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1. Introduction

Background. In the circuit model of quantum computing, algorithms frequently use
controlled gates. A gate is a unitary matrix and a controlled gate is a particular form of
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unitary matrix. We will focus on controlled gates that operate on three qubits by using
two of the qubits as controls and the third qubit as the target. We will write such a gate
as CC(U), where U is a 1-qubit unitary matrix. A well-known example is the Toffoli gate,
CC(X), where X is one of the Pauli gates.

Most quantum computers have no hardware implementation of gates that operate on
three qubits. Instead, most quantum computers must implement such gates using gates
that operate on one or two qubits. In such implementations, an important goal is to use
as few 2-qubit gates as possible to reduce both computation time and error. The reason
is that 2-qubit gates are slower and less reliable than 1-qubit gates on current quantum
computers.

How many 2-qubit gates do we need to implement CC(U)? Turns out that for many
such gates, five 2-qubit gates are necessary [3,4] and sufficient [2,1]. Indeed, the paper
[4] shows that at most four 2-qubit gates are sufficient for implementing CC(U) if and
only if either the eigenvalues of U are equal or det(U) = 1. For example, for the Toffoli
gate CC(X), the eigenvalues of X are different and det(X) = —1 # 1. So, five 2-qubit
gates are necessary for implementing the Toffoli gate. In contrast, if the eigenvalues of
U are equal, then a single 2-qubit gate is sufficient for implementing CC(U). Also, if
det(U) = 1, then four 2-qubit gates are sufficient for implementing CC(U).

The published proof of the theorem is a total of four pages, divided across two papers
[3,4] that introduce and combine many ideas in a high-level manner. The purpose of
this note is to give a more detailed proof with the following three benefits. First, we
provide detailed explanations of many steps that the original proof outlined at a high
level. We provide those explanations in the appendix, as proofs of many lemmas. Second,
we clarify where the proof about CC(U) uses the assumptions about U, which is in three
specific lemmas. The original proof left this point largely implicit. Third, we use simpler
reasoning, as we outline below.

Overview of the proof. The main result is Corollary 7.5, which characterizes the number
of two-qubit gates that is necessary for implementing CC(U). The proof has structure
that we illustrate in Fig. 1 and that we outline here, starting at the top of Fig. 1.

The proof of Corollary 7.5 uses the Spectral Theorem to diagonalize CC(U). This
reduces the task of proving Corollary 7.5 to the task of proving Theorem 7.4, which
characterizes the number of two-qubit gates that is necessary for implementing the matrix
CC(Diag(ug, u1)). Specifically, Theorem 7.4 says that this number of two-qubit gates is
at most four if and only if either ug = w1 or ugu; = 1. The matrix CC(Diag(ug,u1))
is a diagonal matrix, which simplifies the task of managing the large number of cases
that arise in the proof. So, the proof of Theorem 7.4 uses a case analysis to show that a
couple of cases capture everything. This reduces the task of proving Theorem 7.4 to the
task of proving Lemma 5.1 and Lemma 6.4.

Lemma 5.1 and Lemma 6.4 are microcosms of the main result: each one characterizes
whether a particular kind of product of four 2-qubit gates implements CC(Diag(ug, u1)).
Specifically, Lemma 5.1 talks about a product of four 2-qubit gates that operate, in order,
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Corollary 7.5

|

use a property of CC(Diag(ug, u1)) to get a property of CC(U)

|

Theorem 7.4
use the first main lemma use the second main lemma
4@& 5.1 Lemma 6.4

use building block use building block

[Lemma 4.1 ] [Lemma 4.2 ] [Lemma 4.3 H Lemma 4.4 \

the eigenvalues are restricted

Lemma 3.1 Lemma 3.3

Fig. 1. Proof structure.

on qubits BC, AB, AC, BC, where A and B are the control qubits and C' is the target
qubit. Similarly, Lemma 6.4 talks about a product of four 2-qubit gates that operate, in
order, on qubits BC, AC, BC, AC'. In both cases, the lemma states that there exists a
product that is equal to CC(Diag(ug,u1)) if and only if either ug = u; or ugu; = 1.
The proofs of the right-to-left directions of Lemma 5.1 and Lemma 6.4 are short and
exhibit particular matrix products that are equal to CC(Diag(ug,u1)). The proofs of
the left-to-right directions are longer and more complex. Each of those proofs begins
by assuming that a particular product equals CC(Diag(ug,u1)) and proceeds to use the
following three ideas. The first idea is to observe that in a product of four 2-qubit gates
that equals CC(Diag(ug, u1)), some of those gates must be controlled gates. The second
idea is to use the observations about controlled gates to calculate the product in more
detail. The third idea is to observe that the more detailed product leads to restrictions
on ug and ui. Those observations are made using four key building blocks, provided by
Lemmas 4.1, 4.2, 4.3, 4.4, which, in turn, we prove using Lemma 3.2 and Lemma 3.3.
The bottom layer of the proof consists of Lemmas 3.1, 3.2, 3.3, which are the ones
whose proofs use the assumptions about ug and w; in CC(Diag(ug,u1)). Specifically,
under those assumptions, Lemma 3.1 shows that any 3-qubit unitary that commutes
with a particular diagonal unitary is actually a controlled unitary, while Lemma 3.2 and
Lemma 3.3 show that the eigenvalues of certain unitaries must be of restricted forms.

Stmple reasoning. We highlight three aspects in which our proof uses simpler reasoning
than the original proof.

The first aspect is the case analysis that reduces the main proof task to just two cases.
We give a single case analysis, while the original proof divided the case analysis across
two papers [3,4]. In more detail, the paper by Yu and Ying [4] gave a case analysis that
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divides into multiple cases, one of which is covered in the other paper [3] that, in turn,
has its own case analysis.

The second aspect is the proof of Lemma 6.4. We introduce Lemma 6.3, which derives
conclusions from the assumptions of Lemma 6.4 and some additional assumptions, and
we introduce Lemma 4.2, which provides a simple way to combine the properties provided
by Lemma 6.3.

The third aspect is the proof of Lemma 4.3. We introduce Lemma 3.3, which charac-
terizes the eigenvalues of a family of unitaries and which has an elegant proof that uses
the Spectral Theorem.

2. Notation and conventions

Numbers, vectors, and matrices. We will use r to range over real numbers. We will
use a, b, c,d,p,q to range over complex numbers. We will use u to range over complex
numbers that satisfy |u| = 1.

For a complex number ¢, we will use ¢* to denote the conjugate of c.

We will use |a), |8), |7), ), |¥), |w),|x),|z) to range over unit vectors of complex
numbers. We will call a 2-dimensional unit vector a qubit.

We will use D, E to range over square matrices of complex numbers. We will use I to
denote the identity matrix; the size of I will always be clear from the context. We will
use X to denote the 2 x 2 matrix that swaps the components of a 2-dimensional vector
and we will use S to denote the 4 x 4 matrix that swaps the components of a tensor
product of two 2-dimensional vectors.

1 0 0 0

X:Ol S:OOlO
1 0 01 00
0 0 01

For a matrix D, we will use D! to denote the conjugate transpose of D. A unitary
matrix U satisfies U UT = UT U = 1. All of I, X, S are unitary matrices.

We will use unitary as a short-hand for unitary matriz. We will use the term 1-qubit
unitary to refer to a 2 x 2 unitary matrix of complex numbers, we will use the term
2-qubit unitary to refer to a 4 x 4 unitary matrix of complex numbers, and we will use
the term 3-qubit unitary to refer to a 8 x 8 unitary matrix of complex numbers. We
will use P, @ to range over 1-qubit unitaries, we will use V,W to range over 2-qubit
unitaries, and we will use U to sometimes range over 1-qubit unitaries, sometimes range
over 2-qubit unitaries, and sometimes range over 3-qubit unitaries.

We will write matrix and vector addition as +, we will write tensor product as ®, and
we will write matrix multiplication, including the application of a matrix to a vector as
juxtaposition, such as UV and Uv, where U,V are matrices and v is a vector. We will
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also write multiplication with a complex number as juxtaposition, such as aU, where a
is complex number and U is a matrix.
We will use the convention that, in case of ambiguity, the operators take the following

precedence:
Operation Examples Precedence
Multiplication with a complex number  aU apply first
Multiplication of matrices and vectors Uv, Uly) apply second
Tensor product UVv apply third
Matrix and vector addition U+V,|0)+|1) apply last

FEigenvalues. For a unitary U, we use the notation Eigenvalues(U) to denote the multiset
of eigenvalues of U. A multiset set is like a set but each element can occur multiple times.
We use |...] to denote a multiset and we use U to denote union of multisets.

Diagonal matrices. We write a diagonal 2 x 2 matrix as follows, where ¢y, ¢; are complex
numbers on the main diagonal:

Diag(co, c1) = co [0)(0] + c1 [1)(1

Controlled matrices. We say that a square matrix D is controlled if it is of one of the
forms

D =10)(0| ® Ey + [1)(1] ® Ex
D = Ey@[0)(0] + Ev®[1)(1]

If Fis a 2 x 2 matrix, we define the following controlled matrices:

CE)=10)(0|@I + [1)(1|®E
CCE)=10)(0|®@I®I + |1)(1]® C(E)

Notice that CC(E) = [0)(0|®@I® 1 + [1)(1|®|0)(0]®@ 1 + |1)(1|®[1)(1|® E. Notice also
that C(Diag(co, c1)) = Diag(1,1, ¢g, ¢1) and CC(Diag(co,c1)) = Diag(1,1,1,1,1,1, ¢cg,¢1).

Qubits and subscripts. Throughout we will work with three qubit registers named A,
B, and C, in that order. The state of those qubit registers is an 8-dimensional unit vector
of complex numbers.

We will use A and B and C as subscripts of vectors to help remember the three
qubits registers. Those subscripts carry no meaning; they are simply helpful reminders.
For example, for 2-dimensional unit vectors |a), |8), |7), we may write |a) 4 ®|8) 5 ®|7)c
to suggest that the qubit register A contains |a) and that the qubit register B contains
|3) and that the qubit register C' contains |y). Similarly, for a 4-dimensional unit vector
|w) and a 2-dimensional unit vector |z), we may write |w)ap ® |2)¢ to suggest that the
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qubit registers A and B contain |w) and that the qubit register C' contains |z). We may
also write |2)4 ® |w)pe to suggest that the qubit register A contains |z) and that the
qubit registers B and C contain |w).

We will use A and B and C as subscripts of unitaries to help remember to which
qubit registers they apply. Those subscripts carry no meaning; they are simply helpful
reminders. For example, for 1-qubit unitaries P,Q,U, we may write Py ® Qp ® Uc
to suggest that the unitary P operates on the A qubit register and that the unitary @
operates on the B qubit register and that the unitary U operates on the C qubit register.
Similarly, for 2-qubit unitary V' and a 1-qubit unitary P, we may write Vap ® Pc to
suggest that the unitary V operates on the A and B qubit registers and that the unitary
P operates on the C' qubit register. We may also write P4 ® Vpc to suggest that the
unitary P operates on the A qubit register and that the unitary V operates on the B
and C qubit registers.

Now let us consider what happens if we have two subscripts. For example, suppose
we have a 2-qubit unitary V; and we want to remind the reader that we are applying V;
to the A and B qubit registers. For this case, we will use the straightforward notation

Viap-

Applying a 2-qubit unitary to 3 qubits. We may want to apply a 2-qubit unitary U to
two of the three qubit registers, while leaving the third unchanged. In such cases, we
may use a short-hand notation that uses a bar over U together with one of the subscripts
AB, BC, and AC:

Uap=U®1I
Upc=1®U

UAC = gBC’ UAB gBC’

The definitions of U op and Upc each applies the identity matrix to one of the qubits.
So does the definition of U 4¢, which we can see as follows. The definition of U 4¢ first
swaps the B and C qubit registers, which brings the contents of A and C next two
each other. Now we can apply U, after which we swap B and C again. Thus, we left B
unchanged.

The key point about the notations Uap and Upgc and U »4¢ is that the subscripts
are meaningful. Specifically, when those subscripts appear in the context of a 2-qubit
unitary with a bar over it, those subscripts help define a 3-qubit unitary. Thus, if U is a
2-qubit unitary, then U, p operates on 2 qubits, while U 4 g operates on 3 qubits.

Sets of 3-qubit unitaries. We introduce names for some particular sets of 3-qubit uni-
taries:

Gap = { Uap | U is a 2-qubit unitary }
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Gec ={ Upc | U is a 2-qubit unitary }
Gac = { Uac | U is a 2-qubit unitary }
G2 =0GapUGac UGpc
G ={U®I®I|U isa l-qubit unitary }
U{I®U®I|U isa l-qubit unitary }
U{I®I®U]|U isa l-qubit unitary }

Notice that G; C Gs.

Traces and partial traces. We use tr(D) to denote the trace of a square matrix D, that
is, the sum of the elements on the main diagonal of D.

We will use the technique of tracing out one or more qubits from a unitary. For
example, we can consider the case of tracing out the first qubit from a 2-qubit unitary
U, the result of which we denote by tr4(U). The function ¢r 4 is the unique linear function
from 2-qubit unitaries to 1-qubit unitaries that, for 1-qubit unitaries P, Q, satisfies

tra(P®Q)=tr(P) Q
This generalizes to tracing out multiple qubits from larger unitaries.
The main result, formalized. The main result (Corollary 7.5) says, informally:
For a 1-qubit unitary U, there exists a product of at most four 2-qubit unitaries
and any number of 1-qubit unitaries that is equal to CC(U) if and only if either the

eigenvalues of U are equal or det (U) = 1.

We can formalize the theorem using the notation above. Specifically, the formalized
theorem says that:

For a 1-qubit unitary U, there exists a product of at most four elements of Gs \ Gy
and any number of elements of G; that is equal to CC(U) if and only if either the

eigenvalues of U are equal or det (U) = 1.

For example, for the Toffoli gate, CC(X), the eigenvalues of X are different and det(X) =
—1 # 1. So, five 2-qubit gates are necessary for implementing the Toffoli gate.

3. The conditions on the eigenvalues

Theorem 7.4 says that something about CC(U) is possible if and only if either uy = u
or uguy = 1. In this section, we will explain the reason for those conditions. Specifically,
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we will prove three lemmas that directly use those conditions. Lemmas in later sections
use those three lemmas and thus they inherit those conditions.

The first lemma says that if a unitary U commutes with a diagonal unitary (Iap ®
Diag(uo, u1)), then either ug = u; or U is a controlled unitary. We will use this lemma
as a key step in the proof of the first main lemma (Section 5).

Lemma 3.1. Suppose ug,uy are complex numbers such that |ug| = |u1| = 1. A 3-qubit
unitary U commutes with Diag(ug,u1) ® I ® I if and only if either ug = uy or U is of
the form:

U =10)(0] @ Voo + [1)(1| ® V11
where Voo, Vi1 are 2-qubit unitaries.

Proof. Let
Voo Vou
U f—
<V10 Vi1 )

=D I®l =
%4 iag(ug,u1) @I ® < 0 w (1o 1)

Now we calculate both U W and W U, which by assumption are equal:

uo Voo w1 Vou ug Voo uo Vor
= UW = WU =
<U0 Vio w V11> <U1 Vie w V11>

= u Vor = uo Vor A ug Vip = w1 Vig

—ug=uy V Vor=Vip=0
In the second step, in the left-to-right direction, we use ug # 0 and w1 # 0. O

Next, we will show that the multisets of eigenvalues of some matrices must be of
certain forms, as expressed in Lemma 3.2 and Lemma 3.3. Specifically, the eigenvalues
of the tensor product of two 1-qubit unitaries must be of the form [1, 1, ug,u;], and for
a 1-qubit unitary P, the eigenvalues of (I ® P) C(Diag(ug,u1)) must be of the form
[e,e,d,d], in both cases if and only if either ug = u; or upu; = 1. In Section 4, we will
use those lemmas to make conclusions about expressions that equal CC(Diag(ug,u1)).

Lemma 3.2. Suppose ug,u; are complex numbers such that |ug| = |ui| = 1. There exist
1-qubit unitaries P,Q such that Eigenvalues(P ® Q) = [1,1, ug,u1] if and only if either
ug = U1 or uguy = 1.
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Proof. In the left-to-right direction, suppose Eigenvalues(P ® Q) = [1,1, ug, u;]. From
the Spectral Theorem A.3 we have that each of P and @ has two eigenvalues.
Let Eigenvalues(P) = [a, b] and let Eigenvalues(Q) = [p, ¢]. From Lemma A.5 we have

Eigenvalues(P ® Q) = [ap, aq, bp, bq]

From the above two equations for Eigenvalues(P ® @), we have [ap,agq,bp,bg] =
[1,1,ug,u1]. For reasons of symmetry, we can focus on two cases that are substantially
different.

In the first case, we assume

ap =1 aq = 1 bp = ug bg = wy

We have that P is a unitary so each of its eigenvalues is nonzero. In particular, a # 0.

From the first and second equation, we get p = % and ¢ = %, from which we get p = gq.

Now we can combine this with the third and fourth equation and get ug = bp = bqg = u;.
In the second case, we assume

ap = ug aqg = 1 bp =1 bg = wuq
We calculate

uour = (ap) (bg) = (aq) (bp) = 1x1 = 1

In the right-to-left direction, we have two cases. In the first case, suppose ug = uy.
We pick P = Diag(l,u;) and Q@ = I. We see that Eigenvalues(P) = [1,u;] and
Eigenvalues(Q) = [1,1]. From Lemma A.5 we have Eigenvalues(P ® Q) = [1,1,u1, u;1] =
[1,1,ug,u1].

In the second case, suppose upu; = 1. We pick P = Diag(1,ug) and @ = Diag(1,uq),
and we see that Eigenvalues(P) = [1, uo] and Eigenvalues(Q) = [1, u;]. From Lemma A.5
we have Eigenvalues(P ® Q) = [1, u1, ug, uou1] = [1,u1, up, 1] = [1,1,up,u1]. O

Lemma 3.3. Suppose ug,u1 are complex numbers such that |ug| = |ui| = 1. There
exist a 1-qubit unitary P and complex numbers c¢,d such that Eigenvalues((I ®
P) C(Diag(ug,u1))) = [c,¢,d, d] if and only if either ug = uy or upuy = 1.

Proof. In the left-to-right direction, suppose Eigenvalues((I ® P) C(Diag(ug,u1))) =
[e,e,d,d]. We calculate:

C(Diag(uo,u1)) = [0){0| ® I + [1){1] ® Diag(uo, u1)
(I ® P) C(Diag(up,u1)) = [0){(0] ® P + |1){1] ® P Diag(ug,u1)
Eigenvalues(({ ® P) C(Diag(uo,u1))) = Eigenvalues(P) U Eigenvalues(P Diag(uo,u1))
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We use the first equation to prove the second equation, and we use the second equation
and Lemma A.6 to prove the third equation.

Suppose Eigenvalues((I ® P) C(Diag(ug,u1))) = [¢,¢,d,d], that is, using the third
equation above,

Eigenvalues(P) U Eigenvalues(P Diag(ug,u1)) = [¢, ¢, d, d]

From the Spectral Theorem A.3 we have that P has two eigenvalues and that
P Diag(ug, u1) has two eigenvalues. We have two cases.

In the first case, suppose Eigenvalues(P) = [c,c] and Eigenvalues(P Diag(ug,u1)) =
[d,d].

From the Spectral Theorem A.3 applied to the unitary P, we get that there exists a
1-qubit unitary Qg such that

P = Qo Diag(c,c) Q) = ¢ Qo Diag(1,1) Q) = ¢QoQl = cI

Similarly, from the Spectral Theorem A.3 applied to the unitary P Diag(ug,u1), we
get that there exists a 1-qubit unitary )1 such that

P Diag(ug,u1) = Q; Diag(d,d) Q1 = d Qi Diag(1,1) Q] = dQ. Q! = dI

From Diag(d,d) = d I = P Diag(ug,u1) = (¢ I) Diag(ug,u1) = ¢ Diag(ug,u1) =
Diag(cuo, cuq ), we conclude cug = d = cuy, which combined with ¢ # 0 gives up = u;.

In the second case, suppose Eigenvalues(P) = [¢, d] and Eigenvalues(P Diag(ug,u1)) =
[c, d]. We use those equations in the following calculation:

cd = det(P Diag(ug,u1)) = det(P) det(Diag(ugp,u1)) = (ed) (uouq)

In the second step, we use Lemma A.1.

We have that ¢ # 0 and d # 0, so c¢d # 0, which together with the above equation
implies that ugu; = 1.

In the right-to-left direction, we have two cases. In the first case, suppose ug = u;. We
pick P =T and ¢ =1 and d = ug. We see that (I ® P) C(Diag(uo, u1)) = C(Diag(ug,u1))
so Eigenvalues((I ® P) C(Diag(uo,u1))) = Eigenvalues(C(Diag(uo,u1))) = [1,1,up,u1] =
[e,e,d, d].

In the second case, suppose ugu; = 1. We pick P = Diag(1,u¢) and ¢ = 1 and d = ug.
We see that

(I®P) C(Dlag(u07u1)) = Diag(lvuov 17”0) Dlag(la 17”07”1)
= Diag(l,uo,uo,uoul)

= Diag(1, ug, uo, 1)

so Eigenvalues((I @ P) C(Diag(uo, u1))) = [1, w0, uo, 1] = [¢,¢,d,d]. O
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4. Four key building blocks

In Section 5 and Section 6, we will prove two main lemmas (Lemma 5.1 and
Lemma 6.4) using the following strategy.

In each case we assume that an expression is equal to CC(Diag(ug,u1)), then show
that this implies that some other expression is equal to CC(Diag(ug,u1)), and finally
derive properties of ug and u;. The final step of deriving properties of ug and wu; is done
using four key building blocks, which are the lemmas we show in this section.

The first two lemmas are about expressions that equal CC(Diag(ug,u1)) and that
involve tensor products, which will restrict ug and wu;.

Lemma 4.1. Suppose ug,u1 are complex numbers such that |ug| = |u1| = 1. There exist
2-qubit unitaries U,V and 1-qubit unitaries Py, Py, Qq, Q1 such that

10)(0] ® Upc (Po ® Qo) Vee + |1){(1|® Upc (P ® Q1) Ve = CC(Diag(uo,u1))
if and only if either ug = uy or uguy = 1.
Proof. In the left-to-right direction, suppose

0)(0] ® Uc (Po ® Qo) Ve + [1)(1| @ Upe (Pr ® Q1) Ve = CC(Diag(ug, u1))
From this we have

U (Py® Qo) V = Diag(1,1,1,1)
U (Pl ®Q1) V= Diag(l, l,U(),’U,l)

We use those two equations in the following calculation:

Diag(1, 1, ug, u1) = Diag(1,1,up, u1) Diag(1,1,1,1)°
= (U (PoQ) V) (VI (B ®Q)) U')
=U (P P)) @ (Q: Q) U
From Lemma A.4 we have that the conjugation with U preserves the eigenvalues, so we
have that [1, 1, ug, u;] = Eigenvalues(Diag(1, 1, ug, u)) = Eigenvalues((P; P))®(Q1 Q})).
From this and Lemma 3.2 we have either ug = u; or ugu; = 1.

In the right-to-left direction, we have two cases. In the first case, suppose ug = ;.
We pick U =V =Ipc and Py = Qo = Q1 = I and P, = Diag(1,u;). We calculate:

|0><0| ® Upc (Po ®Qo) Ve + |1><1| ® Upc (P1 ®Q1) Vio
=10)(0|® Ipc (I ®1) Ipc + [1)(1|® Ipc (Diag(l,u1) ® I) Ipc
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= Dlag(l ]-7 1: ]-707 07070) + Dlag(070a 0707 17 17“17“’1)
= CC(Diag(ug, u1))

In the third step, we use ug = u;.
In the second case, suppose ugu; = 1. We pick

S O O
= o O O
O = O O
S O = O

and Py = Qo = I and P; = Diag(1,uo) and Q1 = Diag(1, u1). We calculate:

0)(0| ® Upc (Po® Qo) Ve + |1)(1] @ Upe (Pr® Q1) Vae
=0){0|® Upc (I ®I) Upc + [1)(1] @ Upc (Diag(1,uo) @ Diag(1,u1)) Usc
=10)(0|®@ (I®I) + |1){1] ® Ugc Diag(1, u1,up, uou1) Ugc
=[0)(0]® (I ®1) + [1)(1| ® Upc Diag(L, u1,uo,1) Upc

=10)(0|@ (I®I) + |1)(1] @ Diag(1,1,up,u1)

= Diag(1,1,1,1,0,0,0,0) + Diag(0,0,0,0,1,1,ug, u1)

= CC(Diag(uo, u1))

In the third step, we use uguy = 1. O

Lemma 4.2. Suppose ug,u; are complex numbers such that |ug| = |ug| = 1. Suppose Q is
a 1-qubit unitary and let |B) = Q |0) and let |31) = Q |1). There exist 1-qubit unitaries
Py, Py such that

[ I®|B)(B| + Po@ P ®|B)(5"| = CC(Diag(ug, u1)) (1)
if and only if ug =1 =wu,.

Proof. In the left-to-right direction, suppose Equation (1) holds and let |3) = a|0) +b|1).
We have three cases.

In the first case, suppose a # 0 and b # 0. We multiply each side of Equation (1) with
|1) ® [1) ® |B) from the right and, because |3) and |3~+) are orthogonal, we get:

1) ©[1) @]8) = [1) @ [1) @ Diag(ug, u1) |8)

which implies |3) = Diag(up,u1) |8). From this we get a = upa and b = wub, which
together with a # 0 and b # 0 implies ugp = 1 = uy.
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In the second case, suppose a = 0. This implies that [b| = 1 so bb* = 1, hence |3){8| =
|1)(1]. From this and Lemma A.8, we get |31)(B8+| = I —|8)(B] = I — [1)(1] = |0)(0].
We have

I®I®|1)(1] + Po® P, ®|0)(0|

= I®I®|B)(B] + Py® @[+ ) (]
CC(Diag(ug, u1))

= Diag(1,1,1,u0) ® |0){(0] + Diag(1,1,1,u1) ® |1)(1]

From the above we derive

I ® I = Diag(1,1,1,uy)
Py ® P, = Diag(1,1,1,up)

From the first of those equations we have u; = 1. From the second of those equations
we have

Eigenvalues(Py ® P;) = Eigenvalues(Diag(1,1,1,u9)) = [1,1,1,uo]

which together with Lemma 3.2 implies ug = 1. We conclude uy =1 = u;.

In the third case, suppose b = 0. This implies that |a] = 1 so aa* = 1, hence |8) (5] =
0)(0[. From this and Lemma A.8, we get [3)(8*| = I — [B)(B8] = I — [0)(0] = [1)(1].
We multiply each side of Equation (1) with I ® I ® X from both the left and the right,
and we get:

I®I® ‘1><1| + Po ®P1 ® |O><O| = CC(Diag(ul,uo))

From this and the second case, we conclude ug =1 = uy.
In the right-to-left direction, suppose ug = 1 = u;. We pick Py = P; = I. We calculate

I0IB)(Bl + Rh@PLe[Br) (B =T lo|B)8] + IoIe|64)(5"]
=I1®I(IB)6l + 1858 ])
=II®l
= CC(Diag(uo,u1))

In the third step, we use Lemma A.8. In the fourth step, we use ug =1 =wu;. O

Next, we will prove Lemma 4.3 and Lemma 4.4, which both are special cases of the
second main lemma (Lemma 6.4). The idea is that, in a particular kind of matrix product
that equals CC(Diag(uo,u1)), if the first or last of the unitaries is controlled, then ug and
uy are restricted.
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Lemma 4.3. Suppose ug,u; are complex numbers such that |ug| = |ui| = 1. There exist
2-qubit unitaries Vi, Vo, Vs, Vi and 1-qubit unitaries Py, Py, where V1 = (0)(0| ® Py +
|1)(1| ® Py, such that Viac Vape Vaac Vape = CC(Diag(ug,u1)) if and only if either
Uy = U1 or upguy = 1.

Proof. In the left-to-right direction, suppose V¢ Vape Viac Vape = CC(Diag(uo,
u1)) and recall that CC(Diag(ug,u1)) = [0)(0| ® Igc + |1)(1] ® C(Diag(ug,u1)). From
this and V4 = [0){(0| ® Py + |1)(1| ® P, and Lemma A.27, we have that V5 is of the
following form, where Qg, Q)1 are 1-qubit unitaries:

Vz = 10){0] ® Qo + [1)(1] ® @1
From the above equations for V; and V3, we have

Viac Vape Vaac = (|0)(0|®@ Ip @ Py + [1)(1| @ Ip @ Py)
(10)(0] @ Vapo + [1)(1]| ® Vape)
(10){0] ® Ip ® Qo + [1)({1| ® Ip @ Q1)
=10){0|® ((Ip ® o) Vapc (Ip ® Qo)) +
1Al ((Ip® P1) Vape (I ® Q1))

From the assumption V4o Vage Viac Vape = CC(Diag(ug,u1)), we can derive the
equation Vi 4c Vage Vaac = CC(Diag(ug,u1)) V4LC. We have

VlAC VQBC VSAC = CC(Diag(uo, u1)) 7420
= (]0){0| ® Ipc + |1){1] ® C(Diag(uo,u1)))
(1000 @ Ve + [1){1] @ Vi)
= 0)(0] ® Vil + [1)(1] @ (C(Diag(uo, m)) Vi)

In the second step, we use the definition of CC(Diag(ug,u1)).
From the above two equations for Vi 4 Vage Viac, we have

(I®Py) Va (I®Qq)=V]
(I P1) Va (I®Qy) = C(Diag(ug, u1)) V

Now we can combine the above two equations and get:

We can rearrange the above as follows:

(IeP)Va(I®Q1) IeQh) V4 (I®P])=C(Diag(ug,u1))
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For the above equation, we can multiply with (I ® (P PIT )) on both sides and get:

I Py P))IoP) Va(I2Q) @) Vs (IeP)
= (I® (Py P{)) C(Diag(ug, u1))

Now we can simplify and rearrange the left-hand side and get:
(1@ Py) Vo) (I1®(Q1 Qb)) (I ® o) Va)l = (I (Po Pf)) C(Diag(uo, ur))

We calculate

Eigenvalues(I @ (Q; Q}))
= Eigenvalues(((I ® Py) Va) (I @ (Q1 Q) (I ® Py) Va)T)
= Eigenvalues((I ® (P Pf)) C(Diag(ug,u1)))
In the first step, we use Lemma A.4, and in the second step, we use the above equation.

From the Spectral Theorem A.3 we have that (@ Qg)) has two eigenvalues.
If Eigenvalues((Q; Q}))) = [¢, d] for some complex numbers ¢, d, then

Eigenvalues(I ® (Q1 Qg)) = ¢, ¢,d, d]
which together with the above equation implies
Eigenvalues((I @ (Py P})) C(Diag(ug, u1))) = [¢, ¢, d, d]

which together with Lemma 3.3 gives that either ug = uy or ugu; = 1.
In the right-to-left direction, we have two cases. In the first case, suppose ug = uy.
Define the 2-qubit unitary U = C(Diag(1,u)). Now we calculate:

TAC gBC UAC §BC
=Uap = U® Iz = Diag(1,1,1,1,1,1,u,u) = CC(Diag(u,u))

In the second case, suppose uou; = 1. Let ug = e~*, which together with ugu; = 1

means that u; = €. We define the 1-qubit unitary P and the 2-qubit unitaries U and
V.

pP= Diag(e_w/27 ei0/2)

U=10)0loX + 1)(1|aTI

V =C(P)

Notice
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P =e"210)0] + €921)(1]

P?= Diag(e‘w ew) = Diag(uog,u1)

Vag ®1Ic) Spe

C(P)®Ic) Spe

(l0)(0]@ Ip + [1)(1|® Pp) ® Ic) Spc

0)(0| @ Ip ® I¢) Spe + Spe (11){(1] © P ® Ic) Spe
=0)(0] ® Ipc + |1)(1| ® Ip ® Pc

vAC’ (

Spe (
= Spe (
= Ssc (

In the last step, we use Lemma A.11.

The unitary V is of the form that in the statement of the lemma is required of V;. Our
goal is to show that the product V. c Upc Vac U;C of four 2-qubit unitaries equals
CC(Diag(ug, u1)). We calculate; first two expressions that we will need later:

P X P X =(e?0)(0] + e®/2[1)(1]) (j0)(1] + [1)(0])
(e7/210)(0] + €™2[1)(1]) (|0)(1] + [1)(0])
= |0)(0] + [1)(1]
=1
I®P)U (IoP)U = (0)(0]®@P + [1)(1|® P)
(10)0l® X + [1)(1|® 1)
([0)(0l® P + [1)(1|® P)
(lo)(0® X + [1){(1|@ 1)
=0)(0|® (P X P X) + [1)(1| ® P?
=|0)0|® I + |1)(1] ® P?
= C(P?)
Vac Use Vac Upe = (1000 ® Inc + [1)(1] I ® Po)
(10)(0 ® Upe + [1)(1] © Upc)
(10)(0] ® Ipc + 11)(1| @ Ip ® Pc)
(10)(0] @ Upe + 11){1] @ Ufe)
(Ol®Inc + 1)1 @ ((Is ® Pe) Upe (Ip @ Po) Ul)
= [0)(0] ® Ipc + [1){1] ® C(P?)
= CC(P?)
= CC(Diag(ug,u1)) O

=10

)
)
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The following lemma follows easily from Lemma 4.3 by exchanging the roles of A and
B and considering the conjugate transpose of the product.

Lemma 4.4. Suppose ug,u; are complex numbers such that |ug| = |ui| = 1. There exist
2-qubit unitaries Vi, Vo, V3, V4 and 1-qubit unitaries Py, Py, where Vy = (0){(0| ® Py +
|1)(1| ® Py, such that Viac Vape Vaac Vape = CC(Diag(ug,u1)) if and only if either
Uy = u1 or ugui = 1.

5. The first main lemma

We will prove that if a particular matrix product equals CC(Diag(ug,u1)), then ug
and u; are restricted. The proof uses Lemmas 3.1, 4.1 and also Lemma A.24.

Lemma 5.1 (The first main lemma). Suppose ug,uy are complex numbers such that |ug| =
|ui| = 1. There exist 2-qubit unitaries Uy, Uy, Uz, Uy such that Uy ge Uaac Usap Uspe
= CC(Diag(ug,u1)) if and only if either ug = uy or upu; = 1.

Proof. In the left-to-right direction, suppose U1gc Usac Usap Uspe = CC(Diag(uo,
uq)). From this we see that

Usac Usap = UlL’C CC(Diag(uo,u1)) Uﬂgc

We have that each of Ulgc, CC(Diag(uo, u1)), U;JBC commutes with Diag(ug,u1) ® Ic.
In the case of CC(Diag(ug, u1)), this is because both CC(Diag(ug, u1)) and Diag(ug, u1) ®
Ipc are diagonal matrices. So, Us s Usap commutes with Diag(ug,u1) ® Ipc. From
this and Lemma 3.1, we have either ug = u; or Us 4 U3z 4p is of the form:

Usac Usap =0)(0|® Vope + |1)(1] ® Vige

where Vj, Vi are 2-qubit unitaries. In the case where ug = u;, we have completed the
proof, so let us consider the second case of the disjunction. From the above equation and
Lemma A.24 we get that U 4 Usap is of the form:

Usac Usap =10){(0] @ Py ® Qo + |1)(1] ® PL ® Q4

where Py, Qq, P, Q1 are 1-qubit unitaries. We calculate

CC(Diag(uo,u1)) = Ui pc Usac Usap Uspe
= (Ia @ Uipc) (Usac Usap) (1a ® Uspc)
= (10)(0| ® Urgc + [1)(1|® Uipc)
(10)(0] ® Py ® Qo + [1)(1] @ P1 ® Q1)
(10)(0] ® Uspc + [1)(1| ® Uspc)
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=0){0] ® Ui pc (Po ® Qo) Uspe + [1)(1| @ Urpe (Pr ® Q1) Uspe

which together with Lemma 4.1 gives that either ug = uy or ugu; = 1.
In the right-to-left direction, we have two cases. In the first case, suppose ug = uy.
Define the 2-qubit unitary U = C(Diag(1,u)). Now we calculate:

Ipc Iac Uap Ipc =Uap = URIc

= Diag(1,1,1,1,1,1,u,u) = CC(Diag(u,u))

By the way, notice that CC(Diag(u,u)) = Uap € Go.
In the second case, suppose ugu; = 1. Define

10 0O

0 0 01
Y=lo o010

0 1 00
V = Diag(1,1,1,u1) = |0)(0| @ Diag(1,1) + [1)(1] © Diag(1,u)
W = Diag(1,1,1,u9) = 0)(0| ® Diag(1,1) + |1)(1| ® Diag(1,uo)

We calculate:

Upc Vac Vas Upc =Upc
(10){0| ® I ® Diag(1,1) + |1){1| ® I ® Diag(1,u1))
(10)(0] ® Diag(1,1) ® I + [1)(1]| ® Diag(1,uo) ® I)
Ugo
=Ugc
(10)(0] @ T ® T + |1)(1] ® Diag(1,up) ® Diag(1,u1))
Ugc
=Ugc
(|0){0| ® Diag(1,1,1,1) + |1)(1]| ® Diag(1, u1, ug, wou1))
Usc
=Usgc
(10)(0|] ® Diag(1,1,1,1) + |1)(1| ® Diag(1, w1, uo, 1))
Usc
=|0)(0] ® Diag(1,1,1,1) + |1)(1| ® Diag(1,1, ug,u1)
= CC(Diag(ug,u1)) O
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6. The second main lemma

We will prove that if a particular matrix product equals CC(Diag(ug,u1)), then wug
and wy are restricted. The proof uses lemmas from Appendix A and Section 4.

Lemma 6.1 enables us to do a case analysis of a unitary, which we will do in the
proofs of both Lemma 6.2 and Lemma 6.4. Lemmas 6.2—6.4 form a sequence in which
Lemma 6.2 plays major role in the proof of Lemma 6.3, which, in turn, plays a major
role in the proof of Lemma 6.4.

Lemma 6.1 (Case analysis of a unitary). For a 2-qubit unitary V, either
Jlz) : V (|Jz) ® |0)) is entangled, or

) :Vlz) - J|z) : V (|2) ©0)) = |2) @ [¢), or

) Vi) : 3|z) : V (|2} @ 10)) = |¢) @ |2).

Proof. We have that either J|z) : V (Jx) ® |0)) is entangled, or V|z) : V (|z) ® |0)) is
not entangled. We can subdivide the second disjunct as follows. First recall that if an
expression is not entangled, then it is a tensor product. Now from V|z) : V (|z) ® |0)) is
not entangled and Lemma A.23, we have that 3|¢) : V|z) : J|z) : V (Jz) ®]0)) = |2) @ [¢),
or 3j¢p) :V|z) : 3|z) : V (|2) ©10)) = |[) @ 2). O

Lemma 6.2. Suppose ug,u1 are complex numbers such that |ug| = |uy| = 1. For 2-qubit
unitaries Uy, Wo, V3, Uy, if

Ui ac Wape Vsac Uspe = CC(Diag(uo,u1))

V3 (|0) ®0)) = |0) ® |0)
for any |T)a: Uise (|2)a ®10)5 @ |0)¢) = U4j§:c VBLC (lr)a ®10)B @ |0)¢c)

then either ug = uy or uguy = 1 or there exist 2-qubit unitaries Wy, W3, W4 and a 1-qubit
unitary Ps such that

Uiac Wape Vsac Uspe = Wiac Wape Waac Wape
W35 =1®|0)(0] + P3® |1)(1]

Proof. From Lemma 6.1 we have that we can do a case analysis of V}:r that has three
cases.

In the first case, suppose there exists a qubit |z) such that V; (lx) ®|0)) is entangled.
From

for any |#)a: T1ac (1204 ® |0)5 @ |0)c) = Uspe Vahe (204 @ [0)5 @ [0)c)

we can derive
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for any |z)a:
Sap Uiac Sap Sap (|2)a ©(0)p ©[0)¢)
=San U4jgc Sap San 73,T40 Sap Sap (|r)a®|0)p ®(0)c)

From the above equation and Lemma A.10 and Lemma A.12, we derive
= F 1 i
for any |z)4: Urpe (10)a ® |2)5 ® [0)c) = Ushe Vape (1004 ® |2)5 @ [0)c)

From the above equation and that V3:f (|x) ®10)) is entangled and Lemma A.19, we have
that Ul is of the following form, where @, Q1 are 1-qubit unitaries:

US = 10)(0] @ Qo + [1){(1| ® Q1
This implies
Us = [0)(0] © QF + [1)(1] ® Q1

From this and the assumption Uy 0 Wage Viac Uspe = CC(Diag(ug,u;)) and
Lemma 4.4, we conclude that either ug = u; or ugu; = 1.

In the second case, suppose 3|¢) : V|z) : J|z) : V; (lz) ®10)) = |2) ® |[¢). From
Lemma A.31 we have that there exist 2-qubit unitaries Wi, W3, Wy and a 1-qubit
unitary P3 such that

UlAC WQBC VSAC U4BC = WlAC WQBC WSAC W4BC
W5 =1® |0)(0] + P; ® |1)(1]

In the third case, suppose J|¢) : V|z) : 3|z) : Vi (j2) ©]0)) = |[) @ |2). From
Lemma A.25 we have that we can find a 1-qubit unitary Py such that, for any qubit |z):

Vi (l2) ®0)) = [4) ® (P |z))
Now we have, for any |z) 4:

Tiac (124 ®10)p © |0)c) = Tage Ve (J7)a © |0)p ® 0)c)
—Tibe ()4 ®[0)5 © (P [2)c))
= 1) 4 ® (Ushe (10)5 @ (P |2)c)))

From the above equation and Lemma A.22, we have that
¥ |z) : 3Jw) : Uf (10) @ (Py |2))) = [0) @ w)

We can pick orthogonal qubits |zo) and |zg) and calculate:
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Uj (10) @ (Po o)) = [0) @ |uwo)
Ul (10) ® (P |2g))) = |0) @ [wn)

From Lemma A.17 we have that U, i is of the following form, where Qg, Q1 are 1-qubit
unitaries:

Ui =10)(0] ® Qo + [1)(1] ® @
This implies
Us = [0)(0] @ Qf + [1)(1] ® Q1

From this and the assumption Ui e Wapge Viac Uspe = CC(Diag(ug,u1)) and
Lemma 4.4, we conclude that either ug = uq or upu; = 1. 0O

Lemma 6.3. Suppose ug,u1 are complex numbers such that |ug| = |ui| = 1. For 2-qubit
unitaries Vi, Vo, Vs, Vy, if

Viac Vape Vsac Vape = CC(Diag(uo, u1)) (2)
) :Vl|z) : 3[2) 1 Va (Jz) @ 10)) = |2) @ [4) (3)
V3 (10) @ 10)) = [0) ® |0) (4)

then either ug = uy or uguy = 1 or there exist 2-qubit unitaries Wy, Wo, W3, Wy and
1-qubit unitaries Py, Py, P3, Py, Q) such that

Wiac Wape Waac Wape = CC(Diag(ug, u1))
Wy =I1®|8)0] + P |8+
Wy =1®[0)(0] + P, |1)(1]
W3 =1®[0)(0] + Ps® |1)(1
Wy =I1®[0)(8] + Py ®[1)(3"|

where |B) = Q |0) and |8+) = Q |1).

Proof. From Equation (3) and Lemma A.30, we have that there exist 2-qubit unitaries
Uy, Wy, Uy and a 1-qubit unitary P such that

Viac Vape Vaac Vase =Urac Wape Vsaac Uspe (5)
Wy = T©[0)(0] + P, ®[1)(1 (6)

From Equations (2) and (5) we have
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Uiac Wape Vsac Uspe = CC(Diag(uo, u1)) (7)

From Equation (6) we have W3 (]0) ® [0)) = |0) ® |0). From this and Equation (7) and
Lemma A.29, we have, for any |z) 4:

Uiac (1204 @10)p © |0)0) = Tahe Vshe (2)4 ® [0)5 ® [0)c) (8)

From Equations (4), (7), (8), and Lemma 6.2, we conclude that either ug = uq or
upui = 1 or there exist 2-qubit unitaries W7, W3, Wy and a 1-qubit unitary P3 such that

UlAC' W2BC VSAC U4BC = WlAC WZBC WSAC W4BC (9)

Wy =T ®|0)(0] + Py [1)(1] (10)

In the cases where either ug = u; or ugu; = 1, we have completed the proof, so let us
consider the third case of the disjunction. From Equations (7), (9) we have

Wiac Wape Waac Wape = CC(Diag(ug, u1)) (11)
From Equations (10), (11) and Lemma A.28, we have, for any |2)p:
Wiac Wase (04 ® |25 ® 0)0) = Wape (04 ® 250 00c)  (12)
From Equations (12) and (6) we have, for any |z)p:
Wiac (1004 ®[2)5 @ 0)c) = Wape (1004 © [2)5 @ [0)c)
From the above equation and Lemma A.22, we have that:
Wiz): Fw) s W (12) ©10) = |2) © |w)

From that observation and Lemma A.26, we have that we can pick |3) such that, for all

|2):
Wi (12 @10) = |2) @ 15) (13)
From that observation, we get, for all |z):
Wa (Iz) ©18)) = |2) ® |0)
Let |3+) be a unit vector that is orthogonal to |3). Define a 1-qubit unitary Q:
Q= 1B)(0] + [B)(1|

Notice that the columns of @) are orthogonal unit vectors, hence () is a unitary matrix.
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When we combine the above two equations, we get, for all |z):
Wy (I®Q) (|2)®[0) =Wy (|2)®(B)) = [2)®]|0)
From Lemma A.18 we have that Wy (I ® Q) is of the form:
Wi (I®Q)=1x|0)(0] + P, [1)(1]
where Py is a 1-qubit unitary. The above equation implies the following:
Wi =10)(8 + Pi@[1){3|

From Equation (6) we have W5 (|0) ® |0)) = |0) ® |0). From this and Equation (11) and
Lemma A.29, we have, for any |z) 4:

Wiac (12)4®[0)5 ©0)0) = Wahe Wshe (12)4 @ [0)5 © |0)c) (14)

We have, for any |z)4:

(Iap ® QL) Wiac (J2)a @0)5 ®[0)c)
(Lip © QL) Walhe Wahe (|2)4 ®0)5 [0)c)  (Equation (14))
= (I1p ® QL) Wik (12)4 ® [0)5 ©[0)c) (Equation (10))
(Iap ® QL) (J2)a @ [0)5 @ |B) (Equation (13))
(

= [1)a©[0)p@[0)c Q [0) = 18))

c)

From the above equation we have, for any |z) 4:
(T2 Q") W) (jz) ©10)) = [x) [0)

From the above equation and Lemma A.18, we have that (I ® Q) W, is of the following
form, where P; is a 1-qubit unitary:

(I®Q") Wi =1®0)(0] + P &1l
which implies
Wy =130 + P®|gh)(1] O
Lemma 6.4 (The second main lemma). Suppose wug,u1 are complex numbers such

that |ug| = |ui| = 1. There exist 2-qubit unitaries Uy, Us, Us, Uy, such that
Uiac Uspe Usac Uspe = CC(Diag(uo, u1)) if and only if either ug = uy or uguy = 1.
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Proof. In the left-to-right direction, suppose U ac Uspe Usac Uspe = CC(Diag(uo,
u1)). From Lemma A.32, we have that there exist unitaries V1, Va, V3, V4 such that

Uiac Uzsc Usac Uspe = Viac Vase Vaac Vise (15)
Vs (10) ®10)) = 10) ® |0) (16)

From the assumption that Uy sc Usge Usac Uispe = CC(Diag(uop,u;1)) and Equa-
tion (15), we have

Viac Vape Vsac Vage = CC(Diag(ug, u1)) (17)

From Equations (16) and (17) and Lemma A.28, we have, for all |x):

Viac Vape (1004 ® [2)p ® [0)0) = Vase (1004 @ |2)5 @[0)c) (18)

From Lemma 6.1 we have that we can do a case analysis of V5 that has three cases.

In the first case, suppose there exists a qubit |z) such that Va2 (|z) ®10)) is entangled.
From this and Equation (18) and Lemma A.19, we have that V] is of the following
form, where Py, P; are 1-qubit unitaries: Vi = |0)(0| ® Py + |1)(1] ® P;. From this and
Equation (17) and Lemma 4.3, we conclude that either ug = uy or ugu; = 1.

In the second case, suppose 3|¢) : V|z) : 3|z) : Vo (|z) ®10)) = |¢) ® |z). From this
and Equation (18) and Lemma A.33, we have that V] is of the following form, where
Py, P are 1-qubit unitaries: V1 = |0)(0| ® Py + |1)(1| ® P;. From this and Equation (17)
and Lemma 4.3, we conclude that either ug = uy or uguy = 1.

In the third case, suppose J|) : V|z) : |z) : Vo (|Jz) ®]0)) = |2) ® |v). From this,
Equations (17), (16), and Lemma 6.3, we conclude that either ug = uy or upu; = 1 or
there exist 2-qubit unitaries Wy, Wy, W3, W, and 1-qubit unitaries P, Py, P53, Py, @ such
that

Wiac Wape Wsac Wape = CC(Diag(ug, u1))
Wi =I®8)(0] + P |84
Wy =1 |0)(0] + P ®[1)(1]
Wy =T1®0)(0] + Ps® [1)(1]
Wi=1®[0)(8] + Py® [1){6"]
where |3) = Q |0) and |31+) = Q |1). In the cases where either ug = uy or ugu; = 1, we

have completed the proof, so let us consider the third case of the disjunction. From the
above equations we calculate:

CC(Diag(uo,u1)) = Wiac Wapc Wiac Wage
=(I®Ix|8)0 + PLol®|8h)(1])
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(I@1®]0)(0] + I® Py |1)(1])
I®I®[0)0] + Ps@I® |[1)(1])
(I@Ie|0)(8] + I P 1)(3)
=11 BB + (P1 P3) @ (P, Pi) @ |BH)(8H

which together with Lemma 4.2 implies ug = .
In the right-to-left direction, we use the right-to-left direction of Lemma 4.3. O

7. The main theorem

In this section, the only prior lemmas that we will use are Lemma 5.1 (the first
main lemma) and Lemma 6.4 (the second main lemma), as well as Lemma A.12 and
Lemma A.13.

We say that a product (U4, 4, Uziyjy --- Umi,j,,) of m 2-qubit unitaries is canonical
if each iy, jx € {A,B,C} and iy # ji and, for every k, where 1 < k < m, {ig,jr} #
{ikt1, Jrgr )

For two complex numbers ug, 41 such that |ug| = |u1| = 1, we define the set of pairs
R(uo,u1) = { (uo,u1), (1,uju1) }.

Lemma 7.1 (Change a diagonal element to one). Suppose ug,u; are complex num-
bers such that |ug] = |u1] = 1. For a 2-qubit unitary W and a 3-qubit unitary
U, if CC(Diag(ug,u1)) = Wap U, then there exists a 2-qubit unitary V such that
CC(Diag(1,uju1)) = Vap U.

Proof. Define V' = C(Diag(1,ug)) W. We calculate:

Vap U = ((C(Diag(1,u})) Wap) ® Ic) U
— (C(Diag(1,uf))) @ Ie) (Wap @ Io) U
= (C(Diag(1, ug)) ® Ic) CC(Diag(ug,u1))
= Diag(1,1,1,1,1,1, u, us) Diag(1,1,1,1,1,1,ug, u1)
= Diag(1,1,1,1,1,1, 1, ujuy)
= CC(Diag(l,upu1)) O
Lemma 7.2 (Reduction). Suppose ug,uy are complex numbers such that |ug| = |ui| = 1.

If there exists a product of at most four elements of Go \ G1 and any number of elements
of G1 that is equal to CC(Diag(ug,u1)), then either

there exist 2-qubit unitaries Uy,Us,Us, Uy and complex numbers us,us such that
(u2,u3) € R(uo,u1) and Uigc Usac Usap Uspe = CC(Diag(ug,us)),
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or

there exist 2-qubit unitaries Uy,Us,Us, Uy and complex numbers ug,us such that
(u2,u3) € R(ug,u1) and Urac U2pc Usac Uspc = CC(Diag(uz,u3)).

Proof. The proof has four steps. Let E be the product that is equal to CC(Diag(ug, u1)).

In the first step, we transform E to a product Es of at most four elements of G, such
that Ey = CC(Diag(uo,ul)).

We have five cases.

In the first case, suppose every factor in E is an element of G;. In this case, we can
condense all the unitaries on qubit A into a single unitary, we can condense all the
unitaries on qubit B into a single unitary, and we can condense all the unitaries on qubit
C into a single unitary. The result is a product of three unitaries that all are elements
of G1. We have that G; C Gs, so we have a product of three elements of Go that is equal
to CC(Diag(ug, u1)).

In the second case, suppose every factor in E that is an element of Gs \ G; is actually
an element of G4p \ G1. Now we can absorb each unitary on qubit A into one of the
elements of Gap \ G1. Similarly, we can absorb each unitary on qubit B into one of the
elements of Gap \ G1. After that, we can condense all the unitaries in G4p \ G into a
single unitary. Finally, we can condense all the unitaries on qubit C' into a single unitary.
We have that Go C Gs, so we have a product of two elements of G, that is equal to
CC(Diag(ug, u1)).

In the third case, suppose every factor in E that is an element of Go \ Gy is actually
an element of Gac \ G1. This case is similar to the second case; we omit the details.

In the fourth case, suppose every factor in E that is an element of Gy \ Gy is actually
an element of Gpc \ G1. This case is similar to the second case; we omit the details.

In the fifth case, suppose E has factors from at least two of the three sets
GaB,Gac,GBc. Now we can absorb each unitary on qubit A into one of the elements of
GapUGac, we can absorb each unitary on qubit B into one of the elements of GAapUGpc,
and we can absorb each unitary on qubit C' into one of the elements of Gac U Gpc. We
started with a product that contains at most four elements of G, \ G; and that is equal
to CC(Diag(uo,u1)), so now we have a product of at most four elements of G, that is
equal to CC(Diag(ug,u1)).

This completes the first step of the proof.

In the second step, we transform Es to a canonical product F, of four elements of G,
such that E4 = CC(Diag(ug,u1)).

First we observe that if two adjacent unitaries in Fy operate on the same couple of
qubits, we can combine them via multiplication. We can repeat this operation until we
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have a canonical product. After that we can pad as needed by multiplying with identity
matrices.

In the third step, we transform FE, to a canonical product Fg of four elements of G
such that the last factor in the product is an element of Ggc and there exist complex
numbers ug, u7 such that (ug, ur) € R(ug,u1) and Eg = CC(Diag(ue,u7)).

We have three cases.

In the first case, the last unitary in F, operates on qubits AB. Thus, we can write
E, = U1i1j1 U2i2j2 U3i3j3 U4ABa where each iy, j, € {A, B, C} and ig 7é Jk-

Our first goal is to change one of the diagonal elements from ug to 1, which we do by
multiplying with C(Diag(1, u)) ® I¢ from the right:

Ey (C(Diag(1,u5)) ® I¢) = CC(Diag(uo,u1)) (C(Diag(1,u5)) ® Ic)
= Diag(1,1,1,1,1,1, ug,uy) Diag(1,1,1,1,1,1, ug, ug)
= Diag(1,1,1,1,1,1, 1, uduq)
= CC(Diag(1, ugu1))

Notice that C(Diag(1,u;))®I¢ is an element of Gap. So, the product E4 (C(Diag(1,u))®
I¢) ends with two elements of G4p which we can combine into a single unitary VaB.
After this combination, we have a canonical product E5 of four elements of Go where the
last factor is an element of Gap and F5 = CC(Diag(1,uu1)). Notice that (1,ufui) €
R(ug,u1).

Our second goal is to swap qubits A and C.

CC(Diag(1, ugu))
= Sac CC(Diag(1,ugu1)) Sac

Sac Uriyj, Usiysy Usiyjs Vaap Sac
= Sac Uiy, (Sac Sac) Uziyjy (Sac Sac) Usiyjy (Sac Sac) Vaap Sac
= (Sac Uiyyj, Sac) (Sac Usiyjy, Sac) (Sac Usiyjy Sac) (Sac Viap Sac)

In the first step, we use Lemma A.13. In the second step, we use the assumption about
Es. In the fourth step, we use that matrix multiplication is associative.

The above product has 4 factors that each is of one of the forms (EAC Uan §AC),
(§Ac Uac EAC)7 and (gAc Usc EAC). In each case, we can combine the three unitaries
into a single unitary. Notice that (Sac Uas Sac) € Gpe and (Sac Uac Sac) € Gac
and (Sac Upc Sac) € Gap. In particular, (Sac Vaap Sac) € Gpo. Thus, after those
steps, we arrive at a product Eg of the required form.

In the second case, the last unitary in E4 operates on qubits AC. Thus, we can write
E, = Uliljl U2i2j2 Ugisja Uy ac, where each iy, ji € {A, B,C} and i # ji. Now we
swap A and B:
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CC(Diag(ug, u1))
— Sap CC(Diag(uo, u1)) San
= Sap Uli]jl U2i2j2 U3¢3j3 U4AC San

Sap Uviyj, (Sa San) Uziyjy (Sap Sap) Usiyj, (Sap San) Usac San
= (SaB Uii,j, SaB) (Sap Uz, San) (San Usiyj, Sap) (Sap Usac San)
= (Sas Uliljl Sag) (Sap U2izjz Sap) (Sap U?’iSjS Sap) Uapc

In the first step, we use Lemma A.13. In the second step, we use the assumption about
FEy. In the fourth step, we use that matrix multiplication is associative. In the fifth step,
we use Lemma A.12.

In the above product, each of the first three factors is of one of the forms
(Sap Uap SaB), (Sap Uac Sap), and (Sap Upc Sag). In each case, we can combine
the three unitaries into a single unitary. Specifically, in the first case this is straightfor-
ward, while in the second and third case, we use Lemma A.12. Thus, after those steps,
we arrive at a product Eg of the required form. Additionally, we can choose ug = 1y and
uy = up and thereby satisfy (ug,ur) € R(ug,u1)-

In the third case, the last unitary in F4 operates on qubits BC, which means that
we can choose Fg = F,, and we can choose ug = ug and u7 = w; and thereby satisfy
(ug,u7) € R(ug,u1).

Notice that in each of the three cases, if F, is canonical form, then Fjg is in canonical
form. This concludes the third step of the proof.

In the fourth step, we transform FEg to a product of one of the two required forms.

We have eight cases.

In the first case, we can write Eg as Uy ap Uape Usap Uspe. From Lemma 7.1 we
have a 2-qubit unitary V such that CC(Diag(1,uius)) =V ap Uspc Usap Uspc- From
(ug,u7) € R(ug,u1) we get (1, ugur) € R(ug,u1). Now we swap B and C:

CC(Diog(1, ujur))
= Spc Vap Uspc Usap Uspe Sse

Sec Vap (Sse Spe) Uspe (Sse Spe) Usas (Spe Spe) Uspe See
= (Spc Vas Spe) (Spe Uzpe Spe) (Se Usap See) (Spe Uspe Spe)

= VAC (EBC UQBC §BC’) UBAC (EBC’ U4BC gBC’)

In the first step, we use Lemma A.13. In the third step, we use that matrix multiplication
is associative.

Above, (Sgc Uspe See) € Gee and (Spc Uspe Spe) € Ge. Thus, the product
is of one of the required forms.
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In the second case, we can write Eg as Uy ap Uspc Usac Uipe. From Lemma 7.1
we have a 2-qubit unitary V such that CC(Diag(1,ufur)) = Vap Uspc Usac Uspce-
From (ug, u7) € R(ug,u1) we get (1, ufur) € R(ug,u1). Now we swap B and C:

CC(Diag(1, u§ur))
= Ssc Vap Uspc Usac Uspe Spe (Lemma A.13)
= Spc Vap (Spe Spe) Uspe Usac Uspe Spe (Spc Spe = 1po)
= (Sc Vas Ssc) (Sec Uspe) Usac (Uspe Spe)  (Associativity)

= Vac (Ssc Uszpe) Usac (Uape Sse)

Here (Spc Uape) € Ge and (Uspe Sec) € Gpe. Thus, the product is of one of the
required forms.

In the third case, we can write Eg as Uy ap Usac Usap Uspce. From Lemma 7.1 we
have a 2-qubit unitary V such that CC(Diag(1, ugur)) = Vap Usac Usap Uspc. From
(ug,ur) € R(ug,u1) we get (1,ufur) € R(ug,u1). Now we do both a swap of B and C
and a swap of A and C"

CC(Diag(1, u§uz))
= Spc Vap Usac Usap Uspe Spe
= Spc Vas (Spo Spe) Usac (Spe Spe) Usap (Sse Spe) Uspe Spe
= (Sgc Vas Ssc) (Sse Usac Sse) (Spe Usap Spe) (Sse Uspe Sse)
= Vac Usap Usac (Spo Uspe Spo)
= Vac (Sac Sac) Uzap (Sac Sac) Usac (Spo Uspe Spo)
= (Vac Sac) (Sac Uaap Sac) (Sac Usac) (Spe Uspe Spo)
In the first step, we use Lemma A.13. In the third step and in the sixth step, we use

that matrix multiplication is associative.

Above, (Vac Sac) € Gac and (Sac Uzap Sac) € Gpo and (Sac Usac) € Gac
and (Spc Uspc Spce) € Gpe. Thus, the product is of one of the required forms.

In the fourth case, we can write Eg as U1gc Usap Usac Uspe. Now we swap B
and C"

CC(Diag(us, ur))
= Uipc U248 Usac Uspc
= Uipc (See Se) Uzap (See See) Usac (Sse Spe) Uspe  (See Sse = Isc)
= (Uipc SBc) (See U2ap Sse) (See Usac Sse) (See Uape)  (Associativity)

= (Uigc Sec) Uzac Usap (Spe Uspe)
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Here (U1pc Spe) € Gae and (Spe Uspe) € Gpe. Thus, the product is of one of the
required forms.

In the fifth case, we can write Eg as Uigc Usac Usap Uape. This is one of the
required forms.

In the sixth case, we can write Eg as U1 a0 Usap Usac Uspe- Now we swap A and C:

CC(Diag(ug, ur))
Uiac Usap Usac Uspe
= UlAC (EAC gAC) U2AB (§AC §AC) U:?,Ac U4Bc (§AC §AC = TAC)
= (Uiac Sac) (Sac Uaap Sac) (Sac Usac) Uspe  (Associativity)
Here (U1 ac Sac) € Gac and (Sac Uaap Sac) € Gpe and (Sac Usac) € Gac. Thus,

the product is of one of the required forms.

In the seventh case, we can write Eg as Uy ac Uspe Usap Uspc- Now we swap B
and C":

CC(Diag(ug, u7))
= Uiac Uzpc Usap Uspe
= Uiac Uspc (Seo Spo) Usap (Spe See) Uspe (Seo Spe = Ise)
= Uiac (Uzpc Spe) (Sse Usap Spe) (Spe Uspe)  (Associativity)
= Uiac (U2pc SBe) Usac (See Uspe)
Here (Uspc Spe) € Gpe and (Spe Uspe) € Gpe. Thus, the product is of one of the
required forms.

In the eighth case, we can write Fg as Ui ac Uage Usac Uspe. This is one of the
required forms. O

Lemma 7.3. Suppose ug,u1 are complex numbers such that |ug| = |ui| = 1. Suppose also
that (ug,us) € R(ug,uy). If (us = uz or uguz = 1), then (ug = uy or ugu; = 1).

Proof. Suppose (us = uz or uguz = 1). We have two cases that each has two subcases.

member of R(up,u;) assumption consequence conclusion
(ug,u3) = (uo,u1) Uy = U3 Uy = U Ug = Uy
UU3 = 1 UpUy = 1 UouUy = 1
(ug,ug) = (1, uduy) Uy = U3 1 = ufuy Uy = Uy
usuz = 1 1-ugu; =1 Uy = U

From the above table we see that, in every case, we reach the desired conclusion. O
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Theorem 7.4 (Main result for a diagonal matriz). Suppose ug,u1 are complex numbers
such that |ug| = |ui| = 1. There exists a product of at most four elements of Gy \ G1
and any number of elements of Gy that is equal to CC(Diag(ug,u1)) if and only if either
ug = u1 or ugui = 1.

Proof. In the left-to-right direction, suppose there exists a product of at most four
elements of G \ G; and any number of elements of G; that is equal to CC(Diag(ug, u1)).
From Lemma 7.2 we have that this implies that either

there exist 2-qubit unitaries U, Us, Us, Uy and complex numbers uso, uz such that
(uz,u3) € R(ug,ur) and Ui pc Usac Usap Uspe = CC(Diag(uz,us)),

or

there exist 2-qubit unitaries Uy, Us,Us, Uy and complex numbers us,us such that
(u2,u3) € R(ug,u1) and UlAC U2BC UZ’)AC U4BC = CC(Diag(uz,u3)).

We can apply Lemma 5.1 to the first case and we can apply Lemma 6.4 to the second
case, and in both cases we get that the property is true if and only if either us = ug3 or
usuz = 1. We have (us,u3) € R(up,u1) so from Lemma 7.3 we have either ug = uy or
UoUy = 1.

In the right-to-left direction, suppose either uwy = u; or upu; = 1. The conclusion
follows from Lemma 5.1. O

Corollary 7.5 (Main result for a gate with two controls). For a 1-qubit unitary U, there
exists a product of at most four elements of Go \ G1 and any number of elements of Gy
that is equal to CC(U) if and only if either the eigenvalues of U are equal or det (U) = 1.

Proof. Suppose Eigenvalues(U) = [ug, u1]. From the Spectral Theorem A.3 we have that
there exists unitary matrix V' such that U = V Diag(ug,u1) V. We calculate

CC(Diag(ug,u1)) = T4 @ Ip @ V') CC(U) (Ia @ Ip V)

We have (I42Ip@V 1), (I4®@I52V) € G;. Thus, the number of elements of Go\G; needed
to implement CC(U) is the same as the number needed to implement CC(Diag(co, ¢1)).
From Theorem 7.4 we have that this number is at most four if and only if either ug = uy
or upu; = 1. We have Eigenvalues(U) = [ug, u1] so det(U) = woui. Thus, (either ug =
up or upu; = 1) is the same as saying that the eigenvalues of U are equal or that
det(U) =1, as required. O
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Notice that Corollary 7.5 implies that five 2-qubit gates are necessary for implementing
the Toffoli gate. This is because the Toffoli gate is CC(X) and the eigenvalues of X are
[1,—1], so the eigenvalues of X are different and det(X) = —1 # 1.

For completeness, we summarize known results for implementation of CC(U). The
question is whether a product of n elements of G \ G; and any number of elements of
Gy is equal to CC(U). There exists such a product for

o n <1 if and only if the eigenvalues of U are equal (see the proof of Lemma 5.1);

o n < 3 if and only if the eigenvalues of U are equal [4, Lemma 4.1];

o n < 4 if and only if the eigenvalues of U are equal or det (U) = 1 (Corollary 7.5);
and

o n <5 always [2,1].

Notice that if the eigenvalues of U are equal, then a single 2-qubit gate is sufficient.
Notice also that if the eigenvalues of U are different and det (U) = 1, then four 2-qubit
gates are both necessary and sufficient.

8. Conclusion

We have given a detailed proof of a well-known theorem in quantum computing. Our
proof has sufficient detail, clarity, and simplicity that it may inspire work on discovering
novel, related results.
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Appendix A. Foundations

Sections A.1-A .4 contain well-known results from linear algebra (or easy consequences
thereof), while Sections A.5—A.7 contain lemmas that the original proof [3,4] outlined at
a high level.

A.1. Square matrices

We will state properties of determinants and traces of square matrices. We don’t give
proofs of those properties; proofs are widely available in textbooks on linear algebra.

Lemma A.1. For square matrices D, E of the same size: det(DE) = det(D) det(E).

Lemma A.2. For square matrices D, E of the same size: tr(DE) = tr(ED).
A.2. Unitary matrices

Now we state the Spectral Theorem for the case of a unitary matrix and we state
other properties of unitary matrices. We don’t give proofs of those properties; proofs are
widely available in textbooks on linear algebra.

Theorem A.3 (Spectral Theorem). For a unitary matriz U, there exists a unitary matriz
V and a unitary diagonal matriz W, such that U = VWVT and the entries on the
diagonal of W are the eigenvalues of U.

Lemma A.4 (Conjugation preserves eigenvalues). For unitary matrices U,V of the same
size, we have Eigenvalues(UVUT) = Eigenvalues(V).

Lemma A.5. For 1-qubit unitaries P,Q, if Eigenvalues(P) = [a, ] and Eigenvalues(Q) =
[p, q], where a,b,p,q are complex numbers, then Eigenvalues(P ® Q) = [ap, ag, bp, bq].

Lemma A.6. For 1-qubit unitaries P,Q, we have Eigenvalues(|0){0| ® P + |[1)(1] ® Q) =
Eigenvalues(P) U Eigenvalues(Q).

We have introduced notation for partial traces in the special case of tr4(U) where we
trace out the first qubit from a 2-qubit unitary U. The following lemma expresses the
key property of tr 4. This generalizes to tracing out multiple qubits from larger unitaries.

Lemma A.7. There exists a unique linear function called tra from 2-qubit unitaries to
1-qubit unitaries that, for any 1-qubit unitaries P, Q, satisfies tr4(P ® Q) = tr(P) Q.

Lemma A.8. For a 1-qubit unitary Q, let |3) = Q |0) and let |3+) = Q |1). Now |B)(8] +
BH) (B =1.
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Lemma A.9. For a 2-qubit unitary V and 2 x 2 matrices Pyy, Po1, Pro, P11, where
V' =10)(0] @ Poo + [0){1] @ Por + [1)(0] @ Pro + [1){1] @ Pry

we have Py = 0 if and only if Pio = 0.

A.8. Swaps

Lemma A.10 (Swap of vectors). For 2-dimensional vectors |¢), @) (not necessarily unit
vectors), we have S (%) ®|¢)) = |¢) © [).

Proof. Immediate from the definition of S. O
Lemma A.11 (Swap of matrices). For 2x2 matrices D, E, we have S (D®FE) S = E®D.
Proof. Immediate from the definition of S. O
Lemma A.12. For a 2-qubit unitary U, we have Sap Usc Sap =Upc.
Proof. We can write U in the following way:
U =10)(0| ® Poo + [0)(1]® Por + [1){0[® Pio + [1){1] ® Puy

where P()(), 13017 Plg, P11 are 2 X 2 matrices.
We calculate:

Sap Uac Sas
= (Sap®@Ic) (Ia® Spc) (Uap @ Ic) (Ia ® Spc) (Sap @ Ic)
= (Sap®@Ic) (Ia ® Spc)
(10)0] ® Poo @ I + 0){(1] @ Po1 @ Ie + |1){(0| @ Pio ® Ic + |1){1] ® P11 ® I¢)
(11 ® Spc) (Sap @ Ic)
= (Sap @ I¢)
(10)(0]® Ip @ Poo + [0)(1[ @ Ip® Po1 + |1){(0| @ Ip ® Pig + [1)(1|® Ip ® Py
(Sap®Ic)
=12 ®]0)(0]® Poo + 14 ®[0)(1] ® Po1 + 14 ® |1)(0|® Pio + 14 ® [1)(1| ® P11
=1, ®Upc
=Upc

In the first step, we use the definitions of Ssp and U s¢. In the second step, we use
the definition of U. In the third step, we use Lemma A.11. In the fourth step, we use
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Lemma A.11. In the fifth step, we use the definition of U. In the sixth step, we use the
definition of Sgpc. O

Lemma A.13 (Swap of controlled matrices). Suppose D is a 2 X 2 matriz and ¢1 is a
complex number. First, Sap CC(D) Sap = CC(D). Second, Spc CC(Diag(1,¢;)) Spo =
CC(Diag(1,¢1)). Third, Sac CC(Diag(1,c1)) Sac = CC(Diag(1,¢1)).

Proof. We use CC(D) = [0)(0| @ I ® I + [1)(1]®[0)(0] @ I + [1)(1] @ [1){(1] @ D.

First we show Sap CC(D) Sap = CC(D). We calculate
Sap CC(D) Sap
Sap (|0)(0l@T@T + 1)1 ®[0){0| @1 + [1)(1|® [1){1] ® D) Sap
=Sap (I0)(0|@I®1) Sap + Sap (|1){(1|®[0)(0| @) Sap +

Sap (11)(1 @ [1)(1]® D) Sap

=Ix|0)(0|1 + |0)(0|®|1){(1]|eI + 1){1|x|1){1]® D
— Diag(1,1,0,0,1,1,0,0) + Diag(0,0,1,1,0,0,0,0) + |[1)(1] ® [1)(1|® D
= CC(D)

In the third step, we use Lemma A.11.
Second we show Spc CC(Diag(1,¢1)) Spc = CC(Diag(1,c1)). We calculate

Spc CC(Diag(1,¢1)) Spe
=Spc (10)(0l@I® + [1){1]®|0)(0]@ I + [1)(1] ®[1)(1] @ Diag(1,c1)) Spc
=Sge (|0)(0|@ I @ 1) Sge + Spo (I1)(1]@[0)(0] @ 1) Spe +

Spe (11)(1] @ [1)(1] @ Diag(1,¢1)) Spe

= (0o lel) + (1)1 I®][0){0]) + (|1)(1] @ Diag(1,c1) @ [1)(1])
= Diag(1,1,1,1,0,0,0,0) + Diag(0,0,0,0,1,0,1,0) + Diag(0,0,0,0,0,1,0, c1)
= Diag(1,1,1,1,1,1,1,¢;)
= CC(Diag(1,¢1))

In the third step, we use Lemma A.11.
Third we show Sac CC(Diag(1,¢;)) Sac = CC(Diag(1,¢1)). We calculate

Sac CC(Diag(1,¢1)) Sac
=Sac (10)0l@ I @ + [1)(1]@[0)(0]® ] + [1)(1]® [1)(1] ® Diag(1,¢1)) Sac
=Sac (10)(0]@I® 1) Sac + Sac (11){(1]@|0)(0] ® 1) Sac +
Sac (|1)(1] @ [1)(1] @ Diag(1,c1)) Sac
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— (@I 0)(0]) + (18 [0)(0]®[1)(1]) + (Disg(L,er) @ [1){1] @ [1)(1]
= Diag(1,0,1,0,1,0,1,0) + Diag(0,1,0,0,0,1,0,0) + Diag(0,0,0,1,0,0,¢1)
= Diag(1,1,1,1,1,1,1,¢1)

= CC(Diag(1,¢1))

In the third step, we use Lemma A.11. O
A.4. Vectors

We will use the following results in the proofs of Lemma A.19, Lemma A.22  and
Lemma A.23. First we state Schmidt decomposition, taken from Nielsen and Chuang [1],
Theorem 2.7 and Exercise 2.78.

Theorem A.14 (Schmidt decomposition). For a unit vector |p)ap, there exists a real
number v (0 < r < 1), a pair of orthogonal qubits |3) 4, |B+)a, and a second pair of
orthogonal qubits |y)p,|v*)p such that:

le)as =Vr 1B a®@ e + VI—7 |B)a® W )B
Additionally, |@)ap s a tensor product if and only if r =0 orr = 1.

Lemma A.15. For a /-dimensional unit vector |w) and orthogonal qubits |B),|8+), there
exist vectors (not necessarily qubits) [1b), |¢) such that |w) = |B) @ [¢) + |B1) @ |p).

Proof. Define a 1-qubit unitary Q:
Q=18)(0] + |84)(1|

Notice that the columns of @) are orthogonal unit vectors, hence @ is a unitary matrix.
We can write

(Q® T |w) = coo|00) + ¢01]01) + ¢10]10) + ¢1111)
= 10) ® (coo|0) + co1]1)) + [1) @ (c10/0) + c11[1))

Define

[9) = cool0) + co1|1)
lp) = c10]0) + c111)

We can combine the above observations and get:

QoD lw)y=10) @) + 1)@ |p)
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We calculate

|w)

QeI Qe |w)
Q1) (10)®[¥) + [1) @ |p))
1B)®[v) + 185 @) O

Lemma A.16. For 2-dimensional vectors |wp), |w1) (not necessarily unit vectors) and for
linearly independent qubits |ag), |an), if [we) ® |ag) + |w1) ® |a1) = 0, then |wy) = 0 and
|w1> =0.
Proof. We pick a qubit |ag) such that |ag) and |ag ) are orthogonal. From this and that
|ag) and |aq) are linearly independent, we see that (ag|ag) # 0.

Let us apply I ® (ag| to both sides of |wg) ® |ag) + |w1) ® |a1) = 0 which gives

(g la) [w) =0

From this and (ag |oy) # 0, we conclude |w;) = 0.

From |wg) ® |ag) + |w1) @ |ar) = 0 and |wy) = 0, we have |wp) ® |ap) = 0. We also
have |ag) # 0 so we conclude |wg) =0. O
A.5. Controlled unitaries

We will show that various conditions imply that a unitary is controlled.
Lemma A.17. If U is a 2-qubit unitary, and |B),|3+) are two orthogonal qubits, and we
have qubits 1)), @) such that U (|0) ® |)) = |0) ® [¢) and U (|0) ® |3+)) = [0) @ [¢).
then U is of the form:

U=10)(0]® Poo + [1){(1] ® Pry

where Py, P11 are 1-qubit unitaries.
Proof. We can write

U = 0){0] ® Poo + |0)(1] @ For + [1)(0] @ Pro + [1)(1] @ Py

where Pyg, Py1, P1o, P11 are 2 x 2 matrices.
Define a 1-qubit unitary Q:

Q= 18)(0] + [B+)(1

Notice that the columns of @ are orthogonal qubits so @ is unitary.
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Let |w) be a qubit:
jw) =a[0) + b1)
We calculate U (I ® Q) (|0) ® |w)) in two different ways:

UIoQ)(0)@w)=UI&Q) (|0)®(a|0) + b1)))
=U (a|0)®1B) + b0)®[5H))
=a|0) @) + b[0)®[p)
=10) @ (al¢) + blp))

UI®Q)(0)@|w)=U (0)®Q |w))
=10) ® Poo Q |w) + |1) ® Pio Q |w)

In the third step of the first calculation, we use the |¢), |¢) from the assumption of the
lemma.
From the two calculations of U (I ® Q) (]0) ® |w)) we have that

0)® (a [¢) + blp) =10) @ Poo Q |w) + |1)® Pro Q |w)
which implies that
1) ® Pio Q |w) =0
which implies that
P Q |lw)=0

We have that this is true for any qubit |w), which implies that Pjg @ = 0. From this
and that @ is unitary, we conclude that Py = 0.

From P;p = 0 and Lemma A.9 we have that Py; = 0. From this and the assumption
that U is unitary, we have that Pyy, P11 are unitary. Thus, U is of the required form. 0O

Lemma A.18. If U is a 2-qubit unitary, and V|3) : U (|8) ®|0)) = |8) ® |0), then U is of
the form:

U=1I®[0){0]+ P |1)(1]
where Py is a 1-qubit unitary.

Proof. We calculate:

(SUS) (0ep)=SU () ®|0) = S(8)=[0) = |0)]F)
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In the first and the third step, we use Lemma A.10.
We can pick orthogonal qubits |3),|3+) and use the above to observe that

(SUS) (|0)®|B)) = |0) ®|B)
(SUS) (I0y®[5+)) =0y ®[5+)

From Lemma A.17 we have that (S U S) is of the form
SUS=|0)(0|® P, + |1){1| @ P,
where Py, Py are 1-qubit unitaries. From this and Lemma A.11, we have
U= Py ®|0)(0] + P @ [1)(1]
We calculate, for any qubit |3):
1B) @10) =U (I8) ©10)) = (Po@[0)(0]+ P @ [1){1]) (I8)®[0)) = (Fo|8)) ®]0)

In this first step, we use the assumption of the lemma.
From the above we get that, for any qubit |5):

Py |8) =18)
Thus, Py = I, as required. O

Lemma A.19. If U is a 2-qubit unitary and |¢)pc, |[w)Be are 4-dimensional unit vectors
such that U ac (|0)4 ® |¢)pc) = [0)a ® |w)pc and |p) e is entangled, then U is of the
following form, where Py, Py are 1-qubit unitaries:

U =10)(0]® Po + [1){1] @ Py

Proof. We use Schmidt decomposition (Theorem A.14) on |¢)pc and get a real num-
ber r, a pair of orthogonal qubits |3)z,|31)5, and a second pair of orthogonal qubits
Iv)e, |7 e such that:

ey =Vr 1B) @ )e + VI—r |85 ® e

We have that |p)pc is entangled so 0 < r < 1. Now we calculate:

004 ® |w)pe = Uac (|0)4 ® |¢)BC)
=Uac (|0a® (V7 |B)® |Me + VI—7 855 @7 )c))
=VrUac ([0a®8)3® 7)) + VI—7Uac (10041858 ® v )0)
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We can use Lemma A.15 to write |w)pc based on {|3)p, |3+)5} as follows, where [¢) ¢
and |p)c are vectors (not necessarily qubits):

lw)pe = B)s @ [¥)e + |B1)8 @ |p)c

We calculate:

0)4® ) @ [B)c + [0)a®|0)s® B )
=Spc (1004®8)s® [¥)e + [0)a®@[85)B @ |p)c)
= Spc ([0)a ® [w)pe)
=Spo (Vr Uac ([0a®|8)s® y)0) + VI—rUac (10)a®[85)5® "))
=Vr SpcUac (1004 @B ®@ 7)) + VI—71 Spc Uac (1004 ® (855 @7 )c)
=71 Spc Uac Sgc Spe (10)a ® |B)5 ® [7)c) +
V1—=7 Spc Uac Spe Spe (1004 ® 1855 @ 7))
=VrUas (100a@)B®[B)c) + VI—71Uas (1004 @y )p®[85)0c)
= (V7 Uap (1004 ® 1)B) ®B)c + (VI—7Uap (10)a® [y")p)) ®[65)c

In the first step, we use Lemma A.10. In the second step, we use the above equation for
|w) pe. In the third step, we use the equation for |0) 4 ® |w) e above. In the sixth step,
we use the definition of U 4¢ and Lemma A.10.

From this and that |3), |$+) are linearly independent and Lemma A.16, we get

VU (10) @ |y) =10) ® [¢)
VI—rU (0)® ") = 0) @ |p)

Now we use 0 < r < 1 and get:

1

7 )
1

1—r

U(l0)®|y)=10)®

U (0)®yH) =0)®

)

From the above and Lemma A.17 we have that U is of the form U = |0){(0| ® P, +
|1)(1] ® P, as required. O

A.6. Tensor products
We will prove seven lemmas about tensor products. First, we will give a necessary

and sufficient condition for a vector to be a tensor product (Lemma A.20), we will state
conditions under which applying a unitary to two or three qubits is a tensor product
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(Lemma A.21 and Lemma A.22), and we will characterize a space that consists entirely
of tensor products (Lemma A.23). We also show a case where a controlled unitary turns
out to control two tensor products (Lemma A.24), and two cases of deriving conclusions
from information about a unitary mapping some tensor products to other tensor products
(Lemma A.25 and Lemma A.26).

Lemma A.20. Suppose |w) = ag|00) + ag1|01) +a10|10) 4+ a11|11) is a 4-dimensional unit
vector where ago, ao1, a10,a11 are complex numbers. Now, |w) is a tensor product if and
only if agpai1 = ap1aio-

Proof. .
roo |w) is a tensor product

— |w) = |¢) @|p), for some |¢h) and |p)

= <a00> =bolp) A (aw) = b1|p), for some unit vector bg|0) + b1|1) and |p)
ap1 a1

:)lﬂc: <a00> = c(aw)] V. (aip =a =0)
ap1 a11

= [HCZ agp = caig N\ agr = call] V (al() =aqa1; = 0)

<= apoa11 = QQ1@10

In the fifth step, in the right-to-left direction, we assume agpa;1 = agpia19 and we
consider three cases. First, if a;g = a1; = 0, then that is a separate disjunct in the
conclusion. Second, if ajg = 0 and a1 # 0, then we define ¢ = Z—(ﬁ Now, agg = 201410 —

aii1
caip and ag; = Z—‘ﬁau = cay1. Third, if a9 # 0, then we define ¢ = % Now, agg =

a0, — — Gooa1y _
a0 aio caqo and agq 10 cayy1- O

Lemma A.21. For a 2-qubit unitary U, there exists a qubit |1) such that U(]0) ® 1)) is
a tensor product.

Proof. Suppose

U|00) = aoo|00) + ao1|01) + a10[10) + a11[11)
U[01) = boo|00) + bo1[01) + b10]10) + b1y |11)

Let |[¢) = p|0) + ¢|1) be a qubit and let us calculate

U(|0) @ |)) = U(|0) ® (pl0) +ql1)))
= pU|00) + qU|01)
= p(ago|00) + ap1|01) + a10]10) + a11|11)) +
q(boo[00) + bo1|01) + b1o|10) + b11]11))
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= (paoo + qboo)|00) + (pao1 + gbo1)[01) +
(paio + qb10)[10) + (pai1 + ¢gb11)[11)

From this and Lemma A.20, we have that U(]|0) ® |¢)) is a tensor product if and only if

(paoo + qboo) (pai1 + gbi1) = (pao1 + gbo1) (paio + qbio)

We can rearrange the above equation to get:

p* (agoa11 — ap1aio) + pg (aob11 + a11boo — ap1bio — a10bo1) + ¢* (boob11 — bo1big) =0

Now we have two cases.
First, if U]00) is a tensor product, then we pick |1) = |0), which satisfies the lemma.
Second, if U|00) is not a tensor product, then from U]00) = ago|00)+ag1|01)+a10|10)+
a11]11) and Lemma A.20, we have that agpai; — apraio # 0. Now we pick ¢ = 1 and use
it to rewrite the above equation to the following equation with the single unknown p:

p? (agoair — ap1a1o) +p (agobir + ar1boo — ap1bio — arobor) + (boobir — bo1big) = 0

Notice that since aggai1 — agra1g # 0, we have from the quadratic formula that this
equation has a solution py given by

1
po = %(—b + Vb2 —4ac)  where

a = appa11 — @p1a10
b = agob11 + a11boo — ap1bio — a1obo1

¢ = boob11 — bo1b1o
Thus, we have the following solution to the original equation:
P1 = Po =1
Notice that for any nonzero complex number ¢, we can scale to a different solution:
P2 = ¢po g2 =¢

This is a solution because p3 = c?p? and page = c*p1q1 and ¢3 = c2¢?. Thus, each of the
three items of the sum in the original equation gets scaled by c2.
Now we can pick cog = 1/4/|po|? + 1 and get the following solution:

P3 = CoPo g3 = Co

Notice that [tpg) = copo|0) + ¢o|1) is a unit vector. Thus we pick |)g), which satisfies the
lemma. O
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Lemma A.22. For a 2-qubit unitary U and qubits |a),|8),|7), |¢) and a 4-dimensional
unit vector |p) pc, if Uac (|o)a®@|B)s @ 7)) = [¥)a @ |@)BC, then there exists a qubit
|w) such that |p)pc is a tensor product of the form |o)pc = |8)B ® |w)c.

Proof. From U c (|a)a @ |B)s @ [7)c) = [¥)a ® |¢) 5o, we will, on each side, form the
outer product with itself:

Tac ()4 ®18)8® )e) ({ala® Bz @ (vle) The = (104 @ 19} se) (4 ® (¢lse)

after which we trace out qubits A and C' on both sides and get

1B)(Bl = tre (@) (#) (A.1)

Let |31) be a qubit that is orthogonal to |3). From Lemma A.15 we have vectors |w), |2)
such that

o) =18) ® [w) + [8Y) @ |2) (A.2)

We calculate

1BY(B] = trc(le) (el)
=tre((18) @ lw) + [87) @ |2)) (Bl @ (w] + (7| @ (2])
= tre(18)(8l @ lw)(w| + |B)(BH ® [w){z] +
BBl @ [2)(w] + [B1)(B] @ |2)(2])
= 18)(Bl (wlw) + 8B (zlw) + [BT)(B] (wlz) + [B4)(BH] (2]2)
In the first step, we use Equation (A.1). In the second step, we use Equation (A.2). In

the fourth step, we use Lemma A.7 and Lemma A.2.
Now we multiply with (8+| from the left and with |3+) from the right and we get:

0= (zl2)
from which we get |z) = 0. From this and Equation (A.2), we have
o) =1B)®@w) + |BY)®2) = |B)®w)
and from that |¢) and |5) are unit vectors, we get that |w) is a unit vector. 0O

Lemma A.23. For a 2-qubit unitary U, if V|z) : U (|z) ® |0)) is a tensor product, then
either

3N) Ve 32 < U (J2)
) :V|z) : J)|z) : U (o)

2) @ ¢), or
P) @ |2).

)
)

®10)) = |
®10) = |



J. Palsberg, N. Yu / Linear Algebra and its Applications 694 (2024) 206—261 249

Proof. Let

U (10) ®0)) = |ao) ©[6o)
U (1) ®10)) = |ar) ©[61)

1
U (510 + 1) @[0) = |ot) @164)
where |ag), |a1), |at), |Bo), |81), |B+) are qubits. We will show that

either |ag) and |ay) are linearly dependent, or |3y) and |5;1) are linearly dependent.

(A.3)
We calculate
1 1
U (E(M + 1) el0) = E(UUO) ®0) +U(|1) @10)))
= —(la0) ®[80) + o) @ 131)
From the above two equations for U (%(|O> + 1)) ®10)), we see that
lag) @ 184) = %(|a0> ® |Bo) + lar) @ [61)) (A4)

Now we pick a qubit |85-) such that |3y) and |3;-) are orthogonal. Next we multiply on
the left with 7 ® (83| on both sides of Equation (A.4) and we get:

L
V2

We can simplify both sides of the above equation and get:

(I @ (B ) (la) @184)) = (I @ (B3 ]) (=5 (law) ® |Bo) + lor) @ |B1)))

L
V2

From the above equation we see that either |ay) and |a;) are linearly dependent, or

(Br|Bs) = %(ﬁoﬂﬁﬁ = 0. Let us consider those two cases in turn.

In the first case, if |ay) and |«q) are linearly dependent, then we use Equation (A.4)

(By 1B+) los) = —= (B [B1) |on)

and Lemma A.16 to get that |ag) and |a;) are linearly dependent.

In the second case, if (83|84) = %(ﬁ(ﬂﬂﬁ = 0, then we have that |3;) and |3;) are
orthogonal, which together with that |33) and |3o) are orthogonal gives that |3y) and
|B1) are linearly dependent.

This means that we have proved Equation (A.3).

Now we have two cases. In the first case, if |ag) and |ay) are linearly dependent, then
they are proportional. Thus, we can pick |[¢)) = |ap) and find a constant ¢ and write:
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1) ® |B1) = (¢ |ao)) ® |B1) = |ao) @ (c [B1))

In the second case, if [8g) and |B1) are linearly dependent, then they are proportional.
Thus, we can pick 1)) = |Bp) and find a constant ¢ and write:

1) @ [B1) = lan) @ (¢ [Bo)) = (¢ |ar)) @1Bo)
Thus, in both cases we have shown that |a;) ® |51) is of the required form. O
Lemma A.24. For 2-qubit unitaries U, V, Wy, W1, if
Uac Vap =10)(0[@ Wy + [1)(1]@ W,
then
Uac Vap =0)(0[@ Bh® Qo + [1)(1|® PL® Qy
where Py, Qq, P1, Q1 are 1-qubit unitaries.

Proof. From Lemma A.21 we have that we can pick qubits |¢g),|ao),|Bo) such that

V (10) ® [¢o)) = |ao) ©Bo)
We can also pick a 1-qubit unitary P such that
P lag) = [0)
We calculate, for any qubit |y):

Uac (PT@I®1)(10)@ |6o) @ |7))
=Uac (P'eI01) (PI&1)Vap (|0)@ |to) ® 7))
=Uac Vap (10) ®[¢o) ® 7))
=10) ® (Wo (|¢0) ® 1))
In the first step, we use the above properties of P and V. In the second step, we use that
(Pf®@I®I)and (P®I®I) cancel out. In the third step, we use the assumption of the
lemma.

We have that Uc (PT®I® I) has no effect on the B qubit so we can focus on the
A and C qubits and get that, for any qubit |7y) there exists a qubit |w) such that

U (P'@1I) (|0)@ 7)) = 0) ® [w)
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We can pick orthogonal qubits |y1),|v2) and use the above to observe that there exist
qubits |wy), |we) such that:

U (PTeI) (10)®[m)) = 0) ® Jwr)
U (PT®I) (10)®2)) = [0) ® [ws)

From this and Lemma A.17 we have that U (P' ® I) is of the following form, where
Qo, Q1 are 1-qubit unitaries:

U (PT@1)=10){0|® Qo+ [1){1] ® @1
From this we derive
Uac (PTRIRT)=[0)(0|@T® Qo+ |1){1|®I®Q (A.5)
From the assumption of the lemma, we have:
Uac (PTRIRI) (PRI®I) Vg =1[0)(0@W, + [1)(1] @ W,
From this we derive:

(PRI®I)Vap

(Uac (PT e Ia1))' (j0)(0]@ Wy + [1)(1] @ W1)
(1000l@T®Qo + 1)(1|@T® Q1) (10)(0]© W + [1)(1] © Wi)
(o)l el + (@Il (0)0]eWe + [1)(1] @ W)
=10)(0] @ (I ® Q) Wo + [1)(1]® (I ® Q}) Wi

0)(
0)(

In the second step, we use Equation (A.5).

We have that (P ® I ® I) V 4p has no effect on the C' qubit so we can focus on the
A and B qubits and get that (P® I ®I) V 4p is of the following form, where Py, P, are
1-qubit unitaries:

(PRIRI) Vap=|0)0@ Bl +|1){1|l@P &I (A.6)
We calculate:

UAC Vs ZUAC (PT®I®I) (PRI®I) Vs
= ([0)(0[@ I ® Qo+ [1){(1|@I® Q1) (0)(0|® Py I+ |1)(1]@ P I)
=10)(0]|®@ PBh® Qo + [1){1]® P ® Q1

In the second step, we use Equation (A.5) and Equation (A.6). O
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Lemma A.25. For a 2-qubit unitary V and a qubit |¢), for which

Viz): )V (lz) ©0) = |[¢) @ [p)
there exists a 1-qubit unitary @ such that

Viz): V (lz) @0) = [¢) @ (Q 7))

Proof. Let |wg) and |w;y) be unit vectors that exist according to the assumption of the

lemma:

<
—~
=
=
&
=
=2
=

I

[¥) @ |wo)
[v) @ [wn)

<
—
pa
=
®
=
=
N
|

Notice that (]0)®|0)) and (|1) ®]0)) are orthogonal and that V' is a unitary so it preserves
orthogonality, which implies that |¢) ® |wg) and |¢) ® |w) are orthogonal, which implies
that |wo) and |w;) are orthogonal.

Define a 1-qubit unitary @Q:

Q = [wo) (0] + |w1)(1]

Notice that the columns of @ are orthogonal unit vectors, hence @ is a unitary matrix.
For any qubit |z) = a|0) + b|1), we calculate:

Q |z) = (Jwo){0] + |w1)(1]) (al0) +b[1))

= alwo) + blw1)

V (lz) ®10)) =V ((al0) + b[1)) ®0))
=V (a|0) ®[0) + b|1) ®0))
=V (al0) ®[0)) + V (b]1) ®0))
= (aly) @ |wo)) + (bJY) ® |wi))
= ) ® ((alwo)) + (blwi)))
= [¢) ® (Q |x))

d

Lemma A.26. For a 2-qubit unitary U, if V|z) : 3|8) : U (|z) ® |0)) = |z) ® |B), then
31B) :VIz) : U (l2) ® 10)) = [2) @ |B).

Proof. Let us consider |+) = —=|0) + %|1> We can use the assumption of the lemma
to find |Bo), |51),|B+) such that
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U (10) @10)) = 10) ® |5o)
U (1) @10)) = [1) ® |B1)
U (+)®[0) = [+) @ 15y)

Now we calculate U (]4) ® |0)) twice.
First we do the calculation based on the first two properties above:

U (l+)@l0)=U( ®10))

1 1
ool
1

1
=% U (|0) @ 0)) + 7 U (1) @10))

1 1
=—10)® + = |1)®
Second we do the calculation based on the third property above:

U (4)®[0) = [+) @ 1584)

1

:(—2|0>+ ) @ |B+y)

1
2
:% 0)®184) + % 1)@ |84)

From the two calculations of U (|4) ® |0)) we have that

1Bo) = B+)
1B1) = |B+)

From those two properties we conclude |5o) = |58+) = |51)-
Let |w) = ¢|0) + d|1) be a qubit. We calculate:

U (Jw) ®10)) = U ((c|0) + d|1)) ©0))
=(cU (|0)®10))) + (@ U (]1) ®10)))
=c0)®|Bo) + d[1) ®|[B1)
=c|0)®|84+) + d[1)®[B4)
= (c[0) + d[1)) ®|B+)
= w) ® [B4)

Thus, |8+) has the property that V|z) : U (|z) ® |0)) = |2) ® |[8+). DO

253
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A.7. Other properties

We will prove Lemma A.27 that we use in the proof of Lemma 4.3, and we will prove
six other lemmas that we use in the proof of Lemma 6.4 (the second main lemma). All
those lemmas are highly specific to the proof tasks that they support.

Lemma A.27. For 2-qubit unitaries V1, Va, V3, Vy, Uy, Uy and 1-qubit unitaries Py, Py, if

Viac Vape Viac Vige =10)(0l @ Uspe + 11)(1| ® Urpe
Vi =0)(0] ® Py + [1)(1| ® Py

then V3 is of the following form, where Qq, Q1 are 1-qubit unitaries:
V3 =10)(0] ® Qo + [1)(1]| ® Q1
Proof. We calculate:

Viac = Vase Vine (10001 ® Uope + |11(1 @ Upe) Vase
= (10)(0] ® Vol + [1){1] @ Valy)
(10)(0] @ Ip ® Py + [1){1| @ Ip ® Pf)
(10)(0] ® Uo e + 11){1] ® U1 pc)
(10)(0] @ Vil + [1)(1] @ Vi)
=10(0] ® (Valyee (Ip ® P}) Uppe Valye) +
1)1 ® (Vahe (I ® P{) Uipe Vige)

_ ( Vahe (Is ® ) Uspe Vile 0
0 Vale (I @ P)) Urpe Vilse

We can write V3 40 in the following way:

Viac =10)(0|® I ® Qoo + [0)(1| ® Ip ® Qo1 +
|10 ®Ip ® Q1o + [1){1|® Ip ® Qu1
_(IB®Quw Ip®Qn
Ip®Qiu Ip®Qn

where Qoo, Qo1, @10, Q11 are 2 X 2 matrices.
From the above two equations for V3 4, we conclude that V3 40 is of the form:

Viac =10)(0|® I ® Qoo + |1){1| ® Ip ® Q11

= Spc (10)(0| ® Qoo ® Ic + [1){(1] ® Q1 ® Ic) Spc
= Spc ((10)(0] ® Qoo + [1){(1]® Q1) ® Ic ) S
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From this we see that V3 = [0)(0] ® Qoo + [1)(1| ® Q11, which is of the required form.
In particular, since V3 is unitary, Quo, Q11 are unitaries. O

Lemma A.28 and Lemma A .29 each embodies a calculation that we need to do twice.

Lemma A.28. For 2-qubit wunitaries Vi,Vo,V3, V4 and 1-qubit wunitary U, if
Viac Vape Vaac Vape = CC(U) and V3 (0)©[0)) = [0) ©|0), then, for any qubit |z):

Viac Vape (1004 @) ®[0)c) = Vike (04 ® [2)5 @ [0)0)

Proof. We calculate, for any |z):

Viac Vage (1004 ® |x)p @10)¢)
=Viac Vape Vaac (10)a @ |z)5 @ (0)¢)
=Viac Vope Vsac Vape V4Bc) (10)a ® |z)p @ |0)c)

(Viac Vape Vsac Vage) (V4Bc (10)a ® |x)p @ [0)c))
CC(U) Ve (1004 ® 2)5 ® [0)c)
WOl @I ®I+[1)(1®CU)) (10)4® (V] (lz)p ®0)c)))

© (V (l2)s ®10)c)))

(0
(10)
Vibe (1004 ® )5 ® 0)c)

In the first step, we used the assumption V3 (|0) ® |0)) = |0) ® |0). In the fourth step, we
use the assumption Vi Vope Vape Vape = CC(Diag(uo,u1)) and in the fifth step
we use the definition of CC(Diag(ug, u1)). O

Lemma A.29. For 2-qubit wunitaries Vi,Vo, V3,V and a 1-qubit unitary U, if
Viac Vape Vaac Vape = CC(U) and V (0)©[0)) = [0) ®0), then, for any qubit |z):

Vibo Vihe (1204 ® (005 @ |0)e) = Viae (12)4 @ |0)5 @ [0)¢)

Proof. We calculate, for any |z):

=Sup CC(U") Sup

=S5 CC(U)" Sap

=S5un (Vape Vahe Vapo Vihe) Sas

—Sap Vise Sap Sap Vaie Sap Sap Vase Sap Sap Viie Sas

— (Sap Vage San) Bap Ve San) Bap Voo San) Sap Vihe San)

St 5t =t =t
=Viac Vspe Vaac Vige
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In the first step, we use Lemma A.13. In the third step, we use the assumption about
CC(U). In the sixth step, we use Lemma A.12.

Notice that V' (|0) ® |0)) = |0) ® |0).

From the above two observations and Lemma A .28, we have for any qubit |x):

Vihe Vase (1004 ® |25 ®(0)e) = Vige (1004 @ |2)z @10)c) (A7)

We calculate, for any |z):

Vise Vshe (12)4 ®10)5 @ [0)c)
=545 Sap Vape Sas Sa Vshe Sap Sas (11)4 ® 0)5 © [0)c)
—Sap (San Vage San) (Bap Vaie San) San (j2)a @ |0) ® 0)c)
= Sap Vihe Vape (1004 @ [2) 5 ©[0)c)
=Sap Vipe (1004 @ |2)p @ |0)¢c)
=548 Vige Sas Sap (10)a @ |z)p ®0)¢)
=Viac (J2)a ®|0)5 ®[0)c)

In the third step, we use Lemma A.10 and Lemma A.12. In the fourth step, we use
Equation (A.7). In the sixth step, we use Lemma A.10 and Lemma A.12. O

Lemma A.30. For 2-qubit unitaries Vi, Va, Vs, Vi, for which
)V |2) 3 [2) 1 Va (Jz) ®[0) = |2) @ |)
there exist 2-qubit unitaries Wy, Wo, Wy and a 1-qubit unitary P such that

Viac Vage Vaac Vape = Wiac Wape Vaac Wape
W = T ®[0)(0] + P @ |1)(1]
Proof. Let |¢)) be a unit vector that satisfies the assumption of the lemma and let [1))

be a unit vector that is orthogonal to [)).
Let |wo) and |w;) be unit vectors that exist according to the assumption of the lemma:

V2 (|0) ®0)) = |wo) ® [¢)
V2 (I1) @ 0)) = fw1) ® |¢)
Notice that (|0) ® |0)) and (|0) ® |1)) are orthogonal and that V5 is a unitary so it

preserves orthogonality, which implies that (Jwo) ® |¢)) and (Jw1) ® [¢)) are orthogonal,
which implies that |wg) and |w) are orthogonal.
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Define 1-qubit unitaries P, @ and then 2-qubit unitaries Wy, W, Wy:

P =)0 + [vh)(1

Q = [wo) (O] + |w1)(1|
W=V I®P)
Wo=(I®P) Vh(Q&I)f
Wi=(Q®I)Vy

257

Notice that the columns of P are orthogonal unit vectors, and the columns of @) are

orthogonal unit vectors, hence P, Q) are unitary matrices. We calculate:

Wiac Wape Vaac Wape = Spe (Viap (Ia® Pg)) ® Ic) Spe
(In® ((Ip ® Po)' Vape (@B ® Ic)"))
Spo (Vaap ©Ic) Spo
(Ia® (@ ®Ic) Vape))
=Spc Viap®Ic) (Ian®Pp®1Ic) Spe
(Ia@Ip @ PL) (14 ® Vapc) (14 @ Q@ Io)
Spe (Vsap ®Ic) Spe
(Ia®Qp®Ic) (Ia® Vige)
=Spc Viap®Ic) Spe Spe (Ia® Pp® Ic) Spe
(Ia®Ip® PL) (Ia ® Vape) (14 ® QY ® Ic)
Spe (Vaap ® Ic) Spe
(Ia®Qp®Ic) (Ia® Vipe)

=Viac Vape Vsac Vase
For any qubit |p) = a|0) + b|1), we calculate:

Va ([¢) ®10)) = V2 ((al0) + b]1)) © [0))
= V2 (al0) ©10)) + V2 (b]1) ® |0))
= alwo) @ [¢) + blw1) @ [¢¥)
= (alwo) + blw1)) ® )
= (a Q[0) + b Q1)) ® [¢)
= (Q (al0) +b]1))) @ [¥)
=(Q 1) ® )
=(Q |¢)) ® (P 10))
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For any qubit |x), we calculate:

(IoP) V2 (Q'®1) (jz) ®]0)
(I©P") V2 (Q' |z) ®0)
(1@ P ((Q Q" |z)® P [0)
( ) (

)

Wa (lz) ®10)) =
= (I ® P (Jz) @ P |0))
= |

) ®10

In the third step, we use the above equation for V5.
From the above and Lemma A.18, we have that W5 is of the form W5 =T ® |0)(0] +
P> ® |1)(1], where P is a 1-qubit unitary. O

Lemma A.31. For 2-qubit unitaries Vi, Va, Vs, Vi, for which
31) Y [2) 3 [2): VH (Jo) ®10)) = |2) @ [¥)
there exist 2-qubit unitaries Wy, W3, Wy and a 1-qubit unitary Ps such that

Viac Vape Vaac Vape = Wiac Vape Waac Wase
W5 =1®1[0){(0] + P; ® |1)(1]

Proof. We apply Lemma A.30 to VJ, V;,VJ,VJ, and we get that there exist 2-qubit
unitaries Wy, W3, W7 and a 1-qubit unitary Ps such that

V4LC Vspe V2j40 Vipe = Waac Wapc Vzixc Wise
W3 =1®[0){0] + P @ [1)(1]

From those two equations, we get

= - = = ot o wot Tt
Viee Vaac Vipe Vaac = Wige Vaac Wage Waac
Wi =1®10)(0] + P§ @ [1)(1]

From the first of those two those equations, we get
Voo Voo Ve 7 T oo et e
Sag Vipe Vaac Vise Vaac Sap = Sap Wipe Vaac Wape Waace Sas

In the above equation, we add the identity matrix, in the form of (Sap Sap), in six
places and get:

Sap Vipe (Sag Sas) Vaac (Sap Sag) Vise (Sap Sag) Viac Sas

= San WuTgc (Sap Sap) Voac (Sap Sag) WSEC (SaB Sam) W4Lc SaB
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Finally we use that matrix multiplication is associative and Lemma A.12 and get that
T v T wt o et ot
Viac Vapo Vsac Vape = Wiac Vape Wiac Wape

as required. O

Lemma A.32. For 2-qubit unitaries Uy, Us, Us, Uy, there exist 2-qubit unitaries Vi, Va,
V3, V4 such that

Urac Uspe Usac Uspe = Viac Vape Vaac Vase
V3 (10) ©10)) = |0) ®10)

Proof. From Lemma A.21 applied to Us, we have that there exists a qubit |w) and that
there exists qubits |1), |¢) such that

Us (|0) @ [w)) = [¢) ® |¢)

Let |1)*)4 be a unit vector that is orthogonal to [1)) 4, let | )¢ be a unit vector that
is orthogonal to )¢, and let |w®)c be a unit vector that is orthogonal to |w)c. Define
2-qubit unitaries Wy, W1, W5 and then 2-qubit unitaries Vi, Vs, Vs, Vy:

Wo = [9)(0] + [&+)(1]

Wi = [p)(0] + |e™)(1

Wo = [w){0] + |wh)(1]
Vi=U (Wo1)

Vo =Us (I ® W)

Vs =Wo@ W) Us (I @Ws)
Vi=(IoW)) U,

Notice that the columns of Wj, are orthogonal unit vectors, the columns of W7 are
orthogonal unit vectors, and the columns of W5 are orthogonal unit vectors. Hence Wy,
W1, Wy are unitary matrices. Now we can check that the two desired properties hold, as
follows.

Viac Vape Vsac Vape
= Spc (Uiap Wo®Ip))®Ic) Spe
(Ia ® (U2pc (I ® Wh)))
Spoe (Wo @ Wh)T Usap (14 © Wa)) ® Ic) Spo
(14 ® (Ig @ W) Uspe))
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=Spc (Uiap®@Ic) Wo® I ®1c)) Spe
((Ia ®Uzpe) (Ia® Ip @ W1))
Spc (W§@W{ @ 1Ic) (Usap ® Ic) (Ia @ Wa ® Ic)) Spe
(14 ® Is © W]) (11 ® Uspc))
= Spc (Uiap® Ic) Spe Spe Wo® Ip ® Ic)) Ske
({a®Uzpe) (1a @ Ip ® Wh))
Spc (W @ Wi @ 1c) Spe Spe (Usap @ Ic) Spe Spe (Ia @ Wa © Ic)) Spe
((Ia @ I © W) (Ia ® Uspc))
=Uiac Wo®Ip®Ic))
Uspe (Ia® I @ Wh))
(Wi @ Ip @ W) Usac (1a ® Ip @ Wa))
(Ia® 15 ® W) Uspe)
=TU1ac Uzpe Wo®Ip®1Ic) (W ®Ip ®Ic) Usac Usge
:UlAC UQBC U3AC U4BC
V3 (|0) ® [0))
= (Wo @ Wh)" Us (I @ W) (|0) @ |0))
= (Wo @ W1)" Us (|0) & [w))
= (Woe W) ([¥) @)
=0)®|0) O

Lemma A.33. For 2-qubit unitaries Vi, Vo, Vy, if

Viz)e : Viao Vape (10)a @ l2)s @ [0)c) = Vihe (10)a @ lo)p @10)c)  (A8)
) : V]z) 2 3[z) : Vo (Jo) ©]0) = |¢) @ 2) (A.9)

then Vi is of the following form, where Py, Py are 1-qubit unitaries:
Vi=10)(0]® Py + [1){(1| ® P

Proof. From Equation (A.9) and Lemma A.25 we have that we can find a 1-qubit unitary
Qo such that, for any qubit |x):

V2 () ®(0)) = [¢) @ (Qo |2)) (A.10)

We calculate, for any qubit |z):
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Viac (004 ® )@ (Qo |2)c)) = Viac (1004 @ (Vape (|2)s @ 10)¢)))
Vil (10)4 ®|2)5 ® |0)c)

In the first step, we use Equation (A.10) and in the second step we use Equation (A.8).
From the above equation and Lemma A.22, we have:

V|z) : 3jw) : Vi (|2) @10)) = [1)) ® |w)

From this and Lemma A.25 we have that we can find a unitary )7 such that, for any
qubit |x):

Vi (l2) ®10)) = [$) ® (Q1 |z)) (A.11)

Now we can continue the above calculation:

Viao (1004 ® [9)5 ® (Qo |2)c)) = Vike (1004 @ |2)5  [0)c)
=004 ®|Y)B® (Q1 |T)c)

In the second step, we use Equation (A.11). We can pick orthogonal qubits |xo) and |zg-)
and calculate:

Vi (10) ® (Qo |20))) = 0) @ (Q1 |w0))
Vi (10) ® (Qo |z5))) = 10) ® (@1 |zg))

From Lemma A.17 we have that V; is of the following form, where Py, P, are 1-qubit
unitaries:

Vi=1[0)(0l@ b+ |)(1l@P O
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