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Abstract. Fix a pair of smooth source and target densities ρ and ρ∗ of
equal mass, supported on bounded domains Ω,Ω∗

⊂ R
n. Also fix a cost

function c0 ∈ C4,α(Ω × Ω∗) satisfying the weak regularity criterion of
Ma, Trudinger, and Wang, and assume Ω and Ω∗ are uniformly c0- and
c∗0-convex with respect to each other. We consider a parabolic version of
the optimal transport problem between (Ω, ρ) and (Ω∗, ρ∗) when the cost
function c is a sufficiently small C4 perturbation of c0, and where the size
of the perturbation depends on the given data. Our main result estab-
lishes global-in-time existence of a solution u ∈ C2

xC
1
t (Ω× [0,∞)) of this

parabolic problem, and convergence of u(·, t) as t → ∞ to a Kantorovich
potential for the optimal transport map between (Ω, ρ) and (Ω∗, ρ∗) with
cost function c. This is the first convergence result for the parabolic op-
timal transport problem when the cost function c fails to satisfy the
weak Ma-Trudinger-Wang condition by a quantifiable amount.

1. Introduction

The optimal transport problem is intimately tied to the theory of second-
order elliptic equations via a fully nonlinear PDE of Monge-Ampère type
coupled with the so-called second boundary condition [29]. This connection
suggests a natural method for proving the existence of optimal maps: solve
a parabolic version of this PDE whose stationary state is a solution of the
elliptic problem, and let the time variable tend to infinity. We refer to
this as the parabolic optimal transport problem; see (Par OT) in Section 2
for a precise formulation. Such an asymptotic approach has been shown
to work in the papers [24, 25, 1, 32] and provides a natural algorithm for
approximating optimal maps owing to its fast rate of convergence to the
steady state [24, 1].

Existing results for the parabolic optimal transport problem make crucial
use of the so-called weak Ma-Trudinger-Wang (MTW) condition (see Defi-
nition 2.4). This is a sign condition on a fourth-order tensor related to the
cost function that is necessary for the regularity of optimal maps even in
the stationary case [27]. Due to the fact that the weak-MTW condition is
difficult to verify and is not satisfied by many cost functions, it is a natural
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question to determine if, given fixed source and target measures, one can
solve the parabolic optimal transport problem when the cost function fails
to satisfy (weak-MTW) by a quantifiable amount. Our results in this paper
show that, given a fixed pair of source and target measures and a cost func-
tion c0 that satisfies (weak-MTW), the solution to the parabolic problem
(Par OT) exists for all time and converges to a solution of the elliptic prob-
lem when the cost function c is a sufficiently small C4 perturbation of c0; the
smallness of this perturbation depends on the source and target measures
and other structural quantities. We stress that c does not necessarily satisfy
(weak-MTW).

Our main theorem is as follows. We refer to Section 2 for precise defini-
tions and terminology.

Theorem 1.1. Let Ω,Ω∗ ⊂ R
n be smooth, bounded domains and let ρ(x) dx,

ρ∗(y) dy, be absolutely continuous measures supported on Ω,Ω∗ respectively
satisfying (Den Bds) and (Mass Bal). Suppose there exists r0 > 0 such

that the cost function c0 ∈ C4,α(Ω × Nr0(Ω
∗)) for some α ∈ (0, 1] satis-

fies the conditions (Bi-Twist), (Non-Deg), and (weak-MTW). Assume, in
addition that the domains Ω,Ω∗ satisfy (Dom c-Conv) and (Tar c∗-Conv)

with respect to c0. Then there exists a constant R̂ > 0 depending only
the structure (see Definition 2.1) such that if c ∈ C4,α(Ω × Nr0(Ω

∗)) sat-

isfies ||c − c0||C4(Ω×Nr0 (Ω
∗))

≤ R̂, then there exists a locally uniformly c-

convex function uinitial ∈ C4,α(Ω) satisfying (IC) such that a solution u ∈
C2
xC

1
t (Ω × [0,∞)) of the flow (Par OT) exists for all time and u(·, t) con-

verges in C2(Ω) as t→ ∞ to a c-convex function u∞, which is a Kantorovich
potential for the optimal transport problem between (ρ,Ω) and (ρ∗,Ω∗) with
cost c.

Remark 1.2. We can actually obtain exponential convergence of the flow
from our previous result [1], where the (weak-MTW) condition was not
used.

1.1. A Key Example. Let c0(x, y) :=
1
2 |x − y|2. Assume Ω,Ω∗ are fixed

uniformly convex domains such that dist(Ω,Ω∗) > 0. Let ρ, ρ∗ be fixed
measures supported on Ω,Ω∗ respectively and satisfying (Den Bds) and
(Mass Bal). For p ∈ [−2, 2] \ {0}, consider the cost c(x, y) := 1

p |x − y|p.

It is known that c satisfies (Bi-Twist) and (Non-Deg) for p ∈ [−2, 2] \ {0, 1}
(provided dist(Ω,Ω∗) > 0) but fails to satisfy (weak-MTW) for any p /∈
[−2, 1) ∪ {2}; see [33, Section 8, Example 4].

As a consequence of Theorem 1.1, we have the following result for the
flow (Par OT) with p-th power costs:

Proposition 1.3. Let c0,Ω,Ω
∗, ρ, ρ∗ be as above. Suppose there exist con-

stants M1,M2 > 0 such that

0 < M1 ≤ |x− y| ≤M2 for all (x, y) ∈ Ω× Ω∗.
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Then there exist γ0, r0 > 0 depending only on M1,M2 and the structure of
the problem such that if |p± 2| ≤ γ0, then ||c− c0||C4(Ω×Nr0 (Ω

∗))
≤ R̂ (where

R̂ is as in Theorem 1.1). Consequently, there exists an initial condition for
which the solution of the flow (Par OT) corresponding to c exists for all
time and converges in C2(Ω) to a solution of the optimal transport problem
between (ρ,Ω) and (ρ∗,Ω∗) for the p-th power cost with |p± 2| ≤ γ0.

This is a parabolic counterpart (when perturbing around p = 2) of results
obtained previously by Caffarelli-González-Nguyen [6] and Chen-Figalli [9]
in the elliptic case under slightly different assumptions on the cost and
densities. We refer the reader to Subsection 1.3 for more details on these
and related works.

1.2. Remarks on the main theorem and proof strategy. As stated
previously, the condition (weak-MTW) is not necessarily preserved by C4

perturbations. By a counterexample of Loeper in [27], it is known the condi-
tion is sharp in the sense that if a cost function fails to satisfy (weak-MTW),
then there exist smooth source and target measures for which the optimal
transport map is discontinuous. However, since the threshold value R̂ in
the statement of Theorem 1.1 depends on the structure of the problem (in
particular on the particular choices of ρ and ρ∗), our results do not violate
Loeper’s counterexample. We also do not require any special structure on
the source and target measures beyond (Mass Bal), (Den Bds), and suffi-
cient smoothness.

Let us comment on the strategy behind the proof of Theorem 1.1. We
note that the conclusion of the theorem does not immediately follow from an
inverse function theorem type argument. In fact, such an approach would re-
quire a version of the inverse function theorem on Frechét manifolds, which
is known to be false in general. As such, we must revisit the approach
taken in [25] for proving infinite-time existence and convergence of the flow
(Par OT), taking care to not make use of the (weak-MTW) condition. A
number of a priori estimates from [25] hold true even in the non-MTW set-
ting, but a missing essential ingredient is the global C2 estimate. In [25], the
interior C2 estimate makes crucial use of (weak-MTW), while the bound-
ary C2 estimate relies on the validity of an appropriate interior estimate.
To circumvent the role played by (weak-MTW), we quantify the failure of
(weak-MTW) and establish a dichotomy (see Proposition 4.2) that allows
us to exclude blow-up of the C2 norm of the solution if the initial data is
chosen appropriately. Such a dichotomy argument relies on the C4 closeness
of the cost function to one that satisfies (weak-MTW), and is in the spirit
of [34]. The construction of appropriate initial data requires an implicit
function theorem argument which also makes use of the C4 closeness to an
MTW cost.

1.3. Comments on related literature.
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1.3.1. Perturbation results for elliptic Monge-Ampère equations. Only a lim-
ited number of works address the regularity of solutions to elliptic Monge-
Ampère equations arising from optimal transport problems when the cost
function does not satisfy (weak-MTW). The first such result was obtained
by Caffarelli, González, and Nguyen [6], who consider the cost function
c(x, y) = 1

p |x− y|p with p ≈ 2 and domains Ω,Ω∗ that are uniformly convex

and a positive distance apart. As mentioned previously, these cost functions
do not satisfy (weak-MTW) unless p = 2. Global versions of the results
in [6] were obtained by Chen and Figalli [9]. Their more recent work [10]
investigates the regularity of optimal maps when the cost function is a C2

perturbation of an MTW cost. The proof strategy in all the aforemen-
tioned works uses localization arguments originally due to Caffarelli [7] and
shows that the optimal map for the perturbed cost inherits regularity from
the optimal map for the quadratic cost (or some other fixed cost satisfying
(weak-MTW)). We note that our approach in the present paper, aside from
being in the parabolic setting, differs from that in [6, 9, 10] as we do not per-
form any localization arguments; however, we do require higher regularity of
the cost function as well as the source and target measures. Finally, the work
of Warren [34] establishes regularity results for optimal transport problems
between log-concave mass distributions supported on small balls with cost
functions that are sufficiently close to the quadratic cost. As mentioned in
Subsection 1.2, our dichotomy argument for establishing the parabolic C2

estimates is inspired by the corresponding elliptic estimates in [34]. How-
ever we require neither log-concavity of the measures nor smallness of their
supports, both of which are essential ingredients in Warren’s proof.

1.3.2. Perturbation of distance-squared cost on Riemannian manifolds. A
different class of perturbative results exists in the optimal transport liter-
ature due to work of Figalli, Rifford, Villani, and Loeper [28, 18, 19, 20].
These papers consider C4 perturbations of canonical metrics on Riemann-
ian manifolds with cost function given by the Riemannian distance squared.
The qualitative difference between these results and ours is that the per-
turbed cost functions considered in [28, 18, 19, 20] end up satisfying a form
of (weak-MTW); in fact, this is one of the main contributions of the afore-
mentioned papers. A separate collection of perturbative results is due to
Delanoë and Ge [13, 15, 16, 14]. These works consider distance-square costs
for Riemannian metrics whose Gauss curvature is almost constant, and prove
regularity of the optimal map.

1.3.3. Gradient flow of the cost functional. The flow (Par OT) provides a
natural algorithm for approximating optimal maps, and is one of only a
handful of known asymptotic methods that have been proposed for solving
the optimal transport problem [2, 17]. Among these, the one most rele-
vant to the present paper originates in the work of Angenent, Haker, and
Tannenbaum [2]. While the approach in [2] easily adapts to arbitrary cost
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functions and densities, it has been most studied in the case

(1) c(x, y) = |x− y|2, ρ = Ln ¬
Ω, ρ∗ a.c. w.r.t Ln, supp(ρ∗) = Ω∗.

The key idea in [2] is to consider a one-parameter family of admissible maps
T t such that the function

t 7→ C(T t) :=

∫

Ω
|x− T t(x)|2 dx

is decreasing. This can be achieved if T t solves the nonlinear and non-local
vectorial transport problem

(AHT)











Ṫ t + (vt · ∇)T t = 0,

vt = PT t,

(T 0)#ρ = ρ∗,

where P is the so-called Leray projector onto divergence-free vector fields
in Ω satisfying a no-flux condition on ∂Ω. The short-time existence of the
flow (AHT) and infinite-time existence of a regularized version is proved in
[2]; see [31, Chapter 6, Section 6.2] for additional results in two dimensions.
Note that any gradient is a fixed point of (AHT). It is an interesting and
challenging problem to determine conditions on T 0 guaranteeing the infinite-
time existence and convergence of (AHT) to an admissible map that is also
the gradient of a convex function; by a celebrated theorem of Brenier [5],
such a map is the unique optimal transport map between ρ and ρ∗ for the
quadratic cost. Some progress towards solving this problem has been made
in the recent paper [30], whose authors show that if T 0 is sufficiently close
in Hs(Ω) for some s > 1 + n

2 to the gradient of a uniformly convex func-
tion ϕ (where the closeness depends on ϕ), then T t converges exponentially
fast in Hs−1(Ω) as t → ∞ to the optimal map. An appealing aspect of
the result in [30] is that it applies to smooth domains Ω,Ω∗ that are not
necessarily convex; note that, in this case, the optimal map need not even
be continuous, owing to counterexamples constructed by Caffarelli [8] (also
see [22]). On the other hand, the conditions imposed on T 0 are rather strin-
gent; moreover, each target density ρ∗ will require an appropriate choice
of T 0 to ensure the convergence of the flow. In comparison, the results in
the present paper, combined with our previous works [25, 1], show that for
the configuration (1) with Ω,Ω∗ convex, the parabolic Monge-Ampère-type
equation (Par OT) exhibits desirable asymptotic behavior when initialized
using a single function uinitial for any target density ρ∗ supported on Ω∗.
The function uinitial can also be constructed explicitly by solving the opti-

mal transport problem for the configuration (1) with ρ∗ := Vol(Ω)
Vol(Ω∗)L

n ¬
Ω∗.

1.3.4. Application to numerics. We mention that solving the parabolic op-
timal transport equation (Par OT) has potential applications to numerical
approximations of optimal transport. By combining approaches for ellip-
tic Monge-Ampère equations with second boundary value conditions (for
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example, as in [3]) with a time-discretization, it seems feasible to imple-
ment solvers for the parabolic problem. As mentioned in Remark 1.2, the
parabolic flow exhibits exponential convergence to the steady state solution
(and the constants involved can be explicitly determined); hence such a
solver would converge very quickly to the true solution. Our result in this
paper indicates that such an approach may be fruitful for certain source and
target measures even when the cost function does not satisfy (weak-MTW),
a class for which available numerical methods are virtually nonexistent. A
simple implementation using a finite difference scheme is available for the
cost c(x, y) = 1

2 |x− y|2 in one spatial dimension; good behavior of the error
is shown in [4].

1.4. Additional Remarks.

Remark 1.4. The C4 closeness of c to c0 in Ω × Nr0(Ω
∗) will guarantee

that c satisfies (Bi-Twist). However, in certain situations, (Bi-Twist) can
be verified independently (for example, in the case of the p-th power cost).
For another class of such examples, let c0(x, y) :=

1
2 |x − y|2. Consider the

cost c(x, y) = c0(x, y) + η(x, y) for some smooth function η. Let us assume
that η satisfies the following anti-monotonicity condition:

y 7→ −∇xη(x, y) is a monotone map ∀x ∈ Ω,

x 7→ −∇yη(x, y) is a monotone map ∀y ∈ Ω∗.(2)

We claim if η satisfies (2), then c satisfies (Bi-Twist). Indeed,

∇xc(x, y) = x− y +∇xη(x, y).

Consequently, if there exist x0 ∈ Ω and y1, y2 ∈ Ω∗ such that ∇xc(x0, y1) =
∇xc(x0, y1), then

y2 − y1 = ∇xη(x0, y2)−∇xη(x0, y1).

This implies

|y2 − y1|
2 = 〈∇xη(x0, y2)−∇xη(x0, y1), y2 − y1〉 ≤ 0,

where in the final inequality we have used (2). We thus conclude y2 = y1.
Carrying out a similar argument in the x variables, we conclude that c
satisfies (Bi-Twist) whenever η satisfies (2).

Remark 1.5. The C4 closeness of c to c0 also allows us to prove existence
of appropriate initial conditions uinitial for the flow. As the arguments in
Section 3 will show, it is possible to construct uinitial by solving a Poisson
equation with an oblique boundary condition. In addition, the initial con-
dition for the cost c will be close to that of c0, and the initial condition for
c0 can be chosen to be the solution of the optimal transport problem for c0
with constant densities; this function is guaranteed to be C2,α smooth by
regularity theory for cost functions satisfying (weak-MTW) [33].
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1.5. Outline of the paper. The remainder of this paper is structured
as follows. Section 2 sets up the necessary notation to precisely state the
parabolic optimal transport problem and recalls a number of useful estimates
from [25]. Section 3 is devoted to the construction of suitable initial data
for the flow (Par OT) when the cost function is sufficiently close to one
satisfying (weak-MTW). Section 4 establishes the crucial second derivative
estimates necessary for the infinite-time existence and convergence to steady
state of the flow (Par OT), which is proved in Section 5. Appendix A collects
a number of useful facts about a certain n-th degree polynomial that will be
used in the proof of the C2 estimates in Section 4.

2. Preliminaries

2.1. Notation and Setup. We will assume from here onward that Ω, Ω∗

are open, smooth, bounded domains in R
n. The outward-pointing unit

normal to ∂Ω (resp. ∂Ω∗) will be denoted by ν (resp. ν∗). The function
h∗ will be a C2, normalized defining function for Ω∗; i.e. h∗ = 0 on ∂Ω∗,
h∗ < 0 on Ω∗, and ∇h∗ = ν∗ on ∂Ω∗ (for existence of such a function,
see [25, Appendix A]). The measures ρ(x)dx, ρ∗(y)dy will be assumed to be
absolutely continuous with respect to n-dimensional Lebesgue measure and
satisfy

(Den Bds) 0 < λ ≤ ρ, ρ∗ ≤ λ−1 <∞ for a constant λ, and

(Mass Bal)

∫

Ω
ρ =

∫

Ω∗

ρ∗.

We will also assume c ∈ C4,α(Ω × Ω∗) for some α ∈ (0, 1], and satisfies the
bi-twist conditions:

y 7→ −∇xc(x, y) is injective ∀x ∈ Ω,

x 7→ −∇yc(x, y) is injective ∀y ∈ Ω∗.(Bi-Twist)

In addition, we assume that

(Non-Deg) detD2
x,yc(x, y) 6= 0.

For any p ∈ −∇xc(x,Ω
∗) and x ∈ Ω, (resp. q ∈ −∇yc(Ω, y) and y ∈ Ω∗), we

denote by expcx(p) (resp. exp
c∗
y (q)) the unique element of Ω∗ (resp. Ω) such

that

(3) −∇xc(x, exp
c
x(p)) = p, −∇yc(exp

c∗

y (q), y) = q.

We say Ω is c-convex with respect to Ω∗ if the set −∇yc(Ω, y) is a convex
set for each y ∈ Ω∗. Similarly, Ω∗ is c∗-convex with respect to Ω if the set
−∇xc(x,Ω

∗) is a convex set for each x ∈ Ω. Analytically, these conditions
are satisfied if
(Dom c-Conv)
[

νji (x)− c`,kcij,`(x, y)ν
k(x)

]

τ iτ j ≥ δ|τ |2 ∀ x ∈ ∂Ω, y ∈ Ω∗, τ ∈ Tx(∂Ω)
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and
(Tar c∗-Conv)
[

(ν∗)ji (y)− ck,`c`,ij(x, y)(ν
∗)k(x)

]

(τ∗)i(τ∗)j ≥ δ∗|τ∗|2 ∀ y ∈ ∂Ω∗, x ∈ Ω, τ∗ ∈ Ty(∂Ω
∗)

for some constants δ, δ∗ ≥ 0 respectively, where we will always sum over
repeated indices; here subscripts before and after a comma indicate partial
derivatives with respect to x and y respectively, and ci,j is the (i, j)-entry
of the inverse of the matrix D2

x,yc. If δ (resp. δ∗) is strictly positive, we
say that Ω is uniformly c-convex with respect to Ω∗ (resp. Ω∗ is uniformly
c∗-convex with respect to Ω).

For the remainder of the paper, we will fix a distinguished cost function
c0, along with domains Ω and Ω∗ that are uniformly c0- and c

∗
0-convex with

respect to each other. Additionally, we assume that c0 satisfies (Bi-Twist)

and (Non-Deg) on Ω×Nr0(Ω
∗) for some fixed radius r0 > 0 small enough so

that Nr0(Ω
∗) has C1 boundary; such an r0 always exists due to regularity

of the distance function of a smooth domain in a small neighborhood of the
boundary.

Definition 2.1. We will say that a constant depends on the structure of the
problem if it depends only on the following quantities:

• r0, n, diam(Ω), diam(Ω∗);
• ‖ρ‖C2(Ω), ‖ρ

∗‖C2(Ω∗), and the constant λ in (Den Bds);

• ‖c0‖C4(Ω×Nr0 (Ω
∗))

, the supremum of ||(D2
x,yc0)

−1|| over Ω×Nr0(Ω
∗),

and the constants δ and δ∗ in (Dom c-Conv) and (Tar c∗-Conv).

Definition 2.2. (i) A function ϕ : Ω → R is said to be c-convex if for
any x0 ∈ Ω, there exists y0 ∈ Ω∗ and z0 ∈ R such that

ϕ(x0) = −c(x0, y0) + z0,

ϕ(x) ≥ −c(x, y0) + z0, ∀x ∈ Ω.

(ii) We say ϕ is strictly c-convex if it is c-convex, and the second inequality
above is strict whenever x 6= x0.

(iii) A function ϕ ∈ C2(Ω) is said to be locally, uniformly c-convex if
D2ϕ(x) − Ac(x,∇ϕ(x)) > 0 as a matrix for every x ∈ Ω, where Ac

is defined below.

Remark 2.3. We note here that the sign convention on the cost function
c is negative that of [33, 25, 1]. We have made this choice in order to
express the associated optimal transport problem as a minimization, while
maintaining that our potential functions are c-convex (supported from below
by functions constructed from c). However, due to our choice of sign for the
matrix function A, all expressions in terms of A will be the same as in the
above mentioned references.

For a function u ∈ C2
xC

1
t (Ω × [0,∞)) (which, in the sequel, will be the

solution to a parabolic optimal transportation problem), we will employ the
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following notation (if the cost function c and the function u are clear from
context, we may suppress them from the notation at times):

(i) Ac(x, p) := −D2
xc(x, y)|y=expcx(p)

(ii) T c,u(x, t) = expcx(∇u(x, t))

(iii) Bc(x, p) = |det (D2
x,yc)(x, y)|y=expcx(p)

| · ρ(x)
ρ∗(expcx(p))

(iv) Gc(x, p) = h∗(expcx(p))
(v) βc,u(x, t) = ∇pG

c(x, p)|p=∇u(x,t)

(vi) W c,u(x, t) = D2u(x, t)−Ac(x,∇u(x, t))

The components of the matrix W c,u(x, t) will be denoted by wc,u
ij , while the

components of the inverse matrix will be denoted by wij
c,u.

Finally, we recall the weak Ma-Trudinger-Wang condition, first introduced
in [29] in a stronger form.

Definition 2.4. The cost function c(x, y) satisfies the weak Ma-Trudinger-
Wang condition if
(weak-MTW)

D2
pipjA

c
k`(x, p)V

iV jηkη` ≥ 0 for all x ∈ Ω, p ∈ −∇xc(x,Ω∗), V ⊥ η.

2.2. The Parabolic Optimal Transport Problem. Using the above no-
tation, we can now precisely state the parabolic optimal transportation prob-
lem. Given a cost function c satisfying (Bi-Twist) and (Non-Deg), domains
Ω,Ω∗ satisfying the convexity conditions (Dom c-Conv) and (Tar c∗-Conv),
absolutely continuous measures ρ, ρ∗ supported on Ω,Ω∗ respectively and
satisfying (Mass Bal) and (Den Bds), and a locally, uniformly c-convex (as
in Definition 2.2, (iii)) function uinitial satisfying the compatibility conditions
(IC) below, we seek to find a function u ∈ C2

xC
1
t (Ω× [0,∞)) that solves the

evolution equation
(Par OT)










u̇(x, t) = log det(W c,u(x, t))− logBc(x,∇u(x, t)), x ∈ Ω, t > 0

Gc(x,∇u(x, t)) = 0, x ∈ ∂Ω, t > 0

u(x, 0) = uinitial(x), x ∈ Ω.

Here, a dot indicates differentiation in the time variable. The function uinitial
must satisfy the compatibility conditions

(IC)











uinitial ∈ C4,α(Ω) for some α ∈ (0, 1]

Gc(x,∇uinitial(x)) = 0 on ∂Ω

T c
initial(Ω) = Ω∗, where T c

initial(x) := expcx(∇uinitial(x)),

It follows from the short-time existence result [25, Theorem 4.4] that for
any given c,Ω,Ω∗, ρ, ρ∗ satisfying the conditions outlined in Subsection 2.1,
there is a time tmax > 0 depending on c,Ω,Ω∗, ρ, ρ∗, and uinitial such that
the solution u of (Par OT) exists on Ω × [0, tmax). Since in this paper
we will fix Ω,Ω∗, ρ, ρ∗ but vary the cost function c in a neighborhood of
the distinguished cost c0, and construct initial data uinitial corresponding to
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each choice of c, we will often highlight the dependence of tmax on c. If,
in addition, the cost function c satisfies the (weak-MTW) condition, then
the main result of [25] shows that tmax(c) = +∞. As mentioned in the
introduction, one of the goals of this paper is to show that tmax(c) = +∞
for certain cost functions c that fail to satisfy the (weak-MTW) condition,
given ρ and ρ∗.

We end this section by collecting those uniform estimates established in
[25] that do not require the (weak-MTW) condition.

Proposition 2.5. Suppose c ∈ C4,α(Ω×Nr0(Ω
∗)) satisfies (Bi-Twist), and

Ω and Ω∗ are respectively uniformly c- and c∗-convex with respect to each
other. Let u ∈ C4

xC
2
t (Ω × [0, tmax)) be a solution of (Par OT) for some

tmax > 0. Then there are constants K1, K2 > 0 depending only on the
structure of the problem and ‖uinitial‖C2(Ω) such that,

max

{

sup
(x,t)∈Ω×[0,tmax)

|∇u(x, t)|, sup
(x,t)∈Ω×[0,tmax)

|u̇(x, t)|

}

≤ K1,

inf
(x,t)∈∂Ω×[0,tmax)

〈βc,u(x, t), ν(x)〉 ≥ K2.

Proof. This follows immediately from [25, Theorems 6.1, 8.1, 9.2] noting
that none of the above estimates rely on the condition (weak-MTW). For
those results which rely on [25, Lemma 5.7] (whose proof makes use of
(weak-MTW)) we may instead use Proposition 2.6 below. �

In [25, Section 5], the condition (weak-MTW) is used to show that the
map T c is injective and the inverse is related to a parabolic PDE correspond-
ing to reversing the roles of the domains Ω and Ω∗; this “dual” problem is
used to obtain the uniform obliqueness estimates in [25, Section 9]. Using
recent partial regularity results established in [11], we can circumvent the
use of (weak-MTW); for completeness, we provide an alternative proof of
the relevant results of [25, Section 5] in the proposition below.

Proposition 2.6. If u is a solution of (Par OT), then T c(·, t) is injective
for each t ∈ [0, tmax(c)). Moreover, the function u∗ : Ω∗ × [0, tmax(c)) →
R defined by u∗(y, t) := −c((T c)−1(y, t), t) − u((T c)−1(y, t), t) satisfies the
(dual) boundary value problem











u̇∗(y, t) = log det(W c∗,u∗
(y, t))− logBc∗(y,∇u∗(y, t)), x ∈ Ω∗, t > 0

Gc∗(y,∇u∗(y, t)) = 0, y ∈ ∂Ω∗, t > 0

u∗(y, 0) = −c((T c
initial

)−1(y), y)− uinitial((T
c
initial

)−1(y)), y ∈ Ω∗,

(4)

where

(i) Bc∗(y, q) = |det (D2
y,xc)(x, y)x=expc

∗
y (q)| ·

ρ∗(y)

ρ(expc∗y (q))

(ii) Gc∗(y, q) = h(expc
∗

y (q))

(iii) W c∗,u∗
(y, t) = D2u∗(y, t) +D2

yc(x, y)x=expc∗y (∇u∗(y,t))
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and h is a normalized defining function for Ω.

Proof. Since c is fixed, we supress the cost in the notation T c for this proof.
Fix t ∈ [0, tmax(c)). By [11, Theorem 1.3], there exist closed sets Σ ⊂ Ω and
Σ∗ ⊂ Ω∗, both of zero Lebesgue measure, such that T (·, t) : Ω \Σ → Ω∗ \Σ∗

is a homeomorphism. Now suppose that y := T (x1, t) = T (x2, t) for some
x1 6= x2 ∈ Ω. Then we must have x1, x2 ∈ Σ and y ∈ Σ∗. Since(Par OT)
implies

detDxT = detW c,u|det (D2
x,yc)(x, T )|

−1 =
eu̇ρ

ρ∗ ◦ T
6= 0

on Ω, by the inverse function theorem we can see there are open sets U1,
U2 ⊂ Ω and V ⊂ Ω∗ with x1 ∈ U1, x2 ∈ U2, and y ∈ V where there exist
local inverses Si : V → Ui of T (·, t), i = 1, 2; without loss we may assume
U1 ∩ U2 = ∅. Since Σ∗ has measure zero, there exists a point y′ ∈ V \ Σ∗,
and Si(y

′) ∈ Ui \ Σ. However, this would imply that T (S1(y
′), t) = y′ =

T (S2(y
′), t) which is a contradiction as S1(y

′) 6= S2(y
′) ∈ Ω \Σ. Thus T (·, t)

is injective on Ω.
By the inverse function theorem, the map T−1 is differentiable on Ω∗ ×

[0, tmax(c)), thus by differentiating the relation u
∗(y, t) = −c((T c)−1(y, t), t)−

u((T c)−1(y, t), t) we can easily see u∗ satisfies (4). �

3. Construction of Initial Data

In this section we will work toward showing the existence of suitable initial
conditions for (Par OT) corresponding to a cost function c sufficiently close

to c0. First we show that if c is sufficiently close to c0 in C4(Ω×Nr0(Ω
∗)),

then c and the domains involved inherit various structural properties from
c0.

Lemma 3.1. There is a constant R0 > 0 depending only on the structure
of the problem such that:

(1) If ‖c − c0‖C4(Ω×Nr0 (Ω
∗))

< R0, then Ω and Ω∗ are uniformly c- and

c∗-convex with respect to each other, with constants δ/2 and δ∗/2 in
(Dom c-Conv) and (Tar c∗-Conv).

(2) If ‖c− c0‖C4(Ω×Nr0 (Ω
∗))

< R0, c satisfies conditions (Bi-Twist) and

(Non-Deg) on Ω×Nr0(Ω
∗).

(3) Under the same conditions on the cost functions c, c0 as in (2), if
u0 ∈ C2,α(Ω) is a c0-convex function such that T c0,u0 is a homeo-
morphism on Ω with detDT c0,u0(x) 6= 0 for all x ∈ Ω, and ‖u −
u0‖C2,α(Ω) < R0 for some α > 0, then T c,u is also a homeomorphism

on Ω; here R0 may also depend on u0.

Proof. Claim (1) above and the fact that c will satisfy (Non-Deg) are clear
if r0 is sufficiently small, depending only on the structure of the problem.

Suppose by contradiction that some cost fails (Bi-Twist) for R0 arbitrarily
small. Then there exists a sequence of cost functions ck converging to c0 in
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C4(Ω×Nr0(Ω
∗)), and sequences of points xk ∈ Ω, y1,k 6= y2,k ∈ Nr0(Ω

∗) such
that −∇xck(xk, y1,k) = −∇xck(xk, y2,k). By compactness, we may pass to
subsequences and assume that xk, y1,k, y2,k converge respectively to points
x∞, y1,∞, and y2,∞. This implies −∇xc0(x∞, y1,∞) = −∇xc0(x∞, y2,∞), and
since c0 satisfies (Bi-Twist), we must have y1,∞ = y2,∞ =: y∞. Since for k
large we may assume ck satisfies (Non-Deg), we seeD2

x,yck(xk, y) is invertible

for any y ∈ Nr0(Ω
∗), moreover we can see that the operator norms of these

inverses and the Lipschitz constants of the mappings y 7→ D2
x,yck(xk, y) are

bounded by constants depending only the structure of the problem. Since
Ω∗ is c∗-convex with respect to Ω by the first claim in the lemma, it has
Lipschitz boundary; we may thus combine [12, Theorem 1] with [26, Chapter
XIV, Lemma 1.3] to see there is a neighborhood around y∞ on which the
mappings y 7→ −∇xck(xk, y) are invertible for all k sufficiently large. This
is a contradiction for k large enough that both y1,k and y2,k belong to this
neighborhood, hence we obtain claim (2).

Claim (3) follows in a similar manner, allowing for the extra dependency
on u0. Suppose for contradiction there exists a sequence of cost functions
ck converging to c0 in C4(Ω × Nr0(Ω

∗)) and a sequence of functions uk
converging to u0 in C2,α(Ω) such that the maps Tk := T ck,uk are not home-
omorphisms on Ω. Then there exist sequences of points x1,k, x2,k ∈ Ω with
x1,k 6= x2,k such that Tk(x1,k) = Tk(x2,k) for each k. By compactness, we
may pass to subsequences and assume that x1,k, x2,k converge respectively

to points x1,∞, x2,∞ ∈ Ω. By the C4 convergence of the ck to c0 and C2,α

convergence of the uk to u0, we have C
1,α convergence of Tk to T0 := T c0,u0 ,

in particular we obtain T0(x1,∞) = T0(x2,∞). Since T0 is a homeomorphism,
this implies x1,∞ = x2,∞ = x∞. Now by assumption DT0(x∞) is invertible,

and since uk converges to u0 in C2,α(Ω), for k sufficiently large we can make
‖DT0(x∞) − DTk(x∞)‖ arbitrarily small. Thus we can use a combination
of [12, Theorem 1] and [26, Chapter XIV, Lemma 1.3] to deduce that there
exists δ0 > 0 depending only on T0 such that, for all k sufficiently large, the
maps Tk are invertible on Bδ0(x∞). However, this results in a contradiction,
as x1,k, x2,k ∈ Bδ0(x∞) for k sufficiently large.

�

Lemma 3.2. Suppose c ∈ C4(Ω × Nr0(Ω
∗)) with ‖c − c0‖C4(Ω×Nr0 (Ω

∗))
<

min{R0,
r0

6 sup‖(D2
x,yc0)

−1‖} where R0 is the constant from Lemma 3.1. Then

N r0
2 sup‖(D2

x,yc0)
−1‖

(−∇xc0(x,Ω∗)) ⊂ −∇xc(x,Nr0(Ω
∗)) ∀ x ∈ Ω.

Proof. Fix x ∈ Ω, and let us write

S0(y) : = −∇xc0(x, y), S(y) := −∇xc(x, y).

By Lemma 3.1 (2), S and S0 are both homeomorphisms on Nr0(Ω
∗).
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Suppose that q ∈ N r0
2 sup‖(D2

x,yc0)
−1‖

(S0(Ω∗)) \ S(Nr0(Ω
∗)). Then there ex-

ists y ∈ Ω∗ such that |q − S0(y)| <
r0

2 sup‖(D2
x,yc0)

−1‖ . Also since Nr0(Ω
∗) has

C1 boundary and S is a homeomorphism, there is an s ∈ [0, 1) such that
qs := (1 − s)S(y) + sq ∈ ∂S(Nr0(Ω

∗)) = S(∂Nr0(Ω
∗)). In particular, there

exists ys ∈ ∂Nr0(Ω
∗) such that qs = S(ys). Then,

r0
2 sup‖(D2

x,yc0)
−1‖

+ ‖S0 − S‖C0(Ω) ≥ |q − S(y)| > |qs − S(y)|

= |S(ys)− S(y)|

≥ |S0(y)− S0(ys)| − |S0(ys)− S(ys)| − |S0(y)− S(y)|

≥ [S−1
0 ]−1

C0,1(S0(Nr0 (Ω
∗)))

|y − ys| − 2‖S0 − S‖C0(Ω)

≥ [S−1
0 ]−1

C0,1(S0(Nr0 (Ω
∗)))

r0 − 2‖S0 − S‖C0(Ω),

but this is a contradiction after rearranging since [S−1
0 ]

C0,1(S0(Nr0 (Ω
∗)))

≤

sup‖(D2
x,yc0)

−1‖ and ‖S0 − S‖C0(Ω) ≤ ‖c− c0‖C4(Ω×Nr0 (Ω
∗))

. �

Finally, we use an implicit function theorem argument to show suitable
initial conditions for a cost c exist given a “good” initial condition for c0.

Lemma 3.3. Suppose u0 ∈ C2,α(Ω) for some α ∈ (0, 1], is strictly c0-
convex, is locally, uniformly c0-convex, and satisfies

∫

Ω u0(x) dx = 0. As-

sume, in addition, that T c0,u0 is a homeomorphism between Ω and Ω∗ and
detDT c0,u0 6= 0 on Ω. Then there exists R1 > 0 depending on the structure

of the problem and u0, and a continuous mapping Ψ : B
C4(Ω×Nr0 (Ω

∗))

R1
(c0) →

C2,α(Ω) such that for any c ∈ B
C4(Ω×Nr0 (Ω

∗))

R1
(c0),

Ψ(c) is strictly c-convex and locally, uniformly c-convex.(5)

T c,Ψ(c) is a homeomorphism between Ω and Ω∗.(6)

Proof. For ease of notation, during this proof we will supress the first vari-

able in the notation for Gc. Define B1 := B
C4(Ω×Nr(Ω∗))
r̃0

(c0), where r̃0 <
min{R0,

r0
6 sup‖(D2

x,yc0)
−1‖} andR0 is the radius obtained from (1)-(3) of Lemma

3.1, hence depends on the structure of the problem and u0.

Now let B2 := {u ∈ B
C2,α(Ω)
r̃0

(u0) |
∫

Ω u = 0}, and define the map Φ :

B1 × B2 → C0,α(Ω)× C1,α(∂Ω) by

Φ(c, u) := (∆(u− u0), G
c(∇u)|∂Ω).

Note that Φ(c0, u0) = (0, 0). Since T c0,u0 is a homeomorphism between Ω
and Ω∗, by Lemma 3.2 we have for any x ∈ Ω and u ∈ B2,

∇u(x) ∈ Nr̃0(∇u0(x)) = Nr̃0(−∇xc0(x, T
c0,u0(x))) ⊂ −∇xc(x,Nr0(Ω

∗)).
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In particular, Gc(x,∇u(x)) is well-defined for all x ∈ Ω. Denoting the
Fréchet derivative of the map u 7→ Φ(c0, u) at u0 by DuΦ(c0, u0), we claim
that DuΦ(c0, u0) is injective; here we consider B2 as a closed subset of the
Banach space B := {u ∈ C2,α(Ω) |

∫

Ω u = 0} with the C2,α norm, then u0 is
an interior point of B2. First note that an explicit calculation of the Fréchet
derivative of Φ (this requires C4 smoothness of the cost c0) shows that for
any φ ∈ B,

DuΦ(c0, u0)(φ) = (∆φ, 〈DpG
c0(∇u0),∇φ〉|∂Ω).(7)

By Proposition 2.5 Gc0(·,∇u0) is uniformly oblique on ∂Ω, hence by Hopf’s
lemma combined with standard existence theory for Poisson’s equation (for
example, [21, Theorem 6.31]) we seeDuΦ(c0, u0) is a bijection between B and
C0,α(Ω) × C1,α(∂Ω). Thus by the implicit mapping theorem [35, Theorem

4.B], there is a bijective, continuous mapping Ψ : B
C4(Ω×Nr(Ω∗))
R1

(c0) → V
for some radius R1 > 0 and neighborhood V of u0 in B such that Ψ(c0) = u0

and Φ(c,Ψ(c)) = (0, 0) for all c ∈ B
C4(Ω×Nr(Ω∗))
R1

(c0). We may further
shrink R1, but it will always be in a manner that depends only on the
structure of the problem and u0, hence we can also assume that the size
of the neighborhood V also depends only on these parameters. We re-
mark here this implies that the quantities ‖c‖

C4(Ω×Nr0 (Ω
∗)
, ‖u‖C2,α(Ω), and

‖(D2
x,yc)

−1‖
C4(Ω×Nr0 (Ω

∗)
have upper bounds that also depend only on the

structure of the problem and u0, provided R1 is taken small enough.

Now, for any c ∈ B
C4(Ω×Nr0 (Ω

∗))

R1
(c0), we have Gc(·,∇Ψ(c)) ≡ 0 on ∂Ω;

this implies T c,Ψ(c)(∂Ω) ⊂ ∂Ω∗. Possibly taking R1 even smaller, by Lemma

3.1 (3) we may assume that T c,Ψ(c) is a homeomorphism from Ω to T c,Ψ(c)(Ω),

hence a homeomorphism from ∂Ω to T c,Ψ(c)(∂Ω). By Lemma 3.1 (1), Ω is
uniformly c-convex with respect to Ω∗ and Ω∗ is uniformly c∗-convex with
respect to Ω, hence Ω and Ω∗ are both homeomorphic to balls, in particular
∂Ω and ∂Ω∗ are connected. Thus we must have T c,Ψ(c)(∂Ω) = ∂Ω∗. Now

suppose for some x ∈ Ω we have T c,Ψ(c)(x) 6∈ Ω∗. Then writing cs :=

(1−s)c0+sc, by continuity of the map Ψ the curve {T cs,Ψ(cs)(x) | s ∈ [0, 1]}
is continuous with T c0,Ψ(c0)(x) ∈ Ω∗. Thus for some value of s, we will

have T cs,Ψ(cs)(x) ∈ ∂Ω∗ contradicting that T cs,Ψ(cs) is injective on Ω and

T c,Ψ(c)(∂Ω) = ∂Ω∗. Thus T c,Ψ(c)(Ω) = Ω∗ proving the claim (6).

We will now show (5). Fix c ∈ B
C4(Ω×Nr0 (Ω

∗))

R1
(c0) and write u := Ψ(c).

Since u0 is locally, uniformly c0-convex, by continuity and compactness the
smallest eigenvalues of the matrices D2u0(x)−A

c0(x,∇u0(x)) have a strictly
positive lower bound independent of x ∈ Ω. Then there exists some R > 0
depending only on the structure of the problem and u0 such that D2u0(x)−
Ac0(x,∇u0(x0)) also has a strictly positive bound independent of x and x0,
whenever |x − x0| < R. Next, possibly shrinking R1, we can assume there
exists some ε0 > 0 depending only on the structure of the problem and u0
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such that

D2u(x)−Ac(x,∇u(x0)) ≥ ε0Id, ∀ x0, x ∈ Ω, |x− x0| < R.(8)

In particular, u is locally, uniformly c-convex. Now fix x, x0 ∈ Ω and let
y0 := expcx0

(∇u(x0)) which belongs to Ω∗ by above. First suppose x 6= x0 ∈

Ω is such that |−∇xc(x, y0) +∇xc(x0, y0)| <
R
M1

for an M1 depending only

the structure of the problem such that sup‖(D2
x,yc)

−1‖ < M1. Then write
for s ∈ [0, 1],

p0 := −∇yc(x0, y0) = ∇u(x0),

p := −∇yc(x, y0),

x(s) := expc
∗

y0((1− s)p0 + sp).

Note by Lemma 3.1 (1), the set −∇yc(Ω, y0) is uniformly convex, hence

x(s) ∈ Ω. A quick calculation yields

ẋi(s) = −ck,i(p− p0)k

ẍi(s) = −cj,ickl,jc
m,kcn,l(p− p0)m(p− p0)n

where all terms involving c are evaluated at (x(s), y0). Using this we find
that for any s ∈ [0, 1],

|x(s)− x0| ≤

∫ s

0
|ẋ(s)|ds ≤ sup‖(D2

x,yc)
−1‖|p− p0| <

R sup‖(D2
x,yc)

−1‖

M1
< R.

Using Taylor expansion, we thus find some s̃ ∈ [0, 1] such that

u(x)− (−c(x, y0) + c(x0, y0) + u(x0))

= 〈∇u(x0) +∇xc(x0, y0), ẋ(0)〉

+ 〈[D2u(x(s̃)) +D2
xc(x(s̃), y0)]ẋ(s̃), ẋ(s̃)〉+ 〈∇u(x(s̃)) +∇xc(x(s̃), y0), ẍ(s̃)〉

≥ ε0|((−D
2
x,yc(x0, y0))

T )−1(p− p0)|
2

− sup‖((D2
x,yc)

T )−1‖‖c‖
C4(Ω×Nr(Ω∗))

|∇u(x(s̃)) +∇xc(x(s̃), y0)||((−D
2
x,yc(x(s̃), y0))

T )−1(p− p0)|
2

(9)

where we have used that ∇u(x0) +∇xc(x0, y0) = 0. We can also calculate

|∇u(x(s̃)) +∇xc(x(s̃), y0)| = |∇u(x(s̃))− [(1− s̃)p0 + s̃p]|

≤ |∇u(x(s̃))−∇u(x0)|+ s̃|p− p0|

≤ sup‖D2u‖ sup|ẋ|+ s̃|p− p0|

≤ (1 + sup‖D2u‖ sup‖((D2
x,yc)

T )−1‖)|p− p0|

≤
R(1 + sup‖D2u‖ sup‖((D2

x,yc)
T )−1‖)

M1
.

Thus by taking M1 large enough and combining with (9), we obtain for
some ε1 > 0 depending only on the structure of the problem and u0 (note
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here that sup‖D2u‖ is controlled by the C2 norm of u0 and the size of the
neighborhood V)

u(x)− (−c(x, y0) + c(x0, y0) + u(x0)) ≥ ε1|p− p0|
2 > 0.(10)

Now suppose |−∇xc(x, y0) + ∇xc(x0, y0)| ≥ R
M1

. Since u0 is strictly c0-
convex, the function

u(z, z0) : = u0(z)− (−c0(z, T
c0,u0(z0)) + c0(z0, T

c0,u0(z0)) + u0(z0))

is strictly positive on the set D0 := {(z, z0) ∈ Ω×Ω | |−∇xc0(z, T
c0,u0(z0))+

∇xc0(z0, T
c0,u0(z0))| ≥

R
2M1

}, which is seen to be compact by the continu-
ity of T c0,u0 and boundedness of Ω. In particular, infD0 u > 0. Possibly
shrinking R1, we can ensure that (x, x0) ∈ D0, hence

u(x)− (−c(x, y0) + c(x0, y0) + u(x0)) ≥ u(x, x0)− 2(‖u− u0‖C0(Ω) + ‖c− c0‖C0(Ω)) > 0,

possibly shrinking R1 further. This shows that Ψ(c) is strictly c-convex,
finishing the proof of (5). �

4. C2 Estimates

Our goal in this section is to establish global C2 estimates for solutions
of (Par OT) independent of the time of existence tmax(c). In previous
work of the second author, [25], such uniform estimates were obtained by
making crucial use of the assumption that the cost function satisfies the
(weak-MTW) condition. However, since this condition is not preserved un-
der C4 perturbations of the cost function, we must revisit the proof in [25,
Section 10]. Our strategy is to establish a dichotomy for the operator norm
of the matrix W c,u. This argument is similar in spirit to one carried out in
the elliptic case by Warren in [34]. However, we note that the approach of
[34] makes heavy use of the log-concavity of the source and target measures
in various barrier constructions and maximum-principle type arguments.
Additionally, we mention that since our condition (12) below is a perturba-
tion of (weak-MTW), we must necessarily take an approach à la Pogorelov,
using an auxiliary function similar to the one used in [33]. This is in sharp
contrast to the elliptic C2 estimates in [29] and the parabolic C2 estimates in
[24], both of which rely on a stronger version of the MTW condition. In par-
ticular, we note that we are not able to prove the necessary estimates simply
by choosing wijξ

iξj as the auxiliary function in the proof of Proposition 4.2
below. As our argument will illustrate, additional lower order terms need to
be introduced in the auxiliary function to establish the desired polynomial
inequality for the quantity sup ||W c,u||.

Throughout this section, the cost function c will remain fixed, and u will
be the solution of (Par OT) corresponding to this fixed cost function c that
exists up to tmax(c); thus we omit the dependence on c from various pieces
of notation. We will make use of the following linearization of (Par OT):

(11) Lθ := wij (θij −DpkAijθk)−Dpk(logB)θk − θ̇
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where in the coefficients, p = ∇u(x, t); note that differentiating (Par OT) in
time shows Lu̇ = 0. We will also assume the key condition which replaces
the (weak-MTW) condition, namely that for some σMTW > 0,

D2
pkp`

AijV
iV jηkηl ≥ −σMTW|V |2|η|2, ∀ V ⊥ η.(12)

Note that (12) makes no assumption on the quantity appearing in the left-
hand side when V, η are not orthogonal.

We begin with a barrier construction for the linear operator (11). This
is similar to the construction of an elliptic barrier in [23, Lemma 2.2], but
instead of using the condition (weak-MTW), we will utilize the bound (12).

Lemma 4.1. There exists a constant K0 > 0 depending on the structure
of the problem so that, as long as σMTW < K0, there exists a function
ψ ∈ C2

xC
1
t (Ω× [0, tmax)) such that for all (x, t) ∈ Ω× [0, tmax),

Lψ(x, t) ≥ C1tr(W
−1(x, t))− C2,

0 < C−1
3 ≤ ψ(x, t) ≤ C3,

for some constants C1, C2, C3 > 0 depending on the structure of the problem,
and ‖uinitial‖C2(Ω) but independent of tmax.

Proof. Let ū(x) be the function constructed in [23, Lemma 2.1] with the
choice g(x, y, z) = −c(x, y) − z; note that the proof there does not require
the (weak-MTW) condition. Also, let

U(t) :=
1

|Ω|

∫

Ω
u(x, t) dx,

which belongs to C1([0, tmax)) by Proposition 2.5. For any fixed x0 ∈ Ω,
define the function ūε(x) := ū(x) − ε

2 |x − x0|
2. Reasoning similarly to [23,

Lemma 2.2], we have for any sufficiently small ε > 0 a constant a1 ∈ R

independent of tmax such that

log(detD2ūε −A(x,∇ūε)) ≥ a1,(13)

and that ∇ūε(x) ∈ −∇xc(x,Ω
∗) for any x ∈ Ω. Then, for some K > 0 to be

determined, we define

ψ(x, t) := eK(U(t)−u(x,t)+ū(x)).

We claim ψ satisfies uniform bounds above and below independent of tmax.
To show this, it suffices to establish a bound on the term U(t) − u(x0, t)
for any x0 ∈ Ω and t ∈ [0, tmax). So we fix such an x0 and t, and let
y0 := expcx0

(∇u(x0, t)). Let x ∈ Ω be another arbitrary point. Then for
s ∈ [0, 1], we let

p0 := −∇yc(x0, y0) = ∇u(x0, t),

p := −∇yc(x, y0),

x(s) := expc
∗

y0((1− s)p0 + sp).
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Since ẋi(s) = −ck,i
∣

∣

∣

∣

(x(s),y0)

(p− p0)k, we have

u(x, t)− u(x0, t) =

∫ 1

0

d

ds
u(x(s), t) ds

=

∫ 1

0
〈∇u(x(s), t), ẋ(s)〉 ds

≤ sup
Ω×[0,tmax)

|∇u| sup
Ω×Ω

∗
‖(D2

x,yc)
−1‖|p− p0|

≤ sup
Ω×[0,tmax)

|∇u| sup
Ω×Ω

∗
‖(D2

x,yc)
−1‖2 sup

Ω×Ω
∗
|∇yc|.

Consequently

|U(t)− u(x0, t)| ≤
1

|Ω|

∫

Ω
|u(x, t)− u(x0, t)| dx

≤
2

|Ω|
sup

Ω×[0,tmax)

|∇u| sup
Ω×Ω

∗
‖(D2

x,yc)
−1‖ sup

Ω×Ω
∗
|∇yc| for any t ∈ [0, tmax).

Since ū is uniformly bounded on Ω, using Proposition 2.5 there exists a
constant Λ > 0 depending only on the structure of the problem such that

(14) e−KΛ ≤ ψ(x, t) ≤ eKΛ for all (x, t) ∈ Ω× [0, tmax).

Recall the linearized operator L defined in (11). Denoting

L̃v := wij (vij −DpkAij(·,∇u)vk) ,

we have for a constant C > 0 depending only on the structure of the problem
and ‖uinitial‖C2(Ω),

Lψ = L̃ψ −Kψ(U̇ − u̇+DpkB(x,∇u)(ūk − uk))

≥ L̃ψ − CKeKΛ,(15)

where we have used Proposition 2.5. Writing η(x, t) = U(t)− u(x, t) + ū(x)
for ease of notation, we calculate

(16) L̃ψ = Kψ(Kwijηiηj + L̃η).

Then,

L̃η = L̃
( ε

2
|x− x0|

2
)

+ L̃ūε + L̃(U(t)− u(x, t))

= εtrW−1 − εwijDpkAij(x,∇u)(x− x0)k

+ wij((ūε)ij −DpkAij(x,∇u)(ūε)k)− wij(uij −DpkAij(x,∇u)uk)

= εtrW−1 − εwijDpkAij(x,∇u)(x− x0)k

+ wij([(ūε)ij −Aij(x,∇ūε)]− [uij −Aij(x,∇u)])

+ wij(Aij(x,∇ūε)−Aij(x,∇u)−DpkAij(x,∇u)((ūε)k − uk).(17)
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Let us write I := −εwijDpkAij(x,∇u)(x− x0)k, and II and III respec-

tively for the final two lines above. By concavity of log det, we obtain using
(13) and (Par OT),

II ≥ log det(D2ūε −A(x,∇ūε))− log det(D2u−A(x,∇u))

≥ a1 − u̇(x, t)− logB(x,∇u) ≥ −C(18)

for some constant by Proposition 2.5. By the c∗-convexity of Ω∗ with respect
to Ω, the point qs := (1 − s)∇ūε + s∇u belongs to −∇xc(x,Ω

∗) for any
s ∈ [0, 1]. Then by Taylor expanding, for some s ∈ [0, 1] we obtain

III =
wij

2
D2

pkp`
Aij(x, qs)((ūε)k − uk)((ūε)` − u`).

By choosing x = x0, we then obtain

III =
wij

2
D2

pkp`
Aij(x0, qs)(ūk − uk)(ū` − u`),

note for this choice, we also have I = 0.
Now for ease of notation, let us write

MTW(V,W, η, ξ) := D2
pkp`

Aij(x0, qs)V
iW jηkξ`,

and after fixing t ∈ [0, tmax) make a rotation of coordinates to diagonalize
the matrix W (x0, t). Letting {ei}

n
i=1 be the standard basis in R

n and using
the above calculations, we thus obtain

L̃η(x0, t) ≥ εtr(W−1(x0, t))− C

+
1

2

n
∑

i=1

wiiMTW(ei, ei,∇(ū− u),∇(ū− u)).(19)
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Denoting ∇⊥
i (ū− u) := ∇(ū− u)− (ūi − ui)ei, and using (12) we calculate

n
∑

i=1

wiiMTW(ei, ei,∇(ū− u),∇(ū− u))

=

n
∑

i=1

wii
[

MTW(ei, ei,∇
⊥
i (ū− u),∇⊥

i (ū− u))

+ 2(ū− u)iMTW(ei, ei, ei,∇
⊥
i (ū− u)) + (ūi − ui)

2MTW(ei, ei, ei, ei)
]

≥
n
∑

i=1

wii
[

−σMTW|∇⊥
i (ū− u)|2 + (ūi − ui)

2MTW(ei, ei, ei, ei)

+ 2
∑

j 6=i

(ūi − ui)(ūj − uj)MTW(ei, ei, ei, ej)





≥
n
∑

i=1

wii



−σMTW‖∇(ū− u)‖2 − (ūi − ui)
2‖D2

pA‖ − 2‖D2
pA‖

∑

j 6=i

(

ε̃(ūj − uj)
2 +

1

4ε̃
(ūi − ui)

2

)





≥− (σMTW + 2ε̃‖D2
pA‖)‖∇(ū− u)‖2tr(W−1)− ‖D2

pA‖(1 +
n− 1

2ε̃
)

n
∑

i=1

wii(ūi − ui)
2

for ε̃ > 0 to be determined. It follows from (19) that

L̃η(x0, t) ≥ tr(W−1(x0, t))
[

ε− (σMTW + 2ε̃‖D2
pA‖)‖∇(ū− u)‖2

]

− ‖D2
pA‖

(

1 +
n− 1

2ε̃

) n
∑

i=1

wii(ūi − ui)
2.

We choose σMTW and ε̃ small enough so that

ε− (σMTW + 2ε̃‖D2
pA‖)‖∇(ū− u)‖2 ≥ ε/2.

Therefore, by (16), we have

L̃ψ(x0, t) ≥ Kψ(x0, t)

(

n
∑

i=1

wii

[

K − ‖D2
pA‖

(

1 +
n− 1

2ε̃

)]

(ūi − ui)
2 +

ε

2
tr(W−1(x0, t))

)

We then choose K large enough so that

K − ‖D2
pA‖

(

1 +
n− 1

2ε̃

)

≥ 0.

Consequently,

L̃ψ(x0, t) ≥ Kψ(x0, t)
ε

2
tr(W−1(x0, t)).
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Finally, using (15), and then (14), we conclude that

Lψ(x0, t) ≥ Kψ(x0, t)
ε

2
tr(W−1(x0, t))− CKeKΛ

≥ Ke−KΛ ε

2
tr(W−1(x0, t))− CKeKΛ.

This finishes the proof. �

We are now ready to carry out the aforementioned dichotomy argument.
The following proposition shows that if the constant in (12) is sufficiently
small (i.e., the cost function is “sufficiently close to satisfying (weak-MTW)”)
then the operator norm of W (x, t) either has a uniform upper bound inde-
pendent of tmax, or must be larger than a specific value somewhere; both of
these threshold values are explicit.

Proposition 4.2. There exists a constant σ̃0 > 0 depending only on the
structure of the problem and ‖uinitial‖C2(Ω) such that, as long as 0 < σMTW <

σ̃0, exactly one of the two following alternatives hold: for any 0 ≤ T < tmax,
either

(i)

max
(x,t)∈Ω×[0,T ]

||W (x, t)|| ≥
1

n

(

1

nσMTW

)
1

n−1

, or

(ii)

max
(x,t)∈Ω×[0,T ]

||W (x, t)|| ≤
1

2n

(

1

nσMTW

)
1

n−1

.

Proof. Define the auxiliary function v : Ω× [0, tmax)× S
n−1 → R by

v(x, t, ξ) := logwξξ(x, t) + a|∇u(x, t)|+ C̃aψ(x, t),

for constants a, C̃ > 0 to be determined, where ψ is the function from Lemma
4.1. Suppose v achieves a maximum at (x0, t0, ξ0). Let us first assume x0
belongs to the interior of Ω. By following the calculations in [25, Theorem
10.1], we obtain (note the second displayed block of equations on p.148 of
[25, Theorem 10.1] is missing a term 2aulw

ijDxl
Aij , which yields the term

− ˜̃Catr(W−1) below)

0 ≥ Lv(x0, t0, ξ0)

≥
wij(Dpkp`Aij)wkξ0wlξ0

wξ0ξ0

+ (2a− C1)tr(W )− C2a− (C3 +
˜̃Ca− C̃a)tr(W−1)

≥
wij(Dpkp`Aij)wkξ0wlξ0

wξ0ξ0

+ (2a− C1)tr(W )− C2a

(20)

where the last inequality is obtained by taking C̃ large enough that C3 +
˜̃Ca − C̃a ≤ 0, and we assume 2a − C1 > 0. Here, it can be seen that the
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constants C1, C2, and C3 depend on upper bounds on ∇u, and on up to
second order derivatives of Aij and logB. From the definitions of Aij and

B, and Proposition 2.5 it can thus be seen that these constants along with C̃
and a can be chosen to have upper bounds depending only on the structure
of the problem.

Now diagonalize (wij(x0, t0)) and let λ1 ≤ . . . ≤ λn be the associated
eigenvalues; note that, by choice, ξ0 is an eigenvector corresponding to λn.
We then estimate,

tr(W−1) =

n
∑

i=1

λ−1
i =

∑n
i=1

∏

j 6=i λj

λ1 · · ·λn
≤

nλn−1
n

λ1 · · ·λn
≤
ntr(W )n−1

detW
.(21)

Taking V = λ
−1/2
i ei for 1 ≤ i ≤ n − 1 and η = en in (12) and using (21)

yields

wij(Dpkp`Aij)wkξ0wlξ0

wξ0ξ0

= λn

n
∑

i=1

λ−1
i DpnpnAii

≥ −σMTWλn

n−1
∑

i=1

λ−1
i +D2

pnpnAnn

≥ −σMTWλn

n
∑

i=1

λ−1
i − ‖D2

pA‖

≥ −
nσMTWλntr(W )n−1

detW
− ‖D2

pA‖

≥ −C4σMTWtr(W )n − ‖D2
pA‖

where C4 depends on u0 and the structure of the problem. Combining with
(20) and rearranging yields

tr(W )−
C4σMTW

2a− C1
tr(W )n ≤

C2a+ ‖D2
pA‖

2a− C1
.

Taking a large enough that C4
2a−C1

≤ 1, we then obtain

tr(W )− σMTWtr(W )n − C5 ≤ 0(22)

for C5 > 0 depending only on the structure of the problem.
Let us now assume σMTW ∈ (0, σ0], where σ0 > 0 is a fixed constant

satisfying

(23) σ0 ≤ K0 and
1

nσ0
≥

(

2n2C5

n− 1

)n−1

,

where K0 is the constant appearing in Lemma 4.1. Examining the roots of
the polynomial s 7→ s− σMTWs

n −C5 on the half-line {s ≥ 0} (see (28) and
(29) in Appendix A) yields two possibilities.

Case 1: tr(W (x0, t0)) ≥
(

1
nσMTW

)
1

n−1
.



PERTURBATIVE PARABOLIC OPTIMAL TRANSPORT 23

In this case, we find that
(

1

nσMTW

)
1

n−1

≤ tr(W (x0, t0)) ≤ n sup
Ω×[0,T ]

‖W‖.

Case 2: tr(W (x0, t0)) ≤
1
2n

(

1
nσ0

)
1

n−1
.

In this case, for any (x, t, ξ) we obtain (recall ξ0 is an eigenvector of
(wij(x0, t0)) corresponding to λn)

logwξξ(x, t) ≤ v(x0, t0, ξ0)

≤ log

(

1

2n

(

1

nσ0

)
1

n−1

)

+ a|∇u(x0, t0)|+ C̃aψ(x0, t0)

≤ C6 + log

(

1

2n

(

1

nσ0

)
1

n−1

)

Taking exponentials and then a supremum over (x, t, ξ) yields

sup
Ω×[0,T ]

‖W‖ ≤
eC6

2n

(

1

nσ0

)
1

n−1

≤
1

2n

(

1

nσMTW

)
1

n−1

,

so long as we choose σMTW < 1
e(n−1)C6

σ0.

Let us now assume v achieves a maximum at (x0, t0, ξ0) where x0 ∈ ∂Ω.
Then for any (x, t, ξ), we have

logwξξ(x, t) ≤ v(x0, t0, ξ0) = logwξ0ξ0(x0, t0) + a|∇u(x0, t0)|+ C̃aψ(x0, t0)

≤ C6 + log

(

sup
∂Ω×[0,T ]

‖W‖

)

Consequently, there exists a constant C7 > 0 depending only on the structure
of the problem such that

(24) sup
Ω×[0,T ]

‖W‖ ≤ C7 sup
∂Ω×[0,T ]

‖W‖.

Upon inspection of [25, Section 11], we find that the bound (24) allows us
to show that

sup
Ω×[0,T ]

‖W‖ ≤ C8,

where C8 depends only on the structure of the problem and the C2 norm of
uinitial. The dependency of C8 on uinitial is through the constant α used in
[25, Equation (9.9)]. By the final displayed inequality on [25, pg. 143], it
can be seen that α depends only on ||uinitial||C2(Ω).

Choosing σ̃0 > 0 to be a constant satisfying the inequalities

σ̃0 ≤
1

e(n−1)C6
σ0 and C8 ≤

1

2n

(

1

nσ̃0

)
1

n−1

,
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(and recalling that σ0 already satisfies (23)), we obtain the conclusion of the
Proposition.

�

Before concluding this section, we note the following consequence of Propo-
sition 4.2.

Corollary 4.3. Suppose (12) is satisfied with 0 < σMTW ≤ σ̃0, where σ̃0
is the constant appearing in Proposition 4.2. For τ ∈ [0, tmax), consider the
quantity

ω(τ) := max
(x,t)∈Ω×[0,τ ]

||W c,u(x, t)||.

If ω(0) ≤ 1
2n

(

1
nσMTW

)
1

n−1
, then ω(τ) ≤ 1

2n

(

1
nσMTW

)
1

n−1
for all τ ∈ [0, tmax).

Proof. This follows from the compactness of Ω coupled with the joint con-
tinuity of Ac,∇u,D2u (and consequently of W c,u) in (x, t). Indeed, since
ω(τ) is an increasing function of τ , we may suppose by contradiction that

there exists τ∗ ∈ [0, tmax) such that ω(τ∗) > 1
2n

(

1
nσMTW

)
1

n−1
but ω(τ) ≤

1
2n

(

1
nσMTW

)
1

n−1
for all 0 ≤ τ < τ∗. By the assumption on ω(0), we know

that τ∗ > 0. Then there must exist x∗ ∈ Ω such that W c,u(x∗, τ∗) =
ω(τ∗). The dichotomy imposed by Proposition 4.2 implies W c,u(x∗, τ∗) ≥

1
n

(

1
nσMTW

)
1

n−1
. On the other hand, since W c,u(x, t) is jointly continuous in

(x, t) whenever (x, t) ∈ Ω× (0, tmax), it follows that

1

n

(

1

nσMTW

)
1

n−1

≤W c,u(x∗, τ∗) = lim
ε→0+

W c,u(x∗, τ∗−ε) ≤
1

2n

(

1

nσMTW

)
1

n−1

,

which is a contradiction. �

5. Proof of Theorem 1.1

We begin by letting u0 be the unique solution of the steady state problem

(25)











det(W c0,u0(x)) = Bc0(x,∇u0(x)), x ∈ Ω,

Gc0(x,∇u0(x)) = 0, x ∈ ∂Ω,
∫

Ω u0(x) dx = 0.

Since c0 satisfies the (weak-MTW) condition, the results of [33] imply u0 ∈
C2,α(Ω), is strictly c0-convex, and is locally uniformly c0-convex.

We assume ||c− c0||C4(Ω×Nr0 (Ω
∗)) < R̂ for some R̂ to be determined. We

first choose R̂ ≤ R0 in Lemma 3.1 (1)-(3). This ensures c satisfies the

necessary structural conditions in Subsection 2.1. Next, we choose R̂ ≤ R1

in Lemma 3.3; this ensures the map Ψ : B
C4(Ω×Nr0 (Ω

∗))

R1
(c0) → C2,α(Ω)

is well-defined. Recalling that Ψ(c0) = u0, we next let R3 > 0 be such
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that if R̂ ≤ R3, then ||Ψ(c)||C2,α(Ω) ≤ 2||u0||C2,α(Ω) and maxΩ ||W c,Ψ(c)|| ≤

2maxΩ ||W c0,u0 ||; this follows from the continuity of the map Ψ at c = c0 and

the compactness of Ω. Now let u be the solution of (Par OT) with uinitial =
Ψ(c). Then u satisfies the estimates in Proposition 2.5 (which do not require
the (weak-MTW) condition) with constants K1,K2 depending only on c0
and u0. Finally, we let R4 > 0 be such that if R̂ ≤ R4, then c satisfies
(12) with a constant σMTW ≤ σ̃0, where σ̃0 is the constant appearing in

Proposition 4.2, and maxΩ ||W c0,u0 || ≤ 1
4n

(

1
nσMTW

)
1

n−1
. Then Corollary 4.3

implies supΩ×[0,tmax(c))
‖W c,u‖ ≤ 1

2n

(

1
nσMTW

)
1

n−1
. Consequently, u satisfies

uniform second derivative estimates independent of tmax(c). We can thus
invoke the arguments from [25, Section 12] to conclude the infinite-time
existence of the solution u of (Par OT) and the convergence to a potential
function for the optimal transport problem between (Ω, ρ) and (Ω∗, ρ∗) with
cost function c.

Appendix A. Properties of an n-th degree polynomial

Fix C ≥ 0 and consider the polynomial

pσ(s) := s− σsn − C for any σ ∈ (0, σ0],

where σ0 > 0 is a constant satisfying the inequality

(26)
1

nσ0
≥

(

2n2C

n− 1

)n−1

.

On the half-line {s ≥ 0}, pσ has a single critical point at s = ŝ(σ) where

(27) ŝ(σ)n−1 =
1

nσ
.

Since σ ≤ σ0, (26) implies

ŝ(σ)n−1 =
1

nσ
≥

1

nσ0
≥

(

2n2C

n− 1

)n−1

.

Consequently, ŝ(σ) ≥ 2n2C
n−1 . This, combined with (27), implies

pσ(ŝ(σ)) = ŝ(σ)(1− σŝ(σ)n−1)− C = ŝ(σ)

(

n− 1

n

)

− C ≥ (2n− 1)C > 0

whenever σ ∈ (0, σ0]. Since pσ(0) = −C < 0, it follows that there exists a
root s1(σ) ∈ (0, ŝ(σ)) of pσ. Similarly, since lim

s→+∞
pσ(s) = −∞ whenever

σ > 0, there exists a second root s2(σ) ∈ (ŝ(σ),∞) of pσ. By Descartes’
rules of signs, these are the only two positive, real roots of pσ.

Clearly, s1(σ) = σs1(σ)
n + C ≥ C for all σ ∈ (0, σ0]. Also, since s1(σ) <

ŝ(σ), we have by (27)

s1(σ)
n−1 < ŝ(σ)n−1 =

1

nσ
.
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This implies

1− σs1(σ)
n−1 >

n− 1

n
.

Since pσ(s1(σ)) = 0, we have s1(σ)(1− σs1(σ)
n−1) = C, and so by (26)

s1(σ) =
C

1− σs1(σ)n−1
<

nC

n− 1
≤

1

2n

(

1

nσ0

)
1

n−1

for all σ ∈ (0, σ0].

On the other hand, since s2(σ) > ŝ(σ), we have

s2(σ)
n−1 > ŝ(σ)n−1 =

1

nσ
.

Thus,

s2(σ) ≥

(

1

nσ

)
1

n−1

for all σ ∈ (0, σ0].

We conclude that if pσ(s) ≤ 0 for some s ≥ 0, then either

(28) 0 ≤ s ≤
1

2n

(

1

nσ0

)
1

n−1

, or

(29) s ≥

(

1

nσ

)
1

n−1

.
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