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ABSTRACT

We study the complexity of learning quantum states in various
models with respect to the stabilizer formalism and obtain the
following results:

e We prove that a linear number of T-gates are necessary for
any Clifford+T circuit to prepare computationally pseudo-
random quantum states, an exponential improvement over
the previously known bound. This bound is asymptotically
tight if linear-time quantum-secure pseudorandom functions
exist.

o Given an n-qubit pure quantum state |¢/) that has fidelity ¢
with some stabilizer state, we give an algorithm that outputs
a succinct description of a stabilizer state that witnesses
fidelity at least 7 —¢. The algorithm uses O(n/(¢21*)) samples
and exp (O(n/r4)) /€? time. In the regime of 7 constant, this
algorithm estimates stabilizer fidelity substantially faster
than the naive exp(O(n?))-time brute-force algorithm over
all stabilizer states.

In the special case of 7 > cos?(rr/8), we show that a modifi-

cation of the above algorithm runs in polynomial time.

We exhibit a tolerant property testing algorithm for stabilizer

states.

The underlying algorithmic primitive in all of our results is
Bell difference sampling. To prove our results, we establish and/or
strengthen connections between Bell difference sampling, symplec-
tic Fourier analysis, and graph theory.
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1 INTRODUCTION

A central goal in quantum information is to understand which
quantum states are efficiently learnable. While many quantum
state learning algorithms are extremely efficient in sample complex-
ity [2, 19, 39], fewer classes of time-efficiently-learnable quantum
states are known. One such example is the class of stabilizer states,
which are n-qubit states that are stabilized by a group of 2" com-
muting Pauli matrices.! Stabilizer states are well-studied because
of their broad importance and widespread applications through-
out quantum information, including in quantum error correction
[20, 26, 60], efficient classical simulation of quantum circuits [16, 18],
randomized benchmarking [44], and measurement-based quantum
computation [57], to name a few examples.

The first computationally efficient algorithm for learning a com-
plete description of an unknown stabilizer state was given by Mon-
tanaro [53].2 Given copies of a stabilizer state |$), Montanaro’s
algorithm utilizes the algebraic properties of Pauli matrices and
Bell-basis measurements to efficiently learn the generators of the
stabilizer group of |¢), which suffices to determine |¢). More specif-
ically, Montanaro (implicitly) introduced Bell difference sampling,
which, at a high level, is an algorithmic primitive that takes copies
of some state and induces a measurement distribution on Pauli
matrices. Bell difference sampling was studied more thoroughly
in [33] and has seen extended success in the development of al-
gorithms for stabilizer states and states that are close to stabilizer
states [30, 33, 36, 49, 53].

!Some other examples of state classes that admit time-efficient learning algorithms
include matrix product states [21], non-interacting fermion states [5], and certain
classes of phase states [10].

2In 2008, Gottesman gave a short video lecture explaining how to learn stabilizer states,
based on joint work with Aaronson [4]. However, the details of this algorithm were
never published.
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In this work, we extend the use of Bell difference sampling to give
faster, more general, and otherwise improved algorithms for learn-
ing properties of quantum states related to the stabilizer formalism.
By understanding how these properties affect the Bell difference
sampling distribution, we are able to find relevant certificates of
these properties faster than the previous state-of-the-art.

1.1 Our Results

Tight Pseudorandomness Bounds. Pseudorandom states are a quan-
tum cryptographic primitive that have recently attracted much
attention in quantum cryptography and complexity theory. They
can be thought of as a quantum analogue of pseudorandom gen-
erators, with the main difference being that pseudorandom states
mimic the Haar measure over n-qubit states, rather than the uni-
form distribution over n-bit strings. For a formal definition, see
[42].

Pseudorandom states suffice to build a wide range of crypto-
graphic primitives, including quantum commitments, secure mul-
tiparty computation, one-time digital signatures, and more [6, 11,
31, 37, 42, 54]. The language of pseudorandom states has also been
found to play a key role in resolving some paradoxes at the heart of
black hole physics [13, 14]. Finally, and perhaps most surprisingly,
there is recent evidence to suggest that pseudorandom states can be
constructed without assuming the existence of one-way functions
[46, 47].

Collectively, these results have motivated recent works that seek
to characterize what computational properties or resources are re-
quired of pseudorandom states. For example, [3] investigates the
possibility of building pseudorandom quantum states with limited
entanglement, and prove the existence of pseudorandom state en-
sembles with entanglement entropy substantially smaller than n,
assuming the existence of quantum-secure one-way functions.

Analogously, Grewal, Iyer, Kretschmer, and Liang [30] study
quantum pseudorandomness from the perspective of stabilizer com-
plexity. They treat the number of non-Clifford gates in a circuit as
a resource, similar to size or depth. The main result of [30] shows
that states having fidelity at least poli(n) with a stabilizer state
cannot be computationally pseudorandom. As a consequence, they
deduce that w(log n) non-Clifford gates are necessary for a family
of circuits to yield an ensemble of pseudorandom quantum states.

We give an exponential improvement on this lower bound:?

THEOREM 1.1 (INFORMAL VERSION OF COROLLARY 3.9). Any fam-
ily of Clifford circuits that produces an ensemble of n-qubit computa-
tionally pseudorandom quantum states must use at least n/2 auxiliary
non-Clifford single-qubit gates.

In the special case that the non-Clifford gates are all diagonal
(e.g. T-gates), our lower bound improves to n.

Under plausible computational assumptions, Theorem 1.1 is tight
up to constant factors. In particular, the existence of linear-time
quantum-secure pseudorandom functions implies the existence of
linear-time constructible pseudorandom states [15, 30], which of

3We remark that while the result of [30] is not tight in terms of the number of non-
Clifford gates, recent work [3] shows that [30]’s bound in terms of stabilizer fidelity is
optimal up to polynomial factors, because [3] constructs pseudorandom state ensembles
with any inverse-superpolynomial stabilizer fidelity (assuming quantum-secure one-
way functions exist).
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course have at most O(n) non-Clifford gates. Note that linear-time
classically-secure pseudorandom functions are strongly believed
to exist [23, 41], and it seems conceivable that these constructions
remain secure against quantum adversaries.

We remark that Theorem 1.1 bears analogy to a recent result of
Leone, Oliviero, Lloyd, and Hamma [51] that information scrambled
by an n-qubit unitary implemented with Clifford gates and t < n T-
gates can be efficiently unscrambled. In particular, both Theorem 1.1
and [51] establish different forms of non-pseudorandomness (for
states and unitaries, respectively) in the same parameter regime of
non-Cliffordness.

Faster Stabilizer State Approximation. As noted earlier, one of the
prominent applications of stabilizer states is in classical simulation
algorithms of quantum circuits. Such algorithms work by modeling
the output state of a quantum circuit as a decomposition of stabilizer
states (e.g., as a linear combination) [16]. The runtime of these
algorithms then scale with respect to one of several measures of
the “amount of non-stabilizerness” in this decomposition. These
measures are sometimes called magic monotones [64, Definition 3]
[34, Definition 3], because they are non-increasing under Clifford
operations. Typically, magic monotones increase exponentially as
non-Clifford gates are applied.? Examples of well-known magic
monotones include the stabilizer rank, stabilizer extent, and inverse
of stabilizer fidelity [16].

A series of recent and simultaneous works have explored the
question of whether magic monotones can be estimated efficiently,
or whether states with low magic are efficiently learnable. For
example, recall that [30] showed that states with non-negligible
stabilizer fidelity are weakly learnable, in the sense that they are
efficiently distinguishable from random. [27, 28, 35, 50] proved
that states with bounded stabilizer nullity are efficiently learnable,
and [27] also gave an efficient property tester for stabilizer nullity.
[34] showed that various magic monotones cannot be estimated
efficiently in certain parameter regimes, by constructing states with
low magic that are cryptographically indistinguishable from states
with large magic. Finally, 8, 10] raised the question of whether
states of bounded stabilizer rank are efficiently learnable.

Our second result is a further contribution towards understand-
ing the learnability of low-magic states: we give an algorithm that
finds stabilizer state approximations of states with non-negligible
stabilizer fidelity. As its name suggests, stabilizer fidelity (denoted
Fs(]¢))) measures how close a state [¢/) is to a stabilizer state: it
is simply the maximum of |(¢|i/)|? over all stabilizer states |¢).
Hence, it is not hard to see that the inverse of stabilizer fidelity is a
magic monotone. Assuming |i/) has stabilizer fidelity at least z, our
algorithm returns a stabilizer state that witnesses overlap at least

Fs(|¢)) — e with [¢/).

THEOREM 1.2 (INFORMAL VERSION OF THEOREM 4.9). Fixt > & >
0. There is an algorithm that, given copies of an n-qubit pure state
|) with Fs(|¢)) = t, returns a stabilizer state |¢) that satisfies
o) = Fs(|¢)) — & with high probability. The algorithm uses
O(n/(e?t*)) copies of i) and exp (O(n/r4)) /€% time.

4Some authors prefer to work with the logarithm of the monotone, so that they scale
linearly as non-Clifford gates are applied.
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To our knowledge, this is the first nontrivial algorithm to approx-
imate an arbitrary quantum state with a stabilizer state.> Indeed,
we are not aware of any prior algorithm better than a brute-force
search over all stabilizer states, which takes 20("®) time and 0(n?)
samples.® Thus our algorithm offers a substantial improvement in
the regime of 7 = w(n~'/%). Arguably, the most interesting setting
of parameters is constant 7, in which case we have a quadratic
improvement in sample complexity and a superpolynomial im-
provement in time complexity.

Observe that, because we output a witness of stabilizer fidelity
at least 7 — ¢ with high probability, assuming a state with fidelity
7 exists, our algorithm can additionally be used as a subroutine to
estimate stabilizer fidelity and, moreover, find a stabilizer state that
witnesses this. More precisely, if the goal is to estimate stabilizer
fidelity to accuracy ¢, then one can break [0, 1] into intervals of
width ¢ and perform a binary search procedure using our algorithm.
Overall, this takes O(n/e®) samples and exp(O(n/e*)) time.

As an application, our stabilizer state approximation algorithm
could be used to search for better stabilizer decompositions of magic
states. Recall that magic states are states that, when injected into
Clifford circuits, allow for universal quantum computation [17]. The
best-known algorithms for simulating quantum circuits dominated
by Clifford gates use decompositions of magic states into linear
combinations of stabilizer states and have a runtime that scales
polynomially in the complexity of the decomposition, either in
terms of the stabilizer rank or stabilizer extent [16]. Hence, better
stabilizer decompositions of magic states yield faster algorithms.
These decompositions are often obtained by writing the tensor
product of a small number of magic states (usually on the order
of 10 qubits) as linear combination of a slightly larger number of
stabilizer states [18, 45]. Therefore, if a classical simulation of our
algorithm could be made practical for (say) n ~ 15 qubits, there
is reason to believe that running this algorithm on magic states,
combined with a meta-algorithm such as matching pursuit [52],
could find better stabilizer decompositions of magic states and, as
a result, improve the runtime of near-Clifford simulation.

Finally, we remark that the problem we solve is similar in spirit to
the agnostic probably approximately correct (PAC) learning frame-
work [43, 62]. In the agnostic PAC model, a learner is given labeled
training data {(x1,y1), ..., (Xm, Ym)} from some unknown distribu-
tion D, as well as some concept class C to choose a hypothesis
from. The goal of the learner is to find a hypothesis function h € C
that approximates the best fit for the training data, even though
no function in C will necessarily fit the training data perfectly. In
an analogous fashion, our algorithm finds a stabilizer state |¢) that
approximates the best fit for [/) over the set of stabilizer states,
which need not contain |i/). We note that Aaronson studied PAC
learning of quantum states in the so-called realizable setting [1].
However, agnostic PAC learning of quantum states has not yet
appeared in the literature.

>We thank David Gosset (personal communication) for bringing this barrier to our
attention.

The polynomial sample complexity follows from a straightforward application of the
classical shadows framework [39]. See [32, Corollary 21] for a proof that there are

2
290"") many stabilizer states.
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Bounded-Distance Stabilizer Approximation. Although our stabilizer
state approximation algorithm significantly improves upon brute
force, it still requires exponential time in general. One might won-
der whether this exponential runtime is necessary. For example,
is it possible that finding stabilizer state approximations is com-
putationally hard, even for states whose distance to the nearest
stabilizer state is bounded by some small constant? A priori, this
might even be expected, because in other contexts, learning sta-
bilizer states with a constant rate of noise can be as hard as the
Learning Parities with Noise (LPN) problem [25, 38], which is be-
lieved to be hard. What if the stabilizer fidelity is large enough to
guarantee the existence of a unique closest stabilizer state? Our
third result shows that in this regime, a modification of the algo-
rithm from Theorem 1.2 is computationally efficient. In particular,
this modification works when the stabilizer fidelity is larger than
cos?(/8) ~ 0.8536, which is precisely threshold above which |¢/)
is guaranteed to have a unique closest stabilizer state.

THEOREM 1.3 (INFORMAL VERSION OF THEOREM 5.7). Fixy > 0.
There is an algorithm that, given copies of an n-qubit pure state |)
that has fidelity at least cos®(rr/8) + y with some stabilizer state |¢),

logn)

YZ
Note that, unlike Theorem 1.2, this algorithm finds the stabilizer
state |¢) witnessing the maximum fidelity Fg(|¢/)), rather than a
(possibly different) state witnessing fidelity Fs(|¢)) — e.

returns |§) with high probability. The algorithm uses O (n +

n?logn
2

copies of |y and O <n3 + > time.

Tolerant Stabilizer Testing. Our final result is a tolerant property test-
ing algorithm for stabilizer states. In the tolerant property testing
model [56], which generalizes ordinary property testing [24, 58], a
tester must accept objects that are at most ¢;-far from having some
property (“‘completeness”) and reject objects that are at least p-far
from having that same property (“soundness”) for 0 < ¢; < e3 < 1.
The standard property testing model is recovered when ¢; = 0,
and the relaxed completeness condition generally makes tolerant
testing a much harder problem. Nonetheless, the tolerant testing
model is natural to consider in certain error models, such as in the
presence of imprecise quantum gates.

Our result extends work by Gross, Nezami, and Walter [33],
who gave a property tester (hereafter, the “GNW algorithm”) for
stabilizer states. When combined with the prior work of [30], we
deduce the existence of a tolerant property testing algorithm for
stabilizer states. Our algorithm takes copies of an n-qubit quantum
state |/) and decides whether |¢) has stabilizer fidelity at least o
or at most ay, promised that one of these is the case. Note that we
have taken a1 := 1 — ¢1 and ay := 1 — & for notational simplicity.

THEOREM 1.4 (INFORMAL VERSION OF THEOREM 6.1). Fix a1, az €

6_
[0, 1] such that a < 21— Sagr,
algorithm that uses O(1/y?) copies of a quantum state |}, O(n/y?)
time, and decides whether |{) has stabilizer fidelity at least a; or at

most g, promised that one of these is the case.

There is an

, and definey = af -

While our algorithm does not work for all settings of ¢1 and e3—
giving such an algorithm is an open problem—our algorithm does
significantly improve over prior work. In Section 6.2, we compare
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the parameter regimes in which our algorithm works to the existing
literature and show those regimes visually in Fig. 1.

1.2 Our Techniques

The unifying tool in our work is Bell difference sampling, a measure-
ment primitive that has recently found applications in a variety of
algorithms related to stabilizer states [30, 33, 53]. We defer a full
definition of Bell difference sampling to Section 2.2, but note some
of its important properties here. Bell difference sampling involves
measuring pairs of qubits of [)®? in the Bell basis, repeating again
with |/)®2, and combining the measurements to interpret the result
as corresponding to an n-qubit Pauli operator. Overall, this con-
sumes four copies of |{/), though it only performs measurements
across two copies of |/) at a time. It will be most convenient to
parameterize the sampled Pauli operators by strings in F2", which
we do as follows. For x = (a,b) € F2", where a and b are the first
and last n bits of x, respectively, we define the Weyl operator Wy as

Wy = 90Xz @ .. @ X zbn,

Importantly for us, the Weyl operators form an orthogonal basis for
C2"%2" "and so they give rise to the Weyl expansion of a quantum

state |/) as

XU = o > Wl W,

2n
x€F;

For pure states, the squared coefficients in this expansion sum
to 1, and therefore form a distribution over F%". We denote this
distribution by py,(x) = 27" (/| W [¢)27

Gross, Nezami, and Walter [33] give an explicit form for the
distribution obtained by performing Bell difference sampling. In
particular, they showed that Bell difference sampling a quantum
pure state |i/) is equivalent to sampling from the following distri-
bution:

gpx) = Y pylapyla+x),
acFa"
i.e., the convolution of Py with itself. At a high level, we establish
our results by proving some structure on gy and py, for certain
quantum states.

Tight Pseudorandomness Bounds. To prove our lower bound on
the number of non-Clifford gates required to prepare pseudorandom
states, we give an algorithm that distinguishes Haar-random states
from quantum states prepared by circuits with fewer than n/2 non-
Clifford single-qubit gates. The key insight is that if |¢/) is the output
of such a circuit, then gy is concentrated on a proper subspace of
]P‘%", whereas for Haar-random states, qy is anticoncentrated on
all such subspaces with overwhelming probability over the Haar
measure. Proving these properties of gy, reveals a simple algorithm:
draw a linear number of samples from g, and compute the number
of linearly independent vectors in the sample. Haar-random states
will have 2n such vectors with high probability and, otherwise,
there will be strictly less than 2n such vectors.

"Here is an easy proof that py, is a distribution: 3, py (x) = X, 277 (| Wi ly)? =
tr(|Y Xy | X¢|) = 1, where the second step follows from using the Weyl expansion
of [¢/)
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Faster Stabilizer State Approximation. Our algorithms for stabi-
lizer approximation also rely on proving anticoncentration prop-
erties of qy. We begin by showing that if [{/) has large fidelity
with some stabilizer state |¢), then gy, is well-supported on the n-
dimensional subspace Weyl(|¢)) = {x € Fg” : Wy |@) = £|¢)} of
Weyl operators that stabilize |¢) (up to sign). Next, we establish that
if |¢) is the state that maximizes stabilizer fidelity, then the mass of
qy on Weyl(|$)) is not too concentrated on any proper subspace.
Hence, by sampling from gy, enough times, we can be guaranteed
that with high probability, Weyl(|¢)) will be generated by some sub-
set of the sampled Weyl operators. By iterating through all mutually
commuting subsets of the sampled Weyl operators, we compile a
list of candidate stabilizer states |¢) that must contain the fidelity-
maximizing |¢). Therefore, our algorithm reduces to estimating
the fidelity of |¢/) with each candidate |¢). We further improve the
time efficiency via an algorithm for finding maximal cliques, due to
[61], by observing that the candidate subsets must correspond to
maximal cliques in the graph of commutation relations.® We also
improve the sample complexity by using the classical shadows pro-
tocol [39] to estimate all of the fidelities with candidate states |@)
efficiently. For more details on these improvements, see Section 4.2.

Bounded-Distance Stabilizer Approximation. In the case where
stabilizer fidelity is bounded below by cos?(r/8), we follow the
same approach, but use a different and more efficient subroutine
for determining which of the sampled Weyl operators generate
Weyl(|$)). In particular, we show that there is a simple statistical
test for this purpose: if |[{(¢|/)|> > cos?(x/8), then for any x €
F2n, x € Weyl(|$)) if and only if (|Wx|y)?* > 1 (Corollary 5.4).
This allows us to eschew the maximal clique algorithm entirely,
and we instead directly estimate (1| Wy |i/)? to determine whether
Wy belongs to Weyl(|¢)). We further improve upon the sample
complexity of this subroutine by making use of an algorithm due
to Huang, Kueng, and Preskill [40] for estimating the expectation
of m different Weyl operators from only O(log m) samples.

Symplectic Fourier Analysis. An essential tool for proving the
above results is symplectic Fourier analysis, wherein the Fourier
transform over real-valued functions is defined with respect to the
symplectic product on F%”. To give a sense of the usefulness of
symplectic Fourier analysis in our work, we showcase two pow-
erful theorems whose proofs are symplectic-Fourier-analytic. In
what follows, for a subspace T C F%" identified with a set of Weyl
operators {Wy : x € T}, the subspace T+ denotes the set of Weyl
operators that commute with T.

THEOREM 1.5. LetT C F%" be a subspace, and let |{) be an n-qubit
quantum pure state. Then

S p@=11 S py)

aeT xeT+

and
Dlay@=1TI > pyx)*.
aeT xeT+

In words, Theorem 1.5 shows that py, and gy, exhibit a strong
duality property with respect to the commutation relations among

81Le., the graph whose edges connect nodes corresponding to commuting Weyl
operators.
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Weyl operators. In particular, the first part shows that the mass of
py on a subspace T of Weyl operators is directly proportional to
the mass on the subspace T+ of Weyl operators that commute with
T. Theorem 1.5 is especially powerful when the subspace T is very
large, because T and T+ always have inversely proportional size
(see Fact 2.4). Hence, using our duality theorems, we can convert
summations over high-dimensional subspaces into summations
over just a few terms.

Full Version. Due to space constraints, proof details and some
formal definitions have been omitted. These can be found in the
full version of this manuscript [29].

2 PRELIMINARIES

We introduce notation and background that is central to our work.
We write [n] := {1,...,n}. For x = (a,b) € IF"%", a and b always
denote the first and last n bits of x, respectively. For a probability
distribution D on a set S, we denote drawing a sample s € S
according to D by s ~ D. We denote drawing a sample s € §
uniformly at random by s ~ S. In an undirected graph G, a clique
is a complete subgraph of G. A maximal clique is a clique that is
not a proper subgraph of another clique. For quantum pure states
[¥), |4), let du(|¥), |¢)) = /1 — [{¢|¢}|? denote the trace distance
and F(|y), |¢)) = |{(¢/|¢)|? denote the fidelity.

The n-qubit Pauli group Py, is the set {+1, +i} X {[ X, Y, zyen
where I, X, Y, Z are the standard Pauli matrices. We refer to unitary
transformations in the Clifford group as Clifford circuits (equiv-
alently, Clifford circuits are quantum circuits comprised only of
Clifford gates, namely, the Hadamard, Phase, and CNOT gates). Clif-
ford gates with the addition of any single-qubit non-Clifford gate
form a universal gate set. The T-gate is often the non-Clifford gate
of choice, where the T-gate is defined by T = [0X0] + e/ 1(1].
We denote the set of n-qubit stabilizer states by S;,. One way to mea-
sure the “stabilizer complexity” of a quantum state is the stabilizer

fidelity.

Definition 2.1 (Stabilizer fidelity, [16, Definition 4]). Suppose |/)
is a pure n-qubit state. The stabilizer fidelity of |{), denoted Fg, is

‘=  max 2
Fs(l9)) = |¢>élsnl<§15|l//>| :

2.1 Symplectic Vector Spaces

We work extensively with ]F%" as a symplectic vector space by
equipping it with the symplectic product.

Definition 2.2 (Symplectic product). For x,y € F2", we define
the symplectic product as [x,y] = x1 - Yn+1 + X2 - Ynt2 + ... + Xp -
Yon + Xn+1 - Y1 + Xn+2 - Y2 + ... + X2p - yYn, Where all operations are
performed over Fj.

The symplectic product gives rise to the notion of a symplectic
complement, much like the orthogonal complement for the standard
inner product.

Definition 2.3 (Symplectic complement). Let T C Fg" be a sub-
space. The symplectic complement of T, denoted by T+, is defined
by

Tt = {aeF¥" :Vx T, [x,a] = 0}.

1356

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

We present the following useful facts about the symplectic com-
plement, many of which are similar to that of the more familiar
orthogonal complement.

Fact 2.4. Let S and T be subspaces ofF%”. Then:

o T+ is a subspace.

o (TH:=T.

o |T|-|T*| = 4", or equivalently dim T + dim T+ = 2n.
eTCS & StcTt.

A subspace T C IF%" is isotropic when for all x,y € T, [x,y] = 0.
A subspace T C Fg” is Lagrangian when T+ = T. Lagrangian
subspaces can equivalently be defined as isotropic subspaces with
dimension n.

Many of our proofs (which are omitted from this version) use
symplectic Fourier analysis, which is similar to Boolean Fourier
analysis (see e.g., [55]), except the Fourier characters are defined
with respect to the symplectic product.

2.2 Weyl Operators and Bell Difference
Sampling
For x = (a,b) € F2n_ the Weyl operator Wy is defined as

Wy = i€V (x b g - @ (X ZPn),

where a’,b’ € Z" are the embeddings of a, b into Z". Each Weyl
operator is a Pauli operator, and every Pauli operator is a Weyl
operator up to a phase. Because the Clifford group normalizes the
Pauli group, Clifford circuits induce an action on IF"%" by conjugation
of the corresponding Weyl operators (up to phase). That is, for every
Clifford circuit C and x € F%", there exists a unique y € IF%" and
phase @ € {+1} such that CW,CT = aWy. In a slight abuse of
notation, we denote this action on ]P‘%" by C(x) = y.

There is clearly a bijection between ]F%" and the set of Weyl
operators, so any subset of IF%” corresponds to a subset of Weyl
operators. Importantly, commutation relations between Weyl oper-
ators are determined by the symplectic product. In particular, for
X,y € Fg", the Weyl operators Wy, Wy commute when [x,y] =0
and anticommute when [x,y] = 1. So, if T C ]F%” is a subspace,
then T is isotropic if and only if {Wy : x € T} is a set of mutually
commuting Weyl operators. Similarly, T is Lagrangian if and only
if {Wx : x € T} is a set of 2" mutually commuting Weyl operators.

Definition 2.5 (Unsigned stabilizer group). Let Weyl(|{)) = {x €
]F%" : Wy [¢) = £ |§/) } denote the unsigned stabilizer group of |).

It is not hard to show that, as a consequence of the uncer-
tainty principle, Weyl(|’)) is an isotropic subspace of IF%”. Addi-
tionally, if T C ]Fg" is a Lagrangian subspace, then the set of states
{l@) : Weyl(|p)) = T} forms an orthonormal basis of the n-qubit
Hilbert space. Moreover, since each basis state |¢) is stabilized by
2" Weyl operators (up to phase), every basis state is a stabilizer
state. Conversely, observe that for any stabilizer state |@), Weyl(|¢))
is a Lagrangian subspace.

We now define a new stabilizer complexity measure based on
the unsigned stabilizer group.
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Definition 2.6 (Stabilizer dimension). Let |i/) be an n-qubit pure
state. The stabilizer dimension of |{) is the dimension of Weyl(|}/))
as a subspace of ]F%",g

The stabilizer dimension of a stabilizer state is n, which is maxi-
mal, and, for most states, the stabilizer dimension is 0.

The Weyl operators collectively form an orthogonal basis for
2" x 2" matrices with respect to the inner product (4, B) = tr(A"B).
This gives rise to the so-called Weyl expansion of a quantum state.

Definition 2.7 (Weyl expansion). Let |¢) € C?" be an n-qubit
quantum pure state. The Weyl expansion of |¢/) is

1
WXy = — ZF ¢y (X)W,
where CI//(X) = \/% (YW |p).

Squaring the ¢y (x)’s gives rise to a distribution over IF"%” and
therefore over the Weyl operators (see Footnote 7 for a proof). We
denote this distribution by py(x) = cw(x)2 and refer to it as the
characteristic distribution. Note that, for all x, p,(x) € [0,27"].

A significant algorithmic primitive in our work is Bell difference
sampling [33, 53]. Let |®*) = %. Then, the set of quantum

states {|Wyx) = (W, ®I)|d) : x € F%} forms an orthonormal basis
of C? ® C?, which we call the Bell basis. Bell difference sampling an
n-qubit state |¢/) just means the following. First, take two copies of
a pure state |1). Take the first qubit in each copy and measure them
in the Bell basis. Repeat this for each remaining pair of qubits. Let
(ai, b;) denote the two-bit measurement outcome from measuring
the ith pair of qubits. Then, we denote the measurement outcome on
the two copiesby x = (a1, ...,an, b1,...,bp) € F%”. Repeat this once
more with two fresh copies of |¢/) to obtain a string y € F%”. Finally,
output x + y.!° Historically, Bell difference sampling has found use
in algorithms for stabilizer states. However, Gross, Nezami, and
Walter proved that Bell difference sampling is meaningful for all
quantum states.

Lemma 2.8 (Bell difference sampling, [33, Theorem 3.2]). Let|)/) be
an arbitrary n-qubit pure state. Bell difference sampling corresponds
to drawing a sample from the following distribution:

qy(x) = 4"y * py)) = D py@pylx +),
yeFan

and uses four copies of [i). We refer to qy (x) as the Weyl distribution.

3 PSEUDORANDOMNESS LOWER BOUNDS

We prove that the output state of any Clifford circuit augmented
with fewer than n/2 non-Clifford single-qubit gates can be effi-
ciently distinguished from Haar random.!! As a result, any circuit
family that prepares an ensemble of n-qubit pseudorandom quan-
tum states must use at least Q(n) non-Clifford single-qubit gates.

9The stabilizer dimension is closely related to the stabilizer nullity [12] (in fact, for
n-qubit states, the stabilizer dimension is simply # minus the stabilizer nullity).
1Even when |} is a stabilizer stabilizer state, measuring two copies of |¢/) in the Bell
basis returns x € F2" with probability py (x +a), where a € F2" is an unwanted shift.
Bell difference sampling essentially cancels out this unwanted shift a. See [33, 53] for
more detail.

11f we fix the non-Clifford gate to be a T-gate, then n/2 can be improved to n.
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The key idea is that Haar-random states have minimal stabilizer
dimension (Definition 2.6) with overwhelming probability. By con-
trast, for a quantum circuit that acts on a stabilizer state (which
has stabilizer dimension n), each single-qubit non-Clifford gate
decreases the stabilizer dimension by at most 2.

We introduce the following definition to simplify the exposition,
borrowing terminology from [51].

Definition 3.1 (t-doped Clifford circuits). A ¢-doped Clifford cir-
cuit is a quantum circuit comprised only of Clifford gates (i.e.,
Hadamard, Phase, and CNOT) and at most ¢ single-qubit non-
Clifford gates that starts in the state |0™).

3.1 Quantum Circuits With Few Non-Clifford
Gates

To begin, we show that the output state |/) of a t-doped Clifford

circuit, where ¢ < n/2, induces a distribution gy, that is supported

over a subspace of dimension at most 2n — 2.

Lemma 3.2. Let |{/) be the output state of a t-doped Clifford circuit.
Then the stabilizer dimension of |{) is at least n — 2t.

We remark that the stabilizer dimension lower bound in Lemma 3.2
can be improved to n — t in the case that all of the non-Clifford
gates are diagonal (for example, if all of the non-Clifford gates are
T-gates). This is because diagonal gates commute with both I and
Z.

Lemma 3.3. The supports of py, and q, are contained in Weyl(|))*.

Corollary 3.4. Let |) be the output state of a t-doped Clifford
circuit. Then the support of qy, is a subspace of dimension at most
n+ 2t.

3.2 Anticoncentration of Haar-Random States

Now we show that if |/) is Haar-random, then gy, is well-supported
over the entirety of IF%” in the sense that every proper subspace of
Fg" contains a bounded fraction of the g, mass. This implies that

sampling from gy, gives 2n linearly independent elements of F%"
after a reasonable number of iterations.

We first require the following lemma, which shows that the Weyl
measurements are concentrated around 0. Proved in [30], this is a
consequence of Lévy’s lemma.

Lemma 3.5 ([30, Corollary 22]). Let |{) be a Haar-random n-qubit
state. Then

Combining with the fact (Theorem 1.5) that the gy mass on a sub-

2"82
3673

Pr{3x # 0: [(Y[Waly)| = e] < 2" exp (—

space is proportional to its p2 mass on the symplectic complement,
we obtain the following.

Lemma 3.6. Let |/) be a Haar-random n-qubit state. Then all sub-
spaces T C Fg” of dimension 2n — 1 simultaneously satisfy

Z qy(x) < %

xeT
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except with probability at most
2n
22n+1 exp (_

o)

3.3 Distinguishing From Haar-Random

We are now ready to state and analyze our algorithm that, given
copies of |¢), efficiently distinguishes whether [|¢/) is (i) Haar-
random or (ii) a state prepared by a (n/2 — 1)-doped Clifford circuit,
promised that one of these is the case.

While the analysis is not so trivial, the algorithm itself is straight-
forward: Bell difference sample O(n) times, and, with high probabil-
ity, we will have a set of Weyl operators that span IF’%” when |{) is
Haar-random. On the other hand, if |¢/) is the output of an t-doped
Clifford circuit, for ¢ < n/2, this can never happen because gy is
supported on a subspace of dimension at most n + 2t (which we
proved in Corollary 3.4).

Algorithm 1: Distinguishing output of an (n/2 — 1)-doped
Clifford circuit from Haar-Random
Input: 24n + 18 log(2/6) copies of |¢/)
Promise:|{/) is Haar-random or the output of an
(n/2 — 1)-doped Clifford circuit
Output: 0 if |/) is Haar-random and 1 otherwise, with
probability at least 1 — &

Letm = 6n+ %10g(2/5)
LetT ={}
repeat m times

Perform Bell difference sampling to obtain x € Fg"
AddxtoT
Compute the dimension d of the span of T using Gaussian

elimination.
return 0 ifd = 2n and 1 otherwise.

[

ww

w

a

=

To prove the correctness of Algorithm 1, we need the following
lemma.

Lemma 3.7. Let |{/) be an n-qubit Haar-random quantum state and
fix 8 > 0. Taking 6n + g log(2/6) samples from qy, suffices to sample
2n linearly independent elements ongn with probability at least 1 -8
over both the Haar measure and the sampling process.

THEOREM 3.8. Algorithm 1 succeeds with probability at least 1 —
8, and it uses O(n + log(1/8)) copies of the input state and O(n> +
n?log(1/6)) time.

Our distinguishing algorithm immediately implies a lower bound
on the number of non-Clifford gates needed to prepare computa-
tionally pseudorandom quantum states.

Corollary 3.9. Any family of t-doped Clifford circuits that produces
an ensemble of n-qubit computationally pseudorandom quantum
states must satisfy t > n/2.

Note that this lower bound can be improved by a factor of 2
in the special case that all of the non-Clifford gates are diagonal
(e.g. T-gates), because of the improved lower bound on stabilizer
dimension in Lemma 3.2 for this case.
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Corollary 3.10. Any family of Clifford+T circuits that produces an
ensemble of n-qubit computationally pseudorandom quantum states
must use at least n T-gates.

4 STABILIZER STATE APPROXIMATIONS

We state and analyze our algorithm that, given copies of an n-qubit
quantum pure state |/) that has stabilizer fidelity at least 7, outputs
a succinct description of a stabilizer state that witnesses fidelity at
least 7 — ¢.

Our presentation is split into two parts. First, in Section 4.1, we
prove a useful lemma regarding gy on S* = Weyl(|¢)), where |¢)
is the stabilizer state that maximizes stabilizer fidelity with |¢/). At
a high level, we argue that any sample from gy has a good enough
chance of “making progress” towards learning a complete set of
generators for S*. Formally, we prove that the g, -mass on S* is not
heavily concentrated on proper subspaces of S*, so that when we
sample an element of $*, we obtain an element of S* that is linearly
independent of the previous samples with a reasonable probability.
Second, in Section 4.2, we state our algorithm, prove its correctness,
and analyze its sample and time complexities.

4.1 Bell Difference Sampling Makes Progress

The next lemma gives a way to argue that in many of our proofs,
we can suppose without loss of generality that |0") maximizes
stabilizer fidelity.

Lemma 4.1. Given an n-qubit stabilizer state |{), let S = Weyl(|¢))
be its unsigned stabilizer group, and let T C S be a subspace of
dimension n—t. Then there exists a Clifford circuit C such that C |¢) =
0™), C(S) = 0" X F}}, and C(T) = 0"*! x Fj =t

Now, we show that the py-mass on S* is bounded below by the
squared stabilizer fidelity of |¢}).

Lemma 4.2. Given an n-qubit state |), let |¢) be a stabilizer state
that maximizes the stabilizer fidelity, and let S* = Weyl(|$)). Then

> py) = Fs(y))?.

xeS*

We can generalize this result to arbitrary subspaces of S*.

Corollary 4.3. Given an n-qubit state |/), let |) be a stabilizer
state that maximizes the stabilizer fidelity, and let S* = Weyl(|¢)).
Let T C S* be a subspace of S*. Then

> pyx) —Fs(ll//>)2
x€T
Now we show a series of anticoncentration lemmas on proper
subspaces of S*. For these next lemmas, we will find it more conve-
nient to assume without loss of generality (because of Lemma 4.1)
that the state maximizing fidelity is |0"), which conceptually sim-
plifies the computations.

Lemma 4.4. Let|y) be an n-qubit state. Suppose the fidelity |(i/|¢)|?
is maximized by |§) = |0™) over stabilizer states |¢). Let S* = 0™ X
F} = Weyl(|0")), and let T = 0™+ x Fg‘_l be a maximal subspace of
S*. Then

eyl 2 287 (V- 1) Es()).

xeS*\T
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Lemma 4.5. Given an n-qubit state | ), let |§) be a stabilizer state
that maximizes the stabilizer fidelity, and let S* = Weyl(|¢)). Let
T C S* be a proper subspace of S*. Then

Z qy(x) = 2=

x€S\T 2

Fs(ly)*.

4.2 The Algorithm

Our algorithm for stabilizer state approximations uses the powerful
classical shadows framework [39] to improve its sample complexity.

THEOREM 4.6 (CLASSICAL SHADOWS ALGORITHM [39]). Let p be
an unknown n-qubit mixed state. Then there exists a quantum algo-
rithm that first performs mgpadow = O(log(K/8)/€%) random Clifford
measurements on independent copies of p. Then, later given K differ-
ent observables O1, Oy, . .., Ok in an online fashion, where each O;
is a rank-1 projector, the algorithm uses the measurement results to
output estimates 01, . .., 0k, such that with probability at least 1 — &,
foreveryi € [K], |0; —tr(O;p)| < e. Moreover, if O; is a projector onto
a stabilizer state, then each 0; can be computed from the measurement
results by a classical algorithm that takes time O(n® mgpadow)-

For the “moreover” part of Theorem 4.6, see the remarks on Page
1053 of [39].12

We also require an algorithm, due to [61], for computing all of
the maximal cliques in a graph.

THEOREM 4.7 (COMPUTING MAXIMAL CLIQUES [61]). Given an
undirected graph G with n vertices, there is a classical algorithm that
outputs a list of all of the maximal cliques in G in time O(3™/3).

Note that this implies that the number of maximal cliques is at
most O(3™/3).

We are now ready to describe the stabilizer state approximation
algorithm. At a high level, it uses Bell difference sampling to obtain
a list of candidate Lagrangian subspaces generated by the sampled
Weyl operators. Then, it iterates through the candidate groups to
find the stabilizer state with largest fidelity, using classical shadows
to perform the estimation.

We first argue that with high probability, one of the maximal
cliques generates the Lagrangian subspace corresponding to a state
that maximizes stabilizer fidelity.

Lemma 4.8. Given an n-qubit state | ), let |p) be a stabilizer state
that maximizes the stabilizer fidelity, and let S* = Weyl(|¢)). Sup-

pose [{p|¥)|? = . Then choosing Melique = 8+;{?/g(n +log(1/9)) is
sufficient to guarantee that with probability at least 1 — 6, the Bell
difference sampling step of Algorithm 2 samples a complete set of

generators for S*.

Now we have everything needed to prove the correctness of
Algorithm 2.

THEOREM 4.9. Let |) be an n-qubit state with Fs(|y)) > 7. Then
choosing

12This is page 1053 of Nature Physics Volume 16. Alternatively, see page 5 of the arXiv
version.

8 +4V3
T4

n +log(1/6)

Mclique = 5 4

(n+10g(2/6)) Mshadow = O (

E°T
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Algorithm 2: Stabilizer State Approximation

Input: mghadow + 4Mclique COpies of [y/)
Promise:|/) has stabilizer fidelity at least ¢
Output: A stabilizer state |¢) such that
[{p¥)|? = Fs(|y)) — e with probability at least
1-6
1 Initialize an empty graph G
2 repeat m|jque times
Using 4 copies of |¢), perform Bell difference sampling
to obtain x € Fg”
Add a vertex for x in G and connect it to all vertices y in
G such that [x,y] = 0.

5 repeat mgph,4ow times
Choose a random Clifford circuit U

3

6
Measure U |¢) in the computational basis and store the
result
s foreach maximal clique (vy, . .
Theorem 4.7 do
Compute S := (vy, ..
if |S| = 2" then
foreach stabilizer state |p) with Weyl(|¢)) = S do
L Let 04 be the estimator of |(/|$)]? computed

using the algorithm in Theorem 4.6
13 return whichever |¢) maximizes 04

7
.,0x) € G computed using

., Ug) via Gaussian elimination
10
11
12

suffices to guarantee that with probability at least 1 — §, Algorithm 2
outputs a state |p) satisfying |(¢|¢)|? = Fs(|¢)) — ¢ and it uses

(0] (—n+1°g(1/5)) samples and exp (O (—n+lo§:1/5) ))

5 BOUNDED-DISTANCE STABILIZER
APPROXIMATION

We present an efficient algorithm that, given copies of a quantum
state |i/) that has fidelity at least cos? (1/8)+y with a stabilizer state
|¢), outputs |@#) with high probability. We note that this algorithm
solves the same task as Algorithm 2, but with the difference that it
only works for 7 > cos?(1/8).

We start by bounding the squared expectation of Weyl operators
in the unsigned stabilizer group of |¢).

1 .
Tz time.

Proposition 5.1. Let |¢) be an n-qubit quantum state that has
fidelity T with a stabilizer state |¢p), where t > 1/2. If x € Weyl(|¢)),
then (Y|Wy|$)? > (2r — 1).

If an operator is not in |$)’s unsigned stabilizer group, then it
must anticommute with at least half of the Pauli operators in that
group. The uncertainty principle states that the expectation of these
operators must be small, since the expectation of the operators in
Weyl(|¢)) is large. To show this formally, we use the Schréodinger
uncertainty relation.
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Fact 5.2 (Schrodinger uncertainty relation [7, 59]). For a quantum
state /) and observables A and B,

(W14%1y) = WA ) (WIBIY) - (¥1BIYY? )
2
> .

% (Y1 (AB+BA) ) - (YIA[Y) (YIBlY)

Proposition 5.3. Let |{/) be an n-qubit quantum state that has
fidelity T with a stabilizer state |¢), where T > 1/2. If y ¢ Weyl(|¢)),
then

2
YIWyly)* < 42(1 - 1).
Proposition 5.1 and Proposition 5.3 suggest that we can de-
termine whether a given Pauli operator is in the unsigned sta-

bilizer group only from its squared expectation as long as, for all
y ¢ Weyl(|$)) and for all x € Weyl(|¢)),

WIWy )2 < PIWily)?,

which happens only when 47(1-7) < (27-1)*> & cos*(n/8) < .
However, we must also take into account the fact that we cannot
know the squared expectations exactly. Rather, we can only recover
them to some +O(y) accuracy, which in turn implies that 7 must
be at least cos?(r/8) + y for some y > 0. We formalize this in the
following corollary.

Corollary 5.4. Let /) be an n-qubit quantum state that has fidelity
cos?(/8) + y with a stabilizer state |¢) for somey > 0. Then for all
y ¢ Weyl(|¢)) and all x € Weyl(|¢)),

1 1
YWy |)? > 3t 4y +2\2y > T 2V2y,

and
Wlwyly)?

A noteworthy consequence of Corollary 5.4 is that the state |@)
must be unique:

Corollary 5.5. If |/} has fidelity at least cos?(x/8) + y with a stabi-
lizer state |¢p) for somey > 0, then |§) must be unique.

Observe that the threshold cos?(r/8) in Corollary 5.5 is tight,
because cos(r/8) |0) + sin(r/8) |1) has fidelity cos?(r/8) with both
0y and |+) = 12510,

5.1 The Algorithm

We now state and analyze our algorithm. Corollary 5.4—which is
the starting point of our algorithm—implies that, based only on the
squared expectation of a Weyl operator, we can decide whether
nor not it is in Weyl(|¢)), where |¢) is the stabilizer state that has
fidelity at least cos?(r/8) + y with the input state |/) . At a high
level, there are two missing pieces to complete our algorithm.

First, we need to find a polynomial-size list of Weyl operators
that is guaranteed to contain a list of generators of Weyl(|¢)). By
Lemma 4.8, we can achieve this by Bell difference sampling re-
peatedly from Weyl(|¢)). Second, we must estimate the squared
expectations of the Weyl operators we sample. One way to do so
is by naively measuring each Weyl operator repeatedly, one at a
time. However, an algorithm due to Huang, Kueng, and Preskill
[40] achieves a better runtime, letting us estimate the squared ex-
pectation value of many Weyl operators with only a logarithmic
sample complexity.

1 1
S§—4y2—2\/§y<5—2\/§y.
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THEOREM 5.6 ([40, PROOF OF THEOREM 4]). Given any m Weyl
operators Py, . . ., Py, and copies of an unknown pure state |), there is
an algorithm that estimates (/|P;|y)? to ¢ accuracy with probability
at least 1 — § by performing Bell measurements on

4log(2m/d)
&2
copies of the unknown state |). The time it takes is

(0] (n m- —log (m/5)> .

&2
Putting the pieces together, our algorithm works as follows.

Algorithm 3: Bounded-Distance Stabilizer Approximation

Input: O (n + log(r;/ 5)> copies of |{)

Y
Promise: /) has fidelity at least cos?(/8) + y with a
stabilizer state |¢)
Output: |¢p) with probability at least 1 — §

. j;;‘éﬁg) (n +10g(3/6)).

2 Bell difference sample m times to obtain x1,...,x,; € ]Fg”.

3 Using the algorithm in Theorem 5.6, estimate (/| Wy, )2
for each i to accuracy +2V2y with failure probability at
most §/3.

4 Discard any x;’s for which the estimate of (/| Wy, [9)? is less
than % Let S be the subspace spanned by the remaining
samples. If S is not Lagrangian, then output “FAILURE”.
Otherwise, find a Clifford circuit that measures in the
stabilizer basis induced by S.

5 Measure 4log(3/9) copies of |/) in the stabilizer basis
induced by S and output the majority result.

1 Letm =

THEOREM 5.7. Let |{) be an n-qubit state with fidelity at least
cos?(/8) + y with a stabilizer state |§) fory > 0. Given

log(n/d)
o <n + /2 )
copies of |{) and
o (n3 . n?log(n/8) + nlog®(1/8)

et

time, Algorithm 3 outputs |¢) with probability at least 1 — §.

6 TOLERANT PROPERTY TESTING OF
STABILIZER STATES

We collect (and give alternative proofs of) a few results related to
the property testing algorithm for stabilizer states due to Gross,
Nezami, and Walter [33] (hereafter, the “GNW algorithm”). We
combine these results with the prior work of [27] to give a tolerant
property testing algorithm for stabilizer states. By tolerant property
testing, we mean that the tester must accept inputs that are &;-
close to having some property and reject inputs that are e;-far from
having the same property. This is more general than the standard
setting where ¢7 is set to 0.

The following two remarks are important for understanding the
extent of our contribution. First, our algorithm is similar to the
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algorithm given in [30]'? that distinguishes Haar-random states
from quantum states with at least 1/poly(n) stabilizer fidelity. Sec-
ond, we note that our algorithm only works in certain parameter
regimes, not for all sensible settings of £ and ¢;. This is discussed
further in Section 6.2.

To explain our property testing model in more detail, we are
testing whether or not a quantum state is close to a stabilizer state,
where distance is measured with fidelity. Specifically, we are given
copies of an n-qubit quantum pure state |/) as input, and we must
decide whether Fg(|/)) > 1—¢1 or Fg(|¢/)) < 1— &2, promised that
one of them is the case.

6.1 The Algorithm
Prior work [30, 33] has established that for all quantum states |¢/),

4n -1
T < Fs(ly) < 7'l

To simplify notation, let @; := 1 —¢1 and ap := 1 — £3. Observe that
if Fs(ly) > a1 then ) > a8, and if F5(|§))) < a then p < 3%+,
This is the basis of our testing algorithm. Specifically, as long as
s 3dax+1 1
ay - —— > —,
4 poly(n)

then we can efficiently distinguish the two cases simply by estimat-
ing n. For the remainder of this section, define
b 3a2 + 1
yEa - — —

Our algorithm is stated in Algorithm 4.

Algorithm 4: Tolerant Property Testing of Stabilizer States

Input: 48 log(2/8)/y? copies of |¢/)

Promise : Either case (i): Fs(|y)) > a3 or case (ii):
Fs(l¥)) < ag, for a1, az € [0,1] such that y > 0

Output: 1 if case (i) holds and 0 if case (ii) holds, with

probability at least 1 — §
_ 8log(2/5)
==

1 Letm

repeat m times
Perform Bell difference sampling to obtain Wx ~ qy.
Perform the measurement W2 on |1/)®2. Let X; € {+1}
denote the measurement outcome.
Set7=-1 ¥, X;. Output 1if 7 > af - ¥ and 0 otherwise.

THEOREM 6.1. Fory > 0, Algorithm 4 is correct and it uses
481log(2/8)/y? copies of the input state, O(nlog(1/8)/y?) time, and
succeeds with probability at least 1 — 6.

6.2 Parameter Regime Discussion

We conclude this section by studying the regime in which our
tolerant testing algorithm works in comparison to prior work. The
GNW algorithm already implicitly functions as a tolerant property
tester: because it uses 6 copies of |{) and accepts any stabilizer

3Which is itself a repeated application of the base GNW algorithm, for the purposes
of error amplification.
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Figure 1: The shaded regions indicate the parameter regimes
of a1 and o, that are permissible by the analysis of the GNW
algorithm in Section 6.2 (orange) and Algorithm 4 (blue).
Thus, the difference between the orange and blue regions
illustrates the improvement due to the upper bound Fg(|y)) <
n'/¢ from [30].

state with probability 1, if the trace distance between |¢/) and some
stabilizer state is at most ¢, then the test accepts |¢) with probability
at least 1 — 6¢. We can use this observation to establish the values
of a1 and a in which repeated applications of the GNW algorithm
works, given only the soundness analysis of [33] but not applying
the completeness bound of [30].

Let paccept denote the acceptance probability of the GNW algo-
rithm. It is easy to show that n = 2paccept — 1 (see [33, Page 19]).
As mentioned above, [33] proved that for any quantum state |),
% < Fg(|¢)). Additionally, since the GNW algorithm uses 6
copies of the input state and accepts stabilizer states with proba-
bility 1, it follows that 1 — 61/1 — Fg(|¢/)) < paccept. Where we are
using the fact that the trace distance between |/) and the stabilizer

state maximizing fidelity is 4/1 — Fg(|¢/)). Finally, using the fact
that 7 = 2paccept — 1, we get Fg(|¢)) < ﬁ(zﬂ —n? +143).

In a “yes” instance, where we are promised that Fg(|/)) > a1,
we have the inequality ﬁ(Zr] — % +143) > ;. Solving for 7
gives § > 1 — 124/1 — ;. Similarly, in a “no” instance, where we
are promised that Fg(|/)) < az, we have n < (3az + 1)/4. Hence,
following the same argument as in Section 6.1, the GNW algorithm
tolerantly tests stabilizer states as long as:

3a2 +1
1-12Vi—a; > 24 ,
whereas, as shown earlier, our algorithm works as long as
6 daz+1
a; > ———.

1 4

This is a significant improvement, which is shown visually in Fig. 1.
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7 DISCUSSION AND OPEN PROBLEMS

A natural direction for future work is to improve the performance
of our algorithms or to prove (conditional or unconditional) lower
bounds. In particular, can the exponential running time of Algo-
rithm 2 be improved upon, or is stabilizer state approximation
computationally hard for general parameter regimes? We are opti-
mistic that the exponential factors in our runtime analysis could be
made much smaller in practice, because our bound on the sample
complexity of finding a complete set of generators is probably far
from optimal.

We also remark that, at least superficially, our problem of finding
the nearest stabilizer state resembles the closest vector problem
(CVP): given a lattice L and a target vector, find the nearest lattice
point to the target vector. In our problem, we are given a target
vector, and we want to find the nearest stabilizer state to the target
vector. While not a lattice, the stabilizer states are “evenly spread”
across the complex unit sphere due to their 3-design property [48,
65, 66]. CVP is known to be NP-hard to solve approximately to
within any constant and some almost-polynomial factors [9, 22, 63].
Is there a formal connection between these two problems?

Can tighter bounds between 7 and stabilizer fidelity be proven?
In [30, Appendix B], the authors prove that one can hope for at
most a roughly quadratic improvement in the bound Fg(|y/))® < 7.
In addition to 7, are there other statistics related to stabilizer fidelity
(or any other stabilizer complexity measure) that can be estimated
efficiently? Progress in this direction would extend the parameter
regimes for which our property testing algorithm works (see Fig. 1).

One can view the output of Algorithm 2 as an approximation of
the input state by a nearby stabilizer state. Following this theme,
a natural objective is to design similar approximation algorithms
relative to other classes of quantum states such as product states
or matchgate states. We note that it is even open to design a time-
efficient algorithm that, given copies of an n-qubit quantum state,
outputs the nearest state from the set {|0), |1}, [+), |=), i), [=i)}®™,
which is a subset of stabilizer states. In addition to potentially
improving Clifford+T simulation algorithms (as discussed in Sec-
tion 1.1), are there other applications for these types of state ap-
proximation algorithms?
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