A PERTURBATIVE APPROACH TO THE PARABOLIC
OPTIMAL TRANSPORT PROBLEM

FARHAN ABEDIN AND JUN KITAGAWA

ABSTRACT. Fix a pair of smooth source and target densities p and p* of
equal mass, supported on bounded domains 2, Q* C R". Also fix a cost
function ¢o € C**(Q x Q) satisfying the weak regularity criterion of
Ma, Trudinger, and Wang, and assume 2 and " are uniformly co- and
ci-convex with respect to each other. We consider a parabolic version of
the optimal transport problem between (2, p) and (2", p*) when the cost
function c is a sufficiently small C* perturbation of co, and where the size
of the perturbation depends on the given data. Our main result estab-
lishes global-in-time existence of a solution u € CZC¢(Q x [0, 00)) of this
parabolic problem, and convergence of u(-,t) as t — oo to a Kantorovich
potential for the optimal transport map between (2, p) and (Q~, p*) with
cost function c. This is the first convergence result for the parabolic op-
timal transport problem when the cost function c fails to satisfy the
weak Ma-Trudinger-Wang condition by a quantifiable amount.

1. INTRODUCTION

The optimal transport problem is intimately tied to the theory of second-
order elliptic equations via a fully nonlinear PDE of Monge-Ampere type
coupled with the so-called second boundary condition [29]. This connection
suggests a natural method for proving the existence of optimal maps: solve
a parabolic version of this PDE whose stationary state is a solution of the
elliptic problem, and let the time variable tend to infinity. We refer to
this as the parabolic optimal transport problem; see (Par OT) in Section 2
for a precise formulation. Such an asymptotic approach has been shown
to work in the papers [24, 25, 1, 32] and provides a natural algorithm for
approximating optimal maps owing to its fast rate of convergence to the
steady state [24, 1].

Existing results for the parabolic optimal transport problem make crucial
use of the so-called weak Ma-Trudinger-Wang (MTW) condition (see Defi-
nition 2.4). This is a sign condition on a fourth-order tensor related to the
cost function that is necessary for the regularity of optimal maps even in
the stationary case [27]. Due to the fact that the weak-MTW condition is
difficult to verify and is not satisfied by many cost functions, it is a natural
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question to determine if, given fixed source and target measures, one can
solve the parabolic optimal transport problem when the cost function fails
to satisfy (weak-MTW) by a quantifiable amount. Our results in this paper
show that, given a fixed pair of source and target measures and a cost func-
tion co that satisfies (weak-MTW), the solution to the parabolic problem
(Par OT) exists for all time and converges to a solution of the elliptic prob-
lem when the cost function c is a sufficiently small C* perturbation of ¢y; the
smallness of this perturbation depends on the source and target measures
and other structural quantities. We stress that ¢ does not necessarily satisfy
(weak-MTW).

Our main theorem is as follows. We refer to Section 2 for precise defini-
tions and terminology.

Theorem 1.1. Let Q,Q* C R™ be smooth, bounded domains and let p(x) dzx,
p*(y) dy, be absolutely continuous measures supported on 2, Q* respectively
satisfying (Den Bds) and (Mass Bal). Suppose there exists ro > 0 such
that the cost function cg € CH*(Q x Ny (Q*)) for some a € (0,1] satis-
fies the conditions (Bi-Twist), (Non-Deg), and (weak-MTW). Assume, in
addition that the domains Q,Q* satisfy (Dom c-Conv) and (Tar ¢*-Conv)
with respect to cog. Then there exists a constant R >0 depending only

the structure (see Definition 2.1) such that if ¢ € C**(Q x N, (Q*)) sat-
isfies ||c — COHC‘l(ﬁxm) < R, then there exists a locally uniformly c-
70

convex function i € CH(Q) satisfying (IC) such that a solution u €
C2CH(Y x [0,00)) of the flow (Par OT) exists for all time and u(-,t) con-
verges in C%(Q) ast — oo to a c-convex function u®, which is a Kantorovich
potential for the optimal transport problem between (p, ) and (p*,¥*) with
cost c.

Remark 1.2. We can actually obtain exponential convergence of the flow
from our previous result [1], where the (weak-MTW) condition was not
used.

1.1. A Key Example. Let c¢o(z,y) := %]a: —y|?. Assume Q,Q* are fixed
uniformly convex domains such that dist(Q2,Q*) > 0. Let p, p* be fixed
measures supported on 2, Q* respectively and satisfying (Den Bds) and
(Mass Bal). For p € [-2,2] \ {0}, consider the cost c(z,y) := %|x — y|P.
It is known that c satisfies (Bi-Twist) and (Non-Deg) for p € [-2,2]\ {0,1}
(provided dist(€2,Q*) > 0) but fails to satisfy (weak-MTW) for any p ¢
[—2,1) U {2}; see [33, Section 8, Example 4].

As a consequence of Theorem 1.1, we have the following result for the
flow (Par OT) with p-th power costs:

Proposition 1.3. Let ¢, 2, Q% p, p* be as above. Suppose there exist con-
stants My, My > 0 such that

0< M <|z—y| <M for all (x,y) € Q x Q.
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Then there exist vyg,m0 > 0 depending only on M1, My and the structure of
the problem such that if |p£ 2| < 79, then ||C—CO||C4(ﬁxm) < R (where
0

R is as in Theorem 1.1). Consequently, there exists an initial condition for
which the solution of the flow (Par OT) corresponding to c exists for all
time and converges in C%(Q) to a solution of the optimal transport problem
between (p, ) and (p*, Q%) for the p-th power cost with |p £ 2| < 7.

This is a parabolic counterpart (when perturbing around p = 2) of results
obtained previously by Caffarelli-Gonzalez-Nguyen [6] and Chen-Figalli [9]
in the elliptic case under slightly different assumptions on the cost and
densities. We refer the reader to Subsection 1.3 for more details on these
and related works.

1.2. Remarks on the main theorem and proof strategy. As stated
previously, the condition (weak-MTW) is not necessarily preserved by C*
perturbations. By a counterexample of Loeper in [27], it is known the condi-
tion is sharp in the sense that if a cost function fails to satisfy (weak-MTW),
then there exist smooth source and target measures for which the optimal
transport map is discontinuous. However, since the threshold value R in
the statement of Theorem 1.1 depends on the structure of the problem (in
particular on the particular choices of p and p*), our results do not violate
Loeper’s counterexample. We also do not require any special structure on
the source and target measures beyond (Mass Bal), (Den Bds), and suffi-
cient smoothness.

Let us comment on the strategy behind the proof of Theorem 1.1. We
note that the conclusion of the theorem does not immediately follow from an
inverse function theorem type argument. In fact, such an approach would re-
quire a version of the inverse function theorem on Frechét manifolds, which
is known to be false in general. As such, we must revisit the approach
taken in [25] for proving infinite-time existence and convergence of the flow
(Par OT), taking care to not make use of the (weak-MTW) condition. A
number of a priori estimates from [25] hold true even in the non-MTW set-
ting, but a missing essential ingredient is the global C? estimate. In [25], the
interior C? estimate makes crucial use of (weak-MTW), while the bound-
ary C? estimate relies on the validity of an appropriate interior estimate.
To circumvent the role played by (weak-MTW), we quantify the failure of
(weak-MTW) and establish a dichotomy (see Proposition 4.2) that allows
us to exclude blow-up of the C? norm of the solution if the initial data is
chosen appropriately. Such a dichotomy argument relies on the C* closeness
of the cost function to one that satisfies (weak-MTW), and is in the spirit
of [34]. The construction of appropriate initial data requires an implicit
function theorem argument which also makes use of the C* closeness to an
MTW cost.

1.3. Comments on related literature.
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1.3.1. Perturbation results for elliptic Monge-Ampére equations. Only a lim-
ited number of works address the regularity of solutions to elliptic Monge-
Ampere equations arising from optimal transport problems when the cost
function does not satisfy (weak-MTW). The first such result was obtained
by Caffarelli, Gonzalez, and Nguyen [6], who consider the cost function
c(z,y) = %]a: — y|P with p ~ 2 and domains 2, Q* that are uniformly convex
and a positive distance apart. As mentioned previously, these cost functions
do not satisfy (weak-MTW) unless p = 2. Global versions of the results
in [6] were obtained by Chen and Figalli [9]. Their more recent work [10]
investigates the regularity of optimal maps when the cost function is a C?
perturbation of an MTW cost. The proof strategy in all the aforemen-
tioned works uses localization arguments originally due to Caffarelli [7] and
shows that the optimal map for the perturbed cost inherits regularity from
the optimal map for the quadratic cost (or some other fixed cost satisfying
(weak-MTW)). We note that our approach in the present paper, aside from
being in the parabolic setting, differs from that in [6, 9, 10] as we do not per-
form any localization arguments; however, we do require higher regularity of
the cost function as well as the source and target measures. Finally, the work
of Warren [34] establishes regularity results for optimal transport problems
between log-concave mass distributions supported on small balls with cost
functions that are sufficiently close to the quadratic cost. As mentioned in
Subsection 1.2, our dichotomy argument for establishing the parabolic C?
estimates is inspired by the corresponding elliptic estimates in [34]. How-
ever we require neither log-concavity of the measures nor smallness of their
supports, both of which are essential ingredients in Warren’s proof.

1.3.2. Perturbation of distance-squared cost on Riemannian manifolds. A
different class of perturbative results exists in the optimal transport liter-
ature due to work of Figalli, Rifford, Villani, and Loeper [28, 18, 19, 20].
These papers consider C* perturbations of canonical metrics on Riemann-
ian manifolds with cost function given by the Riemannian distance squared.
The qualitative difference between these results and ours is that the per-
turbed cost functions considered in [28, 18, 19, 20] end up satisfying a form
of (weak-MTW); in fact, this is one of the main contributions of the afore-
mentioned papers. A separate collection of perturbative results is due to
Delanoé and Ge [13, 15, 16, 14]. These works consider distance-square costs
for Riemannian metrics whose Gauss curvature is almost constant, and prove
regularity of the optimal map.

1.3.3. Gradient flow of the cost functional. The flow (Par OT) provides a
natural algorithm for approximating optimal maps, and is one of only a
handful of known asymptotic methods that have been proposed for solving
the optimal transport problem [2, 17]. Among these, the one most rele-
vant to the present paper originates in the work of Angenent, Haker, and
Tannenbaum [2]. While the approach in [2] easily adapts to arbitrary cost
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functions and densities, it has been most studied in the case
(1) elx,y)=|z—yl*, p=L"LQ, p*ac wrt L supp(p*) = Q.

The key idea in [2] is to consider a one-parameter family of admissible maps
T* such that the function

L C(TY) = /Q o — TH(a)? da

is decreasing. This can be achieved if T solves the nonlinear and non-local
vectorial transport problem

Tt + (vt - V)Tt =0,
(AHT) vl = PT?,
(T%)4p = p*,

where P is the so-called Leray projector onto divergence-free vector fields
in Q satisfying a no-flux condition on 9€). The short-time existence of the
flow (AHT) and infinite-time existence of a regularized version is proved in
[2]; see [31, Chapter 6, Section 6.2] for additional results in two dimensions.
Note that any gradient is a fixed point of (AHT). It is an interesting and
challenging problem to determine conditions on 79 guaranteeing the infinite-
time existence and convergence of (AHT) to an admissible map that is also
the gradient of a convex function; by a celebrated theorem of Brenier [5],
such a map is the unique optimal transport map between p and p* for the
quadratic cost. Some progress towards solving this problem has been made
in the recent paper [30], whose authors show that if T is sufficiently close
in H*(Q2) for some s > 1+ § to the gradient of a uniformly convex func-
tion ¢ (where the closeness depends on ¢), then T converges exponentially
fast in H*71(Q) as t — oo to the optimal map. An appealing aspect of
the result in [30] is that it applies to smooth domains Q,Q* that are not
necessarily convex; note that, in this case, the optimal map need not even
be continuous, owing to counterexamples constructed by Caffarelli [8] (also
see [22]). On the other hand, the conditions imposed on TV are rather strin-
gent; moreover, each target density p* will require an appropriate choice
of T? to ensure the convergence of the flow. In comparison, the results in
the present paper, combined with our previous works [25, 1], show that for
the configuration (1) with Q, Q* convex, the parabolic Monge-Ampeére-type
equation (Par OT) exhibits desirable asymptotic behavior when initialized
using a single function wuinitia1 for any target density p* supported on Q*.
The function wipnjtia1 can also be constructed explicitly by solving the opti-
mal transport problem for the configuration (1) with p* := \\/f) Cil((g*)) L Q*.

1.3.4. Application to numerics. We mention that solving the parabolic op-
timal transport equation (Par OT) has potential applications to numerical
approximations of optimal transport. By combining approaches for ellip-
tic Monge-Ampere equations with second boundary value conditions (for
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example, as in [3]) with a time-discretization, it seems feasible to imple-
ment solvers for the parabolic problem. As mentioned in Remark 1.2, the
parabolic flow exhibits exponential convergence to the steady state solution
(and the constants involved can be explicitly determined); hence such a
solver would converge very quickly to the true solution. Our result in this
paper indicates that such an approach may be fruitful for certain source and
target measures even when the cost function does not satisfy (weak-MTW),
a class for which available numerical methods are virtually nonexistent. A
simple implementation using a finite difference scheme is available for the
cost c(z,y) = 3|z — y|? in one spatial dimension; good behavior of the error
is shown in [4].

1.4. Additional Remarks.

Remark 1.4. The C* closeness of ¢ to cg in Q x Ny, (*) will guarantee
that ¢ satisfies (Bi-Twist). However, in certain situations, (Bi-Twist) can
be verified independently (for example, in the case of the p-th power cost).
For another class of such examples, let cy(x,y) := %’:L’ — y|?. Consider the
cost ¢(x,y) = co(x,y) + n(z,y) for some smooth function 7. Let us assume

that 7 satisfies the following anti-monotonicity condition:
y +— —Vn(z,y) is a monotone map Va € Q,
(2) z — —V,n(z,y) is a monotone map  Vy € Q*.
We claim if 7 satisfies (2), then c satisfies (Bi-Twist). Indeed,
Vac(z,y) =z —y+ Van(z,y).

Consequently, if there exist xg € Q and y1,y2 € Q* such that V,c(xg,y1) =
Vmc($07 yl)a then

yo — y1 = Van(zo,y2) — Van(zo, y1)-
This implies
‘2

ly2 — y1|* = (Van(zo,y2) — Vaen(zo, y1),y2 — y1) <0,

where in the final inequality we have used (2). We thus conclude y2 = y;.
Carrying out a similar argument in the z variables, we conclude that ¢
satisfies (Bi-Twist) whenever n satisfies (2).

Remark 1.5. The C* closeness of ¢ to ¢ also allows us to prove existence
of appropriate initial conditions uinjtia1 for the flow. As the arguments in
Section 3 will show, it is possible to construct uinitiay by solving a Poisson
equation with an oblique boundary condition. In addition, the initial con-
dition for the cost ¢ will be close to that of ¢y, and the initial condition for
co can be chosen to be the solution of the optimal transport problem for ¢
with constant densities; this function is guaranteed to be C*“ smooth by
regularity theory for cost functions satisfying (weak-MTW) [33].
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1.5. Outline of the paper. The remainder of this paper is structured
as follows. Section 2 sets up the necessary notation to precisely state the
parabolic optimal transport problem and recalls a number of useful estimates
from [25]. Section 3 is devoted to the construction of suitable initial data
for the flow (Par OT) when the cost function is sufficiently close to one
satisfying (weak-MTW). Section 4 establishes the crucial second derivative
estimates necessary for the infinite-time existence and convergence to steady
state of the flow (Par OT), which is proved in Section 5. Appendix A collects
a number of useful facts about a certain n-th degree polynomial that will be
used in the proof of the C? estimates in Section 4.

2. PRELIMINARIES

2.1. Notation and Setup. We will assume from here onward that €, Q*
are open, smooth, bounded domains in R". The outward-pointing unit
normal to 09 (resp. 9Q*) will be denoted by v (resp. v*). The function
h* will be a C2, normalized defining function for Q*; i.e. h* = 0 on 9Q*,
h* < 0 on Q* and VAh* = v* on 9Q* (for existence of such a function,
see [25, Appendix A]). The measures p(x)dz, p*(y)dy will be assumed to be
absolutely continuous with respect to n-dimensional Lebesgue measure and
satisfy

(Den Bds) 0<A<pp*<A'<oo foraconstant A, and

(Mass Bal) /p:/ p*.
Q *

We will also assume ¢ € C+*(Q2 x Q) for some a € (0, 1], and satisfies the
bi-twist conditions:
y — —Vc(z,y) is injective Vo € Q,
(Bi-Twist) z +— —Vyc(x,y) is injective Vy € OF.
In addition, we assume that
(Non-Deg) deth,yc(x, y) # 0.

For any p € =V c(z, ") and x € €, (resp. ¢ € —V,c(,y) and y € Q¥), we
denote by expt(p) (resp. expg* (¢)) the unique element of Q* (resp. ) such
that

(3) — Vac(w,expl(p) = p,  —Vyelexpy (4),y) = g-

We say Q is c-convex with respect to Q* if the set —V,c(£2,y) is a convex
set for each y € Q*. Similarly, Q* is ¢*-convex with respect to ) if the set
—Ve(z, Q%) is a convex set for each x € Q. Analytically, these conditions
are satisfied if
(Dom ¢-Conv)

Vvl (z) — ce’kcijvg(a:,y)yk(a:)] il > 6|12 Vo ed, ye O, e T(09)

)
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and
(Tar ¢*-Conv)

()] (y) = e (2, y) () (@)| () () 2 6P Yy € 007, x € Q, 1 € T, (00")

(2

for some constants §, 6* > 0 respectively, where we will always sum over
repeated indices; here subscripts before and after a comma indicate partial
derivatives with respect to x and y respectively, and ¢/ is the (i, j)-entry
of the inverse of the matrix D?C,yc. If & (resp. 0%) is strictly positive, we
say that Q is uniformly c-conver with respect to Q* (resp. Q* is uniformly
c*-convex with respect to ).

For the remainder of the paper, we will fix a distinguished cost function
co, along with domains {2 and Q* that are uniformly co- and cj-convex with
respect to each other. Additionally, we assume that ¢ satisfies (Bi-Twist)
and (Non-Deg) on Q x N, (*) for some fixed radius ro > 0 small enough so
that A, (92*) has C! boundary; such an ry always exists due to regularity
of the distance function of a smooth domain in a small neighborhood of the
boundary.

Definition 2.1. We will say that a constant depends on the structure of the
problem if it depends only on the following quantities:

e 1o, n, diam(2), diam(Q*);

. ||p||02(§), HP*HCZ(W)’ and the constant A in (Den Bds);

. ”COHC“(ﬁxmy the supremum of ||(DZ ,co) || over Q x N, (€2*),

and the constants § and ¢* in (Dom ¢-Conv) and (Tar ¢*-Conv).

Definition 2.2. (i) A function ¢ : © — R is said to be c-convez if for
any xg € (2, there exists yo € Q2 and 2y € R such that

@(xg) = —c(x0,y0) + 20,
o(x) > —c(z,y0) + 20, Va € Q.

(ii) We say ¢ is strictly c-convez if it is c-convex, and the second inequality
above is strict whenever x # xo.

(iii) A function ¢ € C2(Q) is said to be locally, uniformly c-convex if
D%p(x) — A%(z,V(z)) > 0 as a matrix for every z € ), where A°
is defined below.

Remark 2.3. We note here that the sign convention on the cost function
c is negative that of [33, 25, 1]. We have made this choice in order to
express the associated optimal transport problem as a minimization, while
maintaining that our potential functions are c-convex (supported from below
by functions constructed from c¢). However, due to our choice of sign for the
matrix function A, all expressions in terms of A will be the same as in the
above mentioned references.

For a function u € C2C}(2 x [0,00)) (which, in the sequel, will be the
solution to a parabolic optimal transportation problem), we will employ the
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following notation (if the cost function ¢ and the function u are clear from
context, we may suppress them from the notation at times):
() Ac(x7p) = —D%C(.Z’, y)’yzexpg(p)
(ii) T9%(x,t) = expg(Vu(af t))
(iii) B(x,p) = |det (D2 ,0)(®, Y)lyexps ()| - 777y
(iv) G(z,p) = h*(expx( )
(V) Bcu(x t) ( )’p Vu(z,t)
(vi) Wet(x,t) = D2 (x,t) — Ac(x Vu(x,t))
The components of the matrix W"(z,t) will be denoted by wy;", while the

components of the inverse matrix will be denoted by w?u
Finally, we recall the weak Ma-Trudinger-Wang condition, first introduced
in [29] in a stronger form.

Definition 2.4. The cost function c(z,y) satisfies the weak Ma-Trudinger-
Wang condition if
(Weak MTW) B -

pzp AS (z,p)ViVInt >0 forallz € Q, pe —Vae(x, V), V L.

2.2. The Parabolic Optimal Transport Problem. Using the above no-
tation, we can now precisely state the parabolic optimal transportation prob-
lem. Given a cost function c¢ satisfying (Bi-Twist) and (Non-Deg), domains
2, Q* satisfying the convexity conditions (Dom ¢-Conv) and (Tar ¢*-Conv),
absolutely continuous measures p, p* supported on 2, Q2* respectively and
satisfying (Mass Bal) and (Den Bds), and a locally, uniformly c-convex (as
in Definition 2.2, (iii)) function uin;tia; satisfying the compatibility conditions
(IC) below, we seek to find a function u € C2C} (2 x [0, 00)) that solves the
evolution equation

(Par OT)
u(x,t) = logdet(We¥(x,t)) — log B¢(x, Vu(x,t)), e, t>0
G(z,Vu(z,t)) =0, x€ed, t>0
u(7,0) = Uinitial (7), z €.

Here, a dot indicates differentiation in the time variable. The function ;pjtial
must satisfy the compatibility conditions

Uinitial € CH(Q) for some a € (0, 1]
(IC) G°(z, Vinitial (z)) = 0 on 09
TS it (82) = QF, where T .1 (x) == exp§(Vinitial (%)),

initial

It follows from the short-time existence result [25, Theorem 4.4] that for
any given ¢, ), Q% p, p* satisfying the conditions outlined in Subsection 2.1,
there is a time tax > 0 depending on ¢, 2, Q" p, p*, and wipitia sSuch that
the solution u of (Par OT) exists on Q x [0,%nax). Since in this paper
we will fix Q, Q% p, p* but vary the cost function ¢ in a neighborhood of
the distinguished cost cg, and construct initial data wipitia; corresponding to
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each choice of ¢, we will often highlight the dependence of tyax on c. If,
in addition, the cost function ¢ satisfies the (weak-MTW) condition, then
the main result of [25] shows that tmax(c) = +o0o. As mentioned in the
introduction, one of the goals of this paper is to show that ty.x(c) = 400
for certain cost functions c that fail to satisfy the (weak-MTW) condition,
given p and p*.

We end this section by collecting those uniform estimates established in
[25] that do not require the (weak-MTW) condition.

Proposition 2.5. Suppose ¢ € C**(Q x N, (%)) satisfies (Bi-Twist), and
Q and QO are respectively uniformly c- and c*-convex with respect to each
other. Let u € C2C*(Q x [0,tmax)) be a solution of (Par OT) for some
tmax > 0. Then there are constants Ki, Ko > 0 depending only on the
structure of the problem and ||u,-m-tm1|\cg@) such that,

max{ sup [Vu(zx,t)], sup |u(w,t)} < Kj,
(2,£)EQX[0,tmax) (2,t)EQX[0,tmax)

inf (g ), > Ko,
(x,t)easllnx [o,tmax)w (2, 8) v(2)) 2 Ko
Proof. This follows immediately from [25, Theorems 6.1, 8.1, 9.2] noting
that none of the above estimates rely on the condition (weak-MTW). For
those results which rely on [25, Lemma 5.7] (whose proof makes use of
(weak-MTW)) we may instead use Proposition 2.6 below. O

In [25, Section 5], the condition (weak-MTW) is used to show that the
map 1€ is injective and the inverse is related to a parabolic PDE correspond-
ing to reversing the roles of the domains 2 and Q*; this “dual” problem is
used to obtain the uniform obliqueness estimates in [25, Section 9]. Using
recent partial regularity results established in [11], we can circumvent the
use of (weak-MTW); for completeness, we provide an alternative proof of
the relevant results of [25, Section 5] in the proposition below.

Proposition 2.6. If u is a solution of (Par OT), then T€(-,t) is injective
for each t € [0, tmax(c)). Moreover, the function u* : Q% x [0, tmax(c)) —
R defined by u*(y,t) := —c((T¢) " (y,t),t) — u((T¢) " (y,t),t) satisfies the
(dual) boundary value problem
(4)
w*(y,t) = logdet(We ¥ (y,t)) — log B (y, Vu*(y,t)), zeQ* t>0
G (y, Vu*(y,t)) = 0, ye o, t>0
u*(y7 0) - _c((TiCmtml)_l(y)v y) - uimtial((Tfmtml)_l(y))a Y€ Q*,
where
) pet _ 2 . )
(7’) B (y’ Q) - |det (Dy,asc)(x7y)a::exp5 (q)| ,D(expzc/* (q)
(i) G (y,q) = h(expy ()
(iii) W (y,t) = D?*u*(y,t) + ch(x,y)x:expg* (Vur (y,1)
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and h is a normalized defining function for (.

Proof. Since c is fixed, we supress the cost in the notation 7 for this proof.
Fix t € [0, tmax(c)). By [11, Theorem 1.3], there exist closed sets ¥ C 2 and
¥* C QF, both of zero Lebesgue measure, such that T'(-,t) : Q\ X — Q*\ X*
is a homeomorphism. Now suppose that y := T'(z1,t) = T(x2,t) for some
x1 # w9 € Q. Then we must have x1, 9 € ¥ and y € ¥*. Since(Par OT)
implies

e'p
on#O
on ), by the inverse function theorem we can see there are open sets Uy,
Uy, C Qand V C QF with 1 € Uy, z9 € Us, and y € V where there exist
local inverses S; : V. — U; of T(-,t), i = 1,2; without loss we may assume
Uy NUz = (. Since ¥* has measure zero, there exists a point 3y’ € V' \ ¥*,
and S;(y') € U; \ ¥. However, this would imply that T'(S1(y'),t) = ¢ =
T(S2(y'),t) which is a contradiction as S1(y’) # Sa(y’) € Q\ X. Thus T'(-,t)
is injective on ().

By the inverse function theorem, the map 7! is differentiable on Q* x

[0, tmax(c)), thus by differentiating the relation u*(y, t) = —c((T¢) " (y,t),t)—
u((T¢)~1(y,t),t) we can easily see u* satisfies (4). O

detD,T = detW*|det (D2 ,¢)(x,T)|"* =

3. CONSTRUCTION OF INITIAL DATA

In this section we will work toward showing the existence of suitable initial
conditions for (Par OT) corresponding to a cost function ¢ sufficiently close
to co. First we show that if ¢ is sufficiently close to cg in C*(2 x N, (Q*)),
then ¢ and the domains involved inherit various structural properties from
CQ.

Lemma 3.1. There is a constant Ry > 0 depending only on the structure
of the problem such that:

1) If ||c — S 7O Q o ' -
(1) If ||c COHC‘l(QxNTO(Q*)) < Ry, then Q and Q* are uniformly c- and
c*-convex with respect to each other, with constants 6/2 and §*/2 in

(Dom ¢-Conv) and (Tar ¢*-Conv).

(2) If ||c — COHC%QxW) < Ry, c satisfies conditions (Bi-Twist) and
(Non-Deg) on Q x N, (Q*).

(8) Under the same conditions on the cost functions c,cy as in (2), if
ug € C*%(Q) is a co-convex function such that T°% s a homeo-
morphism on Q with det DT¥0(x) # 0 for all x € Q, and |ju —

uO”c‘La(ﬁ) < Ry for some a > 0, then T%" is also a homeomorphism

on Q; here Ry may also depend on ug.

Proof. Claim (1) above and the fact that ¢ will satisfy (Non-Deg) are clear

if ¢ is sufficiently small, depending only on the structure of the problem.
Suppose by contradiction that some cost fails (Bi-Twist) for Ry arbitrarily

small. Then there exists a sequence of cost functions ¢ converging to ¢y in
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CHQx N, (%)), and sequences of points . € Q, Y1k 7 Yok € N (©2*) such
that —Vycrp(zk, y1.k) = —Vack(2k, y2,x). By compactness, we may pass to
subsequences and assume that xy, y1 1, Y2, converge respectively to points
Too, Y1005 ANd Y2 oo. This implies —V,c0(Zoo, Y1,00) = —Vao(Toos Y2,00), and
since ¢ satisfies (Bi-Twist), we must have Y1 oo = ¥2,00 =: Yoo. Since for k
large we may assume ¢y, satisfies (Non-Deg), we see Dg,yck (zk,y) is invertible

for any y € NV, (Q*), moreover we can see that the operator norms of these
inverses and the Lipschitz constants of the mappings y — D%yck(:ck, y) are
bounded by constants depending only the structure of the problem. Since
O* is c¢*-convex with respect to €2 by the first claim in the lemma, it has
Lipschitz boundary; we may thus combine [12, Theorem 1] with [26, Chapter
XIV, Lemma 1.3] to see there is a neighborhood around y., on which the
mappings y — —Vck(xg,y) are invertible for all k sufficiently large. This
is a contradiction for £ large enough that both y ;, and yo ;. belong to this
neighborhood, hence we obtain claim (2).

Claim (3) follows in a similar manner, allowing for the extra dependency
on ug. Suppose for contradiction there exists a sequence of cost functions
¢y converging to cp in C*(Q x N, (Q2*)) and a sequence of functions uy
converging to ug in C%%(Q) such that the maps T}, := T % are not home-
omorphisms on Q. Then there exist sequences of points T1k, Tok € Q with
x1 ) # To such that Ty(xy ) = Ty(z2y) for each k. By compactness, we
may pass to subsequences and assume that xq, o) converge respectively
to points 1 o0, T2,00 € Q. By the c* convergence of the ¢, to ¢y and C
convergence of the uy to ug, we have C1® convergence of T}, to Tp := 1040,
in particular we obtain Tp(z1,00) = To(22,00). Since T is a homeomorphism,
this implies 21 00 = 2,00 = Zoo. Now by assumption DTy (2 ) is invertible,
and since uy, converges to ug in C>* (1), for k sufficiently large we can make
|DTo(r0) — DT (xoo)|| arbitrarily small. Thus we can use a combination
of [12, Theorem 1] and [26, Chapter XIV, Lemma 1.3] to deduce that there
exists dg > 0 depending only on Ty such that, for all £ sufficiently large, the
maps T}, are invertible on Bs, (2~ ). However, this results in a contradiction,
as o1k, Lok € Bsy(Ts) for k sufficiently large.

O

Lemma 3.2. Suppose ¢ € C*(Q x N,,(Q*)) with ||c — CUHC‘*(ﬁxm) <

min{ Ry, W(m} where Ry is the constant from Lemma 3.1. Then

N ro (=Vzco(z, %) C —Vac(r, Ny (Q*)) Ve

2supl|(DZ, o)Ll

Proof. Fix x € Q, and let us write
So(y) : = =Vaco(z,y), S(y) == —Vac(z,y).

By Lemma 3.1 (2), S and Sy are both homeomorphisms on N, (2*).
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Suppose that ¢ € N 0 (S0(2*)) \ S(NV;,(©2*)). Then there ex-

o 2supl[(DZ,yc0) Ll

ists y € Q* such that |¢ — So(y)| < W. Also since N, (Q2*) has
z,y

C'! boundary and S is a homeomorphism, there is an s € [0,1) such that

qs == (1 = 5)S(y) + sq € IS(N;,(2*)) = S(ON,,(Q*)). In particular, there

exists ys € ON;, (%) such that g; = S(ys). Then,

o
+|Sg =S = >lg—S >lge— S
Boup (D2 o)1) + 150~ Slloo@ 2 la = Sw)I > las = 5()

= 15(ys) = S(v)|
> |50(y) — So(ys)| = [So(ys) — S(ys)| — [So(y) — S(y)l

> [Sgl]gi,l(m)ly = ys| = 215 = Sl

> [561]53,1(W)T0 — 2[|So - SHCO(ﬁ),

but this is a contradiction after rearranging since [Sy 1 01 SN () <
70

supl|(DZ yco) ™[I and [|So — Sl < lle = collcs @xnr@m)- .

Finally, we use an implicit function theorem argument to show suitable
initial conditions for a cost ¢ exist given a “good” initial condition for c¢g.

Lemma 3.3. Suppose ug € C**(Q) for some a € (0,1], is strictly co-
convex, is locally, uniformly co-conver, and satisfies [ouo(z) drx = 0. As-
sume, in addition, that T is a homeomorphism between Q and Q* and

detDT%0 £ 0 on Q. Then there exists R1 > 0 depending on the structure
4(§><NT0(Q*))(

1

of the problem and ug, and a continuous mapping WV : Bg
— AOYN . (O*)
C%%(Q) such that for any c € Bgl (g (€2 ))(co),

Co) —

(5) V() is strictly c-convezr and locally, uniformly c-convex.
(6) 7Y€ is o homeomorphism between @ and QF.

Proof. For ease of notation, during this proof we will supress the first vari-

able in the notation for G¢. Define B; := 37%4(QXNT(Q*))(CO), where 7y <
min{ Ry, W(m} and Ry is the radius obtained from (1)-(3) of Lemma
3.1, hence depends on the structure of the problem and uy.

Now let By := {u € Bgzya(m(uo) | [qu = 0}, and define the map @ :
By x By — CY%¥(Q) x CH*(09) by

O(c,u) == (A(u —up), G(Vu)|aq).

Note that ®(co,up) = (0,0). Since T is a homeomorphism between Q
and 2*, by Lemma 3.2 we have for any x € Q2 and u € Bo,

Vu(x) € Niy(Vug(z)) = Ny (=Vieo(z, TOM(x))) C —Vye(x, Ny (2%)).
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In particular, G¢(z, Vu(x)) is well-defined for all x € €. Denoting the
Fréchet derivative of the map u — ®(cp,u) at ug by Dy, P (co, up), we claim
that D, ®(co, up) is injective; here we consider By as a closed subset of the
Banach space B := {u € C**(Q) | [, u = 0} with the C*® norm, then uy is
an interior point of By. First note that an explicit calculation of the Fréchet
derivative of ® (this requires C* smoothness of the cost cy) shows that for
any ¢ € B,

(7) Dy®(co,u0)(¢) = (A¢, (DpG(Vug), V)|aq)-

By Proposition 2.5 G(-, Vug) is uniformly oblique on 02, hence by Hopf’s
lemma combined with standard existence theory for Poisson’s equation (for
example, [21, Theorem 6.31]) we see D, ®(cg, up) is a bijection between B and
CY(Q) x CH*(99Q). Thus by the implicit mapping theorem [35, Theorem

I YA
4.B], there is a bijective, continuous mapping ¥ : Bgl (XN (0 ))(co) -V

for some radius Ry > 0 and neighborhood V of ug in B such that WU (cy) = ug

400 *
and ®(c,¥(c)) = (0,0) for all ¢ € Bgl (N (@ ))(CQ). We may further
shrink R;, but it will always be in a manner that depends only on the
structure of the problem and wug, hence we can also assume that the size
of the neighborhood V also depends only on these parameters. We re-
mark here this implies that the quantities HCHC‘*(ﬁxW’ Hu||02,a(§), and

2 -1
[(Dz 4e) "l CH @ N () have upper bounds that also depend only on the
structure of the problem and wg, provided R; is taken small enough.

j(QXNTO(Q*))(CO), we have G¢(-, V¥(c)) = 0 on 9Q;
this implies 7¢%(©) (9Q) C d0*. Possibly taking R; even smaller, by Lemma
3.1 (3) we may assume that 7¢%(%) is a homeomorphism from Q to 7¢%()(Q),
hence a homeomorphism from 9Q to 7% (9Q). By Lemma 3.1 (1), Q is
uniformly c-convex with respect to 2* and Q* is uniformly c*-convex with
respect to €2, hence ) and Q* are both homeomorphic to balls, in particular
99 and 99 are connected. Thus we must have T4Y()(9Q) = 9Q*. Now
suppose for some z € Q we have 7% (z) ¢ Q*. Then writing ¢, :=
(1—s)co+ se, by continuity of the map ¥ the curve {T¢¥(¢)(z) | s € [0,1]}
is continuous with 7¢0¥(%0)(z) € Q*. Thus for some value of s, we will
have T¢¥(¢)(z) € O contradicting that T¢¥(¢) is injective on Q and
T4 (90Q) = 9Q*. Thus T4 (Q) = QO proving the claim (6).

We will now show (5). Fix ¢ € Bgf(QXNT'O(Q*))(CO) and write u := ¥(c).
Since ug is locally, uniformly co-convex, by continuity and compactness the
smallest eigenvalues of the matrices D?ug(x) — A% (z, Vug()) have a strictly
positive lower bound independent of z € Q. Then there exists some R > 0
depending only on the structure of the problem and wug such that D?uq(z) —
A% (x,Vug(zp)) also has a strictly positive bound independent of = and o,
whenever |z — 29| < R. Next, possibly shrinking R;, we can assume there

exists some €y > 0 depending only on the structure of the problem and uyg

Now, for any c € Bg
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such that
(8) D?u(z) — A(x, Vu(xo)) > €old, VY zo,2 € Q, |z —x0| < R.

In particular, u is locally, uniformly c-convex. Now fix =, zo € Q and let
Yo := expj, (Vu(zo)) which belongs to Q* by above. First suppose x # g €
Q is such that |~V e(z,yo) + Vac(zo,v0)| < Mil for an M; depending only
the structure of the problem such that sup||(D§7yc)_1|| < Mj. Then write
for s € [0,1],

po = —Vyc(xo, yo) = Vu(zo),
p = —Vyc(fﬁayo),
w(s) := expl (1 = s)po + sp)-
Note by Lemma 3.1 (1), the set —V,c(€,y0) is uniformly convex, hence
x(s) € 2. A quick calculation yields

di(s) =~ (p = po)x

ii(s) = =g ;™ F™ (p — po)m (P — Po)n

where all terms involving ¢ are evaluated at (z(s),yo). Using this we find
that for any s € [0, 1],

Rsupl (02,071 _
M,y
Using Taylor expansion, we thus find some § € [0, 1] such that
u(z) = (—c(x,y0) + c(zo, yo) + u(wo))
= (Vu(zg) + Vac(zo, y0), £(0))
+{[D?u(x(3)) + Die(x(3), yo)l#(8), (3)) + (Vu(x(3)) + Vac(x(5), yo), #(3))
> €o|((—=D3 (2o, y0))") " (p — po)|?
—sup|| (D2 ,0)") " lell gy | V(@ (3)) + Vae(z(3), o) I((—D2 ye(2(8), 90)") ™ (0 — po)
(9)
where we have used that Vu(zg) + Vzc(zo,yo) = 0. We can also calculate
[Vu(x(8)) + Vac(z(5), y0)| = [Vu(z(5)) — [(1 = 5)po + 5p|
< [Vu(x(8)) = Vu(zo)| + 5[p — pol
< sup||D*u)|| sup|z| + 3|p — po|
< (1 +sup|| D?ul| sup||((DZ ,)") ) — pol
< BO+ sup|| D?ul| supl|((D3 ,)") "))
< M,
Thus by taking M large enough and combining with (9), we obtain for
some €; > 0 depending only on the structure of the problem and wg (note

|(s) = @o| < /O [:(s)lds < sup| (D3 ,¢) " lp — pol < R.
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here that sup||D?u| is controlled by the C? norm of ug and the size of the
neighborhood V)

(10) u(x) — (—c(@,y0) + c(wo, yo) + u(xo)) > e1lp — pol* > 0.

Now suppose |-V c(x,y0) + Vic(zo, yo)| > Mﬂl' Since wug is strictly co-

convex, the function
u(z, 20) : = uo(z) — (—co(z, T (20)) + co(z0, T (20)) + uo(20))

is strictly positive on the set Dy := {(z, 20) € QX Q | |[=Vco(z, T (29)) +
Vico(zo, TOM0(zg))] > %}, which is seen to be compact by the continu-
ity of T° %0 and boundedness of 2. In particular, infp,u > 0. Possibly
shrinking R;, we can ensure that (x,zg) € Dy, hence

u(x) = (=¢(2,90) + e(2o, yo) + w(zo)) = w(x, z0) = 2([lu = uolloq) + llc = coll o)) > 0,

possibly shrinking R; further. This shows that W(c) is strictly c-convex,
finishing the proof of (5). O

4. C? ESTIMATES

Our goal in this section is to establish global C? estimates for solutions
of (Par OT) independent of the time of existence tmax(c). In previous
work of the second author, [25], such uniform estimates were obtained by
making crucial use of the assumption that the cost function satisfies the
(weak-MTW) condition. However, since this condition is not preserved un-
der C* perturbations of the cost function, we must revisit the proof in [25,
Section 10]. Our strategy is to establish a dichotomy for the operator norm
of the matrix W%, This argument is similar in spirit to one carried out in
the elliptic case by Warren in [34]. However, we note that the approach of
[34] makes heavy use of the log-concavity of the source and target measures
in various barrier constructions and maximum-principle type arguments.
Additionally, we mention that since our condition (12) below is a perturba-
tion of (weak-MTW), we must necessarily take an approach a la Pogorelov,
using an auxiliary function similar to the one used in [33]. This is in sharp
contrast to the elliptic C? estimates in [29] and the parabolic C? estimates in
[24], both of which rely on a stronger version of the MTW condition. In par-
ticular, we note that we are not able to prove the necessary estimates simply
by choosing wijfifj as the auxiliary function in the proof of Proposition 4.2
below. As our argument will illustrate, additional lower order terms need to
be introduced in the auxiliary function to establish the desired polynomial
inequality for the quantity sup ||V 4||.

Throughout this section, the cost function ¢ will remain fixed, and u will
be the solution of (Par OT) corresponding to this fixed cost function ¢ that
exists up to tmax(c); thus we omit the dependence on ¢ from various pieces
of notation. We will make use of the following linearization of (Par OT):

(11) L0 := w' (;; — Dy, Ai;01) — Dy, (log B)), — 0



PERTURBATIVE PARABOLIC OPTIMAL TRANSPORT 17

where in the coefficients, p = Vu(x, t); note that differentiating (Par OT) in
time shows L4 = 0. We will also assume the key condition which replaces
the (weak-MTW) condition, namely that for some oyw > 0,

(12) D2 AViVigkg > —ovrw|VIEn2, YV L.

PkPe

Note that (12) makes no assumption on the quantity appearing in the left-
hand side when V,n are not orthogonal.

We begin with a barrier construction for the linear operator (11). This
is similar to the construction of an elliptic barrier in [23, Lemma 2.2], but
instead of using the condition (weak-MTW), we will utilize the bound (12).

Lemma 4.1. There exists a constant Ko > 0 depending on the structure
of the problem so that, as long as oyrw < Ko, there exists a function
Y € C2CHQ x [0, tmax)) such that for all (x,t) € Q x [0, tmax),
L(w,t) = Crtr(W(x, 1)) = Ca,
0< Cgl < ¢($at) < OBa
for some constants C1, Cy, C5 > 0 depending on the structure of the problem,
and ”Uz‘mtiach2(§) but independent of tmax.

Proof. Let u(z) be the function constructed in [23, Lemma 2.1] with the
choice g(z,y,z) = —c(z,y) — z; note that the proof there does not require
the (weak-MTW) condition. Also, let

U(t) = |512’/Qu(x,t) da,

which belongs to C*([0,tmax)) by Proposition 2.5. For any fixed ¢ € €,
define the function u(z) := @(z) — §|z — xo|*. Reasoning similarly to [23,
Lemma 2.2], we have for any sufficiently small ¢ > 0 a constant a; € R
independent of ¢,,,x such that

(13) log(det D%, — A(x, Vi) > ay,

and that Vi (z) € —Vzc(x, Q¥) for any = € Q. Then, for some K > 0 to be
determined, we define

U(z, t) == KU ) —u(z,t)+a(z))
We claim 1) satisfies uniform bounds above and below independent of #,.x.
To show this, it suffices to establish a bound on the term U(t) — u(zo,t)
for any o € Q and ¢t € [0,tmax). So we fix such an xo and ¢, and let
Yo := expy, (Vu(zo,t)). Let x € Q be another arbitrary point. Then for
s €]0,1], we let

Po ‘= —VyC($0, yO) = vu(x()vt)a

p = —Vyc(z,y0),

2(s) = expy (1 = s)po + sp)-
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ki (p — po)k, we have

(z(s),90)

Since #;(s) = —c¢

1
u(z, t) —u(zo, t) = /0 %u(w(s),t) ds

:/0 (Vu(z(s),1),2(s)) ds

< _sup  |Vul sup [|(DZ )" [[lp — pol

Ox[0,tmax) axa”
< sup  |Vaul sup [[(DF )12 sup [Vyel.
Qx[0,tmax) oxQ” oxQ”
Consequently
V() ~ u(ao,t |Q| 5 L fute.t) = a0 do

Q sup |Vu| sup. |(D? o | sup |Vyc| for any t € [0, tmax)-
’ ‘ﬁx[o,tmax) axa” axq’

Since @ is uniformly bounded on 2, using Proposition 2.5 there exists a
constant A > 0 depending only on the structure of the problem such that

(14) e KN <p(a,t) < e forall (2,t) € QX [0, tmax)-
Recall the linearized operator £ defined in (11). Denoting
Lo :=w (vij — Dp, A (-, Vu)og)

we have for a constant C' > 0 depending only on the structure of the problem
and ||uinitia1 ||C2 Q)

L = Lop — Kp(U — i+ Dy, Bz, V) (g, — ug))
(15) > L — CKeM™,

where we have used Proposition 2.5. Writing n(z,t) = U(t) — u(x,t) + a(z)
for ease of notation, we calculate

(16) Lip = Kp(Kw'nm; + Ln).
Then,

En:,ﬁ(%\x—xo|2>+£~ﬂe+£( (1) — ula, 1))

= ettW ™ — ew’ Dy, Ay (z, Vu)(z — 20),
+w((ae)ij — Dy, Aij(z, V) (@e)r) — w' (wi; — Dy Ayj(z, Vu)ur)
= etrW ™ — ew? Dy, Ayj(, Vu)(z — 20)s,

+w' ([(@e)i — Aij(w, Vae)] = luyy — Aij(w, Vu)))
(17) + w¥ (A” (LL’, Vﬂe) — zg (.CC Vu) DpkAij (a;, V’U,)((ﬂe)k - ’U,k)
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Let us write @ = —ew" Dy, A;j(z, Vu)(z — 20)k, and @ and @ respec-
tively for the final two lines above. By concavity of log det, we obtain using
(13) and (Par OT),

@ > log det(D?a, — A(z, Vie)) — log det(D?*u — A(x, Vu))
(18) > a1 — u(z,t) —log B(z,Vu) > -C

for some constant by Proposition 2.5. By the c¢*-convexity of 2* with respect
to , the point g5 := (1 — s)Vue + sVu belongs to —V,c(z, Q") for any
s € [0,1]. Then by Taylor expanding, for some s € [0, 1] we obtain

@ - w; DzkpeAij(x7 qs)((Ue)k — ur) ((Te)e — ug).

By choosing x = x(, we then obtain

w"

@ = 7DZWAU($0, qs) (U — ug) (e — up),

note for this choice, we also have @ =0.
Now for ease of notation, let us write

MTW (V,W,n,€) := D2 | Aii(xo,qs)V Winket,

PkPe

and after fixing t € [0, tmax) make a rotation of coordinates to diagonalize
the matrix W (zo,t). Letting {e;}_; be the standard basis in R” and using
the above calculations, we thus obtain

/317(;160,75) > 6t1”(W_1($0,t)) e

1L i _ _
(19) +22;w MTW (e;, e;, V(u —u), V(a — u)).
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Denoting Vi (@ — u) := V(u — u) — (4; — u;)e;, and using (12) we calculate
n ..
> w MTW (ei, e, V(@ — u), V(@ — u))
i=1

=3 u [MTW(ei, ei, V(@ — ), Vi (@ — u))
=1

+ 2(ﬂ ) MTW(617 €iy Eiy VL(U - U)) + (ﬂl - ui)2 MTW(617 €,y Eiy el)]

n
> 3w [—aMTWwf(a — W) + (@ — w) > MTW (es, e, €, ;)

+ QZ —u;)(a; —u;) MTW (e;, €5, €5, €5)
J#i
n
. e L
ZE)W-WMWWW—WW—@erM%M—%%MQ:G%—WV+%M
i=1

J#i

> — (omrw + 28| DRA(IV (@ — w) |[Pte (W) — | Dy Al (1

for € > 0 to be determined. It follows from (19) that

Ln(zo,t) > tr(W ™ (z0,1)) [e — (omrw + 28| DA V(@ — )||?]
- 1341 (14" )Zw = w)?

We choose onrw and € small enough so that

e — (omTw + 2€HD§AH)HV(E —u)|* > €/2.

Therefore, by (16), we have

Lap(wo, t) > Kip(wo, t (Zw”[ — | D24 (1+n2—€1>} (@ — ui)? + 2tr(W (:Eo,t))>

We then choose K large enough so that

n—1
K — | D2A| ( 5 ) > 0.

Consequently,

Loz, t) > Kw(xo,t)gtr(W_l(:vo,t)).
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Finally, using (15), and then (14), we conclude that
Lz, t) > K(, t)%tr(W_l(xo, t)) — CKefA
> Ke_KAgtr(W_l(mo, t)) — CKeft,
This finishes the proof. U

We are now ready to carry out the aforementioned dichotomy argument.
The following proposition shows that if the constant in (12) is sufficiently
small (i.e., the cost function is “sufficiently close to satisfying (weak-MTW)”)
then the operator norm of W (x,t) either has a uniform upper bound inde-
pendent of ¢,,,x, or must be larger than a specific value somewhere; both of
these threshold values are explicit.

Proposition 4.2. There exists a constant 69 > 0 depending only on the
structure of the problem and ||umitmz|]02(§) such that, as long as 0 < oprw <
09, exactly one of the two following alternatives hold: for any 0 < T < tpax,
either
(1)
1

1 1 n—1
max ||W(z,t)|| > ~ < > , or
(z,t)€QX[0,T] n \nopMrw

(ii)

1
]_ ]_ n—1
max [[W(, )| < 2( ) .

(z,t)€Qx[0,T] n \nomMrw
Proof. Define the auxiliary function v : Q x [0, tpmax) x S"~1 — R by
v(x,t,€) = logwee (2, t) + a|Vu(z, t)| + Cayp(x,t),

for constants a, C' > 0 to be determined, where 1 is the function from Lemma
4.1. Suppose v achieves a maximum at (xg,tg,&o). Let us first assume xg
belongs to the interior of Q. By following the calculations in [25, Theorem
10.1], we obtain (note the second displayed block of equations on p.148 of
[25, Theorem 10.1] is missing a term 2aww® Dy, A;;, which yields the term

—Catr(W~1) below)
0 > Lo(zo, to, o)

5] D Az = ~
W D Ai)When iso (9 _ 0 )ex(W) — Coa — (Cs + Ca — Ca)er(W )

Weogo
(D, py Aij
> w ( PkDPe ])wkﬁowlfo + (2(1 o Cl)tr(W) _ CQCL
Weogo
(20)

where the last inequality is obtained by taking C large enough that C5 +
Ca — Ca < 0, and we assume 2a — C; > 0. Here, it can be seen that the
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constants C1, Cy, and C3 depend on upper bounds on Vu, and on up to
second order derivatives of A;; and log B. From the definitions of A;; and
B, and Proposition 2.5 it can thus be seen that these constants along with C
and a can be chosen to have upper bounds depending only on the structure
of the problem.

Now diagonalize (wjj(zo,t0)) and let Ay < ... < A, be the associated
eigenvalues; note that, by choice, & is an eigenvector corresponding to A,.
We then estimate,

" Yo Iz A nAP—1 ntr(W)n—1
21) (W)=Y A\l== 7170 o M o :
(21) r( ) ra i M- An A A, detW

Taking V = A;1/2ei for 1 <i<n-—1andn =e,in (12) and using (21)
yields

W (Dpypy AigJ0hy Wiy _ En: ATID, , A

i

w&DéO i=1
n—1
> —OMTWAn Z )\1—1 + DznpnAnn
=1
n
> —aurwAn DA — | DA
i=1
naMTW)\ntr(W)”_ 9
— —||D:A
- detW | P |
Z —C4UMthr(W)n — HD]%AH

where Cy depends on ug and the structure of the problem. Combining with
(20) and rearranging yields

CiomTw Coa+ || D2A||
tr(W) — ——tr(W)" < ————F—.
1"( ) 2a — C1 1“( ) - 2a — C1
Taking a large enough that 2(3@ <1, we then obtain
(22) tI‘(W) — UMthI'(W)n —C5<0

for Cs > 0 depending only on the structure of the problem.
Let us now assume oyrw € (0,00], where g > 0 is a fixed constant
satisfying

1 2n2C5\ "
(23) g0 < K() and — > < n 5) s
noo n—1

where K is the constant appearing in Lemma 4.1. Examining the roots of
the polynomial s — s — opws”™ — Cs on the half-line {s > 0} (see (28) and
(29) in Appendix A) yields two possibilities.

_1
Case 1: tr(W(xo,t)) > ( L )%1 :

- NoMTW
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In this case, we find that

1 1
( ) < (W (o, o)) <n sup |[W].
NOMTW Qx[0,7)

1

Case 2: tr(W(xg,t0)) < 4 <L>ﬁ

= 2n \ nog
In this case, for any (z,¢,&) we obtain (recall § is an eigenvector of
(wij(zo,tp)) corresponding to Ay)

lOg wg{(ﬂ% t) < ’U((L‘(), th 50)

< log (1 (1) ) + a|Vu(zo, to)] + Cat(zo, to)

2n \ nog

1
1 1 n—1

Taking exponentials and then a supremum over (z,t,§) yields

Cs o -
e 1 n—1 1 1 n—1
Ox [0,7] H H 2n noo 2n nNoMTW

so long as we choose oyTw < WUO-

Let us now assume v achieves a maximum at (zg, to, &) where xg € 9.
Then for any (z,t,&), we have

log wee (2,) < v(@o, to, &0) = log weye, (0, to) + a|Vu(xo, to)| + Carp(xo, to)

< Cg + log ( sup HWH)
80%[0,T]
Consequently, there exists a constant C7 > 0 depending only on the structure
of the problem such that
(24) sup W]l <C7 sup [[W].
Qx[0,T] 00x[0,T]
Upon inspection of [25, Section 11], we find that the bound (24) allows us
to show that
sup [|[W]| < Cs,
Qx[0,T]
where Cg depends only on the structure of the problem and the C? norm of
Uinitial- 1 he dependency of Cg on wipitial 1S through the constant o used in
[25, Equation (9.9)]. By the final displayed inequality on [25, pg. 143], it
can be seen that a depends only on ||uinitial |2 @
Choosing g > 0 to be a constant satisfying the inequalities

1
1 1 1 \ »n-1
00 < ———— < — | —
g0 S e(n—l)CG ao and Cg =95, <n50> N
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(and recalling that o already satisfies (23)), we obtain the conclusion of the

Proposition.
O

Before concluding this section, we note the following consequence of Propo-
sition 4.2.

Corollary 4.3. Suppose (12) is satisfied with 0 < opyrw < 6o, where &y
is the constant appearing in Proposition 4.2. For T € [0,tmax), consider the
quantity

w(r) = max [[W"(z,1)]|.
(z,t)€Qx[0,7]

1 1
-1 o=
Ifw(0) < & <n0'1\]/-[TW> , then w(t) < 5~ (Tmimv) for all T € [0, tmax)-
Proof. This follows from the compactness of Q coupled with the joint con-
tinuity of A¢, Vu, D?u (and consequently of W*) in (z,t). Indeed, since
w(7) is an increasing function of 7, we may suppose by contradiction that

1
there exists 7* € [0, tmax) such that w(7*) > i( L )Wl but w(r) <

2n \ nopyTw

_1
1 ( 1 )n_l for all 0 < 7 < 7*. By the assumption on w(0), we know

% NOMTW

that 7% > 0. Then there must exist z* € Q such that W% (z*, 7*) =
w(7*). The dichotomy imposed by Proposition 4.2 implies W% (z*, 7*) >
1

1 1 n—1 . , o e s . .
- (noMTw . On the other hand, since W"(z,t) is jointly continuous in

(x,t) whenever (z,t) € Q X (0,¢pax), it follows that

_ ( ) < Wc,u(x*’T*) = lim Wc’u($*,’r*—€) < — () s
n \ NOMTW e—0+ 2n \ nomMTw

which is a contradiction. O

5. PROOF OF THEOREM 1.1
We begin by letting ug be the unique solution of the steady state problem

det(Weoto(x)) = B (x, Vug(z)), x €€,
(25) G(x, Vup(x)) =0, x € 09,
Jo uo(x) dz = 0.

Since ¢y satisfies the (weak-MTW) condition, the results of [33] imply ug €
C?(Q), is strictly co-convex, and is locally uniformly cp-convex.
We assume ||c — col[c4(@xn;, (2+)) < R for some R to be determined. We

first choose R < Ry in Lemma 3.1 (1)-(3). This ensures ¢ satisfies the

necessary structural conditions in Subsection 2.1. Next, we choose R < R;

400 * —
in Lemma 3.3; this ensures the map ¥ : Bg1 (0N (2 ))(co) — C%2(Q)

is well-defined. Recalling that ¥(cy) = wug, we next let R3 > 0 be such




PERTURBATIVE PARABOLIC OPTIMAL TRANSPORT 25

that if R < Rs, then ¥ ()| c2.a@) < 2lluollgz.am) and maxg |[WeY)|| <
2 maxg ||[W"0||; this follows from the continuity of the map ¥ at ¢ = ¢y and
the compactness of 2. Now let u be the solution of (Par OT) with uinjtia =
U(c). Then u satisfies the estimates in Proposition 2.5 (which do not require
the (weak-MTW) condition) with constants K7, Ko depending only on ¢y
and ug. Finally, we let R4 > 0 be such that if R < Ry, then c satisfies
(12) with a constant oyTw < g, where ¢ is the constant appearing in

1
Proposition 4.2, and maxg ||[Wewo|| < L ( L ) "~ Then Corollary 4.3

4in \ nomTw

1

| < & ( L )ﬁ Consequently, u satisfies

. . - U 1
implies supQX[o,tmax(c)) ||W = 2n \ nomTtw

uniform second derivative estimates independent of tpax(c). We can thus
invoke the arguments from [25, Section 12] to conclude the infinite-time
existence of the solution u of (Par OT) and the convergence to a potential
function for the optimal transport problem between (€2, p) and (2%, p*) with
cost function c.

APPENDIX A. PROPERTIES OF AN n-TH DEGREE POLYNOMIAL
Fix C' > 0 and consider the polynomial
po(s):=s—o0s"—C for any o € (0,09,
where og > 0 is a constant satisfying the inequality

26) R <2n20>”‘1.

nog n—1

On the half-line {s > 0}, p, has a single critical point at s = §(o) where
(27) (o)t = —.

Since ¢ < 0y, (26) implies

1 1 om2o\" !
g(g)n—1:>><nc> .

noe ~ nog  \n—1

Consequently, §(o) > % This, combined with (27), implies

-1
po(5(0)) = 3(0)(1 — 04(0)" 1) — C = 5(0) (n - ) -C>2n-1)C>0
whenever o € (0, 0¢]. Since p,(0) = —C < 0, it follows that there exists a
root si(o) € (0,5(0)) of p,. Similarly, since EI_P Po(s) = —oo whenever

o > 0, there exists a second root sa(c) € (5(0),00) of p,. By Descartes’
rules of signs, these are the only two positive, real roots of p,.

Clearly, si(0) = 0s1(0)" + C > C for all o € (0,09]. Also, since s1(0) <
5(o), we have by (27)
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This implies

—1
1—osi(o)" ' > e

n

Since p,(s1(0)) = 0, we have s1(c)(1 — os1(c)""!) = C, and so by (26)

< <

(o) = C nC 1 /1
)= osi(e)" 1 "n—17 2n

On the other hand, since sy(0) > §(0), we have

Thus,

1

1 n—1
> — for all 0,00].
so(0) > (na) or all o € (0, 09|

We conclude that if p,(s) < 0 for some s > 0, then either

1
n—1
(28) 0§s<1(1> , or

— 2n \ noy

(29) s> (:{j) - .

ACKNOWLEDGMENTS

FA acknowledges support through an AMS-Simons Travel Grant for the
period 2020-2022. JK’s research was supported in part by National Science
Foundation grant DMS-2000128.

(1]
2]

3l

4]

[5]

(6]

(7]

(8]

REFERENCES

Farhan Abedin and Jun Kitagawa, FEzponential convergence of parabolic optimal
transport on bounded domains, Anal. PDE 13 (2020), no. 7, 2183-2204. MR 4175823
Sigurd Angenent, Steven Haker, and Allen Tannenbaum, Minimizing flows for
the Monge-Kantorovich problem, SIAM J. Math. Anal. 35 (2003), no. 1, 61-97.
MR 2001465

Jean-David Benamou, Brittany D. Froese, and Adam M. Oberman, Numerical so-
lution of the optimal transportation problem wusing the Monge-Ampére equation, J.
Comput. Phys. 260 (2014), 107-126. MR 3151832

Abby Brauer, Megan Krawick, and Manuel Santana, Numerical analysis of the para-
bolic 1-d optimal transport problem, SIAM Undergraduate Research Online 14 (2021).
Yann Brenier, Polar factorization and monotone rearrangement of vector-valued func-
tions, Comm. Pure Appl. Math. 44 (1991), no. 4, 375-417. MR, 1100809

Luis Caffarelli, Maria del Mar Gonzélez, and Truyen Nguyen, A perturbation ar-
gument for a Monge-Ampére type equation arising in optimal transportation, Arch.
Ration. Mech. Anal. 212 (2014), no. 2, 359-414. MR 3176348

Luis A. Caffarelli, Interior WP estimates for solutions of the Monge-Ampére equa-
tion, Ann. of Math. (2) 131 (1990), no. 1, 135-150. MR 1038360

, The regularity of mappings with a convex potential, J. Amer. Math. Soc. 5
(1992), no. 1, 99-104. MR 1124980




(9]
[10]
(11]
[12]
[13]
(14]
[15]
[16]

(17]

(18]

(19]

20]

21]

22]
23]

24]

25]
[26]
27]
(28]

29]

(30]

31]

PERTURBATIVE PARABOLIC OPTIMAL TRANSPORT 27

Shibing Chen and Alessio Figalli, Boundary e-regularity in optimal transportation,
Adv. Math. 273 (2015), 540-567. MR 3311771

, Stability results on the smoothness of optimal transport maps with general
costs, J. Math. Pures Appl. (9) 106 (2016), no. 2, 280-295. MR 3515303

Guido De Philippis and Alessio Figalli, Partial regularity for optimal transport maps,
Publ. Math. Inst. Hautes Etudes Sci. 121 (2015), 81-112. MR 3349831

Louis Serle Dederick, Implicit functions at a boundary point, Ann. of Math. (2) 15
(1913/14), no. 1-4, 170-178. MR 1502476

Philippe Delanoé, Gradient rearrangement for diffeomorphisms of a compact mani-
fold, Differential Geom. Appl. 20 (2004), no. 2, 145-165. MR 2038552

, On the smoothness of the potential function in Riemannian optimal transport,
Comm. Anal. Geom. 23 (2015), no. 1, 11-89. MR 3291364

Philippe Delanoé and Yuxin Ge, Regularity of optimal transport on compact, locally
nearly spherical, manifolds, J. Reine Angew. Math. 646 (2010), 65-115. MR 2719556
, Locally nearly spherical surfaces are almost-positively c-curved, Methods
Appl. Anal. 18 (2011), no. 3, 269-302. MR 2915267

Enrico Facca, Franco Cardin, and Mario Putti, Towards a stationary Monge-
Kantorovich dynamics: the Physarum Polycephalum experience, SIAM J. Appl. Math.
78 (2018), no. 2, 651-676. MR 3769710

Alessio Figalli and Ludovic Rifford, Continuity of optimal transport maps and con-
vexity of injectivity domains on small deformations of S?, Comm. Pure Appl. Math.
62 (2009), no. 12, 1670-1706. MR, 2569074

Alessio Figalli, Ludovic Rifford, and Cédric Villani, Necessary and sufficient con-
ditions for continuity of optimal transport maps on Riemannian manifolds, Tohoku
Math. J. (2) 63 (2011), no. 4, 855-876. MR, 2872966

_, Nearly round spheres look convex, Amer. J. Math. 134 (2012), no. 1, 109-139.
MR 2876141

David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second
order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, Reprint of the 1998
edition. MR 1814364

Yash Jhaveri, On the (in)stability of the identity map in optimal transportation, Calc.
Var. Partial Differential Equations 58 (2019), no. 3, Paper No. 96, 25. MR 3948988
Feida Jiang and Neil S. Trudinger, On Pogorelov estimates in optimal transportation
and geometric optics, Bull. Math. Sci. 4 (2014), no. 3, 407-431. MR 3277881
Young-Heon Kim, Jeffrey Streets, and Micah Warren, Parabolic optimal transport
equations on manifolds, Int. Math. Res. Not. IMRN (2012), no. 19, 4325-4350.
MR 2981711

Jun Kitagawa, A parabolic flow toward solutions of the optimal transportation problem
on domains with boundary, J. Reine Angew. Math. 672 (2012), 127-160. MR 2995434
Serge Lang, Real and functional analysis, third ed., Graduate Texts in Mathematics,
vol. 142, Springer-Verlag, New York, 1993. MR 1216137

Grégoire Loeper, On the regqularity of solutions of optimal transportation problems,
Acta Math. 202 (2009), no. 2, 241-283. MR 2506751

Grégoire Loeper and Cédric Villani, Regularity of optimal transport in curved geom-
etry: the nonfocal case, Duke Math. J. 151 (2010), no. 3, 431-485. MR 2605867
Xi-Nan Ma, Neil S. Trudinger, and Xu-Jia Wang, Regularity of potential functions
of the optimal transportation problem, Arch. Ration. Mech. Anal. 177 (2005), no. 2,
151-183. MR 2188047

Huy Q. Nguyen and Toan T. Nguyen, On global stability of optimal rearrangement
maps, Arch. Ration. Mech. Anal. 238 (2020), no. 2, 671-704. MR 4134149

Filippo Santambrogio, Optimal transport for applied mathematicians, Progress in
Nonlinear Differential Equations and their Applications, vol. 87, Birkhduser/Springer,
Cham, 2015, Calculus of variations, PDEs, and modeling. MR 3409718




28 F. ABEDIN AND J. KITAGAWA

[32] Oliver C. Schniirer, Flows towards reflectors, Analysis (Munich) 23 (2003), no. 3,
261-275. MR 2034229

[33] Neil S. Trudinger and Xu-Jia Wang, On the second boundary value problem for Monge-
Ampére type equations and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl.
Sci. (5) 8 (2009), no. 1, 143-174. MR 2512204

[34] Micah Warren, Regularity for a log-concave to log-concave mass transfer problem with
near Euclidean cost, Comm. Anal. Geom. 19 (2011), no. 1, 191-208. MR, 2818409

[35] Eberhard Zeidler, Nonlinear functional analysis and its applications. I, Springer-
Verlag, New York, 1986, Fixed-point theorems, Translated from the German by Peter
R. Wadsack. MR 816732

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CiTY, UT 84112
Email address: abedinf@math.utah.edu

CURRENT ADDRESS: DEPARTMENT OF MATHEMATICS, LAFAYETTE COLLEGE, EAS-
TON, PA 18042
Email address: abedinf@lafayette.edu

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MI
48824
Email address: kitagawa@math.msu.edu



	1. Introduction
	1.1. A Key Example
	1.2. Remarks on the main theorem and proof strategy
	1.3. Comments on related literature
	1.4. Additional Remarks
	1.5. Outline of the paper

	2. Preliminaries
	2.1. Notation and Setup
	2.2. The Parabolic Optimal Transport Problem

	3. Construction of Initial Data
	4. C2 Estimates
	5. Proof of Theorem 1.1
	Appendix A. Properties of an n-th degree polynomial
	Acknowledgments
	References

