PRX QUANTUM 5, 030311 (2024)

Probing Postmeasurement Entanglement without Postselection

Samuel J. Garratt®!-* and Ehud Altman®!-2

lDeparl‘me‘nt of Physics, University of California, Berkeley, California 94720, USA
* Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

™ (Received 17 October 2023; revised 11 May 2024; accepted 13 June 2024; published 18 July 2024)

We study the problem of observing quantum collective phenomena emerging from large numbers of
measurements. These phenomena are difficult to observe in conventional experiments because, in order
to distinguish the effects of measurement from dephasing, it is necessary to postselect on sets of mea-
surement outcomes with Born probabilities that are exponentially small in the number of measurements
performed. An unconventional approach, which avoids this exponential “postselection problem”, is to
construct cross-correlations between experimental data and the results of simulations on classical comput-
ers. However, these cross-correlations generally have no definite relation to physical quantities. We first
show how to incorporate classical shadows into this framework, thereby allowing for the construction of
quantum information-theoretic cross-correlations. We then identify cross-correlations that both upper and
lower bound the measurement-averaged von Neumann entanglement entropy, as well as cross-correlations
that lower bound the measurement-averaged purity and entanglement negativity. These bounds show that
experiments can be performed to constrain postmeasurement entanglement without the need for postse-
lection. To illustrate our technique, we consider how it could be used to observe the measurement-induced
entanglement transition in Haar-random quantum circuits. We use exact numerical calculations as proxies
for quantum simulations and, to highlight the fundamental limitations of classical memory, we construct
cross-correlations with tensor-network calculations at finite bond dimension. Our results reveal a signature
of measurement-induced criticality that can be observed using a quantum simulator in polynomial time

and with polynomial classical memory.
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I. INTRODUCTION

Local measurements allow for the protection and
control of quantum correlations and are essential for error-
corrected quantum computation [1]. This aim has moti-
vated the development of local readout techniques in
quantum simulation platforms from trapped-ion [2] and
neutral-atom arrays [3] to superconducting quantum pro-
cessors [4]. New questions also arise in many-body quan-
tum mechanics, in particular about the effects of many
measurements on entangled quantum states. Examples of
phenomena arising in this setting are the measurement-
induced entanglement transitions in quantum circuits
[5-8], as well as the creation [9—17] and restructuring
[18-23] of entangled states through measurement.
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Experiments studying the effects of many measurements
must, however, be conducted in a fundamentally different
way. This is because, to characterize a quantum state in
experiment, we must prepare and measure it more than
once. If the preparation of this state involves measure-
ments, we are then forced to postselect for sets of out-
comes with probabilities that are exponentially small in the
number of measurements performed, and hence the time
required is exponentially large [24]. Moreover, averaging
over runs of an experiment has the effect of converting
measurements into dephasing events, obscuring structures
in the ensemble of postmeasurement states.

Two different strategies have emerged for avoiding
this “postselection problem,” each involving a simula-
tion on a classical computer (a “classical simulation”).
One possibility is to use experimental measurement out-
comes as input to the calculation of a unitary operation
that decodes quantum information [25-27]; this protocol
is analogous to the decoding step in quantum teleportation
[28]. The second strategy, which is the focus of this work,
is to calculate cross-correlations between the results of
experiments and classical simulations of the system [14,18,
29-31]. This strategy has the advantage that the effects of
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measurements can be inferred in classical postprocessing
and hence the duration of the classical simulation is not
limited by experimental decoherence time scales. The idea
is closely related to cross-entropy benchmarking, studied
in the contexts of random circuit sampling [32] and the
measurement-induced entanglement transition [33], with
the important difference that the cross-correlations of Refs.
[14,18,29,31] are designed to probe properties of postmea-
surement quantum states rather than statistical properties
of the measurement record.

Ultimately, however, the aim of experiment should be
to extract information intrinsic to the system. The problem
with constructing probes that depend on classical simula-
tions, based on either decoding or cross-correlation, is that
the results depend sensitively on how we choose to model
the system. Given the apparent necessity of involving a
classical simulation, it is natural to ask whether it is even
possible to probe intrinsic properties of postmeasurement
quantum states without postselection.

In this work, we show that cross-correlations between
experimental data and classical simulations can be used
to bound model-independent properties of postmeasure-
ment states. Our cross-correlations are inspired by classical
shadows [34,35]; shadows of a density matrix have the
property that, when suitably averaged, they reproduce the
density matrix, but in the regime in which there is a post-
selection problem we will not be able to perform this
average. Nonetheless, we will show that cross-correlations
taking shadows of postmeasurement states as input can
be used to construct an estimate for the measurement-
averaged entanglement entropy (see Fig. 1). By identifying
this estimate as a contribution to an averaged quantum
relative entropy, which is non-negative, we arrive at a
resource-efficient upper bound on the true measurement-
averaged entanglement entropy. This bound becomes an
equality for a perfect classical simulation. Using the mono-
tonicity of the quantum relative entropy, we also construct
an upper bound on the conditional entropy [1]. Recasting
this as a lower bound on the entanglement entropy, we
identify physical settings where the entanglement can be
determined to within a threshold set by the accuracy of the
classical simulation.

While a quantum simulation can represent a highly
entangled many-body state, the classical memory required
for this is in general exponentially large in the entangle-
ment entropy. This difference between quantum and clas-
sical memory imposes a fundamental obstacle to schemes
involving classical simulations. To investigate the effects
of a constrained classical memory we consider an applica-
tion of our approach in the context of the measurement-
induced entanglement transition [5—8]. In place of a
quantum simulation, we use exact numerics to study the
dynamics of one-dimensional chains of L < 24 qubits and
we cross-correlate the results with matrix-product state
(MPS) simulations at finite bond dimension x. The MPS

| l//m)
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FIG. 1. An illustration of the protocol for a single run ». The
branching process on the left represents an experiment involv-
ing measurements that takes the system from initial state [v)
to postmeasurement state |,,.), where m,. is the set of M mea-
surement outcomes observed in run r (here indicated by +£1).
In each run, one extracts a single shadow p° of a subsystem
density matrix p,, . The outcomes m, are used as input to a
calculation on a classical computer (represented by the aba-
cus) and this calculation returns an estimate p,fr for the
density matrix p,,. Finally, one constructs the object S°€ =
—Tr[pf log prﬁr]. Averaging SfC over runs of the experiment
generates an upper bound on the measurement-averaged entan-
glement entropy of the density matrices p,,.

representation only occupies classical memory ~Lx?, to
be contrasted with ~2% for a generic many-body quantum
state. Increasing x improves the simulation, causing our
upper bound on the measurement-averaged entanglement
to become more restrictive. In the vicinity of measurement-
induced criticality, we show numerically that the sep-
aration between the upper bound and the exact value

decays exponentially as ~e~*/x’“@ with increasing x,
and that the decay constant x 2C(L) grows as a power of L.
This result suggests that the generic measurement-induced
entanglement transition can be observed in experiment
with computational resources that scale only polynomially
with system size.

The fact that the measurement-averaged entangle-
ment entropy can be bounded without postselection has
more general implications. For example, it opens the
door to experiments on deep thermalization [36—42],
measurement-induced teleportation [43—46], and measure-
ment-altered criticality [18-23]. Moreover, by convert-
ing the postselection problem into a variational problem,
our work suggests a way to improve classical simulations
using experimental data.

It is important to separate our approach from adaptive
schemes. If individual measurement outcomes are used
as input to local unitary feedback operations, nontrivial
correlations [10,12,15—-17,47] and dynamics [48—52] may
be probed without postselection, i.e., through the density
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matrix averaged over runs of the experiment. With or with-
out feedback, such an average washes out the features in
the ensemble of postmeasurement states that are of interest
here (such as measurement-induced entanglement transi-
tions [53—56]). A key physical difference is that averaging
over the outcome of a measurement converts it into a
quantum channel and, although local measurements can
have nonlocal effects on entangled states, local quantum
channels cannot.

This paper is organized as follows. In Sec. II we
outline the origin of the postselection problem and in
Sec. III we describe quantum-classical cross-correlations.
There, we also provide a first example of how these
cross-correlations can be used to bound physical quanti-
ties. In Sec. IV, we discuss shadows, use them to con-
struct matrix-valued cross-correlations, and then derive
a bound on the measurement-averaged purity. Following
this, in Sec. V we introduce resource-efficient bounds on
the measurement-averaged von Neumann entanglement
entropy and in Sec. VI we discuss their statistical fluc-
tuations. Section VII addresses the measurement-induced
entanglement transition and in Sec. VIII we discuss the
connection between our work and Ref. [25]. In Sec. IX we
then present a bound on the measurement-averaged entan-
glement negativity. We summarize our results and offer an
outlook in Sec. X.

II. POSTSELECTION PROBLEM

Here, we discuss the postselection problem. We consider
experiments involving M >> 1 measurements, having sets
of outcomes m, which create postmeasurement quantum
states that depend on m. For example, if we have a sys-
tem of L qubits in a random pure state and we measure the
Pauli-Z operator on M = L — 2 of the qubits, finding out-
comes m, we are left with a random pure state on the two
unmeasured qubits. We could then ask how to character-
ize the postmeasurement density matrix p,, of one of these
two qubits. More generally, the postmeasurement density
matrices p,, discussed in this work will be taken to describe
states of a number of qubits of order unity.

To characterize the density matrix p,,, we must mea-
sure an observable, and this returns one of the eigenval-
ues of the observable. To determine the postmeasurement
expectation value, on the other hand, we must prepare p,,
multiple times. The problem is that the probability P,, of
observing m is, in general, exponentially small in M. If
we repeat the experiment a finite number of times R, then
for large M we typically have P,R < 1 and hence we
expect to find each m no more than once. Therefore, we
cannot characterize the ensemble of p,, in a conventional
way. Throughout this work, we will label the runs of the
experiment » = 0, ..., (R — 1) and the corresponding sets
of outcomes m, = (my.o, . .., m,p—1). “‘Monte Carlo” aver-
ages over R > 1 runs of the experiment will be denoted by

[E,[- - - ], while averages over the ensemble of all outcomes
(weighted by their respective Born probabilities P,,) will
be denoted [E,,,[- - - ].

Suppose that in each run r of the experiment, we probe
a postmeasurement density matrix p,, by measuring a
Pauli matrix Z. This “probe” measurement should be dis-
tinguished from the M “preparation” measurements which
generate the ensemble of states that we hope to charac-
terize. The result of the probe measurement is z, = %1,
corresponding to state |z,), but if we average z, over runs
we find only a property of the “dephased” density matrix

IEm[:om] = Zm Py om,
E,[z] = Exl{Z)n] = Tr[EnlonlZ], (1)

where (Z),, = Tr[p,,Z]. Here, the average over runs, which
occurs in classical postprocessing, has the effect of con-
verting our measurements into dephasing. This is because
we have chosen to average an object that is linear in
the postmeasurement density matrices. Averages that dis-
tinguish the effects of measurement from dephasing are
nonlinear in the postmeasurement density matrices but
such averages cannot be determined without postselection.
For example, there is no way to construct an average that
converges to ]Em[(Z),zn] if we have only one eigenvalue z,
for each observed outcome m,..

Here, we have described the origin of the postselection
problem, which arises for large M. The effects of measure-
ments are physically distinct from dephasing but standard
averages over results of our experiment are blind to this
difference. Our limitation is that we have access only to
sets of outcomes m, and the results of our “probe” mea-
surements, such as z, above. In Sec. III, we describe how
to use this information to detect structure in the ensemble
of postmeasurement density matrices.

III. CROSS-CORRELATIONS

To understand quantum-classical cross-correlations, let
us return to the above example of preparing postmeasure-
ment density matrices p,,. and trying to characterize them
by measuring Z. Our discussion in this section largely fol-
lows Ref. [18]. It will be convenient to write the observed
eigenvalue of Z as

zr = L)y, + [2r = (2}, )- 2

Averaging over runs of the experiment washes out the ran-
dom fluctuations [z, — (Z),, ] around the mean (Z),, . The
problem is that, through this average, we have also lost
information on the variations of (Z),, across different runs.
By cross-correlating the results z, of our experiment with
numbers w,, that depend on the outcomes m, but not on z,,
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we can preserve this information:
Er[wrnrzr] = En[wn(Z)m]- (3)

There is a lot of freedom in how the weights w,, are chosen.
One basic requirement is that w,, depends on m, since oth-
erwise Eq. (3) reduces to Eq. (1). Another is that the ratio
of the variance and squared mean of w,, z, should grow
no faster than polynomially with M, and this requirement
rules out wy,, = &, Which corresponds to postselecting
for outcomes m.

With a suitable choice of w,,, we should be able to learn
something about the ensemble of p,. In Ref. [18], we
advocated for w,, equal to an estimate for the postmeasure-
ment expectation value of an observable, e.g., w,, = (Z )fl.
In principle, this estimate is determined via a calcula-
tion on a classical computer, which takes the experimental
measurement outcomes m as input. The operator used to
construct w,, need not be the same as the operator one mea-
sures in experiment: the authors of Refs. [29,31] chose w,,
to be equal to the sign of the expectation value (Z)€.

By choosing such a w,,, the experimentally accessible
probe of the measured quantum system becomes a cross-
correlation between experiment and theory. With w,, =
()¢, we have

m?2

E.[(2)S z] = E.[(2)S (Z),,]- 4)

This quantum-classical cross-correlation can then be com-
pared with the result of the simulation,

E[(Z);, (Z)3,] = Buli2)5, (2], (5)
which we refer to as the “classical-classical” object. Agree-
ment between quantum-classical and classical-classical
quantities allows one to verify that the quantum simula-
tion behaves, at least at an averaged level, in the same
way as the classical simulation. Unfortunately, such a com-
parison does not yet provide us with information about
intrinsic properties of the quantum system, such as the
“quantum-quantum” object E,,[(Z),, (Z),,]-

However, we can take a step beyond Refs. [18,29,31]
using the trivial inequality IE,[((Z),, — (Z)5)*] >0,
which can be rewritten using Eq. (4) as

Eal(2)3] = B [22,(2)5, —(2),,, (2),]. ()
Equation (6) shows us that, although we cannot deter-
mine IEJ,,,[(Z),Zn] directly, we can bound it using cross-
correlations between classical and quantum simulations.
Before deriving bounds on the measurement-averaged
entanglement entropy, we generalize the above scheme
using classical shadows.

IV. INCORPORATING SHADOWS

It will be useful to first describe shadows [35] in their
simplest incarnation for a single qubit. If one can prepare a
density matrix o multiple times, in each run r of the experi-
ment one applies a random unitary U, and then measures Z,
finding a result z,. The shadow ,of = p5(z,, U,) is defined
as the matrix satisfying

Elp]1=)_ PuP:up’EU) = p, ()
Uz

where Py is the probability that we have chosen the uni-
tary U and P,y = (z|UpU~'|z) is the Born probability
for finding result z given that we have acted with U. If
the set of U forms a 2-design for the Haar ensemble of
single-qubit unitary operators, we should choose

pp =3U" |z,) (2| U, — 1, (8)

where Z|z,) = z, |z,). Note that ,orS is not a valid den-
sity matrix, since its eigenvalues are not all positive. It
is nevertheless the case that its average over z and U
is the density matrix p. This behavior can be verified
using the first two moments of the Haar distribution over
the unitary group. Generalizing Eq. (8) to multiple qubits
is straightforward [34]: one possibility is to construct
N-qubit shadows as the tensor products of N objects with
the structure 3U~" |z) (z| U — 1.

Shadow tomography requires that p can be prepared
multiple times. In our case, we cannot efficiently prepare
the postmeasurement density matrices p,, but, as we now
show, we can nevertheless apply some of the ideas above.
Suppose that in each run » we prepare a single-qubit den-
sity matrix o, , choose a random unitary U,, and measure
Z, finding a result z,. The shadow in this run is given by
Eq. (8) or, e.g., as a tensor product of these objects if o,
is a density matrix for multiple qubits. Now, we write the
matrix analogue of Eq. (2) as

o5 = oy + 105 = o] ©)

where [pf — pm,] 1s a mean zero fluctuation. Given an m-
dependent set of matrices W, as in Eq. (3), our average
over runs can wash out these fluctuations while preserving
information on the ensemble of o,

E W, p5) =Y PulWu Y PuP:jump’(z,U),  (10)
m Uz

where Py = (z|Upn U~'|z). Provided that the unitary
operations used to construct the shadows are sampled inde-
pendently of m, we can perform the averages over U and z
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in this expression, to arrive at

E [ Wn, 071 = EnlWnpnl- (11)

This relation will allow us to probe quantum information-
theoretic quantities without postselection.

If we choose W,, based on a classical simulation,
e.g., setting it equal to the classical estimate for the post-
measurement density matrix W, = ,o,f, we arrive at a
matrix-valued cross-correlation ]E,[p,ir,of] = IE,,,[,O,S Om]-
Taking the trace of this object would give us a “quantum-
classical” purity ]E,,,[Tr(p,f pm)]- In analogy with Eq. (6),
we can use the inequality Tr[(p, — p$)*] > 0 to lower
bound the measurement-averaged purity:

E,[Trp;] > E.[2Tr(py, 07) — Tr(oy, 05)] - (12)

Equation (12) is our first bound on an entanglement mea-
sure. Note that if p, is the density matrix of a finite
number of qubits, the variance of the right-hand side of
this expression is finite.

V. ENTANGLEMENT ENTROPY

Here, we construct resource-efficient upper [Eq. (20)]
and lower [Eq. (25)] bounds on the measurement-averaged
von Neumann entanglement entropy. First, it is useful to
collect some definitions. The entanglement entropy of p,,
is defined as

Sn = —Tr[pw log o] (13)

and our quantum-classical cross-correlation will come
from choosing matrix-valued weights

W, = —log pS. (14)

Here W, is the modular Hamiltonian corresponding
to pC. The estimate W, could be produced by an
approximate classical simulation or another classical
model that takes the measurement outcomes as input
(e.g., a machine-learning model). In each run r of the
experiment, we therefore have a single shadow p5 as
well as the calculated quantity — log ,o,fr. From these, we
construct

§7¢ = —Tr[p{ log i, 1, (15)

which, by Eq. (11), converges to the quantum-classical
entanglement entropy upon averaging over experimental

runs:

E/[57] = EulS7]. (16)
Here, we have defined the quantum-classical entanglement
entropy

§2€ = —Tr[pw log py, - (17)
In Sec. VI, we discuss the number of experimental runs
required to observe this convergence. It will often be useful
to compare Em[SgC] with the average of the “classical-
classical” entanglement entropy,

Se¢ = —Tr[py, log pS]- (18)
Throughout this work, we reserve the name “entanglement
entropy” for the object in Eq. (13), rather than the proxies
in Egs. (15)~«(18). It is important to recognize that, with-
out postselection, only S5 and SC¢ can be determined for
individual outcomes m. It is the average over measurement
outcomes that gives us access to lEm[S,%C].

A. Upper bound

The upper bound on IE,,[S,] comes from writing the
quantum relative entropy [1] between p,, and ,o,ﬁ as

D,y = Tr[pw(log pw — log pS)]

=59€—5,. (19)
From the non-negativity of the quantum relative entropy
D,, > 0, we then have

E,[Sy] < En[S5] = E[S°], (20)
where the right-hand side is experimentally accessible.
This result shows that although we cannot determine
E,,[S,.] without postselection, we can construct an upper
bound using experimental data and classical simulations.
Despite its simplicity, Eq. (20) is one of our central results:
the fact that it is possible to bound simulation-independent
properties of the quantum system using quantum-classical
cross-correlations opens the door to new kinds of experi-
ments in quantum simulators. Interestingly, Eq. (20) also
reveals that we can use experimental data to optimize our
models by minimizing [E,[S5].

Note that in order for Eq. (20) to hold when some of the
eigenvalues of p¢ are zero (e.g., when pS is pure), it is nec-
essary to define — log ,0,5 as having infinite contributions,
i.e., to define the negative logarithms of the zero eigen-
values as infinity. Since we have the freedom to choose
,og , this is unlikely to be an issue in practice and we can
simply impose that all eigenvalues of pS be larger than a
threshold.
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The upper bound in Eq. (20) has a well-known classi-
cal analogue. Setting the off-diagonal entries of p, and
oS to zero, we are left with classical probability distri-
butions along their diagonals and the quantum relative
entropy becomes the standard classical relative entropy
(also known as Kullback-Leibler divergence). This quan-
tity is also non-negative and we are left with the statement
that the logarithmic cross entropy is an upper bound on the
classical Shannon entropy.

B. Lower bound

Our lower bound, on the other hand, does not have a
useful classical analogue. To arrive at the lower bound on
the measurement-averaged entanglement we consider two
subregions, 4 and B. The true postmeasurement density
matrices for 4B are denoted by p45,, and our classical esti-
mates by ,ofB’m. It is helpful to first discuss the conditional
entropy

Colam = SaBm — Sams (21)

where Sy, and Syp,, are postmeasurement entanglement
entropies for 4 and for 4B, respectively. For example,
Sum = —Tr[pamlog psm]. Note that for classical probabil-
ity distributions the conditional entropy cannot be nega-
tive; this is equivalent to the statement that the Shannon
entropy of a system cannot be smaller than the Shan-
non entropy of one of its subsystems. A negative condi-
tional entropy is therefore an indication that 4 and B are
entangled.

Using the definition given in Eq. (19), we write Sy, =
SEJC" — Dy, as well as the analogous expression for Syz,,.
Inserting these relations into Cg | 4, we find that

CB|A,m = Cng,m - DAB,m + DA,m < Cng,ma (22)

Where we have defined CI%CAM = ng m Sffn. The
inequality follows from the monotonicity of the relative
entropy D, < D4pm. In terms of experimentally accessi-

ble quantities, we then have
Eu[Cpam] < EJLC .1, (23)

where C?;C‘ ar =55, — S5 Therefore, if we find E,
[CﬁzCM .1 <0, we can provide evidence that 4 and B are
entangled on average.

This bound on the conditional entropy can be recast into
a lower bound on the entanglement entropy, complement-

ing the upper bound in Eq. (20). Using Cgjam < Cp| 4,

and S4p, > 0, we have

SS — 8% < St (24)

After averaging, this can be written as

E,[S30] — B, [855,] < EulSan] < ES5] (29
where on the right-hand side we have also included the
upper bound in Eq. (20) (now with the subregion 4 of
interest specified). The result in Eq. (25) shows that the
true measurement-averaged von Neumann entanglement
entropy can be both lower and upper bounded without
postselection. The upper bound becomes an equality in the
limit of a perfect classical simulation. The lower bound,
on the other hand, only becomes restrictive for small
IE,[SASIC;J], but this is possible only if IE,,[S4z] is itself
small.

Unlike the upper bound in Eq. (20), there is no mean-
ingful classical analogue of the lower bound in Eq. (24).
To see this, first note that the lower bound converges to
—IE,,,[Cgch,m], which is less than or equal to —IE,,[Cg| 4]
from Eq. (23). However, as discussed above, the con-
ditional entropy for a probability distribution is non-
negative. For diagonal density matrices the lower bound
in Eq. (24) is therefore less than or equal to zero, making
it no more restrictive than the fact that Shannon entropies
are non-negative. In quantum systems, on the other hand,
the entanglement entropy of a system can be smaller than
that of one of its subsystems and only in this case (cor-
responding to negative conditional entropy) is the lower
bound in Eq. (24) useful. In summary, although postse-
lection problems can arise in both classical and quantum
systems, the resolution represented by the two-sided bound
on entanglement in Eq. (25) is specific to the quantum
setting.

The existence of the lower bound on postmeasurement
entanglement reveals the physical setting in which we
can accurately determine the postmeasurement entangle-
ment. If I5,,[S45,,m] = 6, then the separation between the
upper and lower bounds is E,,[Sig’r] > §. Therefore, using
Eq. (24), we can determine IE,[S,,,] to an accuracy no
better than 6. In closing, we note that regardless of the
quality of the classical simulation, the accuracy with which
we know the entanglement entropy is itself observable
without postselection: if the lower bound in Eq. (25) is pos-
itive, then this accuracy is [E,[S5$ ], whereas if the lower
bound is negative, this accuracy is simply the upper bound
E,[Sjg].

C. Effects of quantum channels

Given that we can efficiently constrain the measurement-
averaged entanglement, it is natural to ask whether we
can say anything about how it changes under quantum

030311-6



PROBING POSTMEASUREMENT ENTANGLEMENT...

PRX QUANTUM 5, 030311 (2024)

operations. Suppose that after preparing p,, (for simplic-
ity, here we again omit subregion labels) we want to know
how its entanglement entropy is modified by a known
m-independent completely positive trace-preserving (CPTP)
linear map,

Pm —> 5(,0m) = Pme- (26)
We will denote the entanglement entropy of o, ¢ by Sy.e.
An important property of the quantum relative entropy is
that it is monotonically decreasing under CPTP maps [57],
Le., if py — pme and p — pf, e = E(p,), then
27)

Dy = Tr[pme (10g pme — log p& )]

satisfies D,, ¢ < D,,. This property implies that if the
map & increases the measurement-averaged quantum-
classical entanglement entropy, it must also increase the
true measurement-averaged entanglement entropy:
E[S¢] = E ST = EulSnel = EalSal.  (28)
where we have defined ng = —Tr[E(pS) log S(pm )], i
the channel is applied to the shadow and also to the
classical estimate for the postmeasurement density matrix
P, - The quantity [,[SEC], like IE,[SF¢], can therefore be
determined entirely through classical postprocessing of the
experimentally determined shadows p?.

VI. STATISTICAL FLUCTUATIONS

Above, we have shown that measurement-averaged
entanglement properties can be bounded using particular
quantum-classical cross-correlations. These bounds hold
provided that the averages over runs of the experiment
have converged, i.c., if E,[S°C] = IE,,[S2°], but in prac-
tice the number of runs R is finite. Consequently, these
bounds will only be accurate to within an error that decays
as ~R™1/2,

In this section, we discuss the statistical fluctuations of
Sfc over runs, focusing for simplicity on the case of a sin-
gle qubit. This example will illustrate the role played by
small eigenvalues of p,ﬁr in the convergence of the average
of S5, Some care is required in directly applying bounds
on the variance in Ref. [34] since these diverge as ,0,5
approaches a pure state.

The mean-squared fluctuation of S5¢
particular outcome m = m, is

around S,%C for a

0597 =3 PovinTr[(05G.U) — pu) log 05T, (29)

z,U

with p3(z, U) given as usual by Eq. (8) [see above Eq. (7)],
and P,y is the probability that we have acted with U

and observed z given outcomes m. To calculate 05¢, we

require certain properties of the first three moments of the
Haar distribution over the unitary group. Haar invariance
implies that

ZPUH UioUjo = Co Zn&k/n(k)’

T k=0

(30)

where ) _ denotes a sum over all permutations 7 of n
elements. By contracting indices in Eq. (30), it is straight-
forward to show for n < 3 that the coefficients C,, = [(n +
1)!]~". This expression holds for Haar-random unitary
operations U as well as those drawn from the Clifford
group, because the latter forms a 3-design [58,59].

Using Eq. (30) in Eq. (29), we find that (65¢)? can be
expressed, up to prefactors, as the sum of three contribu-
tions: (i) the variance v,, of — log p¢ with respect to py, (ii)
the variance v; of — log p< with respect to the maximally
mixed state 1/2, and (iii) the difference A,,;; between the
expectation values of — log p$ computed with respect to
pm and 1/2. In full,

(O’ ) __(vnz+vﬂ)+ A G
where
U = Tr{ pw(log p5)2] — Tr[ o log pCT2,
v = Tr[(1/2)(log p$)*] — Tr[(1/2) log o517, (32)

Apn = Tr[(pm — 1/2) log pS].

These results make clear that no matter how accurate
our simulation, as pC approaches a pure state and hence
has eigenvalues approaching zero, the variance (05C)?
diverges.

Consider, then, the scenario in which the minimum
eigenvalue of pC is lower bounded by € < 1. It is straight-
forward to impose this condition in practice since we have
the freedom to choose p¢. For example, given a classical
simulation that outputs a prediction for pS, we could mod-
ify the output by passing p¢ through a weak depolarizing
channel. It can then be verified from Egs. (31) and (32) that
(0392 = O(log?[1/€]) for small €. The total variance rele-
vant to experiment is simply the sum of (i) IE,[(0,,¢)*] and

(i1) the variance of S,,Q,, over m,.. For pgr having a minimum
eigenvalue no smaller than €, it is clear that contribution
(ii) is itself O(log?[1/€]).

In the case of a single qubit it can be verified that
the total variance of Sfc over runs is upper bounded by
31log’[1/€] + O(¢). The numerical prefactor is specific to
the case of a single qubit but the O(log?[1/€]) scaling of
the variance is quite general. Moreover, this upper bound
on the error is independent of the quality of the simula-
tion. Suppressing the fluctuations in the average of S°€ to
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well below the mean therefore requires a number of runs R
scaling as R ~ log?[1/€]/(IE,[S5¢])2.

This section concludes our general discussion of
the bounds on the measurement-averaged entanglement
entropy. In summary, the average postmeasurement entan-
glement entropy of a subregion 4 can be upper and lower
bounded, respectively, by cross-correlations E,[Sj’cr] and

E,[S5¢] — E,[S55,], where subregion B does not over-
lap with 4. These cross-correlations take as input (i)
experimentally determined shadows pS extracted from
a quantum simulation and (ii) classical estimates for
postmeasurement density matrices pnfr. Each bound con-
verges as a standard Monte Carlo average having variance
~log*[1/€].

These results reveal that the accuracy with which we
can know the entanglement entropy is set by the separa-
tion between the bounds, i.e., ]E,[Sjg,r]. As the classical
simulation is improved, E,.[Sjgﬁr] decreases and eventually
approaches IE,[Ssp,] in the limit of a perfect simula-
tion. Since the quality of the classical simulation controls
the quality of our bound, it will be useful to investi-
gate a measurement-induced collective phenomenon that
is associated with the breakdown of classical simulations.

VII. ENTANGLEMENT TRANSITION

In this section we consider the application of our
approach to study the measurement-induced entanglement
transition in random quantum circuits [7,8]. Our focus
is on one-dimensional chains of qubits evolved under
Haar-random two-qubit unitary gates and single-qubit pro-
jective measurements [6]. Unitary gates are arranged in
a brickwork pattern and measurements are performed at
a fixed rate p per qubit (for an illustration, see Fig. 2).
Previous work on this model has revealed a transition
between volume-law entangled states for p < p. and area-
law entangled states for p > p. [5-8], with the critical
point estimated as p. >~ 0.16 [60]. To clarify the notation, p
refers to the probability that we choose to measure a qubit,
while P,, is the Born probability corresponding to a set of
outcomes m.

This entanglement transition is a useful setting for test-
ing our idea because it corresponds to the point at which
classical simulations break down: for p < p. the classi-
cal memory required to describe the state is exponential in
the number L of qubits, whereas for p > p. it is expected
that the required memory is only linear in L. To empha-
size the limitations of classical memory, we will construct
cross-correlations between exact numerics (representing
the experiment or quantum simulation) and approximate
numerics based on MPSs restricted to finite bond dimen-
sion x (the classical simulation). The classical memory
required for the MPS simulation then scales only as ~L .
We stress that, in this illustrative example, both kinds of
simulation are carried out on a classical computer; the

( (
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FIG. 2. Probe of measurement-induced entanglement transi-
tion. In each run r, L initially unentangled qubits are evolved
through a circuit of depth ¢ involving two-qubit Haar-random
unitary operations (wide gray boxes) and, with a probability
p at each time step, single-qubit measurements of Z (small
white boxes, with outcomes m,.,...,m,3 in the figure). At
the final time, all bulk qubits are measured (here, outcomes
My4,...,NM.9). One then extracts a shadow ,o,,S from the left
boundary qubit by applying a single-qubit random unitary U,
and subsequently measuring Z (with result z,). The outcomes
m, = (myy,...,m,9) are then used as input to a classical calcu-
lation, giving an estimate ,o,fr for the postmeasurement density
matrix of the left qubit, and from pf and pf, we construct S3¢,
which is averaged over r. For illustration, here we show N = 8
and ¢t = 4, although for numerical calculations we fix # = 4L.

)
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phrases “quantum simulation” and “classical simulation”
are an allusion to how our idea could be implemented in
experiment (see, e.g., the related calculation in Ref. [31]).

Care is required when sampling measurement outcomes:
while the effects of particular measurement outcomes can
be “forced” in a classical simulation (through the appli-
cation of a desired projection operator), they cannot be
forced in experiment. Therefore, here we must sample the
outcomes of measurements according to the Born rule in
the quantum simulation (i.e., with Born probabilities calcu-
lated using exact numerics) and then force these outcomes
in the classical simulation.

We choose to work with chains having open rather than
periodic boundary conditions, since MPS simulations are
then much more efficient [61]. Because the measurement-
induced entanglement transition appears to have a dynamic
critical exponent of unity [5,6], we evolve the system for
a time ¢ = 4L, corresponding to 2L two-site unitary opera-
tions on each bond. After each such operation, we measure
each of the two evolved qubits with a probability p, with
outcomes sampled as described in the previous paragraph
and with the caveat that during the evolution we choose
not to measure the qubits at the left and right ends of the
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chain. Following the measurement step, we truncate the
bond dimension in the MPS simulation to x. The bond
dimension therefore increases from a maximum of y to 4y
through the unitary operation, is potentially decreased by
measurement, and finally is truncated back to a maximum
of x. At the final time, we have an exact representation
of the quantum state (from the quantum simulation) and a
MPS with bond dimension x. In Sec. VIII, we discuss a
way to characterize the postmeasurement state.

A. Upper bound

To probe quantum correlations, we must focus on den-
sity matrices of small numbers of qubits. This is because
the variance of S5 grows exponentially with the number
of qubits being investigated [34]. The local probe that we
choose is as follows: at t = 4L, we measure all but the
left- and right-most qubits in the chain and we then try to
estimate the entanglement entropy of the left qubit (this is
equal to the entanglement entropy of the right qubit, since
the overall state is pure); our protocol is represented in
Fig. 2.

Our numerical (Monte Carlo) average over runs [, [- - - ]
will, in this section, also include an average over uni-
tary gates used to construct the quantum circuit. Since
the postmeasurement density matrices of the left qubit are
determined not only by outcomes m, observed in run »
but also by the unitary gates in that run, here we will
use the more general notation p, rather than p,, . It is
important to note that m, represents the list of outcomes
recorded during evolution and also at the final time. In
this notation, the classical estimate for p, in run r is ,orC
and the shadow is ,of, with, e.g., S, = —Tr[p, log p,] and
S5€¢ = —Tr[p5 log p¢]. The upper bound in Eq. (20) is then
written [E,[S,] < E,[S?°] = E,[S5C]. Since here we are
using exact numerics in place of an actual quantum sim-
ulation, for numerical convenience we directly determine
p, and then average SrQC rather than Sfc. The result is the
same for a large number of runs.

A reason for considering the postmeasurement entangle-
ment between the boundary qubits in the present setting is
that it is straightforward to understand some of the effects
of a finite bond dimension. For any yx, Eq. (20) guaran-
tees that ]E,[S,QC] > IE,[S,], with the difference expected
to increase with L. On the other hand, for finite x we
can compute pC as a product of essentially random finite-
dimensional matrices; without fine tuning, there is a gap
between the two leading Lyapunov exponents characteriz-
ing this product. As a consequence, [E,[SCC] must decay
exponentially with L for any finite x. Since IE,[S,] is L
independent for p < p. and decays as a power of L forp =
Pe, we see that at fixed x and for sufficiently large L, the
classical estimate for the measurement-averaged entangle-
ment [E,[SCC] should lower bound the true entanglement
entropy [E,[S,]. Having an approximate lower bound of

this kind is useful because, by increasing x, we can expect
the chain of inequalities I,[SC] < E,[S,] < E,[S2] to
become more restrictive. We defer a discussion of the
rigorous lower bound in Eq. (25) to Sec. VIIC.

First we sweep across the transition. In Fig. 3(a), we
show E,[S,], E.[S9°] and E,[SCC] for L = 20 and var-
ious x. On increasing x, the window between EE,[SC]
and IEr[SVQC] becomes narrower and, as discussed above,
E,[S,] should lie within this window at large L. Inter-
estingly, IE,[S,QC] departs from the true measurement-
averaged entanglement entropy at a much larger value of
p than E,[SC]. The splitting of E,[SZ] and FE,[S]
signifies the breakdown of the simulation: the apparent
agreement between [E,[S¢] and E,[S,] even for small p
is an artifact of the ensemble average. This is to say that
although IE,[S“] and [E,[S,] appear to agree, we know that

SrCC and S, disagree for individual runs r, because ]Er[SrQC]
and IE,[S,] disagree.

Turning now to the critical regime p = 0.16, in Fig. 3(b)
we investigate the effect of increasing L for various . As
expected, the decay of IE,[S,] is consistent with a power
law ~L~ and we find numerically that « =~ 0.6. For each
Xx we see that, as L is increased, there is a point beyond
which IE,[S,QC] deviates from this power-law decay and
instead begins to increase.

It is natural to ask how the system size L at which this
occurs depends on y. This dependence will control the
classical memory required to study the transition in exper-
iment. In Fig. 3(c), we show that E,.[S,QC] can be collapsed
according to the scaling form

E,[SP] = AL™°f (xL ™), (33)
where 4 is the prefactor of the L™* decay in IE,[S,] and
f (x) is a function satisfying f (x — 1) = 1 for large x
(and which is large at small x). In Fig. 3(c), we have
set the exponent A = 2 but we discuss this further below.
This collapse is an experimentally observable signature
of measurement-induced criticality, which can be obtained
without postselection through the average IE,[S5C]. We dis-
cuss this signature, and the resources required to observe it,
in Sec. VII B.

Note that here we have not used our method to determine
the critical point. Instead, we have relied on an existing
high-accuracy numerical estimate for the critical point p,
from Ref. [60] and in Figs. 3(b) and 3(c) we have studied
cross-correlations at this point. More generally, the criti-
cal point of a measurement-entanglement transition is not
known a priori and, as we now discuss, a variation of
the above analysis can be used to locate p. in large-scale
experiments. Under the assumption that the volume-law
entangled states generated at p < p. cannot be represented
using polynomial classical memory, the entanglement tran-
sition is a “simulability transition”. As an order parameter,
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Estimates for average entanglement entropy of an edge site after measuring bulk qubits. (a) L = 20 with various p and .

The different shaded regions, corresponding to different x, have lower edges IE,[S€C] (indicated by dashed gray lines) and upper edges
IE,[S,%C] (indicated by solid gray lines). Narrower shaded regions correspond to larger x (see the legend). The open circles correspond
to the exact average entropy [E,[S,]. (b) Entanglement in the critical regime, p = 0.16, and for various system sizes L. The dotted black
line shows a power-law fit ~L™ to [E,[S,] (open circles). The exponent ¢ = 0.62 £ 0.02 and the fit is offset from the data for clarity.
(c) Scaling collapse of IE,.[S,QC], corresponding to the upper edges of the shaded regions in (b), for various y. For this collapse we use
A = 2, and we discuss this exponent in detail in Sec. VII B. The dotted line shows a decay of ~L™¢, as in (b).

one can therefore use the observable [E,[S°C — SCC]. As we
have shown in Fig. 3(a), a failure to simulate the system
is manifest in a nonzero order parameter. The volume-law
phase p < p. can therefore be identified as the regime in
which the classical memory ~Lx? required to decrease
the order parameter grows exponentially with L. On the
other hand, in the area-law phase p > p,, the order param-
eter can be suppressed using polynomial classical memory.
Another candidate order parameter, which would also be
viable in this setting, is E,[Sig’r], where 4 and B are the
boundary qubits, and we discuss this further in Sec. VII C.

B. Resource requirements

The classical memory required to store a MPS scales
as ~Lx?. For p < p., we expect that the bond dimen-
sion required to obtain a reasonable approximation to the
true quantum state is exponential in L, so determining the
measurement-averaged entanglement there is presumably
a lost cause. At the critical point p = p, itself, it is sug-
gested in Fig. 3(c) that with bond dimension x = L* we
can find a restrictive bound on IE,[S,]. This is plausible
because, prior to measuring all but the left and right qubits,
the half-chain entanglement entropy at p = p. is propor-
tional to logL [7,8]. Since the half-chain entanglement
is upper bounded by log x, one would only need a bond
dimension polynomial in L to capture this.

To explore the x dependence of IE,[S,QC] in detail, in
Fig. 4(a) we calculate IE,[S,QC] /IE,[S,]. There, we find that

the convergence of lEr[S,QC] is exponential,

E,[SE)/E/[Sn] — 1 oc e 1/xD), (34)

with a constant of proportionality that is of order unity
and approximately L independent. It can be verified that
this is consistent with Fig. 4(b) provided that x is not too
much smaller than x2€(L). The behavior in Fig. 4(a) pro-
vides further evidence that there is a characteristic bond
dimension x2€(L) beyond which S2€ and S, are in good
agreement and that this bond dimension increases with
L. Following Eq. (33), we expect x2€(L) ~ L* and in
Fig. 4(b) we show x?€(L) as a function of L. Our results
are consistent with a power-law growth having A < 2; a
more accurate determination of A will require access to
larger system sizes. Combining Eqgs. (33) and (34), we see
that the function f (x) takes the form

f(x) =14 Be ™™, (35)

where B and x( are constants. For the particular model
that we consider, we find from Fig. 4 that B &~ 15 while
xo &~ 0.04. The observation that A < 2 implies that a good
MPS representation of the quantum state need only occupy
polynomial classical memory Ly? ~ L'+t2 < L3,

The power-law scaling of the bond-dimension with a
length scale echoes the theory of finite-entanglement scal-
ing at conventional quantum critical points [62—64]. This
theory predicts that a finite bond dimension x introduces
a finite correlation length & ~ x“ with an exponent «
that is a function of the central charge of the confor-
mal field theory describing the critical point. That theory
addresses the question of how much classical memory is
required to study quantum criticality on a classical com-
puter and it would be interesting to develop an analogous
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FIG. 4. Effect of varying the bond dimension x at p = 0.16.
(a) Decay of ]E,.[S,QC] JIE,[S,] — 1 with x for various L (open cir-
cles) and fits to exponential decays (solid lines). The decay rates
give the parameter x2°(L) in Eq. (34). (b) Growth of x92C(L)
with L (open circles), with logarithmic scaling of both axes,
compared with power laws L (dotted) and L? (dashed).

theory for measurement-induced criticality. In our nota-
tion, this would correspond to a theory for the convergence
of E,[S¢“] to EE,[S,].

Our results above, on the convergence of IEr[SrQC] to
E,[S,], address the quite different question of how much
classical memory is required to observe measurement-
induced criticality in a quantum simulator. The interpreta-
tion of the measurement-induced entanglement transition
as a kind of replica-symmetry-breaking transition [65,66]
suggests that the classical memory requirements are dif-
ferent in the two cases: writing S9€ as the n — 1 limit
of the object [1 —n]~!log Tr[p,(p)" '], it is clear that
since p, # prc , the symmetry under exchange of replicas
is reduced relative to [1 — n]~! log Tr[(p°)"], which repro-
duces S€€ as n — 1. In other words, the constraint of finite

x is a replica-symmetric perturbation in S but not in S°°.

Having discussed the classical memory requirements,
we now turn to the time requirements. This is a question
of how many experimental runs are required in order to
wash out statistical fluctuations in SC. The variance of
S5€ over runs is the sum of two contributions: the aver-
age of the variance over shadows p? for each p, and p€,

which is represented in Eq. (31), and the variance of §9¢
over runs. Numerically, we find that the first of these two
contributions dominates, although here we simply calcu-
late the overall variance.

In the main panel of Fig. 5, we study the growth of the
variance with L at p = 0.16 (in the critical regime). The
data suggest that the growth is no faster than ~L? for an
exponent 8 > 0 and a fit to the y = 64 data indicates that
B ~ 0.5 (see the caption of Fig. 5). As in Fig. 3(b), as L is

20

80

40

)] = E[S7CP

SC

r

E.[(S

FIG. 5. Variance of S5€ over runs. The main panel shows (with
a log-log scale) the variance as a function of L for p = 0.16 and
various x (see the legend). The dotted line shows a fit ~L? to
data for x = 64, with 8 = 0.52 4+ 0.02, and this is offset from
the data for clarity. The inset shows the variance as a function of
p for L = 20 and for the same values of x as in the main panel
(here, with a log-linear scale).

increased at fixed y, there is a point at which the simulation
appears to break down. In Fig. 5, this breakdown manifests
as an increase in the variance with decreasing x. Before
this point, where x > x2€(L), our results in Figs. 3(b) and
5 suggest that the number of experimental runs required to
suppress the error to below the scale of the mean E,[S,] ~
L™ grows only as LA+2¢ < [2,

This result shows that the transition in the behavior
of the measurement-averaged von Neumann entanglement
entropy can be observed using a number of runs that is
polynomial in the system size. However, it is important to
note that if one instead aims to bound the measurement-
averaged purity, the statistical fluctuations are substantially
smaller. This is because, as discussed below Eq. (12), the
variance of the object that lower bounds IE,[p?] is finite.

C. Lower bound

For simplicity, our focus has been on the upper bound
on [E,[S,] in Eq. (20) and we have not studied the lower
bound in Eq. (25) numerically. As we have discussed in
Sec. VI, in order to use Eq. (25), it would be necessary to
consider a situation in which the overall state of the left and
right boundary qubits is not quite pure. If their state is pure,
the statistical fluctuations diverge. Here, we are concerned
with both boundary qubits (4 and B), so we will indicate
subsystems explicitly.

A simple way to avoid the divergence of statistical fluc-
tuations is to apply weak depolarizing channels to p3 5, and

,oACB,,, in postprocessing, as described in connection with
Eq. (28) and also in Sec. VI. If we apply these artificial
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depolarizing channels to p3,, and p$, ,, we have

IojB,r - g(lojB,r) = (1 - 4€)IOA§B,r + 61’

’ (36)
—4e)pyp, +€l,

’OEB,V - S(IOEBJ) = (1

and for 0 < € < 1/4, all of the eigenvalues of & (,oACB)r)

are lower bounded by e. The quantity S5¢ oipe = — 1T
[5(/0,43,) log E(I)Ag,mr)] then has |SSAB ¢l = O(log[1/€])
for small . We denote by IE,[S, z¢] the average entan-
glement entropy of the set of density matrices £(045,m,.)-

As discussed below Eq. (25), the average postmea-
surement entanglement can be determined (rather than
just upper bounded) to within a threshold E,[S°(, ] >
IE,[S; 48] Regardless of the quality of the simula-
tion, since IE,[S, 4p¢] itself has a lower bound of order
€log(1/¢) for small e, it is clear that the accuracy with
which we can determine the entanglement is no better than
O(e log[1/€]). Since the standard deviation of IE,[S® ,AB el
is O(log[1/€]), we see that the number of experimental
runs required to suppress the fluctuations to below the scale
of the mean IE,, [S,%j .¢] diverges as € 7% on decreasing e.
This discussion nevertheless reveals a trade-off between
the accuracy with which we determine the entanglement
and the number of samples required.

In the context of the measurement-induced entangle-
ment transition, at large L the entanglement entropy
between the boundary qubits should decay as IE,,[S4 ] ~
L. For an overall pure state, this implies that the mini-
mum eigenvalue of p,,, itself decays as ~L™*. On apply-
ing depolarizing channels in postprocessing, we destroy
any correlations associated with eigenvalues on the scale
of € and hence we should set € = O(L™%). The number
of experimental runs required to suppress fluctuations in
E, [5G c] and E,[S25; -] to below ~L~* therefore grows

only as L>* log?[1/€] ~ L** log? L when using an artificial
channel.

Through this section, we have studied the quantum-
classical entanglement entropy in the context of
measurement-induced criticality. We have shown that the
manner in which classical simulations break down is an
observable signature of criticality and we have provided
evidence that, at the critical point, the classical resources
required to observe scale-invariant features of measured
quantum states are only polynomial in L.

VIII. DECODING PROTOCOL

It is important to understand the relation between
[E,[S°C] and the probe of Ref. [25]. For the sake of sim-
plicity, in this section and in Sec. IX, we can consider
a protocol in which the only randomness is in the mea-
surement outcomes and so we return to the notational
convention preceding Sec. VII. In Ref. [25], the authors

consider a scenario in which the effects of many measure-
ments, having outcomes m, are encoded in the state p,,
of a reference qubit. A generalization of their decoding
scheme to the situation in which one has an approximate
classical simulation of the model is as follows: given an
observed set of measurement outcomes m, in run r, one
(1) estimates the postmeasurement density matrix ,o,fr, (i1)
constructs a unitary decoder V<, such that the Bloch vec-
tor of V,ir pgr[Vgr]_l is parallel to the +Z axis, (iii) applies
the decoder to the true postmeasurement density matrix
Pm,» (iv) measures Z, and (v) averages the results z, over
runs of the experiment. If p,,. is pure and the calculation
on a classical computer yielding ,o,gr is perfect, the result
of the measurement in step (iv) is z, = 1 with certainty. If
Oom 18 maximally mixed, the result is z, = £1 with equal
probability.

This approach naturally gives a bound on a measure-
ment-averaged property of the density matrix, as we
now discuss, although this bound is distinct from the
one in our Eq. (20) It will be convenient to define y,,
and <€ by Tr{p2] = 5[1 + (yu)*1and Tr[(p$)*] = 5[1 +
(v5€)?], respectively, where 0 < y,,, ¥S¢ < 1. Note that
we then have VS pC[1C]~! = 1(1 + yCCZ), where 1 (1 +
Vi CC) is the classical estimate for the probability that the Z
measurement returns z, = 1. If we apply the decoder V¢ to
pm and then measure Z, the probability of finding z, = 1 is,
instead,

(1 + 729 = (WealV 171, (37

which defines the quantum-classical object y,,?c satisfying
y,gc < ym. Here, equality is achieved when the Bloch vec-
tors of pnf and p,, are parallel (but not necessarily equal).
This is because an imperfect decoder will generate a den-
sity matrix V<pC[VC]7!, the Bloch vector of which is
canted relative to the +Z axis, and hence a measurement
of Z has a lower probability of yielding the result z, = 1.
If we repeat the experiment many times, averaging z, over
runs, the result is

E/z] = Euly21 < Eulyml. (38)

Although Eq. (20) does bound a measurement-averaged
property of the ensemble of p,,, it does not provide us with
information on a standard entanglement measure.

On a practical level, the scheme presented earlier in this
work is based on classical postprocessing rather than the
application of a conditional decoding unitary V<. The for-
mer approach is simpler in experimental settings, where
decoherence time scales may be too short for one to deter-
mine and then apply a measurement-conditioned unitary
That said, as we now show, the quantity ]Em[y ] that
is determined via the scheme in Ref. [25] can also be
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determined simply by classical postprocessing and so we
expect that if either one is experimentally viable, then both
should be.

To see how to determine lEm[y,,?C] through classi-
cal postprocessing, we need only consider the average
of Eq. (37) over outcomes. In run r, corresponding to
outcome m,, we extract a shadow pf and calculate a
matrix-valued weight

Wi, =2[V5, 17111 (1 V5, — 1. 39)
For this W,,., we have
E[p5W,,] = E.[y2]. (40)

A different quantum-classical cross-correlation, sharing
some features with Eq. (40) but based on scalar- rather
than matrix-valued cross-correlations, has recently been
implemented in a quantum simulator [31]. In the above
notation, that approach corresponds to replacing W, with
sign(Tr[pf, Z)Z.

Inverting this discussion, we can also ask what would
be the analogue of our scheme for determining Er[SrQC] if
we were to use measurement-conditioned unitary decoders
rather than classical postprocessing. A hint comes from
the fact that we can interpret S9€ as the expectation value
of the m-dependent observable — log p¢ with respect to
the true density matrix p,,. In fact, the protocol would be
almost identical to that in Ref. [25], with only a minor dif-
ference in the step (v) indicated at the start of this section.
That is, having extracted the measurement outcomes m,
in each run r, used them as inputs to calculations giv-
ing pgr and V,‘;;r, applied V,‘;;r to pom,, and measured Z (all
before the qubits decohere), the only difference is in the
number that we should average. If instead of averaging
eigenvalues z, = 1 of Z, which gives IE,[z,] = Em[y,gc]
in the limit of a large number of runs, one instead aver-
ages the corresponding eigenvalues — log[(1 + z,5)/2]
of the negative logarithm of the density matrix ,0;(7’:,, the

result converges to IEr[SrQC].

While the measurement-averaged results from a decod-
ing scheme giving IE,,[S2¢] are the same as from classical
postprocessing using shadows, the statistical fluctuations
are likely to be much smaller. This is because if pS is
a good estimate for p,,, in the decoding scheme one is
less likely to be affected by small eigenvalues of pS. This
decrease in the scale of statistical fluctuations comes at the
cost of having to apply a measurement-conditioned unitary
operation. A further issue with a decoding scheme is that it
is unclear how to generalize it to study postmeasurement
density matrices of multiple qubits without introducing
multiqubit unitary operations. Within a shadows scheme
involving only classical postprocessing, the extension is
immediate: one can construct multiqubit shadows simply
as tensor products of single-qubit shadows.

IX. ENTANGLEMENT NEGATIVITY

Our focus in this work has been on bounding
the measurement-averaged von Neumann entanglement
entropy. While the bounds in Eq. (25) also hold in the pres-
ence of noise, i.e., when we have access only to a mixed
state, the von Neumann entanglement is then no longer a
sensitive probe of quantum correlations. In particular, it
can be nonzero even when the overall density matrix is
diagonal.

This concern motivates the question of whether it is
possible to bound measures of mixed-state entanglement.
A prominent probe is the entanglement negativity [67],
which can be defined for the density matrix pyp of a
bipartite system 4B as

N (pap) = —TriPO(pipihl. (41)

Here, pjg denotes the partial transpose of the density
matrix for subsystem 4 and P (p14) is the projector onto

the space spanned by the eigenvectors of ,ojg with nega-
tive eigenvalues. The negativity has the appealing property
of vanishing for unentangled states and not increasing
under local operations and classical communication. Now

observe that we can bound the average of the postmeasure-

ment negativity N (p4pm) = —Tr[P)( pjg’m) pATg’m] using

STy

EnlN (0asn)] = B[P (0552 05501 (42)

Here, pfgrﬁr is the partial transpose of the classical estimate

for the density matrix of 4B given outcomes m,, which is
used to construct the projector P(_)(pfl’gjzr), and pjgjf is
the partial transpose of the shadow in run r. Equation (42)
shows that we can lower bound the measurement-averaged
entanglement negativity by maximizing the right-hand side
over projection operators.

X. DISCUSSION AND OUTLOOK

The randomness of the quantum measurement pro-
cess prevents us from directly observing the effects of
many measurements in experiment without an exponen-
tial postselection overhead. Cross-correlations (and cross
entropies) between quantum experiments and classical
simulations [14,18,29-31,33,68] provide a way to avoid
this overhead but in general do not provide information
on intrinsic properties of quantum states. For this rea-
son, there appeared to be a division between experiments
studying the effects of measurement and more conven-
tional experiments that study the response to deterministic
perturbations. Because the latter can be efficiently repro-
duced, effects of the perturbation on intrinsic properties of
the system can be determined by averaging over exper-
iments. In this work, we have resolved this division by

030311-13



SAMUEL J. GARRATT and EHUD ALTMAN

PRX QUANTUM 5, 030311 (2024)

showing that certain cross-correlations provide unambigu-
ous bounds on intrinsic properties of measured quantum
states.

Our first step was to extend the randomized measure-
ment framework [69] to the characterization of quantum
states that are not efficiently reproducible. To do this,
we synthesized shadows [34] with the cross-correlation
approach of Refs. [14,18,29,31]. We then identified cross-
correlations between experimentally determined shadows
and the results of classical simulations that act as both
upper and lower bounds on the postmeasurement von Neu-
mann entanglement entropy. Related cross-correlations
were shown to lower bound the purity and negativity.

Note that the randomized measurement protocol
requires only that individual qubits can be measured in
any of the Pauli-X, -Y, or -Z bases. In the postmeasure-
ment setting, in each run r of the experiment, one extracts
a set of measurement outcomes m,. in addition to a shadow
,of of a finite number of qubits. Our bounds can then be
determined in postprocessing from a classical computation
taking p> and m, as input.

The upper bound in Eq. (20) can be applied quite gener-
ally and the only restriction is that the subregion of interest
should consist of a small finite number of qubits. This is
because statistical fluctuations of S5 grow rapidly with the
support of 4 (as for standard probes of the entanglement
entropy). The lower bound in Eq. (25), on the other hand,
is only restrictive when we can identify another subre-
gion B such that AB is almost pure. The quantum-classical
object ]E,{Sjg,r] > IE,,[S48,m] can then be made small and
hence the bounds in Eq. (25) can be made restrictive.
This constraint provides strong motivation for experimen-
tal protocols of the kind discussed in, e.g., Refs. [43,44]
and our Sec. VII, where the effects of a large number of
measurements are ultimately encoded in the entanglement
between just two qubits.

Interestingly, our bounds suggest that we can view the
postselection problem as a variational problem, where
[E,[S5€] is an objective function taking experimental data
as input. For example, if the classical simulation has a
parameter (or parameters) i, then by minimizing [E,[S5¢],
one can optimize the bound on IE,,[S,,], thereby improving
the model from experimental data. A concrete application
is to quantum error-correction schemes [1]; in that setting,
one is interested in the effects that large numbers of syn-
drome measurements have on the states of logical degrees
of freedom.

There is, however, a possible pitfall in constructing
a variational scheme: the above parameters p must be
chosen independently of the random unitary operations
U, and random measurement results z, used to construct
the shadows. Otherwise, the average of S°¢ over runs is
not guaranteed to converge to the average of S92 over
outcomes. A straightforward way to implement a valid
variational scheme is to choose © based on one set of

experimental runs and then to compute the average of S°¢
using this u and a distinct set of runs. In the context of
machine learning (for a different application of machine-
learning techniques in the present context, see Ref. [27]),
this simply corresponds to a division into training and test
data.

When applying the ideas in this work to data obtained
in current quantum simulators, it is important to account
for the presence of noise. Significant statistical errors arise
when p¢ has small eigenvalues (see, e.g., the behavior
at large p in the inset of Fig. 5). Very recently, in Ref.
[70] it has been shown that the idea of common random
numbers can be generalized to shadow estimation; this
procedure reduces statistical errors provided that one has
access to a classical estimate for the shadow, which can
itself be estimated from a classical estimate for the density
matrix. In our case, the scheme corresponds to averaging

the difference between S€ and —Tr[p5C log ,o,(;:r] Oover runs

of the experiment, where p5¢ is a “shadow” that is con-
structed from a classically simulated experiment in which
one applies U, to ,o,fr and measures in the computational
basis (to be contrasted with ,of , which is constructed from
U, and py,, ). The basic principle is that while the above

difference certainly converges to IE,,[S2*] — I,,[SCC], the
errors in the two contributions are correlated and partially
cancel one another.

It is important to note that in current quantum simula-
tion platforms, it is often simpler to make all measure-
ments simultaneously and destructively [2—4]. We must
then ask which measurement-induced collective phenom-
ena are observable given this constraint. Remarkably, even
in such an experiment, our scheme allows one to probe the
effect that measuring one subsystem has on the entangle-
ment entropy of another subsystem, as in Refs. [43,44].
Moreover, given existing data from experiments involving
randomized measurements [71—73], through purely clas-
sical postprocessing we can already study ensembles of
postmeasurement states.

To see how this works, consider a tripartite system with
subsystems denoted 4, B, and B’, prepared in an entangled
state, and suppose that we are interested in how measure-
ments of B, but not B’, affect the entanglement entropy of
A. In each run prior to measuring all degrees of freedom, it
is necessary to act on 4 with random unitary operations
U, that will be used for shadows ,oir. After measuring,
the set of outcomes m, in B should be used to construct
a classical estimate pff,mr for the density matrix of 4 that
is conditioned on outcomes in B but not in B, i.e., we
simply do not use the information from the measurements
in B'. By cross-correlating the shadow ,oir of 4, which
is obtained from the random unitary operations and mea-
surement outcomes there, with — log me,,s we arrive at the
measurement-averaged entanglement efltropy of 4 as if B’
had not been measured. This scheme works because if we
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do not use the outcomes of measurements in B’, then by
averaging over runs of the experiment we convert these
measurements into local dephasing events and the effects
of local quantum channels are strictly local.

Our approach should be contrasted with probes of sta-
tistical properties of measurement records, most notably
the cross-entropy benchmark studied in the context of
random circuit sampling [32]. The linear cross-entropy
benchmark has also been advocated a resolution of the
postselection problem for the measurement-induced entan-
glement transition in stabilizer circuits in Ref. [33]. The
difference is that the linear cross-entropy benchmark is
a cross-correlation between full probability distributions
over measurement outcomes m, 1.€., it is a cross-correlation
of P,, and Pﬁ, where P,i is the classical estimate for the
probability of finding the set of outcomes m, whereas the
cross-correlations discussed in this work are between few-
body quantities conditioned on measurement outcomes,
e.g., pm and pC. Focusing on few-body quantities has the
advantage that in generic (nonstabilizer) systems, their
fluctuations are much smaller. For example, if PS¢ is
a product of probabilities for M different measurement
outcomes, there are situations in which the number of
experimental runs required to converge the average of PS
grows exponentially with M.

As an example of one of our quantum-classical cross-
correlations, we have identified an observable signature of
generic measurement-induced criticality. In particular, we
have shown that for a cross-correlation at the critical point,
the constraint of finite classical memory (parametrized
by a finite bond dimension x) introduces a length scale
proportional to x!/* with A < 2. The classical memory
required for our scheme therefore increases only as L'*2*.
This behavior could have been anticipated from the fact
that the exact measurement-averaged half-chain entangle-
ment entropy (calculated before one measures all bulk
qubits) grows logarithmically with L, while the theoreti-
cal maximum half-chain entanglement of an MPS grows
logarithmically with x.

This result hints toward a theory of finite-entanglement
scaling at measurement-induced criticality, following Refs.
[62—64]. A theory closer in spirit to those works would
describe how simulations, corresponding to “classical-
classical” probes in our terminology, behave as y is
increased. This would answer the question of how much
classical memory is required to study measurement-
induced criticality on a classical computer. The behavior
of IE,, [S,,Qf] that we have addressed instead describes the
classical memory required to observe critical behavior in
experiment.

Our work highlights the measurement-induced entangle-
ment transition as the threshold beyond which we cannot
observe the effects of our measurements. This thresh-
old is mirrored in the quantum advantage in random
circuit sampling [74] and emphasizes the fact that although

quantum simulators have an immense capacity to store
information, the randomness in its extraction is a deep
limitation [75,76]. It is pertinent to ask whether, by cross-
correlating quantum and classical simulations, we can
learn more than from classical simulation alone.
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