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Quantum signal processing (QSP) represents a real scalar polynomial of
degree d using a product of unitary matrices of size 2 X 2, parameterized by
(d+1) real numbers called the phase factors. This innovative representation of
polynomials has a wide range of applications in quantum computation. When
the polynomial of interest is obtained by truncating an infinite polynomial
series, a natural question is whether the phase factors have a well defined limit
as the degree d — co. While the phase factors are generally not unique, we find
that there exists a consistent choice of parameterization so that the limit is well
defined in the ¢! space. This generalization of QSP, called the infinite quantum
signal processing, can be used to represent a large class of non-polynomial
functions. Our analysis reveals a surprising connection between the regularity
of the target function and the decay properties of the phase factors. Our
analysis also inspires a very simple and efficient algorithm to approximately
compute the phase factors in the ¢! space. The algorithm uses only double
precision arithmetic operations, and provably converges when the ¢! norm
of the Chebyshev coefficients of the target function is upper bounded by a
constant that is independent of d. This is also the first numerically stable
algorithm for finding phase factors with provable performance guarantees in
the limit d — oo.
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1 Introduction

1.1 Background

The study of the representation of polynomials has a long history, with rich applications in
a diverse range of fields. It is therefore exciting that a new way of representing polynomials,
called quantum signal processing! (QSP) [18, 12], has emerged recently in the context of
quantum computation. The motivation for this development can be seen as follows. For
simplicity let H € CN*N be a Hermitian matrix with all eigenvalues in the interval [—1, 1],
and let f € R[x] be a real scalar polynomial of degree d. We would like to efficiently encode
a matrix polynomial f(H) using a unitary matrix that can be efficiently implemented on
a quantum computer. An inherent difficulty of this task is that a quantum algorithm is
given by the product of a sequence of unitary matrices, but in general neither H nor f(H)
is unitary. In an extreme scenario, let H = z € [—1, 1] be a scalar, and we are interested
in a representation of the polynomial f(x) in terms of unitary matrices.

Quantum signal processing proposes the following solution to the problem above: Let

_ larccos(z)X _ g V1 —a? i = 01
Wi(z) =e (if—x? ! . cwith X = {0,

The term “signal processing” is due to an analogy to digital filter designs on classical computers.
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be a 2 X 2 unitary matrix parameterized by = € [—1,1]. Then the following expression

d
; s 1 0
.— %0Z ;2 ; —
U(z,¥):=e j|:|1 [W(w)e g ] , with Z = (0 _1> ; (1)
is a unitary matrix for any choice of phase factors W := (¢g, 1, - ,1bq) € R, Here

X, Z are Pauli matrices. One can verify that the top-left entry of U(x, ¥) is a complex
polynomial in x. Moreover, for any target polynomial f € R[x] satisfying (1) deg(f) = d,
(2) the parity of f is dmod 2, (3) [|fll, := maxuei_11][f(z)| < 1, we can find phase
factors ¥ € R¥*! such that f(z) is equal to the real (or imaginary) part of the top-left
entry of U(x, ¥) for all x € [—1,1] [12]. By setting x = % with z = €, € [0,27), the
representation in Eq. (1) can be viewed as a 2 x 2 matrix Laurent polynomial, and we are
interested in its values on the unit circle.

Eq. (1) is an innovative way of encoding the information of a polynomial in terms of
2 x 2 unitary matrices. It also leads to a very compact quantum algorithm for constructing
a unitary matrix that encodes the matrix polynomial f(H), called quantum singular value
transformation (QSVT) [12]. Assume that H is accessed via its block encoding

where W € CMNXMN ig 5 unitary matrix (M > 2), the matrix H is its top-left N x N
matrix subblock, and * indicates matrix entries irrelevant to the current task. When
given the phase factors ¥ and the block encoding W, QSVT constructs a unitary U €
C2MNXx2MN by introducing one ancillary qubit) such that

In other words, although f(H) is not a unitary matrix, it can be block encoded by a unitary
matrix of a larger size that can be efficiently implemented on quantum computers. This
construction has found many applications, such as Hamiltonian simulation [18, 12], linear
system of equations [12, 17, 20], eigenvalue problems [16, 7], Gibbs states preparation [12],
Petz recovery channel [11], benchmarking quantum systems [5, 9], to name a few. We
refer interested readers to Refs. [12, 20].

To implement QSVT, we need to efficiently calculate the phase factors ¥ corresponding
to a target polynomial of degree d. Many of the aforementioned applications are formulated
as the evaluation of a matrix function f(H), where f : [-1,1] — R is not a polynomial
but a smooth function, which can be expressed as an infinite polynomial series (e.g.,
the Chebyshev polynomial series). To approximate f(H), we need to first truncate the
polynomial series to f(9 with a proper degree d so that the difference between f(@ and f
is sufficiently small. Then for each f(® we can find (at least) one set of phase factors g,
When d is fixed, there has been significant progress in computing the phase factors in the
past few years [12, 13, 3, 8, 26]. The questions we would like to answer in this paper are
as follows.

1. As d — oo, can the phase factors {¥(?} be chosen to have a well-defined limit ¥*
in a properly chosen space?

2. If f is smooth, its Chebyshev coefficients decay rapidly. Does the tail of U* exhibit
decay properties? If so, how is it related to the smoothness of f?
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3. Is there an efficient algorithm to approximately compute ¥*?

Our work is to first generalize QSP to represent smooth functions with a set of infinitely
long phase factors, and we dub the resulting limit infinite quantum signal processing

(iQSP).

1.2 Setup of the problem

We follow the bra-ket notation widely used in quantum mechanics. Specifically, we define
two “kets” as basis vectors of C2, namely,

The “bra” can be viewed as row vectors induced from the corresponding ket by taking
Hermitian conjugate. In the bra notation, (0| = (1,0),(1] = (0,1). The inner product
is written as (x|y) := (|z),|y)). Using this notation, the upper left element of U(x, )
in Eq. (1) can be written as (0|U(z, ¥)|0). Direct calculation shows that the real part of
(0|U(x, ¥)|0) can be recovered from the imaginary part by adding § to both g and vg:

Re[(0]U (z, ¥)[0)] = Im [{0]e"TZU (z, W)e'FZ|0) ] (2)

For convenience, throughout this paper, we focus on the imaginary part of (0|U(z, ¥)|0),
which is denoted by g(z, ¥), i.e.,

g(x, ¥) := Im[(0|U(z, ¥)|0)]. (3)

Due to the parity constraint, the number of degrees of freedom in a given target
polynomial f € R[x] is only d:= [%1 Therefore the phase factors ¥ cannot be uniquely
defined. To address this problem, Ref. [8] suggests that phase factors U := (g, ¢1, . .., ¥q)
can be restricted to be symmetric:

wj = wd*jﬁ V] = 0717"' 7d' (4)

Without loss of generality, we define the reduced phase factors as follows,

(3¢5 g 1ta), dis even,

5
(Vg ¥z, %a),  dis odd. 5)

¢ = (¢07¢17"'7¢J_1) = {

The number of reduced phase factors is equal to d = [%], and matches the number of
degrees of freedom in f. With some abuse of notation, we identify U(x, ®) with U(x, ¥)
and g(x,®) with g(z,¥), and ® is always referred to as the reduced phase factors of a
full set of phase factors W. For a given target polynomial, the existence of the symmetric
phase factors is proved in [25, Theorem 1], but the choice is still not unique. However,
near the trivial phase factors ® = (0, ...,0), there exists a unique and consistent choice
of symmetric phase factors called the maximal solution [25].
Let ¢! denote the set of all infinite dimensional vectors with finite 1-norm:

o
= {v = (vo,v1,-+) s vlly < o0}, ol = Z logl, v = (vo,v1,- ). (6)
k=0

The vector space ¢! is complete, i.e., every Cauchy sequence of points in ¢! has a limit
that is also in ¢'. Let R be the set of all infinite dimensional vectors with only a finite
number of nonzero elements.
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Definition 1 (Target function). A target function f : R — R is an infinite Chebyshev
polynomial series with a definite parity

fla) = {ijo ciToj(x), f zs even, o
Yo cilrji(z), f s odd,
The coefficient vector ¢ = (co,c1,...) € L1, and f satisfies the norm constraint
[flloe = max |f(z)] <1. (8)
ze[—-1,1]
In other words, the set of even target functions is
J=0 J=0

and the set of odd target functions is

So = {f [-1,1] = [-1,1] : f(z) = chng_H(ac), Z lej| < oo} (10)
j=0

J=0

If we truncate the Chebyshev coefficients to be ¢ = (¢cg,cq, ... 7 ,0,...) € R™,
the corresponding Chebysllev polynomial f @ is of degree d (recall that d= [%1 and
hence d is determined by d and the parity of the function). Furthermore, ¢ € ¢! implies
that limg_, o H fl — fH = 0. Throughout the paper, f(@ will be referred to as a target

o0

polynomial approximating the target function f.
In order to compare phase factors of different lengths, an important observation is that
if we pad ® = (o, ¢1, . .., ¢3) with an arbitrary number of 0’s at the right end and obtain

P = (d0, b1, - - - s ¢5,0,... ,0), we have g(z, ®) = g(z, (f) (see Lemma 10). Therefore g(x, )
is a well defined mapping in R*, and we can identify ® with ®. Let F be the linear

mapping from a target polynomial to its Chebyshev-coefficient vector ¢ € R* as defined
in Eq. (7). This induces a mapping

F:R® 5 R®, F(®):= F(g(z,d)), (11)

which maps the reduced phase factors ® € R* to the Chebyshev coeflicients of g(x, ®).

Note that R> is dense in ¢!, i.e., any point in ¢! is either a point in R*® or a limit
point of R*. By exploiting nice properties that F' and its Jacobian matrix are Lipschitz
continuous, we can define F' : £! — ¢! to be the extension of F', such that F(®) agrees
with F(®) for any ® € R*. Then the problem of infinite quantum signal processing asks
whether the inverse of the mapping F exists.

Problem 2 (Infinite quantum signal processing). For a target function in Definition 1

given by its Chebyshev coefficients ¢ € £*, does there exist ®* € (' such that F(®*) = c?

1.3  Main results

Theorem 3 (Invertibility of F). There exists a universal constant r. ~ 0.902, so that F
has an inverse map F " : B(0,r.) C £* — ¢*, where B(a,r) :={v e ' :|v—al, <r}.

Accepted in {Xuantum 2024-11-19, click title to verify. Published under CC-BY 4.0. 5



Theorem 3 provides a positive answer to Problem 2 as well as to the first question
raised in Section 1.1, when the 1-norm of the Chebyshev coefficients is upper bounded
by a constant. Note that for a given target function f, we can always multiply it by a
constant C, so that the C'f satisfies the condition of Theorem 3. The main technical tools
are a series of vector 1-norm estimates of F', and matrix 1-norm estimates of the Jacobian
matrix DF. These estimates do not explicitly depend on the length of phase factors, and
can therefore be extended to F. A more detailed statement of Theorem 3 is Theorem 23,
which will be presented in Section 3.4.

Since ®* = (¢g,¢1,...) € ¢, the tail of ®* must exhibit decay properties, i.e.,
limy, 00 D pop |6k = 0. Fig. 4 in Section 6 shows that the tail decay of ®* closely matches
that of the Chebyshev coefficients ¢. The duality between the smoothness of a function and
the decay of its Fourier / Chebyshev coefficients is well studied (see e.g. [24, Chapter 7]).
However, it is surprising that the tail decay of the reduced phase factors can be directly
related to the smoothness of the target function. Such a behavior was first numerically
observed in Ref. [8], in which an explanation of the phenomenon was also given in the
perturbative regime. Using the tools developed in proving Theorem 3, we provide a refined
and non-perturbative analysis of the tail decay in Theorem 4.

Theorem 4 (Decay properties of reduced phase factors). Given a target function f with
llelly < e, and &* = F_l(c) = (¢0, ¢1,...) € LY, then there exist constants C,C’ such that

for any n,
O el <D lokl < C Y7 el (12)

k>n k>n k>n

The proof is given in Section 4 with an explicit characterization of constants C,C’.
Assume the target function f is of C* smoothness for some a > 0, then the Chebyshev
coefficients decay algebraically in the sense of 37, |ck| = O (n™%). Then, it induces a
decay of the corresponding reduced phase factors, namely, > <, |¢x| = O (n™). If f is
of C* or C¥ smoothness, then the tail of its Chebyshev-coefficient vector decays super-
algebraically or exponentially respectively, and so does the tail of the reduced factors. We
summarize this in the following corollary.

Corollary 5. If f is of C* smoothness for some o > 0, then the tail of the corresponding
reduced phase factors decay algebraically, i.e., > <, |ox| = O (n™). Furthermore, if f is
of C°° or C¥ smoothness, then the tail of the corresponding reduced phase factors decays
super-algebraically or exponentially respectively.

These results are also verified numerically in Fig. 4. These results provide a positive
answer to the second question raised in Section 1.1.

Theorem 3 also has algorithmic implications. It has been empirically observed that
a quasi-Newton optimization based algorithm is highly effective for finding the phase
factors [8]. However, the theoretical justification of the optimization based algorithm has
only been shown if the target function satisfies ||f|| ., < Cfg_l, where Cy ~ 0.028 is a
universal constant [25, Corollary 7]. Hence as d increases, existing theoretical results fail to
predict the effectiveness of the algorithm, even if the target function is a fixed polynomial
of finite degree (in this case, we pad the Chebyshev coefficients with zeros to increase J)

Inspired by our analysis of the Jacobian map DF, we propose a very simple iterative
algorithm to find phase factors for a given target polynomial f (Algorithm 1). This
algorithm can be viewed as finding the fixed point of the mapping G(z) := z — £ (F () —¢)
by means of a fixed point iteration ®*! = G(®*). This can also be viewed as an inexact
Newton algorithm [22, Chapter 11], as the inverse of the Jacobian matrix at 0 € ¢! satisfies
[DF(0)]7* = 3I (Lemma 17).
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Algorithm 1 Fixed-point iteration algorithm for solving reduced phase factors

Input: Chebyshev-coefficient vector ¢ of a target polynomial, and stopping criteria.
Initiate ®° =0, t = 0;
while stopping criterion is not satisfied do
Update @1 = @ — L (F (®!) —¢);
Set t =t+1;
end while
Output: Reduced phase factors ®°.

For a given target function, the Chebyshev-coefficient vector can be efficiently eval-
uated using the fast Fourier transform (FFT). The fixed-point iteration algorithm (Al-
gorithm 1) is the simplest algorithm thus far to evaluate phase factors. This algorithm
provably converges when ||c||; is upper bounded by a constant.

Theorem 6 (Convergence of the fixed-point iteration algorithm). There ezists a universal
constant 7. ~ 0.861 so that when ||c||; < 7,

-1

i) Algorithm 1 converges Q-linearly to = F (c), i.e., there exists a constan
) Algorithm 1 li ly to &* = F th t tant C

and the error satisfies

o

< CAt, 7 ~0.8189, t>1. (13)

(ii) The overall time complexity is O(d?log %), where d is the degree of target polyno-
mial and € is the desired precision.

A more accurate characterization about the region where Algorithm 1 converges and
the convergence rate is presented in Section 5.1. In Section 6, numerical experiments
demonstrate that Algorithm 1 is an efficient algorithm, and we observe that its convergence
radius can be much larger than the theoretical prediction. These results provide a positive
answer to the third question raised in Section 1.1. We implement Algorithm 1 with more
examples as part of QSPPACK, an open-source package for finding phase factors 2.

1.4 Related works

The original QSP paper [18] demonstrated the existence of phase factors without providing
a constructive algorithm, and finding phase factors was considered to be a main bottle-
neck of the approach [4]. In the past few years, there has been significant progresses in
computing the phase factors. Refs. [12, 13] developed the factorization based method. For
a given target (real) polynomial f(?), one needs to find a complementary (real) polynomial
satisfying the requirement of [12, Corollary 5] (also see Theorem 7). This step is based on
finding roots of high degree polynomials to high precision, and this is not a numerically
stable procedure. Specifically, the algorithm requires O(dlog(d/¢)) bits of precision [13].
There have been two recent improvements of the factorization based method, based on
the capitalization method [3], and the Prony method [26], respectively. Although the two
methods differ significantly, empirical results indicate that both methods are numerically
stable, and are applicable to polynomials of large degrees. Furthermore, both methods
take advantage of that the mapping from the Chebyshev coefficients ¢ to the full phase
factors W is not necessarily well-defined in £!. For instance, a key step in [3] is to introduce

2The examples are available on the website https://qsppack.gitbook.io/qgsppack/ and the codes are
open-sourced in https://github.com/qgsppack/QSPPACK.
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a very small perturbation to the high order Chebyshev coeflicients, which can nonetheless
induce a large change in the phase factors W. As a result, the question raised in Problem 2
cannot be well defined in such factorization based methods, and the tail of the phase
factors ¥ does not exhibit decay properties.

The optimization based method developed in Ref. [8] uses a different approach, and
computes the symmetric phase factors without explicitly constructing the complementary
polynomials. Empirical results show that the quasi-Newton optimization method in [§]
is numerically stable and can be applicable to polynomials of large degrees. Ref. [25]
analyzes the symmetric QSP, and proves that starting from a fixed initial guess of the
reduced phase factors ® = (0, -- ,0), a simpler optimization method (the projected gradi-
ent method) converges linearly to a unique maximal solution, when the target polynomial
satisfies H f (d)Hoo < Cd~! for some constant C. The fixed point iteration method in Algo-

rithm 1 is the simplest algorithm thus far for finding phase factors, and is the first provably
numerically stable algorithm in the limit d — co.

2 Preliminaries on quantum signal processing

The set [n] := {0,1,--- ,n — 1} is referred to as the index set generated by a positive
integer n. The row and column indices of a n-by-n matrix run from 0 to n — 1, namely
in the index set [n]. For a matrix A € C™*™, the transpose, Hermitian conjugate and
complex conjugate are denoted by AT, AT, A* respectively. The same notations are also
used for the operations on a vector.

For a matrix M of infinite dimension, we equip it with the induced 1-norm, i.e.,

1Ml == e [ Mul]; -

For any function f over [—1, 1], we define its infinity norm as || f|| ., := max_i<z<1 |f(2)].
The key to quantum signal processing (QSP) is a representation theorem for certain ma-
trices in SU(2):

Theorem 7 (Quantum signal processing [12, Theorem 4]). For any P,Q € Clx] and
a positive integer d such that

(1) deg(P) < d,deg(Q) < d —1,

(2) P has parity (d mod 2) and Q has parity (d —1 mod 2),

(3) (Normalization condition) |P(x)|? + (1 — 2?)|Q(x)|> = 1,Vx € [-1,1].
Then, there exists a set of phase factors W := (g, - -+ ,1bq) € [, )4 such that

d : / 2
U<w7‘1’>=6i“’°ZH[W<$>€W]:<i@*<£(fl)w A ) "

J=1

where

iv1— a2 x

Here, the complex conjugate of a complex polynomial is defined by taking complex
conjugate on all of its coefficients. X, Z are Pauli matrices. In most applications, we are
only interested in using the real part of P. The following corollary is a slight variation
of [12, Corollary 5], which states that the condition on the real part of P can be easily
satisfied. Due to the relation between the real and imaginary components given in Eq. (2),
the conditions on the imaginary part of P are the same.

W(x) — eiarccos(m)X _ < x im > .

Accepted in {Xuantum 2024-11-19, click title to verify. Published under CC-BY 4.0. 8



Corollary 8 (Quantum signal processing with real target polynomials [12, Corol-
lary 5]). Let f € R[z] be a degree-d polynomial for some d > 1 such that

e f(x) has parity (d mod 2),

e |f(x) <1,¥2 € [-1,1].
Then there exists some P,Q € Clx] satisfying properties (1)-(3) of Theorem 7 such that
f(z) = Im[P(z)].

Since we are interested in P, we may further restrict @ € R[z]. In such a case, the phase

factors can be restricted to be symmetric. Let Dy denote the domain of the symmetric
phase factors:

{[—g,g)g X [-m,m) x [=F,5)2, dis even, (15)
[-Z,2)4, d is odd.
Theorem 9 (Quantum signal processing with symmetric phase factors [25, The-
orem 1]). Consider any P € Clz] and Q € Rx] satisfying the following conditions

(1) deg(P) =d and deg(Q) =d — 1.

(2) P has parity (d mod 2) and @ has parity (d — 1 mod 2).

(3) (Normalization condition) Vzx € [—1,1] : |P(z)]* + (1 — 22)|Q(z)|? = 1.

(4) If d is odd, then the leading coefficient of Q is positive.
There exists a unique set of symmetric phase factors ¥ := (g, 1, ,1¥1,1%0) € Dy such

that
B P(x) iQ(x)V1 — a2
Vie, ¥) = <iQ(a:)m P*(x) ) '

We want to emphasize that the set of symmetric phase factors is unique only if both
P(z) and Q(x) are determined. If only f = Im[P] is given, then the set of symmetric
phase factors may not be unique as mentioned above. When we are only interested in
f(z) = Im[P(z)] represented by symmetric phase factors, the conditions on f are the
same as those in Corollary 8. This is proved constructively in [25, Theorem 4].

Throughout the paper, unless otherwise specified, we refer to ¥ := (¢g,- -+ ,1q) as the
full set of phase factors and use ® := (¢, - - - ’¢E111) to denote the set of reduced phase

(16)

factors after imposing symmetry constraint on ¥, where d:= [%1

In this paper, in order to characterize decay properties, we choose the second half of
U to be the corresponding reduced phase factors. Specifically, when d is odd, the set of
reduced phase factors is

® = (QSO?'” 7¢gfl) = (d]gu J/Jd)~ (17)
When d is even, the set of reduced phase factors is
1
o = (¢07"' 7¢E_1) = (57/15_171@37 7¢d)‘ (18)

In this way, one has

U(z,¥) = ei(bdN—lZW(:E)ew;—?Z o W ()W () AW () - .- ei¢d~—2ZW(:c)ei(bd~—lz

for the odd case, and

Z Z

U(.’L‘, \I]) — €i¢;_IZW(x)€i¢;_2 . W($)62i¢OZW($) oo ei(ﬁdN_QZW(x)ei(z;g_l

for the even case.
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Lemma 10 (Phase-factor padding). For any symmetric phase factors ¥,
Im ((O[U (2, ¥)|0)) = T ((O|W (2)U (2, W)W (2)[0)) . (19)
Proof. According to the definition, U(z, ¥) takes the form

( P(z) iQ(z)V1 — ;L'2>
iQ(z)V1 — x2 P*(x) ’

Here, P(z) € C[z], and Q(z) € R[z] due to the symmetry of ¥. Direct computation shows:
W(x)U(z, V)W (x)
B x iv1— a2 P(x) iQ(z)V1 — x? T iv1— 22
iVl — a2 T iQ(z)V1 — a2 P*(x) iv1— a2 x (20)
[ 2P-(1-2H)Q i(zQ+ P*)V1—2a? x iv1— a2
S \i(P+2Q)V1I—22 2P — (1 -2%)Q iv1 — a2 T '
The upper-left entry of W(x)U(x, U)W (z) is
2P — (1 — 22)Q — (2Q + P*)(1 — 2?) = 2P + (2® — 1) P* — 22(1 — 2°)Q. (21)
Hence

ts (OW (2)0 &, 9) W (@)/0)) = i (#2P + (5 = DP") = & Pon + (1~ %) P = Pin,
(22)
Note that P, = Im ((0|U(x, ¥)|0)), which completes the proof. O

Recall that we are interested in g(x, ¥) := Im[(0|U(z, ¥)|0)], and g(x, ®) is identified
with g(x,¥). Lemma 10 implies that for reduced phase factors ®, g(z,®) remains the
same if we pad ® with an arbitrary number of 0’s at the right end. In this way, we are
able to identify ® with the infinite dimensional vector (¢, - - - 5 50,0 -) in R®°. Then

for any ®(, &) ¢ R, the distance H@(l) - <I>(2)H1 is well defined.

Definition 11. The effective length of ® € R is the largest index of the nonzero elements
of ®. If ® = (¢bo, - - 07 150, -) and ¢5 , # 0, then its effective length is d.

By viewing reduced phase factors ® as an infinite dimensional vector in R*° the
problem of symmetric quantum signal processing is to find reduced phase factors ® € R*®
such that

F(®) :=F (g(z, @) = F(f) (23)

holds for a target polynomial f.

3 Infinite quantum signal processing

We use DF(®) to denote the Jacobian matrix of F(®), which is a matrix of infinite
dimension. Following the construction of the mapping F', for any k € N, the k-th column
of DF(®) is

OF(®) _ F(@g(x,@)) .

Oy,

90 (24)
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Similarly, for any 7, s € N, the second order derivative is

O°F(®) _ e <a2g(x, @)) . (25)

Dr O 09 0¢s

As a remark, both dgf) nd g fé? are infinite dimensional vectors.

The main goal of this section is to prove Theorem 3. We first present a useful estimate

of the vector 1-norm of F' an 325 5%, in Section 3.1. This allows us to estimate the
matrix 1-norm of the Jacobian DF and prove the invertibility of DF in Section 3.2.
Based on these technical preparations, we prove the invertibility of the mapping F' in
R> in Section 3.3. As a final step, since R® is dense in ¢! and all derived estimates
are independent of the effective length of ®, we extend the result to the invertibility of
F in Section 3.4. The analysis leverages some facts about the Banach space, which are
summarized in Appendix A for completeness.

Without loss of generality, we consider the case that the target function is even in this
section. The analytical results can be similarly generalized to the odd case.

3.1 Estimating the vector 1-norm of F' and its second-order derivatives

We first summarize the main goal of this subsection as the following lemmas. To prove
them, we consider a more general case where phase factors are not necessarily symmetric.
Consequentially, we prove stronger results in Lemma 14 and Corollary 15. Lemma 12 and
Lemma 13 are consequences of Lemma 14 and Corollary 15 respectively by restricting
to the symmetric phase factors. As a remark, the upper bounds are independent of the
effective length of the reduced phase factors, which will enable the generalization to ¢!.

Lemma 12. For any ® € R*, it holds that
[E(®)]], < sinh (2|®],). (26)

Lemma 13. For any ® € R*, and r,s € N, it holds that

To prove the previous lemmas, we start from a general setup where the phase factors
are not necessarily symmetric.

O?°F(®)
DrO¢s

< 4sinh (2]®],). (27)

1

Lemma 14. For any full set of phase factors U := (o, 41, -+ ,1q), it holds that
7 (g(z, ©))Il; < sinh ([¥]l,)- (28)

Proof. Let ¥ = (¢g,%1,- - ,1q) be a full set of phase factors. The corresponding QSP
matrix can be expanded as

U(z, — ¢ltoZ H ( wkZ)

d
= (cos(tpo)l +isin(vg)Z H (cos(¢x)I + isin(vy)Z)) (29)

k=1

d d
= <H cos(wk)> (I+itoZ) H ) (I+it;Z)),
k=0 J=1
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where ¢; := tan;. Notice that W(z)Z = ZW (z)~! and

W(a)* = ( T, () imUk_l(:p))
V1= 2Ty () Ty (x) ’

where Ty (z) and Uy (z) are Chebyshev polynomials of the first and second kind respectively.
Then,

(30)

d d
V) = (H COS(@%)) (I+ite2) H ) (1 +it; Z))
k=0 jaie
= (ﬁcoswk)) ( )+i Z tleWd 21 (g Z tjltde 2072=31) (g)
k=0

j1=0 J1<j2

—1i Z tjltj2tj3ZWd‘2(j3‘j2+71)(x) + >
J1<J2<J3

(31)
Note that each term is a matrix whose upper left element is of the following form
it Lt t]sz( z),

where j; < jo < --- < j; for some [, and k = d — 22 (=1,

When considerlng the Chebyshev coefficients of the imaginary part of the upper left
element of U(x, ¥), only those terms with odd number of ¢;’s matter. Then we have the
estimate

d l
IF (g, ON; < T leos(wi)l > > TI 1l
k=0

lis odd j1<jo<--<g; i=1

l
S0 IIsini)l [T leos(v)]

lis odd j1<j2<---<j; i=1 kZj1, 01

l
> > IIlsin(y)l

lis odd j1<jo<---<j; i=1

d
< sinh <Z |SiIl(1/1k)|)

k=0
< sinh (||¥]],).

(32)

We remark that the last inequality holds because sinh(z) is monotonic increasing, and the
penultimate equality is due to the following observation:

sinh <i|sin(zpk)|>: Z (Z|sm wk> Z > lillsin(wji)l

k=0 lis odd lis odd j1,j2, L gri=1

(33)
1 . .
> > 5 X Hlsm(wji)l = > > Hlsm(wji)l
lisodd ™ Jis i i=1 lis odd j1<ja<--<j; i=1
are all different
The proof is completed. O
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Corollary 15. For any full set of phase factors U := (o, 91, -+ ,¥q) and any r, s € [d+1],
it holds that
(P9, 9)
Oy Ot

Proof. 1f r = s, then 02U (x, V) = —U(x, ¥), and the desired result can be obtained by
directly applying Lemma 14. Then we consider the case r # s. Note that

< sinh([[[]). (34)

1

805U (2, W) = U (x U+ ger + ge> : (35)

where e, = (0,...,0,1,0,...,0) denotes the r-th standard unit vector. Then

Pg(x,¥) _ OPIml(OU (. 0)|0)] _
o = o = 020Uz, w)[0)] )

= Im[(0|U(x, ¥ + ger + ges)|0>] =gz, ¥+ ger + ges).

To simplify the notation, let U =0+ ger + 5es, and Yy, be the components of ¥. Similar
to the proof of Lemma 14, we have

0?g(z, ¥ .
o, =l
!
< Z Z H‘sin(qﬂji) H ‘COS(l/N}k)’
1 is odd j1 <jo<--<j;i=1 k#1001

= ;1;[ (’COS(%Z%)‘ + ‘Sin@k)’) - ;1;[ (

l
2y Y Mm@l IT leost)

lis odd j1 <j2<--<jri=1 kg1, 1

l
< > > Illsin()l

[ is odd j1<j2<--<g; 1=1
< sinh ([[¥];).

COS(%)’ - ‘Sin(i)k)‘)

To see that equality () holds, we note that |sin(¢;)| = | cos(¢x)| and | cos(¢y)| = | sin(ey)|
for k£ = r or s which interchanges two pairs of sine and cosine. Because this interchange
operation leaves the production invariant, we can directly replace U by ¥ in the expression.
The proof is completed. O

Lemma 12 is a direct application of Lemma 14. Now we use Corollary 15 to prove
Lemma 13.

Proof of Lemma 13. Choose n > max(r, s) such that all elements of ® with index > n are

zero. Then we may view ® as a vector of length n + 1, i.e., (¢g, - ,dp). Since we only
consider the even case, we let U := (g, 91, - ,¥a,) be the corresponding full set of phase
factors and then
On—k k<n,
Yk =42¢0 k=mn, (38)
¢k—n k> n.
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For first-order derivative, when k& > 0,

0g(x,®)  Og(x,¥) Jg(z,¥)

= , 39
and when k£ =0,
9g(x,®) _0g(x,¥) _0Og(x,¥)  Og(x, V)

=2 = + : 40
961 Don  Onen | Oy (40)

Similarly, the second-order derivative is

2 2 2 2 2

9@, ®) _ _Fg,V) . Pg@¥) | 0¥ | g ¥) (41)

a¢ra¢s 6¢n+ra¢n+s awn—rawn—ks a'(/Jn—&-ra"pn—s az/)n—rawn—s
Invoking the triangle inequality for 1-norm and applying Corollary 15, the results follow

O2F ( ( )
a@a(z)s X 5600,
) P9, 0)
H <a¢n+ra¢n+s> * F<8z/»n_r81/)n+s> . (42)
9%g(z, ¥) ) < 9%g(z, 1) )
Fl—=—20 Fl—L2 "
" <81/}n+7n81/}n_5 1 - awn_ra¢n—s 1
< 4sinh (2|®[};) .
O

3.2 Matrix 1-norm estimates of DF

The following lemma characterizes the Lipschitz continuity of DF'.

Lemma 16 (Lipschitz continuity of DF). For any § > 0 and any ®9) € R™ with
Hq)(j)Hl <8, j=1,2, it holds that

HDF(<I><1>)—DF(<I><2>)H < Co(6 Hqﬂ <2>H1, (43)

where Ca(d) = 4sinh(20).
Proof. Using the definition of the 1-norm of infinite dimensional matrix, one has
|DF@W) - DF@®@)| = max |(DF(@Y) - DF(@®)) 0
Lo elly=t 1
i OF (@M  9F(e®)
— v
=\ 9 o¢, ) "
OF (@M  9F(2®)
=l 9% Oy,

oF(@Y)  oF(@®)
telo ol

max
ol =1 )
(44)

< max v
lloll; =1

1

— Imax
k

1

For fixed k, ®1) and ), applying mean value inequality to the function

yt) = g (204 ¢ (8 - 20)),
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we have

H OF(@M)  aF(9?)

gE(®) (2 - 2®)

¢ O L= glq><}1(>+tq>(2> 0Py 1
<t<1
_ oM _ 5
Ce=(1- t)cb<1>+tq><2> Z 5¢13¢k ( ! ) )
0<t<1
- z”: O*F(® ‘(I)(l) q)(z)‘ (45)
@' =(1— t)<I><1)+t<I>(2 - 3¢13¢k

< Cu(a) [0l — af?)
=0
- o~

where n is the effective length of ®1) — @ The last inequality follows Lemma 13, and
notice that ||®'[|, = H(l —1)oM) 4t Hl is still bounded by §. Since k can be arbitrary,
the proof is completed. O

Lemma 17. DF(0) = 21, where 0 € R is the vector with all elements equal to zero, and
I is the identity matriz of infinite dimension.

aF(o)

Proof. Tt is equivalent to show that = 2ep, where e € R* is the vector with all
components equal to 0 except for the k th component which is equal to 1. Recall Eq. (24)

and notice that F(To;(z)) = ek, we can prove that 69(; 0 = = 2Ty, (z) instead. Invoking

Lemma 10, we only need to show that 89(9& (b) = 2Ty (), where & = (0,---,0) € RFFHL
We know that U(x, ®) = W2¢(x) as well as Eq (30). Then direct computation gives that

Og(x, @) _ (<0|W|0>) = Im ((0[iZU (z, ®) + U(, ®)iZ|0))

Aoy, Aoy, (46)
= 2Re ((0]U (2, )[0)) = 2Re ((0]W*()[0)) = 2T ().
O
By choosing ®® to be 0 in Lemma 16, we obtain a rough estimate about DF(®),
IDF(®) —21||; < Ca([[@]4) (|21l -
However, this estimate can be refined, which is given in the following lemma.
Lemma 18. Define
= / C3(6)dé = 2cosh(2z) — 2. (47)
0
For any ® € R*,
IDF(®) — 20|, < h([[®],)- (48)

Proof. Note that DF(0) = 2I. For a fixed @, for an arbitrary partition of [0, 1]

0=ty <t; < - <tpm=1,
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the following can be obtained by invoking the triangle inequality of 1-norm and applying
Lemma 16

|DF(@®) ~ DF(O)]l, = || 3 (DF(t411®) — DF (1))

ke[m]

> IDF(te41®) — DF (t,9) |
ke[m)] (49)
> Collltrs1®lly) 1 ® — te®]l,

ke[m]

= > Colturr [@]) @l [terr — tal-
ke[m]

1

IN

IN

Note that 3= pcrn C2([ltk+1P[l1) [| @]l [tk+1 — | is a Riemann sum integrating Ca (¢ | ®||;) ||,
over t € [0,1]. Since the partition is arbitrary, one gets

@Il

1 I
|DF(®) = DEO)I, < [ Catt|0],) 9] dt = [ Ca@)as = n(j@ll). (50)

O

As an immediate consequence of Lemma 18, for any ® € R* with bounded norm
|®]|; <9, it holds that

|DF(®)||; < 2cosh(2z) — 2+ 2 = 2cosh(25) := Cy(9). (51)
We will use this upper bound on ||DF(®)||; to prove the Lipschitz continuity of F.

Corollary 19 (Lipschitz continuity of F). For any ®) € R>® with bounded norm H@U)Hl <
& where j = 1,2 it holds that

HF(<I>(1)) - F(<I>(2))H1 < C1(6) Hqﬂ) - q><2>H1 . (52)

Proof. Applying the mean value inequality, there exists ® which is some convex combi-
nation of ®1) and ®® so that

[P@®) - F@®)] < |pF@)], o0 - s@] . (53)

Invoking Eq. (51) and recalling the condition ||®’|; < ¢, one has ||[DF(®')||, < C1(9),
which completes the proof. O

3.3 Invertibility of F'in R>

According to the inverse mapping theorem and Lemma 17, we know that F' is invertible
near 0. We now prove a stronger result about the invertibility of F' in a neighborhood of
the origin. This is obtained via an upper bound on ||F~!(c)|, in terms of |c||;. The proof
of the following lemma is given in Appendix B. Since F' is not an injection globally, the
F~! we refer to only means a continuous function whose domain is an open subset of R>
containing 0 and satisfies F o F~! = id.

Accepted in {Xuantum 2024-11-19, click title to verify. Published under CC-BY 4.0. 16



Lemma 20 (Invertibility of F in R*). Define

H(z) = /0 "9 _ h(t)dt = 4z — sinh(22), (54)
re = h™1(2) ~ 0.658, (55)

and
re := H(re) = 0.902. (56)

F has an inverse map F~' : B(0,7.) C R® — R>*. Moreover, for any ¢ € R>® with
llelly < re, it holds that

|F=1 @, < B Uelly)- (57)

As a remark, the effective length of F'~!(c) is always equal to that of ¢, which is implied
by the proof of Lemma 20.

Corollary 21. For any D) e R with Hc(j)Hl < 0 < r. where j = 1,2, define Pl =
F=Y(cW) for j =1,2. It holds that

et s -9, <0 -], =
where C(0) = 2 — h(H1(6)).
Proof. First, one has
-], = 1w - )

/01 DF (50 + (1 - 5)0@) - (1) — 0@ ds

1

59
- /01 (2]1 +DF (s<1><1) +(1— s)<b<2>) - 2]1) : (cI><1) - <I><2>) ds)| )
> 2||o <I>(2)H1 - /01 |DF (s0) + (1 - 5)0®) - 2]1H1 o - <1>(2)H1 ds
Hence, there exists t € (0,1) such that & = t®() 4 (1 — ¢)®?) and
Hc(1> - c<2>H1 > 2 Hq>(1> - <1>(2)H1 — |DF(®') — 21, H@(U - <1>(2>H1 . (60)
From Lemma 20, for j = 1,2, one has
Hcp(j)Hl = HF-l(cU))H1 < H‘l(Hc(j)Hl) <H(0) < ro. (61)

Then ||®’||, < H~%(0) follows by the convexity of 1-norm ball. According to Lemma 18,
one has ||DF(®") — 2I||;, < h(]|]®'||;) < 1. Thus, we obtain

C6) o - 2@ <[ - ¥, (62

where C(6) := 2 — h(H1(9)). O

Combining Corollary 19 and Corollary 21, we obtain the following theorem.
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Lemma 22 (Equivalence of distance in R*). For any ) e R® with “c(j)"1 <6<,
j=1,2, define ®U) := F~1(cY9)), j =1,2. It holds that

o -0, < | o] <cofer o7,

where C(0) = 2 — h(H=(0)) and C(0) = CL(H™1(9)).

An immediate consequence of Lemma 22 is that: for any ¢ € R*® with |c[|;, <6 <7,
if we let ® := F~!(c), then

C@)12ll; < llell, < C(6) 1@, - (64)

To show the sharpness of 7., we plot C(#) and C(6) as function of @ in Fig. 1.

4 —
—C(0)
3|~ = 0.902

0 0.2 0.4 0.6 0.8 1
0

Figure 1: The plot of C(6) and C(#) as function of 6.

According to Lemma 22, the map F' preserves the distance up to a constant, i.e., F'is
a quasi isometry near the origin.

3.4 Extension to /!

In this section, we extend Lemma 20 and Lemma 22 from R* to ¢!. The map F is a
well-defined mapping from S, (or S,) to ¢! according to

F(f) = (co,1,-+)- (65)
The following theorem is a more detailed statement of Theorem 3.

Theorem 23 (Invertibility of F' in ¢'). The map F : R® — R*® can be extended to

T . ' — ('. Furthermore, F has an inverse map F ' : B(0,r.) C £* — ¢'. For any
c € R*™ with ||c||; < re, it holds that

I )|, < B (lell). (66)

Proof. Lemma 16 and Corollary 19 state that F' and DF are both Lipschitz continuous.
By Theorem 30 and the fact that R® is a dense subspace of /!, F can be extended to the
whole ¢'. The inverse mapping theorem for Banach spaces (Theorem 31), together with
Theorem 30 imply that F' shares the same property with F within a neighborhood of the
origin. This completes the proof due to Lemma 20. O
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Following the proof of Theorem 23, we can also extend Lemma 22 to ¢!, which states
that F preserves the distance up to a constant in a neighborhood of the origin.

Theorem 24 (Equivalence of distance in (). For any c) € ¢* with Hc(j)Hl <0<
where j = 1,2, define ®\) := F_l(c(j)), j=1,2. It holds that

e e e A

where C(0) = 2 — h(H~1(0)) and C(0) = CL(H(6)).

With the help of the inverse mapping theorem of Banach spaces, the proof of this
theorem follows the same idea as Lemma 22.

Now we are ready to give a positive answer to the first question raised in Section 1.1.
Let U@ denote the symmetric phase factors and ®@ denote the corresponding reduced
phase factors. Although the solution to F(®) = F(f@) may not be unique, Theorem 23

allows us to choose one ®@ such that H@(d)Hl < rg as long as H]—'(f(d))H1 < 7¢. Assume

that ¢ := F(f) satisfies ||c||; < 7. as well. Then limg o, f¥ = f implies that {F(f®)}

converges to ¢ with respect to the vector 1-norm. The convergence of {®@} to F_l(c)
follows by applying the equivalence of distance in Theorem 24. Theorem 23 provides
a sufficient condition to the existence of the solution to F(®) = c¢. We would like to
emphasize that similar to the case of polynomials, the solution might not be unique in ¢'.

3.5 Structure of DF

In this section, we focus on the structure of the Jacobian matrix DF. Given any ® € R™>,
we let n be its effective length. According to Eq. (24), the k-th column of DF(®), i.e.,

agﬁ% is the Chebyshev-coefficient vector of %. Direct computation shows
OF(®
®) _ (o + Tep) — F(@— Tey), VEEN,® e R®, (68)
Oy, 4 4

Here, e, € R* is the vector with all components equal to 0 except for the k-th component
which is equal to 1. As a reminder, when we refer to the component of a vector or matrix,
the index begins with 0.

We consider the even case for simplicity. For k < n, according to Eq. (68), % is a
polynomial of degree at most 2n — 2. Thus the components [aggﬁ;{:)} =0 for any j > n.
j

For k > n, %ﬁf) is a polynomial of degree at most 2k, and then [%} - =0 for any
J

j > k. Therefore DF(®) takes the form

D, D,
. 69
() o
Here, D; is a matrix of size nxn and D3 is an upper triangular matrix of infinite dimension.

As for matrix Do, the number of rows is n, while the number of columns is infinite.
When DF(®) is invertible, the inverse takes the form

_ DY —D7'DyD?
DF(®) 1:( 0 1Dgf 3 )

After extending F to ¢!, we can characterize the invertibility of matrix DF in ¢1.
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Lemma 25. For any ® € (* with |®|, < re, DF(®) is invertible and
1
H S — (71)

|pF@) < 2 h([o],)

Proof. When ||®, < h~1(2), we have H%DF —]IH < 1n(|®|,) < 1. Applying Theo-
rem 29 in the Banach space ¢!, DF(®) is invertible and
1 _ —1 1 1
fDF(tb)) <7 2 = .
<2 L L=ghdiel)  2-hdel)

7=

HDF@) T2

4 Decay properties

As an immediate consequence of Theorem 24, we now prove the decay properties of the
reduced phase factors ® € ¢! (Theorem 4) with an explicit characterization of the constant

C.

Proof of Theorem 4. Let ®™ = (¢, ..., ¢n,0,0,...), and 6 = llc|l; in Theorem 24, then
we get

el)) S Jén] = Llell)) [} — o],
k>n
zHm—f(wufHc—wm)Hl ™
ZZ|CI€|’
k>n

where the last inequality follows the fact that F(®() is zero after the n-th component.
Similarly, we choose e = (coy--+,¢n,0,0,...), and Theorem 24 gives

1 1 :
s ) = = =g 1ol

k>n
7@ - F ()], = e -F (), )

> ol

k>n

v

where the last inequality follows the fact that F_l(c(”)) is zero after the n-th component.
: : r_ 1 _ 1
This completes the proof with C" = CIETED) and C' = SRE (el O

If Ypon k| = O(n™) for some a > 0, then >, [or| = O(n™%). If ¢, decays super-
algebraically or exponentially, so does the reduced phase factors. Therefore the tail decay
of the reduced phase factors is determined by the smoothness of the target function.

5 Fixed-point iteration for finding phase factors

Algorithm 1 is a very simple iterative algorithm based on fixed-point iteration for finding
phase factors. Numerical results suggest that this algorithm is quite robust, starting from
a fized initial point ®° = 0 (or ®! = %c according to Algorithm 1). We emphasize that the
choice of the initial guess is important, and other initial points may make the algorithm
diverge. Based on the developments in Section 3, we prove that Algorithm 1 converges
linearly in ¢!, and describe the computational complexity.
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5.1 Convergence

To prove the convergence of Algorithm 1, it is sufficient to prove that
1 1
G(®): = — §F (@) + 5F(<D*) (74)

is a contraction map in a neighborhood of ®*. ®* denotes the desired set of reduced phase
factors. The contraction property of G follows the observation that the Jacobian matrix
DG(®*) =1-3DF(®*) = 1 (DF(0) — DF(®*)) would be small when ||®*||; is sufficiently
small according to Lemma 18. We define a function

=3 / <r + 5 ( sinh(2r) — >> ds, (75)

and the following constants

1
T = 5 arcsinh(arccosh(2)) = 0.544 (76)
Fo:= H(Fa) ~ 0.861 (77)
5 :=~(Tp) ~ 0.8189. (78)

We will also use the fact that 7o < § arccosh(2) = r¢ ~ 0.658.

Lemma 26. If ®* satisfies c = F(®*) and ||®*||; < 7o, G is a contraction map in the
open ball B := B (<I>*, SF(@*) - <I>*H1>

Proof. First, we give an upper bound on the radius of ball B.

1 14d
Lpeny—o| =2 F(10%) — 260%) dt
lspen—o| = 3| [ 5 @eer) —20n) e
— / (DF(19*) — 21) - d*dt
Lo : (79)
35/ IDF (19*) — 21|, | &*), dt (use Lemma 18)
0

1 el 1
<5 [ har = sinn et - e,
0

Thus, for any ® € B, we have the following estimate

* 1 * * 1 *
@], < o), + | 3F(@) - 07| <3 sinhcz o))
X 2 2 (80)
< B sinh(27¢) = B arccosh(2) =rg.
Then we can use Lemma 18 again to conclude
1 1 1

IDG@)), = 1= 5DF@®)| < Sh(I#]) < Ghira) = 1. (31)
This means G is a contraction map in the ball B and ®* is its only fixed point. O

Lemma 27. If ®* satisfies c = F(®*) and ||®*||, < Te, Algorithm 1 converges Q-linearly
to ®*. The rate of convergence is bounded by %h(HCI)*Hl), ie.,

i 12 =2 < Loy, (2)
L T T
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Here ®' is the set of reduced phase factors in the t-th iteration step. Furthermore, for
everyt > 1,

[ @ — @[], X
W < y([[®*]}1)- (83)

In particular, v(||®*]|;) <7 ~ 0.8189.

Proof. Lemma, 26 guarantees the convergence of Algorithm 1 as long as ®' € B. However,
we note that ®! = %F((IJ*) lies on the boundary of B. Hence, we need a finer estimation.

= HG(@t) — G(9¥)

oo

1

1
/0 DG (50! + (1 - 5)0*) - (9 — @*) ds

1

! t * t *
S./o |G (sat + (1 - s)87)| ||ot - @7 as (84)
< plo- o], [ n (o0 -0 ) o
< gl = o] [ons o], + 9o, as

The last inequality follows that h is monotonic increasing on [0, 00).
By replacing the “<” by “<” in Eq. (80), we get ||®'||, < ro. Hence,

-], < 3o

1
1/0 h(sre + (1 —s)rp)ds (85)

<7t - o

r
Note that 7 ~ 0.8189 implies that ®? € B. According to Lemma 26, we know that the
rate of convergence is bounded by [|[DG(®*)[|; < %h(||<I>*||1).

Furthermore, for any ¢ > 1 it holds that

1 1
Hq)t“ —ot| <= H@t — / h (f sinh (2 [|®*[|,) + (1 — s) ||<I>*||1> ds
17 2 1Jo 2 (86)
= ||o" — || v(Io* ).
Here, we use the result that for any ® € B, ||®||; < %sinh(Q |®*]|;) from Eq. (80). This
proves the lemma. O

As aremark, both the theoretical analysis and numerical results suggest that the region
in which Algorithm 1 converges should be larger than B. We now prove Theorem 6 (i)
with an explicit characterization of the constant C.

Proof of Theorem 6 (7). Eq. (57) implies that ®* := F~!(c) satisfies || ®*||;, < T, given
llell; < H(7s). According to Eq. (79), we get

chl — " <

1
1 2

sinh(2 | @7]}) — (| @],

1
= HfF(cb*) —

2

J 7
< 5 sinh(277¢,) —Te =Te — Top.

Here we use the fact that %sinh(Qx) — 2 is monotonic increasing on [0,00). Applying
Lemma 27, we obtain the error estimate

o

(S e —Te)N 08189, t>1 (88)
This finishes the proof of Theorem 6 (i), and the constant C' is (re —7g)/7 ~ 0.1393. O
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5.2 Complexity

In this subsection, we discuss the complexity of Algorithm 1. For any target function
satisfying ||c||; < ¢, to reach the ¢!'-error tolerance €, the number of iterations is at most

[log <(rq>—1F¢,)e) /log ﬂ . (89)

That means the number of iterations is O(log %), and the upper bound of the number of

iterations is independent of the target function and the effective length of ®. Therefore,

we only need to analyze the complexity of implementing F'. On a computer we can only

perform operations for matrices of finite sizes. For any set of phase reduced phase factors ®

whose effective length is d, let &(®) = (g (z0,®),- - ,g (z24, ®)) . Here, d = 2d — 2 if the

target polynomial is even, and d = 2d — 1 if odd. The Chebyshev node is x; = COS(%).
Observe that for k,0l=0,---,d,

R id:T( Yoz _f’: (27rk > <27rl )
e 2 k(xj)e 7]-:0(308 2d—|—1] cos 2d+1]

1 omk+D) )\ 1A 2wk 1) (90)
- 2];0C%< 24+ 1 j) +Q;JC%( 2+ 1 ‘7>
_2d+1
2
Hence the Chebyshev-coefficient vector can be evaluated by applying the fast Fourier
transform (FFT) to &(®). The output from applying FFT to &(®) is a vector of length
2d 4+ 1, denoted as v, satisfying

0kt (0o + 1).

L;lgjvj: o d (91)
where ¢;, j =0,--- ,d, are the Chebyshev coefficients of g(x, ®) with respect to Tj. Recall
that F'(®) is the Chebyshev-coefficient vector of g(x, ®) which is either (¢g, o, - ,¢q) or
(¢1,¢3,- - ,¢q) depending on the parity of d.

For completeness, the procedure for computing F(®) is given in Algorithm 2. The cost
of evaluating &(®) is O(d?), and the cost of FFT is O(dlog d). Therefore, the overall time
complexity is O(d?log %) This concludes the proof of Theorem 6 (ii).

Algorithm 1 is numerically stable, in the sense that the number of bits required in
the computation is O(polylog(d/e))®. To show the numerical stability, we consider the
model of finite precision arithmetic (see standard axioms in [14]) and denote by w the
unit roundoff error. In each iteration step, the rounding error when evaluating &(®) is
O(d*u). The rounding error occurred in FFT is O(log(d)u) [23]. So the total rounding
error accumulated in each iteration step remains O(d?u). Therefore the number of bits

required by Algorithm 1 is O <log (‘“%(1/6)))

Re(vo) = (2d + 1)é, Re(v;) =

6 Numerical results

We present a number of tests to demonstrate the efficiency of the fixed-point iteration
(FPI) algorithm (Algorithm 1). All numerical tests are performed on a 6-core Intel Core

3Generically, the number of bits cannot be rigorously bounded by a constant in a proof. Most numeri-
cally stable algorithms can be robustly implemented using fixed double precision arithmetic operations in
practice.
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Algorithm 2 Compute F(®).

Input: Reduced phase factors @, parity, and its effective length d.
if parity is even then

Set d = 2d — 2.
else

Set d =2d — 1.
end if

Initialize g = (0,0, --) € R¥*+1

Evaluate g; < g(z;, ®),z; = 22%,]’ =0,---,2d+ 1.

Compute v; <+ Re (Z?dol gje 2d1111> ,0=0,...,d using FFT.
if parity is even then

F(Q) «— Tz_t,_l(%)7v23’u47”’ 7Ud)~
else

F((b) A Til(vhvfhvf)v'“ 7Ud)-
end if

Output: F(P).

i7 processor at 2.60 GHz with 16 GB of RAM. Our method is implemented in MATLAB
R2019a.

The target function is f(z) = e~'7®, which has applications in Hamiltonian simulation.
It can be expanded using the Jacobi-Anger expansion as

e o) +2 Y (COMER () + 2 Y ()DL Te),  (92)
k even k odd

where Ji’s are the Bessel functions of the first kind.
We use Algorithm 1 to find the phase factors respectively for the even part

feven(@) = Jo(r) +2 > (—D)M2J(r) (=), (93)
k even,k<d
and the odd part
foaa(@):=2 Y (=1)* V2R (7)Ti(x). (94)
k odd,k<d

We choose d = 1.4 || + log(1/eg), where g = 10714, Since the target polynomial should
be bounded by 1, to ensure numerical stability, we scale feyen(z) and foqqa(z) by a factor
of % Then we use Algorithm 1 to find phase factors for target polynomials, % feven(z) and
% foda(z), respectively. Fig. 2a displays the corresponding residual error, |[F(®') —c|,
with 7 = 1000, where ®’ is the set of reduced phase factors at the ¢-th iteration. Note
that ||c[|; is very large, and is equal to 9.8609 and 9.7403 for the even and odd case,
respectively. Nonetheless, Algorithm 1 converges starting from the fixed initial guess.

In Fig. 2b, we demonstrate that for a fixed target function, as the polynomial degree
d increases, the corresponding set of reduced phase factors ®(@ indeed converges to some
®*. We still take 1 foven(z) and % foqa(z) as examples. We choose 7 = 200, and ®* are
approximately computed by setting the degrees of % feven(z) and % foada(z) to 312 and 313
respectively. We truncate % feven(x) to even polynomials with degree d = 180,190, - - - , 310.
Similarly, we also truncate %fodd(x) to odd polynomials with degree d = 181,191, --- ,311.
Then we use Algorithm 1 to compute the corresponding reduced phase factors, &4 . We
would like to emphasize that to our knowledge, only the optimization based method is
able to find ®@ that has a well defined limit as d — oco.
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degree 312 and 313 respectively, where 7 = 200.

Figure 2: The performance of the fixed-point iteration (FPI) algorithm (Algorithm 1) to find phase
factors for 3 feven() and 3 foqa(2).

We also compare the performance of Algorithm 1 with the quasi-Newton method im-
plemented in [8] on %feven(x) and %fodd(w) with 7 = 50,100, ---,1000. The stopping
criteria for Algorithm 1 is ||F(®') —¢||; < e. As for quasi-Newton method, the iteration
stops when

L((I)) = maXN‘g(Ijvq)t) - ftarget(mj)‘ <e. (95)
j=1,-.d
where fiarget is the target polynomial and x; = cos (%), g=1,-- 73 are the positive

roots of the Chebyshev polynomial T, 2&(,%). For numerical demonstration, we choose € =
107'2. The results of comparison are displayed in Fig. 3. Since L(®) < [|F(®) — |,
for any ®, the stopping criteria for Algorithm 1 is actually tighter than that in quasi-
Newton method. Thus Fig. 3a implies that Algorithm 1 converges faster than quasi-
Newton method in this example. The degree of the target polynomial linearly increases
as the value of 7 increases, and the CPU time scales asymptotically as O(72) = O(d?).
In Fig. 3b, we present the number of iterations required using FPI to find phase factors
for % foven(z) and % foad(z). Fig. 3b indicates that the number of iterations is almost
independent of the degree of the target polynomial.

Finally, we demonstrate the decay of phase factors in Fig. 4. In the first example,
we truncate the series expansion of f(z) = 0.8|z|*> in terms of Chebyshev polynomials
of the first kind up to degree d = 1000 and use Algorithm 1 to find the corresponding
reduced phase factors. The third order derivative of f(z) is discontinuous. In Fig. 4a,
we plot the magnitude of its Chebyshev-coefficient vector, as well as the reduced phase
factors obtained by Algorithm 1. Here, the 1-norm of Chebyshev coefficients is about
0.8149, which is bounded by 7.. Fig. 4a shows that the reduced phase factors decay away
from the center with an algebraic decay rate around 4, which matches the decay rate of
Chebyshev coeflicients. This also agrees with our theoretical results in Theorem 4. In the
second example, we choose % fodd(x) as target polynomial and present the magnitude of
both Chebyshev-coefficient vector and the corresponding reduced phase factors in Fig. 4b.
The 1-norm of Chebyshev coefficients is around 3.2332, which exceeds the norm condition
in Theorem 4. Nonetheless, the decay of the tail of the phase factors closely matches that
of the Chebyshev-coefficient vector.
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Figure 3: Comparison of the performance of the fixed-point iteration (FPI) algorithm (Algorithm 1)
with the quasi-Newton (QN) method in [8] to find QSP phase factors for %feven(x) and %fodd(w) with
T = 50,100, 150, - - - , 1000. The error tolerance is ¢ = 10712,
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100 of degree 173.

Figure 4: Magnitude of the Chebyshev-coefficient vector ¢ and the corresponding reduced phase factors

.
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7 Discussion

The question of infinite quantum processing (Problem 2) asks whether there is a set of
phase factors of infinite length in ¢! for representing target polynomials expressed as an
infinite polynomial series. Theorem 3 provides a positive answer, when the 1-norm of
the Chebyshev coefficients ¢ of the target function is upper bounded by a constant r..
While it is always possible to rescale the target function to satisfy the constraint, the
constraint may be violated for many target functions without rescaling. For instance, in
the Hamiltonian simulation problem, we have ||c||; = O(7), where 7 is the simulation time
and can be arbitrarily large. Numerical results in Section 6 indicate that both the fixed
point algorithm and the decay properties persist even for large ||c||;. Therefore it may be
possible to significantly relax the condition ||c||; < re.

Ref. [25] shows that the structure of phase factors using the infinity norm of the
target polynomial f(9) and proves the convergence of the projected gradient method
when H f (d)HOO < Cd~'. Using the tools developed in this paper, this condition can also

be relaxed to d~/2, but the d-dependence may not be removed by the techniques in this
paper alone.

It is worth noting that the conditions on H f@ H and ||c||; are generally unrelated, i.e.,
neither implies the other. It is of particular interest to develop a method for computing
phase factors that provably converges in the limit ||f| ., — 1, which is called the fully
coherent limit [19]. This limit is important for the performance of certain amplitude
amplification algorithms [12, 10] and Hamiltonian simulation problems [19].

The decay properties of the reduced phase factors may also have some practical im-
plications. For instance, for approximating smooth functions, the phase factors towards
both ends of the quantum circuit are very close to being a constant. This may facilitate
the compilation and error mitigation of future applications using the quantum singular
value transformation.

Note: Since the initial posting of this paper, there have been significant algorithmic and
theoretical advancements in this area. We recently proposed an algorithm based on New-
ton’s method [6], which demonstrates rapid and robust numerical convergence for all
functions admitting a QSP representation, including those where | f||,, — 1. [1] pro-
vides the first provably stable algorithm for finding phase factors for all polynomials with
|| fllo < 1. This is due to the recent theoretical development connecting the iQSP prob-
lem with nonlinear Fourier analysis first established in [2]. The analysis of [2] provides a
positive solution to Problem 2 for functions with |||, < 1/v/2, and [1] generalizes this to
include nearly all functions (polynomials and beyond) that admit a QSP representation.

Another recent development is the introduction of generalized quantum signal pro-
cessing (GQSP) [21], which relaxes the parity constraint on the target polynomial. A
promising direction for future research is to investigate the potential for extending GQSP
to represent smooth functions.
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A Some useful results related to Banach space

Definition 28. Let X,Y be normed vector spaces. A map F : X — Y s called C* if
for every x € X, there exists a (unique) bounded linear map DF, : X — Y such that
||F(I+h)_li}(;ﬁ)_DF’”(h)|| =0, and the map X — L(X,Y),x + DF, is continuous. Here

lim
h—0
L(X,Y) is the set of all bounded linear maps from X to'Y with norm topology.

Here is a useful result from functional analysis.
Theorem 29. Let X be a Banach space equipped with some norm ||-|| and T : X — X be
a bounded linear operator. Suppose ||T|| < 1, then I —T is invertible with

_ 1
H“‘731H31_HTW

(96)

where 1 is the identity operator.

Proof. Consider the series .2 ||TF = ﬁ’

S0 o TF converges in £(X,X) and we denote it@ limit as S. Obqerve that SI—-1T) =
(I—-T)S =1. Hence I — T is invertible and ||(I—T)"!{| = ||9] < O

it converges since ||T|| < 1. Hence

1- IITII
The terminologies used in the statement of the following theorem are explained in
Definition 28.

Theorem 30. Suppose that X,Y are dense subspaces of Banach spaces X,Y . Let F be a
C! map, F: X =Y, such that for any {x,} a Cauchy sequence in X, F (x,) is Cauchy
in'Y and DF;, is Cauchy in L(X,Y). Then there exists a unique C* map F : X =Y

such that F’X =F and DF‘X = DF.

Proof. Vx € X, there exists {z,} C X such that z = Jim z,, then we define F(z) =
nh_}n;O F(x,). Tt is a well-defined and unique continuous map from X to Y extending F.

To show F is C!, fix € X, then DF, : X — Y is a bounded linear map, hence it has
a unique extension G, : X — Y. Since F € C' Ve > 0,35 > 0, if h € X, ||h|| < 6, then

|F(z+h) = F(z) — DE(R)|| < € |1h]]. (97)
By continuity of F, we have for Vh € X,
|P@+h) = Fz) - Gu(h)| < ]l (98)

Now if € X, write z = hmxnfor:rneX define G, : X = Y by G, = hme,

where the limit is in norm topology Then by assumption, G is a well-defined, bounded
linear map, and the map X — £(X,Y),x — G, is continuous.

By Eq. (98) and the continuity of F(-), G.(h), we have Ve > 0,35 > 0,ifxr € X, h € X,
Il <. B -

[Fw+ h) = Fa) - Ga(h)| < el (99)

Hence F : X — Y is C! such that F|y = F and DF, = G, Yz € X. O

The following inverse mapping theorem can be found in e.g., [15, Theorem 1.2, Chapter
XIV].

Theorem 31 (Inverse Mapping Theorem). Let X,Y be Banach spaces and F : X =Y
be a C1 map. Let g € X and assume that DF,, is invertible as a bounded linear map.
Then there exist open sets U C X,V CY such that xg € U, F (x9) €V and F : U =V is
bijective and F~1 is O
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B Proof for Lemma 20

Proof. The existence of F' is guaranteed by inverse mapping theorem. Lemma 18 implies
that DF(®) is invertible for any ® with ||®|;, < r¢. Let F be the restriction of F' on
B(0,7¢). The proof is divided into two parts:

1. show that F is injective. Moreover, given |®]|; < ra, the effective length of F(®) is
equal to that of ®.

2. show that for any ¢ € R™ with |||, < re, F~!(c) exists.

For the first part, we prove it by contradiction. Suppose that F is not injective, then there
exists ®(1) #£ &) such that F (&) = F(®?)). Denote r = max {Hq)(l)H1 , H(I>(2)H1} <rg,
and define G(®) := F(®) — 2® for ® € B(0,r). Hence HD@Hl = HD]?’ - 2]1H1 < h(r) <2,
which derives that

Hé(q><1>) - é(q><2>)H1 < h(r) Hq><1> - c1><2>H1 . (100)

Plug in that F(@(1) = F(®?), and we get 2 H<I>(2> - <I><1>H1 < h(r) ch(?) - @(I)HI, which

is a contradiction. Hence, F' is injective.

Next we show that the effective length of F(®) is equal to that of ® given @], < 7o.
We use lg and [, to denote the effective length of & and ﬁ'(@), respectively. Hence,
® = (¢o,¢1, -+ ,P15—1,0,--+). According to Theorem 7, lg is no less than [.. Suppose
that lp > l.. We may apply [25, Lemma 10] to compute the Chebyshev coefficient of
Im[(0[U (x, ®(s5))[0)] with respect to Ty, 1) and get

lp—2
0 = sin(2¢y,—1) cos(2¢0) H cos® (). (101)
i=1
Hence, there exists i < Iy — 2 such that ¢; = 7j for some nonzero integer j. Then,

| ®]|; > § > re, which is a contradiction. Hence, lp = ..

For the second part, we also prove it by contradiction. Suppose that there is an 5§ < 7,
and a Z € R™ with || Z||; = 1 such that 5Z does not lie in the range of F, then we can
define

s* = inf{s € [0,5] : sZ doesn’t lic in the range of F'}. (102)

From inverse mapping theorem, we know that F is invertible near 0, hence s* is well
defined. We also define ®(r) := F~1(rZ) for any r € [0, s*).

We claim that there exists ' < rg such that | ®(s)||; < r’ for any s € (0, s*). That is
because
14 .-

S F(td(s))dt

s =||Fe))|, = @

1

1

_ /0 " DE(t0(s)) - B(s)dt

1

1 ~
= / (211 + DE(t®(s)) — 211) : <I>(s)dtH (103)
0 1

v

1

1 1 ~
/0 o - B(s)dt /O (DE(19(s)) — 21) - B(s)dt

1

> 2@, ~ 9] | [P - 21 ar
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We apply Lemma 18 and get

52 19l [ 2 A I9(s) e = H(I#(6)],) (104)

Note that H(z) is monotonically increasing over [0,7¢] and 7. := H(rg) > 5 > s. We
choose " € (0,7¢) such that H(r') = 3. It follows that | ®(s)||; <+’ for any s € (0, s*)
with ®(s) € B(0,74).

Let {s,}22, be arbitrary series such that lim, .. s, = s* and s, < s*. Notice that
t®(sp) + (1 — t)®(sy,) € B1(0,77) for any t € (0,1). Denote v := ®(s,,) — P(s,,) and then
one has

50— sl = | F(®(50)) = F(@(s))|

1d -
= /0 aF(<I>(Sn) + tv)dt

1

1

= /01 DF(®(s,) + tv) - vdt

1

_ /O (21+ DE(®(5,) + tv) — 21) - vt

1

> /01 2udt| — /0'1 (DE(®(s0) + tv) — 21) - vt (105)
1 1
1 ~
> 2(|B(s0) — ®(sm)ll; —/0 |(DE@(s,) + tv) —21) - a
1
2 2|[®(sn) — D(sm)lly —/0 h(I(1 =) (sn) + 1@(sm)ll,) [@(sn) — D(sm)]; dt
> 2[|@(sn) = ©(sm)lly = 2(r) [[(D(sn) = (sm)) 4
> (2= h(") [@(sn) — (sm)ll; -
Since 2 — h(r’) > 0, we know that
|®(s) — ®(sm)|l; =0, as n,m — oo. (106)

According to the proof for the first part, for any n, the effective length of ®(sy,) is I, where
lo is the effective length of Z. We may view ®(s,) as vectors in R instead. The limit of
{®(s,)} exists in R and is unique, denoted by ®*. Moreover, ®* can also be viewed as
an element of R* and ®* € B(0,r¢). By the continuity of F, we know that

F(®*) = lim F(®(s)) = s*Z, (107)
s—rs*
ie., F71(s*Z) exists. B
Then we can use Theorem 31 at ®* and obtain that F'~1(s2) exists for s € [s*, 5 + ¢
for some €, which contradicts with the definition of s*.

When it comes to the proof of Eq. (57), we only need to let s = ||c||; and Z = £, and
do the calculation in Eq. (103) again. O
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