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INTRODUCTION

Climate change is altering the phenology and produc-
tivity of plant populations worldwide, with implications 
for the stability of natural communities, ecosystem ser-
vices, and food security (Cleland et al.,  2007; Franklin 
et al., 2016; Franks et al., 2014; Parmesan & Yohe, 2003; 
Pearse et al., 2017). Climate-driven changes in the tim-
ing and intensity of plant reproduction can be exam-
ined using space-for-time substitutions, ‘resurrection’ 
experiments comparing plants grown from stored seed 
to contemporary populations (Franks et al., 2014), and 
phenology states preserved in herbarium records and 
historical documents (Willis et al., 2017) or as revealed 
by crowdsourcing initiatives (Fuccillo Battle et al., 2022). 
However, it remains challenging to reconstruct any 

element of plant populations' demographic responses to 
shifting climates, especially across the full geographic 
ranges of species poorly represented in historical records 
and research collections.

Species distribution models (SDMs) are a key tool for 
understanding how populations respond to environmen-
tal change (Elith & Leathwick, 2009; Merow et al., 2011; 
Sweet et  al.,  2019). The most common SDM methods 
use presence-absence records, or presence records with 
randomly drawn pseudo-absences, to identify suitable 
climate for a focal species. Presence-based SDMs pro-
vide only limited insight into a species' condition on the 
landscape, however, because ‘presence’ may mean any-
thing from a single dying individual to a dense and grow-
ing population. Proposed methods to model population 
growth could better reflect this nuance, but require 
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Abstract
Quantifying how global change impacts wild populations remains challenging, 
especially for species poorly represented by systematic datasets. Here, we 
infer climate change effects on masting by Joshua trees (Yucca brevifolia and 
Y. jaegeriana), keystone perennials of the Mojave Desert, from 15 years of 
crowdsourced observations. We annotated phenophase in 10,212 geo-referenced 
images of Joshua trees on the iNaturalist crowdsourcing platform, and used them 
to train machine learning models predicting flowering from annual weather 
records. Hindcasting to 1900 with a trained model successfully recovers flowering 
events in independent historical records and reveals a slightly rising frequency 
of conditions supporting flowering since the early 20th Century. This reflects 
increased variation in annual precipitation, which drives masting events in wet 
years—but also increasing temperatures and drought stress, which may have net 
negative impacts on recruitment. Our findings reaffirm the value of crowdsourcing 
for understanding climate change impacts on biodiversity.
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greater effort in data collection, model specification, 
and computational resources (Evans et al., 2016; Merow 
et al., 2014a; Morin & Thuiller, 2009; Snell et al., 2014).

Joshua trees (Yucca brevifolia Engelm. and Y. jaegeri-
ana (McKelvey) L.W. Lenz; Figure 1a) are a case study 
in the limits of understanding population conditions 
through presence-based SDMs. Sister species of arbo-
rescent monocots endemic to the Mojave Desert of the 
southwestern United States, Joshua trees are strongly 
identified with the region in the popular imagination. 
They are the largest plants in most communities where 
they occur, providing food and habitat for many Mojave 
species (Peattie, 1950; Rowlands, 1978; Smith et al., 2023). 
Presence-based SDMs project that much of Joshua trees' 
current range will be unsuitable under future climates 

(Cole et al., 2011; Dole et al., 2003)—but while tempera-
tures have risen substantially in the Mojave over the last 
century, evidence of Joshua tree populations' responses 
to this change remain elusive (U.S. Fish and Wildlife 
Service, 2023; Smith et al., 2023). Surveys in Joshua Tree 
National Park, at the trees' southern range limit, find 
reduced seedling recruitment consistent with projected 
habitat losses (Barrows & Murphy-Mariscal, 2012; Sweet 
et al., 2019), but no study has obtained range-wide data 
on Joshua tree populations' demographic condition.

Changing climate may impact Joshua trees' life cycle 
from germination to senescence (DeFalco et  al.,  2010; 
Esque et al., 2015; Harrower & Gilbert, 2018; Reynolds 
et  al.,  2012), but a particularly tractable focus is their 
flowering. Like other long-lived desert perennials, 

F I G U R E  1   Joshua tree flowering activity recorded in crowdsourced observations. Joshua tree phenology can be diagnosed from images 
attached to geo-referenced observations in the iNaturalist database: (a) western Joshua tree (Yucca brevifolia) with no evidence of flowering in 
March 2023 (iNaturalist record 150083178 by user ‘brewbooks’); (b) western Joshua tree with flowers budding (arrow) in March 2023 (record 
150101172 by user ‘mat_bristol’); (c) western Joshua tree with open flowers (arrows), in March 2008 (record 114881910 by user ‘gregg29’); 
(d) eastern Joshua tree (Y. jaegeriana) with fresh green fruit (arrows) in May 2022 (record 127293323 by user ‘karinp111’). (e) Total counts of 
‘research-grade’ records of Joshua trees on the iNaturalist platform, by year of observation and diagnosed phenology status (thinner coloured 
bars) and proportion of records in each year indicating flowering (i.e. showing buds, flowers, or fruits; wide grey bars). (f) Locations of 
phenology records from all years in (e), rasterized to a 4 km grid (green shading, Joshua tree habitat modelled by Esque et al. (2023); open white 
points, grid cells with no evidence of flowering; solid blue points, cells with observations of buds, flowers, or fruit). Base map polygons from the 
Natural Earth public-domain database (naturalearthdata.com).

 14610248, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14478, W

iley O
nline Library on [12/05/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



      |  3 of 14YODER et al.

Joshua trees vary widely in their flowering intensity from 
year to year. This may reflect both variation in resource 
availability and adaptation to seed predation (Pellmyr & 
Segraves, 2003; Waitman et al., 2012)—flowering in re-
sponse to annual weather variation should synchronize 
mass-flowering masting events to maximize seedling sur-
vival by overwhelming seed consumers (Koenig,  2021; 
Zwolak et al., 2022). Residents and tourists in the Mojave 
take great interest in Joshua tree flowering (James, 2013; 
McKinney,  1988; Overholt,  1932), but no one has sys-
tematically studied its environmental triggers. Popular 
hypotheses suggest Joshua trees mast in response to a 
wet year after one or more dry years (Downey,  1997; 
McKinney, 1988), that they flower en masse as a stress 
response (James,  2013), or that winter frost stimulates 
flowering (Brenskelle et  al.,  2021; Rodgers,  2023). All 
these hypothesized flowering triggers—precipitation, 
drought, and winter freezing—are shifting as global cli-
mate changes (Smith et al., 2023). Identifying which fac-
tors drive Joshua tree flowering would let us infer how 
Joshua trees are responding to recent climate change, in 
places and times that have not been available to direct 
observation.

Modelling Joshua tree flowering responses to an-
nual weather variation would, ideally, draw on observa-
tions over multiple years at locations across the Mojave. 
Despite Joshua trees' ecological and cultural import, 
however, systematic records of their flowering are sparse. 
Joshua trees are challenging to preserve as herbarium 
specimens and therefore poorly represented in research 
collections; and available time-series observations in nat-
ural populations cover relatively small spans of time and 
geography (USA National Phenology Network,  2024). 
A solution may lie in the emerging practice of crowd-
sourcing. Crowdsourced natural history observations, 
collected opportunistically by volunteer contributors 
to ‘citizen science’ or ‘participatory science’ projects 
(Cooper et al., 2021; Ellwood et al., 2023), offer broader 
geographic and temporal coverage than directed efforts 
by working scientists (Amano et  al.,  2016; Dickinson 
et al., 2010; Panter et al., 2020). Crowdsourcing can pro-
duce data comparable to expert-collected observations 
(Aceves-Bueno et  al.,  2017; Callaghan et  al.,  2020; but 
see Tiago et al., 2017), especially when used with appro-
priate quality controls (Fuccillo et  al.,  2015; Kosmala 
et al., 2016; Panter et al., 2020).

Because of their cultural prominence and high visibil-
ity on the landscape, Joshua trees are well-represented 
on the iNaturalist crowdsourcing platform (inaturalist.
org). Contributors to iNaturalist upload geo-referenced 
images to create occurrence records for species in the im-
ages. Joshua trees' morphology makes the diagnosis of 
species identity and phenology status from these images 
straightforward: they bear flowers in large panicles at the 
end of branches, so flowers and fruits are distinguish-
able at a distance (Figure 1a–d). Prior studies of Yucca 
species, including Joshua trees, characterized climate 

drivers of phenophase timing using iNaturalist records 
(Barve et  al.,  2020; Brenskelle et  al.,  2021), and we in-
ferred the same data would support modelling variation 
in the occurrence, rather than the timing, of flowering.

Here, we draw on these crowdsourced records to re-
construct more than 120 years of Joshua tree reproduc-
tive activity. We annotated phenology status in images 
attached to more than 10,000 iNaturalist observations 
of Joshua trees, covering 15 years and much of the spe-
cies' range (Figure  1e,f). With these records, we mod-
elled the relationship between flowering and weather 
using Bayesian additive regression tree (BART) meth-
ods (Carlson, 2020; Carlson et al., 2022). We then used 
a trained BART model to hindcast flowering activity 
from historical weather records, back to the year 1900. 
Our hindcast aligns with independent historical records 
of Joshua tree flowering, and it predicts that flowering 
frequency has increased over the 20th Century, from a 
median of once every 5 years to more than once every 
4 years. This trend is driven by warming winter tem-
peratures and greater inter-annual variation in precipi-
tation, which are likely to reduce seedling survival even 
as they boost flowering (Esque et  al.,  2015; Reynolds 
et al., 2012). Moreover, putative climate refugia in higher 
elevation and northerly regions have not necessarily seen 
increased flowering. These results provide new insight 
into climate change impacts on Joshua tree population 
health, and they parallel the effects of climate change 
on masting by other species. They also demonstrate the 
utility of crowdsourcing for understanding populations' 
responses to environmental change.

M ATERI A LS A N D M ETHODS

Yucca brevifolia, the western Joshua tree, and Y. jaegeri-
ana, the eastern Joshua tree, are parapatrically distributed 
with a narrow contact zone in central Nevada (Godsoe 
et al., 2008; Lenz, 2007; Pellmyr & Segraves, 2003). They 
differ in vegetative and floral morphology, and associate 
with different species of specialized pollinating Yucca 
moths (Godsoe et al., 2009). Nevertheless, the two spe-
cies hybridize (Smith et al., 2021; Yoder et al., 2013), and 
occupy overlapping climates (Esque et al., 2023; Godsoe 
et  al.,  2009). We therefore treat eastern and western 
Joshua trees as a single population in the present study, 
though we also examine each separately as a point of 
comparison.

Data compilation

We queried iNaturalist for observations of Joshua trees 
(as Y. brevifolia; iNaturalist treats eastern and western 
Joshua trees as subspecies), located within the Mojave 
Desert and meeting the platform's standard for ‘research-
grade’ data—having an attached image, high-precision 
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location data, and species identity confirmed by at least 
two contributors, with no contradicting identifications. 
We used the images attached to each record to validate 
species identity and to annotate phenophase in iNatural-
ist's internal annotation system. We used code modified 
from the rinat package (Barve & Hart, 2022) to down-
load phenophase-annotated records through the iNatu-
ralist API. (A prior study of Yucca by Barve et al. (2020) 
similarly draws on iNaturalist, but we developed our 
own protocol to obtain records from a longer time frame 
and use annotation tools built into the platform.) We 
binned records by year and binary evidence of flower-
ing—whether they showed no evidence of flowering, or 
else buds, flowers, or fruits—and aggregated records to 
the 4 km-square grid of the PRISM database of spatially 
interpolated weather records (PRISM Climate Group, 
Oregon State University, 2014). To maximize confidence 
in our data, we restricted analysis to 2008, the year iN-
aturalist launched, through 2022, the last full year avail-
able at the time of analysis.

Joshua trees flower in February through April; across 
the Mojave, most precipitation arrives during winter, 
though summer monsoons contribute more in the east. 
We defined a ‘growing year’ from April of 1 year through 
March of the next. Because we expected that Joshua 
trees flower in response to year-over-year variation in 
precipitation, as seen in other masting desert perennials 
(Meyer & Pendleton, 2015), we compiled candidate pre-
dictors from the PRISM database covering 2 years prior 
to observed flowering (Table S1): specifically, total pre-
cipitation in the growing year leading up to observation 
(Y0), 1 year prior (Y1), and 2 years prior (Y2), as well as 
maximum and minimum temperatures and vapour pres-
sure deficit (VPD) in the growing year before observation 
(Y0). We also considered year-over-year differences in 
total precipitation over 2 years (Y0–Y1 and Y1–Y2), and 
contrasts in temperature and VPD over 1 year (Y0–Y1).

Predictor selection and model training

We modelled flowering as a binary, whether or not evi-
dence of flowering (buds, flowers, or fruit) was recorded 
in a given year and location (e.g. as in Figure  1f). To 
model relationships between weather and flowering, we 
used Bayesian additive regression tree methods (BARTs; 
Chipman et  al.,  2010). BARTs are a classification and 
regression tree machine learning method with power-
ful capabilities for ecological data analysis, particularly 
dealing with potential confounding from sampling heter-
ogeneity (Carlson, 2020; Carlson et al., 2022; Dorie, 2023; 
Tan & Roy, 2019; Figure 1e). BARTs perform compara-
bly to similar algorithms like boosted regression trees, 
but make uncertainty more explicit in model estimation 
(Becker et al., 2022).

We selected predictors, trained BART models, and an-
alysed results using methods in the dbarts (Dorie, 2023) 

and embarcadero (Carlson,  2020) packages for R (R 
Core Team,  2022). We selected predictors by training 
models of varying complexity (summing across 10, 20, 
50, 100, 150, or 200 trees) and tracking the frequency with 
which simpler models dropped each candidate predic-
tor. Predictors more likely to be included in the simplest 
models have greater predictive power, and we retained 
these for final model training (Chipman et al., 2010). We 
also used a stepwise BART model training utility im-
plemented in embarcadero, which compares model fit 
while systematically removing predictors.

We trained a model using the most informative predic-
tors, and then examined the effects of inter-annual sam-
pling heterogeneity using leave-one-out cross-validation 
by observation year. We also trained a random-intercept 
(RI) BART model using the same predictors as the orig-
inal model, plus a RI effect of observation year, which 
formally controls for inter-annual heterogeneity in flow-
ering prevalence. We tested the concordance of the RI 
model with the original model by comparing their pre-
dictions for 2008–2022 across the full species range. 
Finally, to examine differences between Y. brevifolia and 
Y. jaegeriana, we used their well described geographic 
distributions to assign records to species (none were in 
the hybrid zone; Esque et al., 2023; Godsoe et al., 2009) 
and trained single-species models with the divided data.

Hindcasting flowering activity

To hindcast flowering, we used a trained BART 
model to predict flowering from PRISM records going 
back to 1895 (PRISM Climate Group, Oregon State 
University,  2014). We classified hindcast probabilities 
as predicting flowering or no flowering using a cutoff 
identified in model training to minimize false-positives 
and maximize true-positives (supplementary methods, 
Figure  S2; Carlson,  2020). We summarized hindcast 
probabilities of flowering and predicted flowering years 
over 1900 to 2022 by masking prediction layers to a high-
resolution map of Joshua tree habitat (Esque et al. (2023); 
Figure 1f). We examined trends within 4 km-square grid 
cells in the species' ranges by estimating correlations be-
tween the hindcast probability of flowering and the year 
for each cell, and by comparing the number of predicted 
flowering years over the first three decades of the 20th 
century (1900–1929) and the most recent three decades 
(1990–2019). To visualize drivers of changes in flower-
ing from 1900–1929 to 1990–2019, we compared mean 
predictor values and predicted flowering years in each 
period, for each cell.

Validation with historical records of flowering

To validate hindcast predictions, we compared them to 
records of flowering in times and locations beyond the 
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coverage of the iNaturalist database, back as far as 1913. 
These records represent substantially different search 
efforts than iNaturalist observations, but they provide 
independent points of comparison to our hindcast.

We compiled 357 formal records, which included 
specific dates of observation and geographic coordi-
nates, from field notes by two coauthors (CIS and RY), 
study site descriptions from published research (St. 
Clair & Hoines,  2018), herbarium records (California 
Consortium of Herbaria,  2024; Texas and Oklahoma 
Regional Consortium of Herbaria, 2024), and the USA 
National Phenology Network Database (USA-NPN; 
USA National Phenology Network,  2024; Figure  S6; 
more detail in Supplemental methods: Formal valida-
tion records). We compared our hindcast predictions 
with these formal records by, first, determining whether 
the hindcast predicted a significantly higher probabil-
ity of flowering in years and locations where the formal 
records indicated flowering, compared with years and 
locations where they indicated no flowering. Second, 
we calculated AUC (the area-under-the-curve statistic, 
reflecting the frequency of correct classifications) for 
model predictions in years and locations represented by 
the formal records.

We also compared hindcast predictions with informal 
records in historical newspaper accounts of Joshua tree 
flowering obtained from the ProQuest digitized news 
database (proquest.com; search for “‘Joshua tree” AND 
(flower* OR bloom*)’). These reports did not provide 
geographic coordinates but let us identify boundaries 
for described locales. In total, we found 22 accounts de-
scribing flowering as intensive or poor (17 intensive, 5 
poor; supplementary methods, Table S2). We compared 
the hindcast with each newspaper account by averaging 
the hindcast probability of flowering for the year of the 
account within the bounding polygon for the locale de-
scribed in the account (Table S2).

RESU LTS

Crowdsourcing yields thousands of high-quality 
flowering records

We validated and annotated 10,212 iNaturalist records 
for Joshua trees from 2008 to 2022 (Figure 1e). Binning 
records by year and aggregating them to the 4 km-square 
grid of PRISM data yielded 2632 records (Figure 1f). The 
spatial and temporal distribution of these data reflect 
the iNaturalist contributor community as well as Joshua 
trees' ecology. Sampling density increased by orders of 
magnitude with participation in iNaturalist, from 26 re-
cords in 2008 to 2644 in 2021 (Figure 1e, narrow bars), 
though the prevalence of flowering did not significantly 
change over time (Figure 1e, wide grey bars; product–mo-
ment correlation between year and proportion of records 

indicating flowering = 0.03, p = 0.83). Observations 
were at the highest density in and around Joshua Tree 
National Park, less common in wilderness areas in 
western Arizona, and absent from a region occupied by 
restricted U.S. Air Force and Department of Energy fa-
cilities west of Las Vegas (Figure 1f). As a consequence, 
more records are from the range of the western Joshua 
tree (1460 gridded records for Y. brevifolia vs. 1172 for Y. 
jaegeriana).

Climate triggers predict flowering activity

Predictor selection and stepwise model training identified 
six predictors as most informative for differentiating the 
presence and absence of flowering in our training data: 
Y1–Y2 and Y0–Y1 contrasts in precipitation (ΔY1−2PPT 
and ΔY0−1PPT), maximum VPD in Y0 (MaxVPDY0), Y0–
Y1 contrast in minimum VPD (ΔY0−1MinVPD), minimum 
temperature in Y0 (MinTempY0), and Y0–Y1 contrast in 
maximum temperature (ΔY0−1MaxTemp; Figure  2a). A 
model trained on the 2008–2022 flowering records with 
these six predictors had high performance based on a 
fully randomized out-of-bag draw (AUC = 0.84).

To explore the impacts of inter-annual heterogeneity 
in sampling (Figure  1e, coloured bars), we performed 
leave-one-out cross-validation by observation year; 
across 15 years in our dataset, the model was moder-
ately successful at predicting observations in the left-out 
year (mean AUC ± SE = 0.60 ± 0.05 across all 15 obser-
vation years). To formally control for inter-annual het-
erogeneity in observations, we trained a second model 
with observation year included as a RI effect (Carlson 
et al., 2022; Dorie, 2023). This RI model had AUC = 0.80, 
and AUC = 0.59 ± 0.04 in leave-one-out cross-validation. 
Compared across the species' range, predicted proba-
bilities of flowering from the original model and the RI 
model were overwhelmingly positively correlated in every 
year of observation (minimum Spearman's rho = 0.66, 
median 0.91; p < 10−6 in all years). The two models agreed 
in 84% of classified predictions (χ2

df=1
= 18,226, p < 10−6), 

with the original model predicting flowering when the 
RI model did not in 12% of predictions, and the RI 
model predicting flowering when the base model did 
not in 4%. Moreover, RI estimates from the RI model 
show no trend in parallel with increasing sampling den-
sity (Figure S4), consistent with the lack of a trend in the 
prevalence of flowering (Figure 1e, grey bars). These re-
sults indicate there is no systematic bias created by the 
greater number of iNaturalist contributions in more re-
cent years. Finally, models separately trained on records 
from the ranges of each Joshua tree species produced 
results in alignment with the original two-species model 
(SI, Supplemental methods). Thus, we used the original 
model trained on data from both species' ranges, without 
the RI effect, for all subsequent analyses.
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Predictor effects match biological expectations

Our model finds f lowering is more likely when the 
year leading up to f lowering (Y0) is wetter than the 
previous year (Y1), and when that previous year was 
drier than 2 years prior to f lowering (Y2; Figure  2b, 
ΔY0−1PPT and ΔY1−2PPT, respectively); this is consist-
ent with masting in response to a year-over-year in-
crease in precipitation. The model also finds f lowering 
is more likely when maximum VPD is lower in the year 
leading up to f lowering, and when minimum VPD has 
been relatively stable since the prior year (Figure  2b, 
MaxVPDY0 and ΔY0−1MinVPD), consistent with lower 
drought stress leading up to f lowering. Finally, f lower-
ing is more likely when the minimum temperature in 
the year leading up to f lowering is above freezing, and 
when the maximum temperature has been relatively 

stable since the prior year (Figure 2b, MinTempY0 and 
ΔY0−1MaxTemp). This aligns with observations sug-
gesting Joshua trees f lower more intensively in histori-
cally warmer locations (St. Clair & Hoines, 2018), and 
that their distribution is limited by winter low tem-
peratures (Dole et al.,  2003; Rowlands, 1978), though 
it contradicts speculation that freezing triggers f lower-
ing (Brenskelle et al., 2021; Rodgers, 2023). Spatial pro-
jection of predictors' partial effects in individual years 
further illuminates these interpretations. In 2019, 58% 
of all records indicate f lowering, and year-over-year 
precipitation contrasts contribute strongly to f lower-
ing (Figures 1e, 3a,b). In the following year, 2020, just 
7% of records indicate f lowering, and the same pre-
cipitation contrasts make much weaker contributions 
(Figures 1e, 3c,d). This pattern holds across all years 
of observation (Figures S9–S23).

F I G U R E  2   BART predictor selection, estimated predictor effects, and model accuracy. (a) Relative contributions of candidate predictors 
in models with decreasing complexity (regression tree count) identify the six left-most predictors as meaningfully predicting flowering activity 
(Carlson et al., 2022). (b) Partial effects of the top six environmental predictors in the final trained model (white line, median; shaded area 
95% density interval across trees). (c) Modelled probability of flowering versus observed flowering in the full training dataset (AUC = 0.84) 
vertical line marks the classification cutoff with best discrimination (SI, Supplemental methods; Figure S1), box-and-whisker plots give median 
(centre bar), 25th and 75th percentile (lower and upper hinges) and smallest and largest values within 1.5 × the interquartile range of the median 
(whiskers) for predicted Pr(flowers).

(a) (b)

(c)
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F I G U R E  3   Spatial partial predictor effects in the trained model reflect flowering frequency in individual years of observation. (a) Training 
data for 2019, a year in which 67% of records indicate flowering. (b) Spatial partial effects of the six predictors in the final trained model, for 
conditions in 2019. (c) Training data for 2020 when 6% of records indicate flowering. (d) Spatial partial effects of predictors for conditions in 
2020. Panels in b and d present values in a 4 km grid masked to the species distribution polygon in a and c. Figure S6. summarizes values for 
each predictor in each year of observation; Figures S7–S21 give training observations and spatial partial predictor effects for all observation 
years.

(a)

(b) (d)

(c)
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Hindcast flowering aligns with historical records

To reconstruct Joshua tree f lowering since the early 20th 
Century, we used our working model to predict f lower-
ing from historical weather records (PRISM Climate 
Group, Oregon State University, 2014). Across the spe-
cies' ranges (Figure 1f), the hindcast predicts a median 
of 30 flowering years from 1900 to 2022 (95% density 
from 5 to 57 flowering years), approximately once every 
4 years. The hindcast generally matched observations 
of f lowering in formal validation records dating back 
to 1913, which we assembled from field notes, the pub-
lished literature (St. Clair & Hoines, 2018), herbarium 
records (California Consortium of Herbaria,  2024; 
Texas and Oklahoma Regional Consortium of 
Herbaria,  2024), and the USA-NPN database (USA 
National Phenology Network,  2024), as well as in-
formal records from newspaper accounts (Figure  4; 
Supplemental methods, Table  S2). The hindcast pre-
dicted a significantly higher probability of f lowering 
in places and years when formal validation records 
indicated flowering (Figure 4b; two-sample t-test with 
df=79.0, p < 10−5), and had AUC = 0.70 when classifying 
them using the best discrimination cutoff identified in 
model training (Supplemental methods). The hindcast 
probability of f lowering was also significantly higher 
in years and locales corresponding to 17 newspaper ac-
counts of intense f lowering, compared with 5 accounts 
of poor flowering, dating back to 1924 (Figure  4c; 
Table S2; t-test with df = 15.9, p < 10−3).

Hindcasting reveals trends in flowering

Our hindcast reflects changes in climate from 1900 to 
2022 and thereby suggests how this change impacted 
Joshua tree flowering. We first examined trends in 
flowering within grid cells in the species' ranges by es-
timating correlations between year and hindcast prob-
ability of flowering for each cell. The median correlation 
(Spearman's 𝜌) between year and hindcast probability 
of flowering was 0.05 (95% density −0.05 to 0.17), with a 
positive trend (𝜌 > 0) in 80% of cells. Overall, this is con-
sistent with a rising predicted probability of flowering 
since the year 1900. We then compared the number of 
flowering years predicted in 1900–1929 and 1990–2019. 
Across the species' range, the hindcast predicted a mean 
of 1.6 more flowering years in 1990–2019 compared with 
1900–1929 (median of 2 more years; 95% density from 
3 fewer to 6 more; Figure  5b). The median frequency 
of flowering in the early period was about once every 
5 years, rising to more than once every 4 years in the re-
cent period.

This increase in predicted flowering arises from 
changes in the climate triggers identified by our BART 
modelling. Compared with 1900–1929, the period of 
1990–2019 saw greater year-over-year precipitation and 
VPD differences, as well as warming minimum tempera-
tures (Figure 5c); increased flowering frequency follows 
from the partial effects of these predictors (Figure  2c; 
Figure 3). Regions showing increased flowering also show 
rising maximum VPD, consistent with increasing aridity 

F I G U R E  4   Formal and informal independent validation records align with hindcast predictions. (a) Validation records by source and year 
of observation. (b) Formal validation records (from herbaria, field notes, USA-NPN data, and St. Clair and Hoines (2018)) grouped by whether 
they recorded flowers in a given location and year, versus predicted probability of flowering from the base model hindcast for that location and 
year. (c) Informal records (from newspaper accounts) grouped by the quality of flowering described, versus predicted probability of flowering 
from the base model hindcast for the year of publication, averaged over the locale described (Supplemental methods, Table S2). Point colours in 
(b) and (c) follow coding in (a); classification cutoff and boxplot parameters as in Figure 2c.

(a)

(b) (c)
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(Figure  5c), and this pattern is less obviously derived 
from the partial effect of maximum VPD (Figure  2c). 
It may instead reflect the correlation of VPD variation 
with precipitation and temperature drivers of increased 
flowering. The magnitude of change in maximum VPD 
between the two time periods is much smaller than the 
change in other predictors, but it does mean populations 
where we find greater increases in flowering face greater 
drought stress.

Predicted changes in flowering frequency varied 
with elevation and latitude, but were not necessarily as 
expected. Higher elevation and more northerly regions 
are a priori climate refugia, where Joshua trees may have 
more resources for reproduction (Morelli et  al.,  2016), 

but elevation and latitude have complex interactions 
with climate in the topography of the Mojave: prospec-
tive refugia for Joshua trees have been identified at high 
elevations in Joshua Tree National Park, near the species' 
southern range limit (Sweet et  al.,  2019). The hindcast 
does predict greater increases in flowering frequency at 
a higher elevation, but the correlation is not statistically 
significant (product–moment correlation = 0.02, p = 0.14). 
Meanwhile, change in predicted flowering years is sig-
nificantly negatively correlated with latitude (cor = −0.08, 
p < 10−6). This appears to be driven by stability or a slight 
decline of flowering frequency in the northwestern 
Mojave, and strongly increased flowering frequency in 
high-elevation sites in the southwest (Figure 5b). These 

F I G U R E  5   Hindcast frequency of flowering years reflects climate change since 1900. (a) Frequency of hindcast flowering years predicted 
over the full 1900 to 2022 study period, for 4 km-square grid cells masked to the species distribution polygon in Figure 1f. (b) Difference in 
flowering year frequency, 1990–2019 compared with 1900–1929, predicted by the base model. Positive values (green shading) indicate more 
predicted flowering years in the recent period. (c) Mean values for the six predictor variables versus flowering years predicted by the base model 
in 300 randomly drawn grid cells, over the period 1900–1920 (blue points) or 1990–2019 (orange points), with arrows linking the median values 
for the earlier period to median values for the recent period to indicate direction and magnitude of change. Compare to predictor partial effects 
in Figure 2b.

(a) (c)

(b)
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trends may be consistent with increased flowering driven 
by warmer winter temperatures in historically cooler, 
wetter regions (Figures 2b, 5a) while flowering is stable 
or decreasing in historically drier regions that already 
see lower flowering frequency (Figure 5a).

DISCUSSION

Climate change impacts on global ecosystems are already 
pervasive, but quantifying those impacts remains chal-
lenging for many species. We applied readily available 
crowdsourced data to describe how 20th century climate 
trends have shaped reproductive activity by keystone 
species of the Mojave Desert. Our BART models trained 
on crowdsourced records of Joshua tree flowering iden-
tify biologically realistic climate drivers of flowering 
(Figure 1a,b), and our working model can then hindcast 
flowering activity to reconstruct long-term trends and 
recover flowering events in independent historical re-
cords (Figure 4). The hindcast suggests flowering has be-
come somewhat more frequent since 1900, but this trend 
varies geographically, with decreased flowering in some 
putative climate change refugia (Figure 5). Our analyses 
provide new insight into Joshua tree population health, a 
major source of uncertainty in recent assessments of the 
species for endangered species protection (U.S. Fish and 
Wildlife Service,  2023). They also demonstrate the po-
tential of crowdsourced data for examining population 
processes over wide geographic regions.

Joshua tree population status in changing 
climate

Our analyses identify drivers of Joshua tree masting, re-
vealing how climate trends over the last century may have 
impacted Joshua tree populations. However, flowering 
is only one component of the populations' demographic 
health. Germination, seedling survival, and growth may 
not respond to the same climatic drivers as flowering, or 
may not respond in the same way. Our hindcast finds flow-
ering frequency has likely increased as a result of growing 
inter-annual variability in precipitation and temperature 
(Figure  5c), and these trends may threaten survival and 
growth even as they boost flowering. Joshua tree seedling 
survival is highly sensitive to annual precipitation and must 
overcome heavy herbivory (Esque et  al.,  2015; Reynolds 
et  al.,  2012). Herbivory is even worse in drought years 
when Joshua trees provide a browse of last resort (DeFalco 
et al., 2010; Esque et al., 2015). Although range-wide data are 
lacking, there is reduced seedling recruitment in warmer, 
drier microclimates within Joshua Tree National Park, 
consistent with the expected effects of warming (Barrows 
& Murphy-Mariscal, 2012; Sweet et al., 2019).

Joshua trees' reliance on specialized Yucca moth pol-
linators may present another way in which more frequent 

flowering could fail to translate into greater recruitment 
(Godsoe et al., 2008; Pellmyr & Segraves, 2003). Yucca 
moths' responses to climate variation are largely un-
known. Short-term studies suggest the moths are less 
active in cooler, high-elevation climates (Harrower & 
Gilbert, 2018; Rowlands, 1978), and if this is borne out, 
increased Joshua tree flowering in high-elevation climate 
refugia may often prove fruitless. To the extent flower-
ing is part of population viability, our analyses can help 
identify emergent climate refugia for Joshua trees—but 
viability assessment must consider all aspects of Joshua 
trees' biology.

Masting dynamics and climate change

Joshua trees have multiple features associated with mast-
ing reproductive strategy, facing wide annual variation 
in resource availability (Figure S1) and substantial seed 
predation (Kelly & Sork, 2002; Meyer & Pendleton, 2015). 
Synchronized flowering may satiate not only seed-
caching rodents, which are Joshua trees' primary means 
of seed dispersal (Waitman et al., 2012), but also the seed-
feeding, brood-pollinating Yucca moths that are their 
sole pollinators (Pellmyr & Segraves,  2003). Masting 
more effectively satiates invertebrate seed predators 
than vertebrates (Zwolak et al., 2022), and Joshua trees 
flowers, fruits, and seeds are a food source for numer-
ous insects beyond their pollinators (Smith et al., 2011; 
Terrill et al., 2019).

We identify climate predictors of Joshua tree masting 
and trends driven by those predictors that echo studies 
of masting and reproductive effort in other long-lived 
plants. In blackbrush (Coleogyne ramosissima), masting 
is driven by precipitation in the year prior to the year 
of flowering (Meyer & Pendleton,  2015); we similarly 
find year-on-year contrasts in precipitation, rather than 
total precipitation, are the most informative predictors 
of Joshua tree flowering (Figures 2b, 3). We also find ris-
ing winter temperatures are associated with increasing 
frequency of Joshua tree flowering (Figure 5b). Saguaro 
cactus (Carnegia gigantea), beech (Fagus sylvatica), and 
multiple oaks (Quercus spp.) flower more intensively in 
warmer years, or show increasing frequency of mast-
ing with warming average temperatures (Caignard 
et  al.,  2017; Övergaard et  al.,  2007; Renzi et  al.,  2019; 
Shibata et al., 2020). Inter-annual variation in seed pro-
duction is increasing globally, potentially consistent with 
greater variability in climate drivers of masting (Pearse 
et al., 2017).

Crowdsourcing observations of population 
processes

Our analyses are enabled by the availability of crowd-
sourced Joshua tree observations, which expand the 

 14610248, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ele.14478, W

iley O
nline Library on [12/05/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



      |  11 of 14YODER et al.

geographic and temporal scope of previously published 
data. Crowdsourcing is increasingly recognized as a 
valuable source of biodiversity, ecology, and demogra-
phy data (Brenskelle et al., 2021; Fink et al., 2023; Gaier 
& Resasco, 2023; Pernat et al.,  2021; Tiago et al.,  2017; 
Wilson et  al.,  2020). Coordinated projects such as the 
USA-NPN Nature's Notebook program have char-
acterized advancing spring phenology (Crimmins & 
Crimmins, 2022; Fuccillo Battle et al., 2022); while the 
iNaturalist platform, from which we draw our data, 
dramatically expands occurrence records for many taxa 
without (necessarily) directing contributors' sampling 
(Di Cecco et al., 2021).

The broader geographic coverage enabled by crowd-
sourcing is a key advantage for our analysis. Our training 
data cover a longer period than the median time-series 
study of masting (Hacket-Pain et  al.,  2022), and their 
geographic scope is substantially broader. Studies of 
masting typically track many individuals at just one or 
a few locations over the study period; after aggregating 
iNaturalist records to the 4 km grid of weather data, 
we obtain more than 2600 location-year observations 
of flowering activity. For comparison, the USA-NPN 
records of Joshua tree flowering track phenophase in 
hundreds of trees at 16 unique locations over a 12-year 
period; these amount to 108 location-year observations 
in our modelling framework (not all locations are repre-
sented in all years; Figure 4a; USA National Phenology 
Network, 2024).

Crowdsourcing observations may introduce both 
obvious and subtle biases in the resulting data, but 
these can be addressed by careful validation and test-
ing (Barve et al., 2020; Di Cecco et al., 2021; Fuccillo 
et al., 2015). Our data benefit from Joshua trees' visual 
distinctiveness and the high visibility of their f lowers 
and fruits (Figure 1a–d). Prior assessments have found 
high accuracy in crowdsourced phenophase records 
for less distinctive taxa (Fuccillo et al., 2015), and we 
reviewed records for species identity and phenophase 
as a key part of data compilation. The temporal and 
spatial distribution of our data is shaped by the geo-
graphic distribution of iNaturalist contributors and 
growing participation in the platform (Figure  1e,f). 
However, prevalence of f lowering has not changed over 
the 15-year period of our training data (Figure 1e), and 
a model including a RI effect of observation year does 
not find RI effects with a temporal trend (Figure S3). 
Further, our hindcast aligns with records of f lowering 
from historical sources covering years and locations 
beyond those represented in iNaturalist (Figure  4; 
Figure S6).

Modelling species' dynamic responses to climate

Finally, our analyses are proof of concept for a new 
approach to modelling species' habitat requirements. 

Modelling species' habitats to project their distribu-
tions into times and places that cannot be directly 
observed is a mainstay of modern ecology, but most 
methods for such modelling address only presence or 
absence on the landscape, not population status (Elith 
& Leathwick,  2009; Merow, Dahlgren, et  al.,  2014). 
Incorporating measures of population growth into 
habitat modelling requires substantial effort (Merow 
et al., 2011; Merow, Latimer, et al., 2014; Merow, Smith, 
et  al.,  2014). However, many other plant taxa, espe-
cially long-lived perennials such as Joshua trees, have 
flowers and fruits that can be diagnosed from casually 
collected images. We find such data can identify bio-
logically realistic climate drivers of reproductive activ-
ity, and reconstruct past reproductive events reported 
in independent records. Going forward, this approach 
may provide a richer view of populations' responses to 
global change.
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