) under modular flow. We note that
modular flow couples points at different values y(x) in each interval. The blue line corresponds to the
modular flow trajectory and the orange trajectory corresponds to the CKV of each diamond. When
the diamonds are far away from each other the modular flow trajectory coincides with the CKV of the
diamond. We took [a1, b1] = [−0.01, 0.99], [a2, b2] = [2, 3] and y(0) = −1.

seems similar to the fact that the modular Hamiltonian of excited states reduces to the
boost Killing vector close to the boundary, although here there still is a non-local piece.
Thus, the operators ψ̃1(y) and ψ̃2(y) still mix but their trajectories are described by the
CKV of their respective diamonds.

In principle, one can obtain the generators of modular transport by varying (3.40).
However, away from a simplifying limit where the non-local piece vanishes, this procedure
quickly becomes unwieldy when studying modular transport. For this reason, in cases
where the non-local contribution cannot be dropped, it is more convenient to make use
of the multi-local symmetry utilized in [26] to obtain a more tractable expression for the
modular Hamiltonian that is local. The map to a local modular Hamiltonian involves an
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isomorphism β that maps two species of fermion Ψi=1,2 on a half-line I = [0,∞] to a single
fermion ψ on two disjoint intervals I1 ∪ I2 = [a1, b1]∪ [a2, b2]. This map involves a coordinate
transformation to ‘X-space’:8

X(x) = −(x− a1)(x− a2)
(x− b1)(x− b2)

. (3.48)

It has two inverses x1,2(X), which send the half-line [0,∞] to either the interval [a1, b1] or
[a2, b2]. For more details regarding this multi-local symmetry we refer the reader to [26, 44].
Here we just note that the map β acts on fermions in X-space as:

β[Ψi(X)] =
∑

j=1,2
Uij

√
∂Xxj(X)ψ(xj(X)) ,

β[Ψ†
i (X)] =

∑
j=1,2

Uij

√
∂Xxj(X)ψ†(xj(X)) ,

(3.49)

where U = eϵΘ(X) is an orthogonal matrix. The parameter Θ(X) is defined as

Θ(X) =
∫ X

dY
√
∂Y x1(Y )∂Y x2(Y )
x1(Y )− x2(Y ) , (3.50)

and implements a gauge transformation that introduces a monodromy around the branch
points of the map X(x).

To explicitly evaluate the action of the map, it will be useful to expand Uij = δij +
ϵijΘ(x) + . . . , where ϵij is the Levi-Civita symbol. The inverse map β−1 acts on H(+) as

β−1 ◦H(+) = 2π
∫

dXX (T11(X) + T22(X)) . (3.51)

We see that in X-space the modular Hamiltonian simply acts as a boost on the two fermions
defined in Rindler space. The stress tensors of the two fermions are given by

Tij(X) = 1
2
(
∂XΨ†

i (X)Ψj(X)−Ψ†
i (X)∂XΨj(X)

)
. (3.52)

Varying (3.51) gives a more tractable way of obtaining the generators of modular transport.

Modular transport with islands. The expressions for the modular Hamiltonian and
modular transport that we just presented are valid on flat space. However, our setup of
interest consists of one (bath) interval located on flat space and one on AdS2. Nonetheless,
because we consider the fermion in the vacuum state, i.e. : T±± : = 0, we can see from (3.10)
and (3.11) that the only difference between the stress tensor on flat space and AdS2 is
the conformal anomaly. This contribution can be safely dropped to study the dynamics of
the modular Hamiltonian, such that we can readily apply the expression for the modular
Hamiltonian on flat space to our situation of interest.

Now we will take some interesting limits. We first evaluate the modular Hamiltonian
on the location of the island, given by (3.21). Working in the limit a2/L≪ 1 and b2/L≫ 1,
keeping L fixed, the location of the island is simply given by (a1, b1) = (−b2,−L). Since

8We refer to the representation (3.40) as x-space, which is the same as the z-space in [26].
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we are working with a CFT in the vacuum, we can equivalently describe this situation in
terms of the complement of the two intervals which, in this limit, is just a single interval. We
then expect the modular Hamiltonian to reduce to the single interval result, i.e. it should
implement a boost with respect to the CKV of the causal diamond defined by the interval
x = [−L, 0]. Indeed, taking this limit we obtain

hT (x)QES = x(L+ x)
L

, (3.53)

which corresponds to minus the + component of the CKV of the diamond associated to the
interval x = [−L, 0]. As anticipated, this interval is the complement of the [a1, b1] ∪ [a2, b2]
after imposing the QES condition and taking the limit a2/L ≪ 1 and b2/L ≫ 1.

Because in this limit the modular Hamiltonian reduces to the CKV of the diamond
x = [−L, 0], we expect to be able to still extract the Riemann curvature using modular
transport. This expectation is essentially true, up to a subtlety involving the non-local
contribution. Taking the same limit in the non-local coefficient, we obtain

hC(x)QES = 2x(L+ x)
L(L+ 2x) . (3.54)

Perhaps surprisingly, this term is non-zero. One should be careful however in interpreting
this result, as the map x̃(x) becomes ill-defined in this limit as one interval has reduced to a
point. Thus, the non-local coupling ψ†(x)ψ(x̃) needs to be reinterpreted. Said differently,
considering the modular Hamiltonian of a single interval and taking the single-interval limit of
the two-interval modular Hamiltonian do not commute. Later, we will show that in X-space
the single interval limit is regular and non-local contributions to modular transport vanish.
For now, we will therefore simply ignore the non-local contribution.

After varying the modular Hamiltonian (3.40), [26] obtained the generators of modular
transport. As mentioned, for now we only keep the local terms.9 The complete generators
(including non-local terms) are displayed in appendix B.

As in the AdS3/CFT2 case, we define a left-moving and right-moving piece of the (local)
modular Hamiltonian as K = K(+) + K(−) with

K(±) = ±2π hT (x±)∂± . (3.55)

In the single interval limit we are considering the non-zero generators are (where we dropped
the + superscript on b1, a2)

Vb1 = − 1
2π∂b1K(+) ,

Va2 = + 1
2π∂a2K(+) .

(3.56)

We now obtain the expected commutation relations

[Vb1 ,K] = ∂b1K , [Va2 ,K] = ∂a2K . (3.57)
9This amounts to only keeping the first term proportional to T (x) in (B.1).
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The only non-zero component of the modular curvature is given by

Ra2b1 = 2
L2hT (x) . (3.58)

We recognize this expression as 2/(2πL2) times the modular Hamiltonian. The coefficient is
indeed 2/(b1 − a2)2 evaluated on the island, as expected. Using the relation (3.39) we can
now relate this modular curvature to the Riemann curvature.

Due to the generalization of the JLMS relation to include a possible island (see (3.30)), we
see that it is possible to reconstruct the Riemann curvature far away from the bath region by
acting with the exact generator of modular transport. Concretely, let us define the generator
V Q

a2 in the exact theory. This generator is a complicated operator that (non-perturbatively)
has information about the bulk. To distinguish the modular curvature computed using
the generators V Q

a2 and V Q
b2

from the modular curvature in the semi-classical theory we
refer to any commutator of an exact generator with another generator as the Quantum
Extremal Modular Curvature (QEMC). Knowledge of this operator allows an observer in the
boundary theory to extract geometrical information of islands in the bulk using the QEMC.
Concretely, assuming the presence of an island in the semi-classical theory, V Q

a2 generates
modular transport on the two disjoint intervals:

V Q
a2 = Va2 +

(
∂b1
∂a2

)
Vb1 . (3.59)

Accordingly, in the semi-classical theory, changing the endpoint of the bath interval also
changes the location of the island via the QES condition. In the limit where the semi-
classical generators are local, an observer in the exact theory can now obtain the Riemann
curvature by computing

[Va2 , V
Q

a2 ] =
(
∂b1
∂a2

)
[Va2 , Vb1 ] = (−2)Ra2b1 . (3.60)

Here Ra2b1 is the modular curvature in the semi-classical theory. The factor of (−2) comes
from the Jacobian.

This commutator might look a bit funny, since it involves the same endpoint a2. However,
other commutators involving one exact generator just reduce to their semi-classical values,
i.e. [Va2 , V

Q
b2
] = [Va2 , Vb2 ] and [Vb2 , V

Q
a2 ] = [Vb2 , Va2 ], and don’t probe the bulk region. Using

the relation between the (local) modular curvature and Riemann curvature, i.e. (3.39), we
now see how the QEMC can be used to extract the Riemann curvature from modular flow.
So far, we’ve worked in the limit where the generators of modular transport become local
and saw how we could extract the Riemann curvature. Next, we go beyond this limit and
compute the leading corrections to the geometric modular flow.

Beyond geometric flow. To compute the leading corrections to the geometric limit of the
QEMC considered so far, we will make use of the multi-local symmetry we described before.
This symmetry allows for tractable expressions of the generators of modular transport. To
compute the leading correction to the geometric expression for the modular curvature, we
still consider the same commutator in the presence of an island, i.e.

[Va2 , V
Q

a2 ] =
(
∂b1
∂a2

)
[Va2 , Vb1 ] =

(
∂b1
∂a2

)
Ra2b1 , (3.61)
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but now we consider the generators in X-space. The explicit expressions are given in
appendix B. We then expand to leading order in an expansion of a2/L≪ 1 and b2/L≫ 1.
Writing the commutator of interest in terms of the different zero modes that contribute we have:

[Va2 , V
Q

a2 ] = − 4
L2

[
Q

(1)
22 +

√
L

8b2

(
Q

(0)
21 −Q

(0)
12 + 2

(
Q

(1)
12 +Q

(1)
21 −Q

(2)
21

))]
. (3.62)

The different zero modes are given by

Q
(0)
ij =

∫
dXΨi(X)Ψj(X) ,

Q
(1)
ij =

∫
dXXTij(X) ,

Q
(2)
ij =

∫
dXX2

(
∂XΨ†

i (X)∂XΨj(X)− (i↔ j)
)
.

(3.63)

The first term in the expansion is proportional to just Q(1)
22 and does not involve the fermion Ψ1.

As promised, we now see that — when transformed back to a single interval in x-space — the
first term also has a local interpretation as a boost implemented by a CKV. Explicitly, when
acting with the map β on the zero mode Q(1)

22 to transform back to x-space, the term involving
a derivative of the gauge parameter Θ(X) becomes proportional to the term ψ†(x)ψ(x̃). We
find that Θ′(X) vanishes in the limit a2/L≪ 1 and b2/L≫ 1.10 Thus, the first term in (3.62)
agrees with (3.60). The other terms involving couplings between the different fermions are
non-local in x-space, don’t have a geometric interpretation, and vanish in the limit b2/L→ ∞.

One last interesting question that we want to discuss is what information we obtain
from the QEMC involving two exact generators, i.e. RQ

a2b2
= [V Q

a2 , V
Q

b2
]. With the expressions

for the generators of modular transport in the semi-classical theory, this is easily obtained.
First, let us consider the situation without an island. In this case, there is just a single
interval in the bath and modular flow is completely local. In this case, we obtain the
single-interval result given by

No Island: RQ
a2b2

= Ra2b2 = 2
(a2 − b2)2Q

(1)
11 . (3.64)

This expression is local, since it only involves the fermion Ψ1. We recognize the prefactor as
the coefficient of the modular curvature of a single interval in the bulk.

Now consider the situation with an island present. In that case, we can make use of
the expression of the generators in X-space to find11

RQ
a2b2

= [Va2 , Vb2 ] +
(
∂b1
∂a2

)(
∂a1
∂b2

)
[Vb1 , Va1 ] . (3.65)

The general result looks rather complicated. Expanding for a2/L≪ 1 and b2/L≫ 1 we find
that the leading order term in the expansion vanishes. Because we saw that in this limit
modular flow becomes local in the diamond x = [−L, 0], the vanishing of the leading order

10Using the language of [44], in X-space the non-local coupling is manifest by a coupling of the form
ϵijA+Ψ†

i Ψj , where A+ is a gauge field. In the limit we consider, the gauge field vanishes.
11The commutators [Vai , Vaj ] = [Vbi , Vbj ] = 0.
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term implies that this component of the QEMC contains purely non-local information. The
first non-zero order in the expansion is O(L/b2)3/2. We find

With Island: RQ
a2b2

= − 1√
8b3

2L

(
Q

(0)
12 −Q

(0)
21 − 6

(
Q

(1)
12 +Q

(1)
21

)
+ 2Q(2)

21

)
. (3.66)

Indeed, this term is purely non-local and represents non-geometric information. We therefore
see that RQ

a2b2
only has a local interpretation in the absence of an island and becomes

non-local whenever a non-trivial QES contributes.

4 Discussion

In this paper, we studied modular transport in JT gravity coupled to a non-gravitational
bath in the presence of an island. Due to the non-trivial island, performing modular flow
on this system involves two disjoint intervals: one in the gravitating bulk and one in the
non-gravitating bath. In order to use analytical expressions, we coupled the JT theory to a
two-dimensional free fermion theory for which the exact modular Hamiltonian was derived
in [24]. Using a two-dimensional version of the JLMS formula — including the possibility of
a non-trivial quantum extremal surface — we were able to define the ‘fine-grained’ generators
of modular transport associated to an interval in the non-gravitional bath region. In the
semi-classical theory these generators act on both the bulk and bath interval. We computed
the modular curvature from these generators, which we refer to as the Quantum Extremal
Modular Curvature, or QEMC.

The QEMC is non-local in general, but in a certain simplifying limit reduces to the
known (local) result for a single interval in the bulk. In this limit, the QEMC probes the
bulk Riemann curvature of this interval in a similar fashion as previous studies [4, 14] of the
modular curvature in holography without islands. The upshot of our approach, however, is
that it probes the Riemann curvature in a region that can be far away from the boundary.
Thus, an observer in the bath can use this approach to obtain geometrical information about
far-separated regions, possibly behind horizons.

While we performed our analysis in the context of a low-dimensional model with many
simplifying features in order to have analytical control, we expect this upshot to remain
true more generally: it simply relies on the fact that the location of the island is tied to the
location of the interval in the bath region, by virtue of the QES condition. Thus, performing
transport with respect to the bath interval necessarily results in transport of the island,
which can be used to probe the local curvature in that region. In particular, there is no
obvious obstruction to applying our method to a more complicated model of an evaporating
black holes, such as the one studied in [22, 23], for which the island lies behind a horizon.
Coupling the JT solution to the free fermion model, the modular Hamiltonian is given by
the same expression we studied in this paper.

Although possible in principle, the modular transport protocol we described might be
difficult to perform in practice. An observer would need to be able to compute the fine-grained
generator of modular transport: a complicated and non-perturbative operator. It has a simple
semi-classical bulk interpretation, however, in terms of a non-local generator that acts on
both intervals. The challenge of constructing the fine-grained generator is the same challenge
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hindering an observer who tries to verify that the Hawking radiation of an evaporating black
hole follows a Page curve. Similarly, the fine-grained entropy is a difficult observable to
measure, but has a straightforward interpretation in the semi-classical theory.

Away from a special OPE limit, the QEMC is non-local in the presence of an island and
this reflects the non-local nature of modular flow of disjoint intervals. This is most easily
seen in X-space where the non-local contributions in (3.62) and (3.66) show up as a coupling
between two species of fermions, Ψ1 and Ψ2.

The QEMC therefore has radically different behavior with or without the contribution
of an island. An observer in the bath region could start with a (small) interval whose
entanglement wedge does not include an island and obtain a local curvature. Increasing
the size of the interval, at some point an island will contribute and the QEMC suddenly
becomes non-local. We note that this situation bears resemblance to the suggested breakdown
of semi-classical physics in the presence of islands [27, 28] and it would be interesting to
understand if islands are an avatar for a breakdown of EFT more generally.

One possible way to explore the non-local aspects of the QEMC is by considering the role
of the additional contributing zero modes within the framework of von Neumann algebras.
Ref. [45] considered the implications of a non-modular geometric phases for the algebra type
(especially regards to the existence of a trace functional), and the reformulation of modular
Berry transport in the language of von Neumann algebras will be explored in [46]. Perhaps
this language can suggest a semiclassical bulk interpretation for the non-local contributions
to the QEMC, along the lines of [47]. Another potential approach is to make use of the
relation between modular transport and kinematic space. For single intervals in a holographic
CFT, the modular curvature equals the Riemann curvature of kinematic space. Defining
kinematic space in the presence of a QES, something considered in [48], can perhaps be
instructive to better understand the QEMC.

Finally, although we only explicitly studied the QEMC for one JT gravity model on an
AdS2 background, our approach generalizes to non-AdS spacetimes as well. The assumption
of our computation was the JLMS relation and did not necessarily require AdS holography.
One particular interesting application would be to study modular transport in de Sitter space,
similar to studies of the entanglement entropy in cosmological spacetimes [49–64].
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A Riemann curvature from Fermi normal coordinates

In this appendix, we show how for modular Hamiltonians that reduce to boost Killing vectors
only near the edge of the entanglement wedge we can use Fermi normal coordinates to
obtain the Riemann curvature from the modular curvature. For simplicity we focus on three
dimensions, the higher-dimensional case is also discussed in [14]. We essentially follow their
discussion, but specified to the three-dimensional case.

A.1 General procedure

We consider a spacetime described by Fermi normal coordinates Xµ = (XA, Y ), where Y
is the direction along the geodesic. The metric is given by

gAB = ηAB − 1
3RACBDX

CXD +O(X3) .

gAY = 2
3RY BCAX

BXC +O(X3) ,

gY Y = 1−RY AY BX
AXB +O(X3) .

(A.1)

The modular Hamiltonian is an approximate boost Killing vector near the edge of the
entanglement wedge. Using lightcone coordinates X± = X0 ±X1 we can write this vector as

ζ = X+∂+ −X−∂− +O(X2) . (A.2)

Now consider a generator of modular transport Vλ. In the main body, we saw that it can
be expressed as

Vλ = [K ′
λ,K] , (A.3)

where K = 2πζ and K ′
λ is 1/(2π)2 times the change in the modular Hamiltonian, defined

analogously to (3.38). Since K and K ′
λ are both (approximate) Killing vectors, so is Vλ.

This implies that it should approximately solve Killing’s equation. Dropping the λ subscript
to ease notation:

gνρ∇µV
ρ + gµρ∇νV

ρ = O(X) . (A.4)

Denoting the location of the new extremal surface by X ′A(Y ) = 0, in Fermi normal coordinates
this is solved by

V A = X ′A(Y ) +O(X2) ,
V Y = −ηAB(∂Y X

′A(Y ))XB +O(X2) .
(A.5)

We now split the generator as V = V(+) + V(−):

V(+) = X ′+(Y )∂+ + 1
2X

−(∂Y X
′+(Y ))∂Y +O(X2) ,

V(−) = X ′−(Y )∂− + 1
2X

+(∂Y X
′−(Y ))∂Y +O(X2) .

(A.6)

With the expansion of the generators of modular transport the modular curvature is given by

R+− = [V(+), V(−)] . (A.7)
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However, acting with either V(+) or V(−) changes the location of the extremal surface and
therefore changes the Fermi normal coordinate gauge in which the derived expressions for
V(+) and V(−) are valid. As explained in [14], we can correct for this by adjusting the O(X2)
terms to preserve the gauge after acting with one of the generators. This results in

V A = X ′A(Y ) + 1
3X

′C(Y )ηADRB(CD)EX
BXE ,

V Y = −ηAB(∂Y X
′A(Y ))XB − 1

3X
′B(Y )RY

ABCX
AXC .

(A.8)

We then find12

R+− = [V(+), V(−)] =
1
3X

′+X ′−R µ
+− AX

A∂µ − 1
2(∂Y X

′−)(∂Y X
′+)(X+∂+ −X−∂−) . (A.9)

Thus, we explicitly see how the modular curvature is related to the Riemann curvature.

A.2 Example: diagonal geodesic in AdS3

We start from the AdS3 metric in global coordinates:

ds2 = ℓ2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dθ2) . (A.10)

We want to construct Fermi normal coordinates along the diagonal geodesic with endpoints
τ = 0 and θ = [0, π]. For this purpose, it is useful to first consider Poincaré coordinates
which are naturally adapted to this geodesic:

ds2 = ℓ2

y2 (−dt2 + dx2 + dy2) , (A.11)

where we define the coordinate system in such a way that the diagonal geodesic is parametrized
by (t, x, y) = (0, 0, y(q)), where q parametrizes the geodesic. The explicit relation between
these coordinates is

t = ℓ cosh ρ sin τ
cosh ρ cos τ − sinh ρ sin θ ,

x = ℓ sinh ρ cos θ
cosh ρ cos τ − sinh ρ sin θ ,

y = ℓ

cosh ρ cos τ − sinh ρ sin θ .

(A.12)

The explicit coordinate transformation to Fermi normal coordinates (T,X, Y ) is now given by:

t = e−Y/ℓT

(
1 + T 2 −X2

3ℓ2

)
,

x = e−Y/ℓX

(
1 + T 2 −X2

3ℓ2

)
,

y = e−Y/ℓℓ

(
1 + T 2 −X2

2ℓ2

)
.

(A.13)

12This corrects a factor of 1/3 absent in (3.20) of [14].
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The geodesic is described by (T,X, Y ) = (0, 0, Y (q)). Expanding the metric up to second
order in (T,X) away from the geodesic we find

ds2 = −
(
1 + X2

3ℓ2

)
dT 2 +

(
1− T 2

3ℓ2

)
dX2 +

(
1− T 2 −X2

ℓ2

)
dY 2 + 2TX

3ℓ2 dTdX . (A.14)

This indeed takes the form of Fermi normal coordinates. Denoting XA = (T,X) we have

gY Y = 1−RY AY BX
AXB +O(X3) ,

gY A = −2
3RY BACX

BXC +O(X3) ,

gAB = ηAB − 1
3RACBDX

CXD +O(X3) .

(A.15)

We now have to consider a particular deformation of the diagonal geodesic. We choose to
consider a rotation in global coordinates, given by V = ∂θ. It is easy to compute that in
Fermi normal coordinates, such a rotation corresponds to the following location of the new
extremal surface in terms of the X± = T ± X coordinates:

X ′±(Y ) = ±ℓ sinh(Y/ℓ) . (A.16)

Evaluating the Riemann components in Fermi normal coordinates we find that up to O(X2)
the generators are given by

V(+) = +ℓ sinh(Y/ℓ)
(
1− X+(X+ +X−)

6ℓ2

)
∂+ + X−

2 cosh(Y/ℓ)∂Y ,

V(−) = −ℓ sinh(Y/ℓ)
(
1− X−(X+ +X−)

6ℓ2

)
∂− − X+

2 cosh(Y/ℓ)∂Y .

(A.17)

Computing the commutator we find

R+− = X+

6 (2 + cosh (2Y/ℓ)) ∂+ − X−

6 (2 + cosh (2Y/ℓ)) ∂− . (A.18)

This indeed matches the general expression (A.9) when evaluated on the metric (A.14).

B Generators of modular transport

Here we write down the generators of modular transport both in x-space as well as in
X-space as derived in [26].
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B.1 Generators in x-space

For a set of two disjoint intervals described by [a1, b1] ∪ [a2, b2] the generators of modular
transport are given by13

Vai

=
∫

dxΠ
2
b(x)

∆(x)2

− Π2
a(x)

(ai − x)2T (x)−
ξΠa(x)

Πb(ai)γ(x)
T̃ (x) +

ξ(∆(x)− 2Πb(ai)Πa(x)
(ai−x) )

2Πb(ai)γ(x)2 ψ†(x)ψ(x̃)

 ,

Vbi
(B.1)

=
∫

dxΠ
2
a(x)

∆(x)2

− Π2
b(x)

(bi − x)2T (x) +
ξΠb(x)

Πa(bi)γ(x)
T̃ (x)−

ξ(∆(x)− 2Πa(bi)Πb(x)
(bi−x) )

2Πa(bi)γ(x)2 ψ†(x)ψ(x̃)

 .

The operator T̃ and coefficients are defined as

T̃ (x) = 1
2
(
∂xψ

†(x)ψ(x̃)− (∂xx̃)ψ†(x)∂̃xψ(x̃)
)
, (B.2)

and

∆(x) = (b1 + b2 − a1 − a2)x2 + 2(a1a2 − b1b2)x+ (a1 + a2)b1b2 − (b1 + b2)a1a2 ,

γ(x) = (b1 + b2 − a1 − a2)x+ a1a2 − b1b2 ,

Πa(x) = (a1 − x)(a2 − x) ,
Πb(x) = (b1 − x)(b2 − x) ,

ξ = −(b1 − a1)(b1 − a2)(b2 − a1)(b2 − a2) .

(B.3)

The generators obey

[Vai , H] = ∂aiH , [Vbi
, H] = ∂bi

H . (B.4)

B.2 Generators in X-space

In X-space the four generators Vλ=(a1,a2,b1,b2) can be compactly written as

Vλ =
∫

dX
∑
ij

A
(λ)
ij (X)Tij(X) . (B.5)

Defining
τa1 = (b1 − a2)(b2 − a2)

(b1 − a1)(b2 − a1)
, τb1 = (b2 − a1)(b2 − a2)

(b1 − a1)(b1 − a2)
, (B.6)

the coefficients are given by the four matrices

A
(a1)
ij =

 b2−a2
(b2−b1)(b2−a1) −

√
−τa1

b2−b1

−
√

−τa1
b2−b1

b1−a2
(b1−b2)(b1−a1)

 , A
(a2)
ij =

 b2−a1
(b2−a2)(b2−b1) −

√
−τa2

b1−b2

−
√

−τa2
b1−b2

b1−a1
(b1−b2)(b1−a2)

 , (B.7)

and

A
(b1)
ij =

(
0 0
0 − (b1−b2)

(b1−a1)(b1−a2)X
2

)
, A

(b2)
ij =

(
− (b2−b1)

(b2−a1)(b2−a2)X
2 0

0 0

)
. (B.8)

13As in the main body, we focus on the + component and drop the explicit + superscripts. We note that
our definition of the generators differs from [26] by a minus sign, i.e. V us

λ = −V them
λ .

– 32 –



J
H
E
P
1
0
(
2
0
2
4
)
0
0
6

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

References

[1] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,
Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[2] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy
proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[3] B. Czech, L. Lamprou, S. Mccandlish and J. Sully, Modular Berry connection for entangled
subregions in AdS/CFT, Phys. Rev. Lett. 120 (2018) 091601 [arXiv:1712.07123] [INSPIRE].

[4] B. Czech, J. De Boer, D. Ge and L. Lamprou, A modular sewing kit for entanglement wedges,
JHEP 11 (2019) 094 [arXiv:1903.04493] [INSPIRE].

[5] B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral geometry and holography, JHEP 10
(2015) 175 [arXiv:1505.05515] [INSPIRE].

[6] J. de Boer, M.P. Heller, R.C. Myers and Y. Neiman, Holographic de Sitter geometry from
entanglement in conformal field theory, Phys. Rev. Lett. 116 (2016) 061602 [arXiv:1509.00113]
[INSPIRE].

[7] B. Czech et al., A stereoscopic look into the bulk, JHEP 07 (2016) 129 [arXiv:1604.03110]
[INSPIRE].

[8] J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal
diamonds, JHEP 08 (2016) 162 [arXiv:1606.03307] [INSPIRE].

[9] F.S. Nogueira et al., Geometric phases distinguish entangled states in wormhole quantum
mechanics, Phys. Rev. D 105 (2022) L081903 [arXiv:2109.06190] [INSPIRE].

[10] S. Banerjee et al., Berry phases, wormholes and factorization in AdS/CFT, JHEP 08 (2022) 162
[arXiv:2202.11717] [INSPIRE].

[11] N. Bao, C.J. Cao, S. Fischetti and C. Keeler, Towards bulk metric reconstruction from extremal
area variations, Class. Quant. Grav. 36 (2019) 185002 [arXiv:1904.04834] [INSPIRE].

[12] N. Engelhardt and G.T. Horowitz, Towards a reconstruction of general bulk metrics, Class.
Quant. Grav. 34 (2017) 015004 [arXiv:1605.01070] [INSPIRE].

[13] N. Engelhardt and G.T. Horowitz, Recovering the spacetime metric from a holographic dual, Adv.
Theor. Math. Phys. 21 (2017) 1635 [arXiv:1612.00391] [INSPIRE].

[14] J. De Boer and L. Lamprou, Holographic order from modular chaos, JHEP 06 (2020) 024
[arXiv:1912.02810] [INSPIRE].

[15] J. de Boer et al., Virasoro entanglement Berry phases, JHEP 03 (2022) 179
[arXiv:2111.05345] [INSPIRE].

[16] B. Czech et al., Changing states in holography: from modular Berry curvature to the bulk
symplectic form, Phys. Rev. D 108 (2023) 066003 [arXiv:2305.16384] [INSPIRE].

[17] X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement
wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416]
[INSPIRE].

– 33 –



J
H
E
P
1
0
(
2
0
2
4
)
0
0
6

[18] V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the
emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].

[19] B. Freivogel et al., Casting shadows on holographic reconstruction, Phys. Rev. D 91 (2015)
086013 [arXiv:1412.5175] [INSPIRE].

[20] N. Engelhardt and S. Fischetti, Covariant constraints on hole-ography, Class. Quant. Grav. 32
(2015) 195021 [arXiv:1507.00354] [INSPIRE].

[21] N. Engelhardt and A.C. Wall, Quantum extremal surfaces: holographic entanglement entropy
beyond the classical regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

[22] G. Penington, Entanglement wedge reconstruction and the information paradox, JHEP 09 (2020)
002 [arXiv:1905.08255] [INSPIRE].

[23] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and
the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762]
[INSPIRE].

[24] H. Casini and M. Huerta, Reduced density matrix and internal dynamics for multicomponent
regions, Class. Quant. Grav. 26 (2009) 185005 [arXiv:0903.5284] [INSPIRE].

[25] Y. Chen, Pulling out the island with modular flow, JHEP 03 (2020) 033 [arXiv:1912.02210]
[INSPIRE].

[26] B. Chen, B. Czech, L.-Y. Hung and G. Wong, Modular parallel transport of multiple intervals in
1+1-dimensional free fermion theory, JHEP 03 (2023) 147 [arXiv:2211.12545] [INSPIRE].

[27] R. Bousso and G. Penington, Islands far outside the horizon, arXiv:2312.03078 [INSPIRE].

[28] T. Banks, P. Draper and M. Karydas, Breakdown of field theory in near-horizon regions, JHEP
06 (2024) 153 [arXiv:2401.03572] [INSPIRE].

[29] J.J. Bisognano and E.H. Wichmann, On the duality condition for quantum fields, J. Math. Phys.
17 (1976) 303 [INSPIRE].

[30] T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151
[arXiv:1704.05464] [INSPIRE].

[31] S. Balakrishnan and O. Parrikar, Modular Hamiltonians for Euclidean path integral states,
arXiv:2002.00018 [INSPIRE].

[32] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative
entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

[33] A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015) 014
[arXiv:1402.6334] [INSPIRE].

[34] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and
holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

[35] S.M. Christensen and S.A. Fulling, Trace anomalies and the Hawking effect, Phys. Rev. D 15
(1977) 2088 [INSPIRE].

[36] A. Fabbri and J. Navarro-Salas, Modeling black hole evaporation, (2005) [INSPIRE].

[37] A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077
[INSPIRE].

[38] T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].

– 34 –



J
H
E
P
1
0
(
2
0
2
4
)
0
0
6

[39] T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond classical
gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].

[40] A. Rolph, Local measures of entanglement in black holes and CFTs, SciPost Phys. 12 (2022) 079
[arXiv:2107.11385] [INSPIRE].

[41] N. Callebaut and H. Verlinde, Entanglement dynamics in 2D CFT with boundary: entropic
origin of JT gravity and Schwarzian QM, JHEP 05 (2019) 045 [arXiv:1808.05583] [INSPIRE].

[42] N. Callebaut, The gravitational dynamics of kinematic space, JHEP 02 (2019) 153
[arXiv:1808.10431] [INSPIRE].

[43] J.F. Pedraza, A. Svesko, W. Sybesma and M.R. Visser, Semi-classical thermodynamics of
quantum extremal surfaces in Jackiw-Teitelboim gravity, JHEP 12 (2021) 134
[arXiv:2107.10358] [INSPIRE].

[44] G. Wong, Gluing together modular flows with free fermions, JHEP 04 (2019) 045
[arXiv:1805.10651] [INSPIRE].

[45] S. Banerjee, M. Dorband, J. Erdmenger and A.-L. Weigel, Geometric phases characterise
operator algebras and missing information, JHEP 10 (2023) 026 [arXiv:2306.00055] [INSPIRE].

[46] J. de Boer, J. van der Heijden, B. Najian and C. Zukowski, to appear.

[47] N. Engelhardt and H. Liu, Algebraic ER=EPR and complexity transfer, JHEP 07 (2024) 013
[arXiv:2311.04281] [INSPIRE].

[48] A. Gong, C.-B. Chen and F.-W. Shu, Kinematic space for quantum extremal surface,
arXiv:2305.15885 [INSPIRE].

[49] Y. Chen, V. Gorbenko and J. Maldacena, Bra-ket wormholes in gravitationally prepared states,
JHEP 02 (2021) 009 [arXiv:2007.16091] [INSPIRE].

[50] T. Hartman, Y. Jiang and E. Shaghoulian, Islands in cosmology, JHEP 11 (2020) 111
[arXiv:2008.01022] [INSPIRE].

[51] W. Sybesma, Pure de Sitter space and the island moving back in time, Class. Quant. Grav. 38
(2021) 145012 [arXiv:2008.07994] [INSPIRE].

[52] V. Balasubramanian, A. Kar and T. Ugajin, Islands in de Sitter space, JHEP 02 (2021) 072
[arXiv:2008.05275] [INSPIRE].

[53] H. Geng, Y. Nomura and H.-Y. Sun, Information paradox and its resolution in de Sitter
holography, Phys. Rev. D 103 (2021) 126004 [arXiv:2103.07477] [INSPIRE].

[54] L. Aalsma and W. Sybesma, The price of curiosity: information recovery in de Sitter space,
JHEP 05 (2021) 291 [arXiv:2104.00006] [INSPIRE].

[55] S.E. Aguilar-Gutierrez et al., Islands in multiverse models, JHEP 05 (2021) 137 [Erratum ibid.
05 (2022) 082] [Addendum ibid. 05 (2022) 137] [arXiv:2108.01278] [INSPIRE].

[56] K. Langhoff, C. Murdia and Y. Nomura, Multiverse in an inverted island, Phys. Rev. D 104
(2021) 086007 [arXiv:2106.05271] [INSPIRE].

[57] J. Kames-King, E.M.H. Verheijden and E.P. Verlinde, No Page curves for the de Sitter horizon,
JHEP 03 (2022) 040 [arXiv:2108.09318] [INSPIRE].

[58] R. Bousso and E. Wildenhain, Islands in closed and open universes, Phys. Rev. D 105 (2022)
086012 [arXiv:2202.05278] [INSPIRE].

[59] R. Espíndola, B. Najian and D. Nikolakopoulou, Islands in FRW cosmologies,
arXiv:2203.04433 [INSPIRE].

– 35 –



J
H
E
P
1
0
(
2
0
2
4
)
0
0
6

[60] A. Svesko, E. Verheijden, E.P. Verlinde and M.R. Visser, Quasi-local energy and microcanonical
entropy in two-dimensional nearly de Sitter gravity, JHEP 08 (2022) 075 [arXiv:2203.00700]
[INSPIRE].

[61] A. Levine and E. Shaghoulian, Encoding beyond cosmological horizons in de Sitter JT gravity,
JHEP 02 (2023) 179 [arXiv:2204.08503] [INSPIRE].

[62] S. Azarnia and R. Fareghbal, Islands in Kerr-de Sitter spacetime and their flat limit, Phys. Rev.
D 106 (2022) 026012 [arXiv:2204.08488] [INSPIRE].

[63] K. Goswami and K. Narayan, Small Schwarzschild de Sitter black holes, quantum extremal
surfaces and islands, JHEP 10 (2022) 031 [arXiv:2207.10724] [INSPIRE].

[64] L. Aalsma, S.E. Aguilar-Gutierrez and W. Sybesma, An outsider’s perspective on information
recovery in de Sitter space, JHEP 01 (2023) 129 [arXiv:2210.12176] [INSPIRE].

– 36 –


