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Abstract

Quantifying how global change impacts wild populations remains challenging,
especially for species poorly represented by systematic datasets. Here, we
infer climate change effects on masting by Joshua trees (Yucca brevifolia and
Y. jaegeriana), keystone perennials of the Mojave Desert, from 15years of
crowdsourced observations. We annotated phenophase in 10,212 geo-referenced
images of Joshua trees on the iNaturalist crowdsourcing platform, and used them
to train machine learning models predicting flowering from annual weather
records. Hindcasting to 1900 with a trained model successfully recovers flowering
events in independent historical records and reveals a slightly rising frequency
of conditions supporting flowering since the early 20th Century. This reflects
increased variation in annual precipitation, which drives masting events in wet
years—but also increasing temperatures and drought stress, which may have net
negative impacts on recruitment. Our findings reaffirm the value of crowdsourcing
for understanding climate change impacts on biodiversity.
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element of plant populations' demographic responses to
shifting climates, especially across the full geographic

Climate change is altering the phenology and produc-
tivity of plant populations worldwide, with implications
for the stability of natural communities, ecosystem ser-
vices, and food security (Cleland et al., 2007; Franklin
et al., 2016; Franks et al., 2014; Parmesan & Yohe, 2003;
Pearse et al., 2017). Climate-driven changes in the tim-
ing and intensity of plant reproduction can be exam-
ined using space-for-time substitutions, ‘resurrection’
experiments comparing plants grown from stored seed
to contemporary populations (Franks et al., 2014), and
phenology states preserved in herbarium records and
historical documents (Willis et al., 2017) or as revealed
by crowdsourcing initiatives (Fuccillo Battle et al., 2022).
However, it remains challenging to reconstruct any

ranges of species poorly represented in historical records
and research collections.

Species distribution models (SDMs) are a key tool for
understanding how populations respond to environmen-
tal change (Elith & Leathwick, 2009; Merow et al., 2011;
Sweet et al., 2019). The most common SDM methods
use presence-absence records, or presence records with
randomly drawn pseudo-absences, to identify suitable
climate for a focal species. Presence-based SDMs pro-
vide only limited insight into a species' condition on the
landscape, however, because ‘presence’ may mean any-
thing from a single dying individual to a dense and grow-
ing population. Proposed methods to model population
growth could better reflect this nuance, but require
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greater effort in data collection, model specification,
and computational resources (Evans et al., 2016; Merow
et al., 2014a; Morin & Thuiller, 2009; Snell et al., 2014).
Joshua trees (Yucca brevifolia Engelm. and Y. jaegeri-
ana (McKelvey) L.W. Lenz; Figure 1a) are a case study
in the limits of understanding population conditions
through presence-based SDMs. Sister species of arbo-
rescent monocots endemic to the Mojave Desert of the
southwestern United States, Joshua trees are strongly
identified with the region in the popular imagination.
They are the largest plants in most communities where
they occur, providing food and habitat for many Mojave
species (Peattie, 1950; Rowlands, 1978; Smith et al., 2023).
Presence-based SDMs project that much of Joshua trees'
current range will be unsuitable under future climates

FIGURE 1

(Cole et al., 2011; Dole et al., 2003)—but while tempera-
tures have risen substantially in the Mojave over the last
century, evidence of Joshua tree populations' responses
to this change remain elusive (U.S. Fish and Wildlife
Service, 2023; Smith et al., 2023). Surveys in Joshua Tree
National Park, at the trees' southern range limit, find
reduced seedling recruitment consistent with projected
habitat losses (Barrows & Murphy-Mariscal, 2012; Sweet
et al., 2019), but no study has obtained range-wide data
on Joshua tree populations' demographic condition.
Changing climate may impact Joshua trees' life cycle
from germination to senescence (DeFalco et al., 2010;
Esque et al., 2015; Harrower & Gilbert, 2018; Reynolds
et al., 2012), but a particularly tractable focus is their
flowering. Like other long-lived desert perennials,
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Joshua tree flowering activity recorded in crowdsourced observations. Joshua tree phenology can be diagnosed from images

attached to geo-referenced observations in the iNaturalist database: (a) western Joshua tree (Yucca brevifolia) with no evidence of flowering in
March 2023 (iNaturalist record 150083178 by user ‘brewbooks’); (b) western Joshua tree with flowers budding (arrow) in March 2023 (record
150101172 by user ‘mat_bristol’); (c) western Joshua tree with open flowers (arrows), in March 2008 (record 114881910 by user ‘gregg29’);

(d) eastern Joshua tree (Y. jaegeriana) with fresh green fruit (arrows) in May 2022 (record 127293323 by user ‘karinpl1l’). (e) Total counts of
‘research-grade’ records of Joshua trees on the iNaturalist platform, by year of observation and diagnosed phenology status (thinner coloured
bars) and proportion of records in each year indicating flowering (i.e. showing buds, flowers, or fruits; wide grey bars). (f) Locations of
phenology records from all years in (e), rasterized to a 4km grid (green shading, Joshua tree habitat modelled by Esque et al. (2023); open white
points, grid cells with no evidence of flowering; solid blue points, cells with observations of buds, flowers, or fruit). Base map polygons from the

Natural Earth public-domain database (naturalearthdata.com).
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Joshua trees vary widely in their flowering intensity from
year to year. This may reflect both variation in resource
availability and adaptation to seed predation (Pellmyr &
Segraves, 2003; Waitman et al., 2012)—flowering in re-
sponse to annual weather variation should synchronize
mass-flowering masting events to maximize seedling sur-
vival by overwhelming seed consumers (Koenig, 2021;
Zwolak et al., 2022). Residents and tourists in the Mojave
take great interest in Joshua tree flowering (James, 2013;
McKinney, 1988; Overholt, 1932), but no one has sys-
tematically studied its environmental triggers. Popular
hypotheses suggest Joshua trees mast in response to a
wet year after one or more dry years (Downey, 1997,
McKinney, 1988), that they flower en masse as a stress
response (James, 2013), or that winter frost stimulates
flowering (Brenskelle et al., 2021; Rodgers, 2023). All
these hypothesized flowering triggers—precipitation,
drought, and winter freezing—are shifting as global cli-
mate changes (Smith et al., 2023). Identifying which fac-
tors drive Joshua tree flowering would let us infer how
Joshua trees are responding to recent climate change, in
places and times that have not been available to direct
observation.

Modelling Joshua tree flowering responses to an-
nual weather variation would, ideally, draw on observa-
tions over multiple years at locations across the Mojave.
Despite Joshua trees' ecological and cultural import,
however, systematic records of their flowering are sparse.
Joshua trees are challenging to preserve as herbarium
specimens and therefore poorly represented in research
collections; and available time-series observations in nat-
ural populations cover relatively small spans of time and
geography (USA National Phenology Network, 2024).
A solution may lie in the emerging practice of crowd-
sourcing. Crowdsourced natural history observations,
collected opportunistically by volunteer contributors
to ‘citizen science’ or ‘participatory science’ projects
(Cooper et al., 2021; Ellwood et al., 2023), offer broader
geographic and temporal coverage than directed efforts
by working scientists (Amano et al., 2016; Dickinson
et al., 2010; Panter et al., 2020). Crowdsourcing can pro-
duce data comparable to expert-collected observations
(Aceves-Bueno et al., 2017; Callaghan et al., 2020; but
see Tiago et al., 2017), especially when used with appro-
priate quality controls (Fuccillo et al., 2015; Kosmala
et al., 2016; Panter et al., 2020).

Because of their cultural prominence and high visibil-
ity on the landscape, Joshua trees are well-represented
on the iNaturalist crowdsourcing platform (inaturalist.
org). Contributors to iNaturalist upload geo-referenced
images to create occurrence records for species in the im-
ages. Joshua trees' morphology makes the diagnosis of
species identity and phenology status from these images
straightforward: they bear flowers in large panicles at the
end of branches, so flowers and fruits are distinguish-
able at a distance (Figure la—d). Prior studies of Yucca
species, including Joshua trees, characterized climate

drivers of phenophase timing using iNaturalist records
(Barve et al., 2020; Brenskelle et al., 2021), and we in-
ferred the same data would support modelling variation
in the occurrence, rather than the timing, of flowering.

Here, we draw on these crowdsourced records to re-
construct more than 120years of Joshua tree reproduc-
tive activity. We annotated phenology status in images
attached to more than 10,000 iNaturalist observations
of Joshua trees, covering 15years and much of the spe-
cies' range (Figure le,f). With these records, we mod-
elled the relationship between flowering and weather
using Bayesian additive regression tree (BART) meth-
ods (Carlson, 2020; Carlson et al., 2022). We then used
a trained BART model to hindcast flowering activity
from historical weather records, back to the year 1900.
Our hindcast aligns with independent historical records
of Joshua tree flowering, and it predicts that flowering
frequency has increased over the 20th Century, from a
median of once every Syears to more than once every
4years. This trend is driven by warming winter tem-
peratures and greater inter-annual variation in precipi-
tation, which are likely to reduce seedling survival even
as they boost flowering (Esque et al., 2015; Reynolds
et al., 2012). Moreover, putative climate refugia in higher
elevation and northerly regions have not necessarily seen
increased flowering. These results provide new insight
into climate change impacts on Joshua tree population
health, and they parallel the effects of climate change
on masting by other species. They also demonstrate the
utility of crowdsourcing for understanding populations'
responses to environmental change.

MATERIALS AND METHODS

Yucca brevifolia, the western Joshua tree, and Y. jaegeri-
ana,theeasternJoshuatree,areparapatrically distributed
with a narrow contact zone in central Nevada (Godsoe
et al., 2008; Lenz, 2007; Pellmyr & Segraves, 2003). They
differ in vegetative and floral morphology, and associate
with different species of specialized pollinating Yucca
moths (Godsoe et al., 2009). Nevertheless, the two spe-
cies hybridize (Smith et al., 2021; Yoder et al., 2013), and
occupy overlapping climates (Esque et al., 2023; Godsoe
et al., 2009). We therefore treat eastern and western
Joshua trees as a single population in the present study,
though we also examine each separately as a point of
comparison.

Data compilation

We queried iNaturalist for observations of Joshua trees
(as Y. brevifolia; iNaturalist treats eastern and western
Joshua trees as subspecies), located within the Mojave
Desert and meeting the platform's standard for ‘research-
grade’ data—having an attached image, high-precision
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location data, and species identity confirmed by at least
two contributors, with no contradicting identifications.
We used the images attached to each record to validate
species identity and to annotate phenophase in iNatural-
ist's internal annotation system. We used code modified
from the rinat package (Barve & Hart, 2022) to down-
load phenophase-annotated records through the iNatu-
ralist APL. (A prior study of Yucca by Barve et al. (2020)
similarly draws on iNaturalist, but we developed our
own protocol to obtain records from a longer time frame
and use annotation tools built into the platform.) We
binned records by year and binary evidence of flower-
ing—whether they showed no evidence of flowering, or
else buds, flowers, or fruits—and aggregated records to
the 4km-square grid of the PRISM database of spatially
interpolated weather records (PRISM Climate Group,
Oregon State University, 2014). To maximize confidence
in our data, we restricted analysis to 2008, the year iN-
aturalist launched, through 2022, the last full year avail-
able at the time of analysis.

Joshua trees flower in February through April; across
the Mojave, most precipitation arrives during winter,
though summer monsoons contribute more in the east.
We defined a ‘growing year’ from April of 1 year through
March of the next. Because we expected that Joshua
trees flower in response to year-over-year variation in
precipitation, as seen in other masting desert perennials
(Meyer & Pendleton, 2015), we compiled candidate pre-
dictors from the PRISM database covering 2 years prior
to observed flowering (Table S1): specifically, total pre-
cipitation in the growing year leading up to observation
(Y0), lyear prior (Y1), and 2years prior (Y2), as well as
maximum and minimum temperatures and vapour pres-
sure deficit (VPD) in the growing year before observation
(Y0). We also considered year-over-year differences in
total precipitation over 2years (YO-Y1 and Y1-Y2), and
contrasts in temperature and VPD over 1 year (YO-Y1).

Predictor selection and model training

We modelled flowering as a binary, whether or not evi-
dence of flowering (buds, flowers, or fruit) was recorded
in a given year and location (e.g. as in Figure 1f). To
model relationships between weather and flowering, we
used Bayesian additive regression tree methods (BARTs;
Chipman et al., 2010). BARTs are a classification and
regression tree machine learning method with power-
ful capabilities for ecological data analysis, particularly
dealing with potential confounding from sampling heter-
ogeneity (Carlson, 2020; Carlson et al., 2022; Dorie, 2023;
Tan & Roy, 2019; Figure le). BARTs perform compara-
bly to similar algorithms like boosted regression trees,
but make uncertainty more explicit in model estimation
(Becker et al., 2022).

We selected predictors, trained BART models, and an-
alysed results using methods in the dbarts (Dorie, 2023)

and embarcadero (Carlson, 2020) packages for R (R
Core Team, 2022). We selected predictors by training
models of varying complexity (summing across 10, 20,
50, 100, 150, or 200 trees) and tracking the frequency with
which simpler models dropped each candidate predic-
tor. Predictors more likely to be included in the simplest
models have greater predictive power, and we retained
these for final model training (Chipman et al., 2010). We
also used a stepwise BART model training utility im-
plemented in embarcadero, which compares model fit
while systematically removing predictors.

We trained a model using the most informative predic-
tors, and then examined the effects of inter-annual sam-
pling heterogeneity using leave-one-out cross-validation
by observation year. We also trained a random-intercept
(RI) BART model using the same predictors as the orig-
inal model, plus a RI effect of observation year, which
formally controls for inter-annual heterogeneity in flow-
ering prevalence. We tested the concordance of the RI
model with the original model by comparing their pre-
dictions for 2008-2022 across the full species range.
Finally, to examine differences between Y. brevifolia and
Y. jaegeriana, we used their well described geographic
distributions to assign records to species (none were in
the hybrid zone; Esque et al., 2023; Godsoe et al., 2009)
and trained single-species models with the divided data.

Hindcasting flowering activity

To hindcast flowering, we used a trained BART
model to predict flowering from PRISM records going
back to 1895 (PRISM Climate Group, Oregon State
University, 2014). We classified hindcast probabilities
as predicting flowering or no flowering using a cutoff
identified in model training to minimize false-positives
and maximize true-positives (supplementary methods,
Figure S2; Carlson, 2020). We summarized hindcast
probabilities of flowering and predicted flowering years
over 1900 to 2022 by masking prediction layers to a high-
resolution map of Joshua tree habitat (Esque et al. (2023);
Figure 1f). We examined trends within 4 km-square grid
cells in the species' ranges by estimating correlations be-
tween the hindcast probability of flowering and the year
for each cell, and by comparing the number of predicted
flowering years over the first three decades of the 20th
century (1900-1929) and the most recent three decades
(1990-2019). To visualize drivers of changes in flower-
ing from 1900-1929 to 1990-2019, we compared mean
predictor values and predicted flowering years in each
period, for each cell.

Validation with historical records of flowering

To validate hindcast predictions, we compared them to
records of flowering in times and locations beyond the

QSUIDI'] SUOWWO)) AR d[qeorjdde oyy £q PaUIOA0S S SO[IIE YO SN JO SI[NI 10§ AIeIqITT dUIUQ A3[IA) UO (SUOTIPUOD-PUB-SULID)/ WO K[ 1M ATeIqIaur[uo//:sd)y) SUOnIpuo)) pue swd ] oy 99 [S707/S0/21] uo Areiqry surjuQ L9[IA 8.+t 1°919/1111°01/10p/wod Ka[1m Areiqrjouruo;/:sdyy woiy papeojumod ‘g ‘b0z ‘8¥2019%1



YODER ET AL.

| 50f 14

coverage of the iNaturalist database, back as far as 1913.
These records represent substantially different search
efforts than iNaturalist observations, but they provide
independent points of comparison to our hindcast.

We compiled 357 formal records, which included
specific dates of observation and geographic coordi-
nates, from field notes by two coauthors (CIS and RY),
study site descriptions from published research (St.
Clair & Hoines, 2018), herbarium records (California
Consortium of Herbaria, 2024; Texas and Oklahoma
Regional Consortium of Herbaria, 2024), and the USA
National Phenology Network Database (USA-NPN;
USA National Phenology Network, 2024; Figure S6;
more detail in Supplemental methods: Formal valida-
tion records). We compared our hindcast predictions
with these formal records by, first, determining whether
the hindcast predicted a significantly higher probabil-
ity of flowering in years and locations where the formal
records indicated flowering, compared with years and
locations where they indicated no flowering. Second,
we calculated AUC (the area-under-the-curve statistic,
reflecting the frequency of correct classifications) for
model predictions in years and locations represented by
the formal records.

We also compared hindcast predictions with informal
records in historical newspaper accounts of Joshua tree
flowering obtained from the ProQuest digitized news
database (proquest.com; search for “Joshua tree” AND
(flower* OR bloom*)’). These reports did not provide
geographic coordinates but let us identify boundaries
for described locales. In total, we found 22 accounts de-
scribing flowering as intensive or poor (17 intensive, 5
poor; supplementary methods, Table S2). We compared
the hindcast with each newspaper account by averaging
the hindcast probability of flowering for the year of the
account within the bounding polygon for the locale de-
scribed in the account (Table S2).

RESULTS

Crowdsourcing yields thousands of high-quality
flowering records

We validated and annotated 10,212 iNaturalist records
for Joshua trees from 2008 to 2022 (Figure le). Binning
records by year and aggregating them to the 4 km-square
grid of PRISM data yielded 2632 records (Figure 1f). The
spatial and temporal distribution of these data reflect
the iNaturalist contributor community as well as Joshua
trees' ecology. Sampling density increased by orders of
magnitude with participation in iNaturalist, from 26 re-
cords in 2008 to 2644 in 2021 (Figure le, narrow bars),
though the prevalence of flowering did not significantly
change over time (Figure le, wide grey bars; product-mo-
ment correlation between year and proportion of records

indicating flowering=0.03, p=0.83). Observations
were at the highest density in and around Joshua Tree
National Park, less common in wilderness areas in
western Arizona, and absent from a region occupied by
restricted U.S. Air Force and Department of Energy fa-
cilities west of Las Vegas (Figure 1f). As a consequence,
more records are from the range of the western Joshua
tree (1460 gridded records for Y. brevifolia vs. 1172 for Y.
Jaegeriana).

Climate triggers predict flowering activity

Predictor selection and stepwise model training identified
six predictors as most informative for differentiating the
presence and absence of flowering in our training data:
Y1-Y2 and YO-Y1 contrasts in precipitation (A,,_,PPT
and A, PPT), maximum VPD in YO (MaxVPD,,), YO—
Y1 contrastinminimum VPD (A, _,MinVPD), minimum
temperature in YO (MinTemp,,), and YO-Y1 contrast in
maximum temperature (A, MaxTemp; Figure 2a). A
model trained on the 2008-2022 flowering records with
these six predictors had high performance based on a
fully randomized out-of-bag draw (AUC=0.84).

To explore the impacts of inter-annual heterogeneity
in sampling (Figure le, coloured bars), we performed
leave-one-out cross-validation by observation year;
across l5years in our dataset, the model was moder-
ately successful at predicting observations in the left-out
year (mean AUC=SE=0.60+0.05 across all 15 obser-
vation years). To formally control for inter-annual het-
erogeneity in observations, we trained a second model
with observation year included as a RI effect (Carlson
et al., 2022; Dorie, 2023). This RI model had AUC=0.80,
and AUC=0.59+0.04 in leave-one-out cross-validation.
Compared across the species' range, predicted proba-
bilities of flowering from the original model and the RI
model were overwhelmingly positively correlated in every
year of observation (minimum Spearman's rho=0.66,
median 0.91; p< 10™%in all years). The two models agreed
in 84% of classified predictions (Xﬁle = 18,226, p< 1079),
with the original model predicting flowering when the
RI model did not in 12% of predictions, and the RI
model predicting flowering when the base model did
not in 4%. Moreover, RI estimates from the RI model
show no trend in parallel with increasing sampling den-
sity (Figure S4), consistent with the lack of a trend in the
prevalence of flowering (Figure le, grey bars). These re-
sults indicate there is no systematic bias created by the
greater number of iNaturalist contributions in more re-
cent years. Finally, models separately trained on records
from the ranges of each Joshua tree species produced
results in alignment with the original two-species model
(SI, Supplemental methods). Thus, we used the original
model trained on data from both species' ranges, without
the RI effect, for all subsequent analyses.
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in models with decreasing complexity (regression tree count) identify the six left-most predictors as meaningfully predicting flowering activity
(Carlson et al., 2022). (b) Partial effects of the top six environmental predictors in the final trained model (white line, median; shaded area

95% density interval across trees). (c) Modelled probability of flowering versus observed flowering in the full training dataset (AUC=0.84)
vertical line marks the classification cutoff with best discrimination (SI, Supplemental methods; Figure S1), box-and-whisker plots give median
(centre bar), 25th and 75th percentile (lower and upper hinges) and smallest and largest values within 1.5 x the interquartile range of the median

(whiskers) for predicted Pr(flowers).

Predictor effects match biological expectations

Our model finds flowering is more likely when the
year leading up to flowering (Y0) is wetter than the
previous year (Y1), and when that previous year was
drier than 2years prior to flowering (Y2; Figure 2b,
Ay, PPT and A,,_,PPT, respectively); this is consist-
ent with masting in response to a year-over-year in-
crease in precipitation. The model also finds flowering
is more likely when maximum VPD is lower in the year
leading up to flowering, and when minimum VPD has
been relatively stable since the prior year (Figure 2b,
MaxVPDy, and AYO_lMinVPD), consistent with lower
drought stress leading up to flowering. Finally, flower-
ing is more likely when the minimum temperature in
the year leading up to flowering is above freezing, and
when the maximum temperature has been relatively

stable since the prior year (Figure 2b, MinTemp,,, and
A,,_;MaxTemp). This aligns with observations sug-
gesting Joshua trees flower more intensively in histori-
cally warmer locations (St. Clair & Hoines, 2018), and
that their distribution is limited by winter low tem-
peratures (Dole et al., 2003; Rowlands, 1978), though
it contradicts speculation that freezing triggers flower-
ing (Brenskelle et al., 2021; Rodgers, 2023). Spatial pro-
jection of predictors' partial effects in individual years
further illuminates these interpretations. In 2019, 58%
of all records indicate flowering, and year-over-year
precipitation contrasts contribute strongly to flower-
ing (Figures le, 3a,b). In the following year, 2020, just
7% of records indicate flowering, and the same pre-
cipitation contrasts make much weaker contributions
(Figures le, 3c,d). This pattern holds across all years
of observation (Figures S9-S23).
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@ 2019 observations () 2020 observations

No flowering @ Flowering % E No flowering B Flowering
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FIGURE 3 Spatial partial predictor effects in the trained model reflect flowering frequency in individual years of observation. (a) Training
data for 2019, a year in which 67% of records indicate flowering. (b) Spatial partial effects of the six predictors in the final trained model, for
conditions in 2019. (c) Training data for 2020 when 6% of records indicate flowering. (d) Spatial partial effects of predictors for conditions in
2020. Panels in b and d present values in a 4km grid masked to the species distribution polygon in a and c. Figure S6. summarizes values for
each predictor in each year of observation; Figures S7-S21 give training observations and spatial partial predictor effects for all observation
years.
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Hindcast flowering aligns with historical records

Toreconstruct Joshua tree flowering since theearly 20th
Century, we used our working model to predict flower-
ing from historical weather records (PRISM Climate
Group, Oregon State University, 2014). Across the spe-
cies' ranges (Figure 1f), the hindcast predicts a median
of 30 flowering years from 1900 to 2022 (95% density
from 5 to 57 flowering years), approximately once every
4years. The hindcast generally matched observations
of flowering in formal validation records dating back
to 1913, which we assembled from field notes, the pub-
lished literature (St. Clair & Hoines, 2018), herbarium
records (California Consortium of Herbaria, 2024;
Texas and Oklahoma Regional Consortium of
Herbaria, 2024), and the USA-NPN database (USA
National Phenology Network, 2024), as well as in-
formal records from newspaper accounts (Figure 4;
Supplemental methods, Table S2). The hindcast pre-
dicted a significantly higher probability of flowering
in places and years when formal validation records
indicated flowering (Figure 4b; two-sample ¢-test with
df=79.0, p<107°), and had AUC=0.70 when classifying
them using the best discrimination cutoff identified in
model training (Supplemental methods). The hindcast
probability of flowering was also significantly higher
in years and locales corresponding to 17 newspaper ac-
counts of intense flowering, compared with 5 accounts
of poor flowering, dating back to 1924 (Figure 4c;
Table S2; r-test with df=15.9, p<107°).

(a)
30 o
Validation record source

B Herbarium collections
20 Field notes
[l USA-NPNdata
St. Clair & Hoines (2018)
Newspapers

Records

10

Hindcasting reveals trends in flowering

Our hindcast reflects changes in climate from 1900 to
2022 and thereby suggests how this change impacted
Joshua tree flowering. We first examined trends in
flowering within grid cells in the species' ranges by es-
timating correlations between year and hindcast prob-
ability of flowering for each cell. The median correlation
(Spearman's p) between year and hindcast probability
of flowering was 0.05 (95% density —0.05 to 0.17), with a
positive trend (p>0) in 80% of cells. Overall, this is con-
sistent with a rising predicted probability of flowering
since the year 1900. We then compared the number of
flowering years predicted in 1900-1929 and 1990-2019.
Across the species' range, the hindcast predicted a mean
of 1.6 more flowering years in 1990-2019 compared with
1900-1929 (median of 2 more years; 95% density from
3 fewer to 6 more; Figure 5b). The median frequency
of flowering in the early period was about once every
Syears, rising to more than once every 4years in the re-
cent period.

This increase in predicted flowering arises from
changes in the climate triggers identified by our BART
modelling. Compared with 1900-1929, the period of
1990-2019 saw greater year-over-year precipitation and
VPD differences, as well as warming minimum tempera-
tures (Figure 5c¢); increased flowering frequency follows
from the partial effects of these predictors (Figure 2c;
Figure 3). Regions showing increased flowering also show
rising maximum VPD, consistent with increasing aridity

7972 2000 2025

Year of observation

0 nnm
1925 1950
(b) Formal records
el
(0]
°
8 True
o
= Classification cutoff
= »’ ®
o False —ED -
g °
2 |
L

0.0 0.2 0.4 0.6
Predicted Pr(flowers)

Newspaper accounts

Intense |]| | %

Classification cutoff

Poor

Flowering described &

0.2 04 06
Mean Pr(flowers) for locale

FIGURE 4 Formal and informal independent validation records align with hindcast predictions. (a) Validation records by source and year
of observation. (b) Formal validation records (from herbaria, field notes, USA-NPN data, and St. Clair and Hoines (2018)) grouped by whether
they recorded flowers in a given location and year, versus predicted probability of flowering from the base model hindcast for that location and
year. (¢) Informal records (from newspaper accounts) grouped by the quality of flowering described, versus predicted probability of flowering
from the base model hindcast for the year of publication, averaged over the locale described (Supplemental methods, Table S2). Point colours in
(b) and (c) follow coding in (a); classification cutoff and boxplot parameters as in Figure 2c.
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FIGURE 5 Hindcast frequency of flowering years reflects climate change since 1900. (a) Frequency of hindcast flowering years predicted
over the full 1900 to 2022 study period, for 4km-square grid cells masked to the species distribution polygon in Figure 1f. (b) Difference in
flowering year frequency, 1990-2019 compared with 1900-1929, predicted by the base model. Positive values (green shading) indicate more
predicted flowering years in the recent period. (c) Mean values for the six predictor variables versus flowering years predicted by the base model
in 300 randomly drawn grid cells, over the period 1900-1920 (blue points) or 1990-2019 (orange points), with arrows linking the median values
for the earlier period to median values for the recent period to indicate direction and magnitude of change. Compare to predictor partial effects

in Figure 2b.

(Figure 5c), and this pattern is less obviously derived
from the partial effect of maximum VPD (Figure 2c).
It may instead reflect the correlation of VPD variation
with precipitation and temperature drivers of increased
flowering. The magnitude of change in maximum VPD
between the two time periods is much smaller than the
change in other predictors, but it does mean populations
where we find greater increases in flowering face greater
drought stress.

Predicted changes in flowering frequency varied
with elevation and latitude, but were not necessarily as
expected. Higher elevation and more northerly regions
are a priori climate refugia, where Joshua trees may have
more resources for reproduction (Morelli et al., 2016),

but elevation and latitude have complex interactions
with climate in the topography of the Mojave: prospec-
tive refugia for Joshua trees have been identified at high
elevations in Joshua Tree National Park, near the species'
southern range limit (Sweet et al., 2019). The hindcast
does predict greater increases in flowering frequency at
a higher elevation, but the correlation is not statistically
significant (product-moment correlation=0.02, p=0.14).
Meanwhile, change in predicted flowering years is sig-
nificantly negatively correlated with latitude (cor=—0.08,
p< 107°). This appears to be driven by stability or a slight
decline of flowering frequency in the northwestern
Mojave, and strongly increased flowering frequency in
high-elevation sites in the southwest (Figure 5b). These
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trends may be consistent with increased flowering driven
by warmer winter temperatures in historically cooler,
wetter regions (Figures 2b, 5a) while flowering is stable
or decreasing in historically drier regions that already
see lower flowering frequency (Figure 5a).

DISCUSSION

Climate change impacts on global ecosystems are already
pervasive, but quantifying those impacts remains chal-
lenging for many species. We applied readily available
crowdsourced data to describe how 20th century climate
trends have shaped reproductive activity by keystone
species of the Mojave Desert. Our BART models trained
on crowdsourced records of Joshua tree flowering iden-
tify biologically realistic climate drivers of flowering
(Figure la,b), and our working model can then hindcast
flowering activity to reconstruct long-term trends and
recover flowering events in independent historical re-
cords (Figure 4). The hindcast suggests flowering has be-
come somewhat more frequent since 1900, but this trend
varies geographically, with decreased flowering in some
putative climate change refugia (Figure 5). Our analyses
provide new insight into Joshua tree population health, a
major source of uncertainty in recent assessments of the
species for endangered species protection (U.S. Fish and
Wildlife Service, 2023). They also demonstrate the po-
tential of crowdsourced data for examining population
processes over wide geographic regions.

Joshua tree population status in changing
climate

Our analyses identify drivers of Joshua tree masting, re-
vealing how climate trends over the last century may have
impacted Joshua tree populations. However, flowering
is only one component of the populations' demographic
health. Germination, seedling survival, and growth may
not respond to the same climatic drivers as flowering, or
may not respond in the same way. Our hindcast finds flow-
ering frequency has likely increased as a result of growing
inter-annual variability in precipitation and temperature
(Figure 5c), and these trends may threaten survival and
growth even as they boost flowering. Joshua tree seedling
survival is highly sensitive to annual precipitation and must
overcome heavy herbivory (Esque et al., 2015; Reynolds
et al.,, 2012). Herbivory is even worse in drought years
when Joshua trees provide a browse of last resort (DeFalco
etal.,2010; Esqueetal., 2015). Although range-wide data are
lacking, there is reduced seedling recruitment in warmer,
drier microclimates within Joshua Tree National Park,
consistent with the expected effects of warming (Barrows
& Murphy-Mariscal, 2012; Sweet et al., 2019).

Joshua trees' reliance on specialized Yucca moth pol-
linators may present another way in which more frequent

flowering could fail to translate into greater recruitment
(Godsoe et al., 2008; Pellmyr & Segraves, 2003). Yucca
moths' responses to climate variation are largely un-
known. Short-term studies suggest the moths are less
active in cooler, high-elevation climates (Harrower &
Gilbert, 2018; Rowlands, 1978), and if this is borne out,
increased Joshua tree flowering in high-elevation climate
refugia may often prove fruitless. To the extent flower-
ing is part of population viability, our analyses can help
identify emergent climate refugia for Joshua trees—but
viability assessment must consider all aspects of Joshua
trees' biology.

Masting dynamics and climate change

Joshua trees have multiple features associated with mast-
ing reproductive strategy, facing wide annual variation
in resource availability (Figure S1) and substantial seed
predation (Kelly & Sork, 2002; Meyer & Pendleton, 2015).
Synchronized flowering may satiate not only seed-
caching rodents, which are Joshua trees' primary means
of seed dispersal (Waitman et al., 2012), but also the seed-
feeding, brood-pollinating Yucca moths that are their
sole pollinators (Pellmyr & Segraves, 2003). Masting
more effectively satiates invertebrate seed predators
than vertebrates (Zwolak et al., 2022), and Joshua trees
flowers, fruits, and seeds are a food source for numer-
ous insects beyond their pollinators (Smith et al., 2011;
Terrill et al., 2019).

We identify climate predictors of Joshua tree masting
and trends driven by those predictors that echo studies
of masting and reproductive effort in other long-lived
plants. In blackbrush (Coleogyne ramosissima), masting
is driven by precipitation in the year prior to the year
of flowering (Meyer & Pendleton, 2015); we similarly
find year-on-year contrasts in precipitation, rather than
total precipitation, are the most informative predictors
of Joshua tree flowering (Figures 2b, 3). We also find ris-
ing winter temperatures are associated with increasing
frequency of Joshua tree flowering (Figure 5b). Saguaro
cactus (Carnegia gigantea), beech (Fagus sylvatica), and
multiple oaks (Quercus spp.) flower more intensively in
warmer years, or show increasing frequency of mast-
ing with warming average temperatures (Caignard
et al., 2017, Overgaard et al., 2007; Renzi et al., 2019;
Shibata et al., 2020). Inter-annual variation in seed pro-
duction is increasing globally, potentially consistent with
greater variability in climate drivers of masting (Pearse
et al., 2017).

Crowdsourcing observations of population
processes

Our analyses are enabled by the availability of crowd-
sourced Joshua tree observations, which expand the
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geographic and temporal scope of previously published
data. Crowdsourcing is increasingly recognized as a
valuable source of biodiversity, ecology, and demogra-
phy data (Brenskelle et al., 2021; Fink et al., 2023; Gaier
& Resasco, 2023; Pernat et al., 2021; Tiago et al., 2017,
Wilson et al., 2020). Coordinated projects such as the
USA-NPN Nature's Notebook program have char-
acterized advancing spring phenology (Crimmins &
Crimmins, 2022; Fuccillo Battle et al., 2022); while the
iNaturalist platform, from which we draw our data,
dramatically expands occurrence records for many taxa
without (necessarily) directing contributors' sampling
(Di Cecco et al., 2021).

The broader geographic coverage enabled by crowd-
sourcing is a key advantage for our analysis. Our training
data cover a longer period than the median time-series
study of masting (Hacket-Pain et al., 2022), and their
geographic scope is substantially broader. Studies of
masting typically track many individuals at just one or
a few locations over the study period; after aggregating
iNaturalist records to the 4km grid of weather data,
we obtain more than 2600 location-year observations
of flowering activity. For comparison, the USA-NPN
records of Joshua tree flowering track phenophase in
hundreds of trees at 16 unique locations over a 12-year
period; these amount to 108 location-year observations
in our modelling framework (not all locations are repre-
sented in all years; Figure 4a; USA National Phenology
Network, 2024).

Crowdsourcing observations may introduce both
obvious and subtle biases in the resulting data, but
these can be addressed by careful validation and test-
ing (Barve et al., 2020; Di Cecco et al., 2021; Fuccillo
et al., 2015). Our data benefit from Joshua trees' visual
distinctiveness and the high visibility of their flowers
and fruits (Figure la—d). Prior assessments have found
high accuracy in crowdsourced phenophase records
for less distinctive taxa (Fuccillo et al., 2015), and we
reviewed records for species identity and phenophase
as a key part of data compilation. The temporal and
spatial distribution of our data is shaped by the geo-
graphic distribution of iNaturalist contributors and
growing participation in the platform (Figure le,f).
However, prevalence of flowering has not changed over
the 15-year period of our training data (Figure le), and
a model including a RI effect of observation year does
not find RI effects with a temporal trend (Figure S3).
Further, our hindcast aligns with records of flowering
from historical sources covering years and locations
beyond those represented in iNaturalist (Figure 4;
Figure S6).

Modelling species' dynamic responses to climate

Finally, our analyses are proof of concept for a new
approach to modelling species' habitat requirements.

Modelling species' habitats to project their distribu-
tions into times and places that cannot be directly
observed is a mainstay of modern ecology, but most
methods for such modelling address only presence or
absence on the landscape, not population status (Elith
& Leathwick, 2009; Merow, Dahlgren, et al., 2014).
Incorporating measures of population growth into
habitat modelling requires substantial effort (Merow
et al., 2011; Merow, Latimer, et al., 2014; Merow, Smith,
et al., 2014). However, many other plant taxa, espe-
cially long-lived perennials such as Joshua trees, have
flowers and fruits that can be diagnosed from casually
collected images. We find such data can identify bio-
logically realistic climate drivers of reproductive activ-
ity, and reconstruct past reproductive events reported
in independent records. Going forward, this approach
may provide a richer view of populations' responses to
global change.
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