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Abstract—A quantum system coupled to a bath at some
fixed, finite temperature converges to its Gibbs state. This
thermalization process defines a natural, physically-motivated
model of quantum computation. However, whether quantum
computational advantage can be achieved within this realistic
physical setup has remained open, due to the challenge of finding
systems that thermalize quickly, but are classically intractable.
Here we consider sampling from the measurement outcome
distribution of quantum Gibbs states at constant temperatures,
and prove that this task demonstrates quantum computational
advantage. We design a family of commuting local Hamiltonians
(parent Hamiltonians of shallow quantum circuits) and prove
that they rapidly converge to their Gibbs states under the
standard physical model of thermalization (as a continuous-
time quantum Markov chain). On the other hand, we show
that no polynomial time classical algorithm can sample from the
measurement outcome distribution by reducing to the classical
hardness of sampling from noiseless shallow quantum circuits.
The Kkey step in the reduction is constructing a fault-tolerance
scheme for shallow IQP circuits against input noise.

Index Terms—thermalization, quantum computational advan-
tage, Gibbs sampling, commuting local Hamiltonians

1. INTRODUCTION

A major goal of today’s quantum computing efforts is to
realize quantum computational advantage in realistic physical
setups. One such setup is open system thermalization, where
a quantum many-body system is specified by a Hamiltonian
H and then coupled to a bath at finite (constant) temperature
B, and the system converges to the Gibbs state pg o< e PH,
Under physical assumptions,! this thermalization process can
be described by a thermal Lindbladian (a continuous-time
quantum Markov chain), most notably the Davies generator [1]
and its variants (e.g. [2]). This setup is especially relevant
for physical platforms in which implementing digital quantum
circuits is difficult. However, there has been no complexity-
theoretic evidence showing that quantum computational ad-
vantage can be achieved in this model (see Section I-A for a
discussion).

In this paper, we provide such evidence by showing that
quantum computational advantage can be achieved for the
task of sampling from the measurement outcome distribution
of Gibbs states at constant temperatures. In particular, we

I'The bath is Markovian and the coupling is weak.
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construct a family of commuting local Hamiltonians and
show that its thermalization process (described by the Davies
generator) is rapidly mixing. Meanwhile, its Gibbs state is
classically intractable to sample from.

Theorem 1.1 (Main result). For any constant inverse-
temperature 3 = O(1), there exists a family of n-qubit
commuting O(1)-local Hamiltonians, such that the n-qubit
Gibbs state pg is both

1) Rapidly Thermalizing. It can be prepared within small
trace distance by the Davies generator (a quantum
Markov chain describing thermalization), in time no),
In addition, this process can be simulated on a quantum
computer in time n*t°W) . And yet,

2) Classically Intractable. Under certain complexity-
theoretic assumptions, there is no polynomial time clas-
sical algorithm to sample from the measurement out-
come distribution p(x) = (x| pg|z) within small total
variation distance.

The classical hardness is based on the hardness of ap-
proximate sampling from the output distribution of ideal
shallow quantum circuits. The main result, therefore, places
the hardness of rapidly mixing thermalization to the same level
as ideal sampling-based quantum supremacy experiments (see
Section VII for more details).

A more general version of the result (Theorem IX.1) is
given in Section IX, where we generalize the above and
show how to trade-off locality for mixing time, including a
family of O(loglogn)-local Hamiltonians which thermalizes
in polylog(n) time.?

a) Our approach: The family of Hamiltonians we con-
sider is the class of “parent” Hamiltonians of shallow quan-
tum circuits (Fig. 1a). Starting from a trivial, non-interacting
Hamiltonian Hyy = — ), Z; consisting of single-qubit Pauli-
Z terms, we consider the family of Hamiltonians that are
related to Hy by a low depth circuit,

A = {H : 3 low-depth circuit C, H=CHyC'}. (1)

2In the initial posting of this work, we stated this latter construction as our
main result. We thank James Watson and Joel Rajakumar for the observation
that under appropriate parameter choices, our construction in fact has constant
locality (see Section II-B2 and [3]).
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hi = —CZ;Cl

(a) A Local Hamiltonian

(b) The Noise Model

Fig. 1: (a) We consider local Hamiltonians H = ), h; which
are parent Hamiltonians of shallow quantum circuits. (b) The
Gibbs states of these Hamiltonians pg oc e are equivalent
to the output state of C', where the input qubits are subject to
bit-flip errors (blue dots) of rate (1 + e2%)~1.

Each H € 7 is local, commuting, and it encodes the
computation C'in the sense that its ground state is the output of
the circuit C'|0™). The reason that these Hamiltonians are good
candidates for quantum advantage at constant temperatures lies
in the following key observation:

The Gibbs state of each H € J€ is a noisy
version of the underlying computation, where
random bit-flip errors are applied to the input

qubits (Fig. 1b).

This is a clean example of the general intuition that
constant-temperature Gibbs states are very noisy and far from
ground states. To encode computational hardness into the
Gibbs states of H € JZ, it then suffices to design a shallow
quantum circuit which is classically intractable to simulate
even under input noise. Our main result then follows from
two key technical contributions:

1) A construction of classically-hard shallow quantum
circuits that are fault-tolerant against input noise.
Standard techniques in quantum fault-tolerance blow
up the circuit depth, and in turn, the locality of the
parent Hamiltonian®. We start from a specific family
of classically-hard shallow circuits (namely, IQP cir-
cuits [4], [5]), and then design a low-overhead fault-
tolerance scheme tailored to IQP circuits and the input
noise model.

30ur interest in decreasing the locality stems both from the practical
challenges behind engineering systems with many-body interactions, and a
complexity-theoretic understanding of the role of locality in the hardness of
Gibbs sampling.

2) A proof that these Hamiltonians thermalize rapidly,
via a modified log-Sobolev inequality. We prove a
rapid mixing bound for Hamiltonians in % which
leverages the structure of the thermal Lindbladian (the
quantum Markov chain describing thermalization), in
combination with a carefully constructed lightcone ar-
gument for shallow quantum circuits.

A. Related work

a) Complexity of Gibbs states: Establishing quantum
computational advantage with constant-temperature Gibbs
sampling faces inherent difficulties. After all, at high enough
temperatures, Gibbs states are expected to be essentially clas-
sical objects; in particular, sampling from these Gibbs states is
efficient to simulate on a classical computer* [6], [7]. On the
other hand, in the low temperature regime, preparing Gibbs
states is expected to be hard in general even for a quantum
computer;’ in particular, the thermalization process may take
exponential time.

Nevertheless, a path exists to circumvent these issues, by
embedding some classically hard quantum computation into
a local Hamiltonian. It is reasonable to hope that the nature
of this embedding ensures that producing the Gibbs state is
still tractable for quantum computers® (e.g. [9], [10]), and one
can further hope that the Gibbs state is classically hard. But
there is yet another issue: standard means to embed quantum
circuits into Hamiltonians [11] typically encode the quantum
computation into its ground state. However, Gibbs states at
constant temperatures are understood to be very noisy, and far
from the ground state. In this manner, to argue that this noisy
version of the ground state remains classically hard, there must
be an inherent fault-tolerance to the circuit-to-Hamiltonian
mapping. Our approach can be viewed as a clean example
that satisfies all of the above criteria.

b) Gibbs samplers and rapid mixing: Preparing Gibbs
states (or Gibbs sampling) is a candidate application of quan-
tum computers as well as an important quantum algorithmic
primitive. While there are many proposed quantum Gibbs
samplers, recent developments have focused on an approach of
simulating open system (Lindbladian) dynamics, in particular
the Davies generator and its variants which mimic thermaliza-
tion in nature [12], [13], [14].

The key missing ingredient to the efficiency of these
quantum simulation algorithms is a bound on the mixing
time of the underlying quantum Markov chain. The standard
approach, via a bound on the spectral gap, gives a mixing
time that has intrinsic polynomial dependence in n [15].
A much stronger approach known as (quantum) log-Sobolev
inequalities consists of a decay of the relative entropy, and
results in only polylog(n) mixing time, a phenomenon known
as rapid mixing. These stronger inequalities are notoriously

4This does not contradict our result which holds for arbitrary constant
temperature, due to the order of quantifiers; see Remark IX.1.

SIndeed, NP-hard due to the classical PCP theorem [8].

%In fact, we desire something even stronger: that the Hamiltonian is rapidly
thermalizing.
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hard to prove: examples have only been shown for certain
commuting systems, in 1D [16], [17] or on lattices above a
threshold temperature [18]. Our rapid mixing bound uses the
lightcone structure of shallow quantum circuits, and does not
require geometric locality or a temperature threshold.

c) Shallow quantum circuits and fault-tolerance: Shal-
low quantum circuits are widely used in quantum algorithms
for near-term devices and quantum supremacy experiments.
The hardness of sampling from the output distribution of
shallow quantum circuits provides the complexity foundation
for these experiments (see [19] for a review). We focus
on constant-depth instantaneous quantum polynomial time
(IQP) circuits C = H®"DH®" where D is a constant-
depth diagonal unitary, which provides hardness due to the
universality of measurement-based quantum computation [4],
[5]. However, these circuits are not noise-robust and become
classically simulable under noise [20], [21]; fault-tolerance
techniques are therefore necessary for classical hardness in
our context.

There is a tension between shallow quantum circuits and
the overhead of quantum fault-tolerance.” Standard techniques
encode a constant depth quantum circuit into a fault-tolerant
circuit of polylog(n) depth [24], and fault-tolerance with
constant circuit depth overhead is only known for shallow
Clifford circuits [25]. Ref. [20] devised a fault-tolerance
scheme specialized to IQP circuits and the input noise model,
and we design a new scheme in this setting which achieves a
significantly smaller overhead.

B. Our Contributions

1) Efficient quantum Gibbs sampling via rapid mixing: Our
first result is a quantum algorithm for preparing the Gibbs
states of H € ¢, given only a description of its local terms
H =", h; (as 2° x 2¢ matrices).}

Lemma L2 (Gibbs State Preparation). Fix 5 > 0, and let
H € S be the parent Hamiltonian of a quantum circuit on
n qubits, of depth d and lightcone size (. Then, there exists a
quantum algorithm which can prepare the Gibbs state of H
at inverse-temperature 3 up to an error € in trace distance in

time O(2% - 2% . €2 . n - poly(log 2.¢,8)).

In general, the lightcone size ¢ is upper bounded by ¢ < 2.
We emphasize we do not make any assumptions on the
temperature or geometric locality. This is important as our
fault-tolerant circuits (Lemma 1.3) are not naturally defined
on a lattice.

The algorithm in Lemma 1.2 follows from a two-step argu-
ment. The first step is the design and analysis of a particular
family of Davies generators [1], a family of dissipative Lind-
bladians whose local jumps (or transitions) are engineered to

7Note that some models of fault-tolerance assume instant classical compu-
tation and feedforward within a quantum circuit [22], [23]. This is not allowed
in our setting: all operations must be realized by quantum gates.

8 Although H has a simple structure by definition, the underlying global
structure (the low-depth circuit C) is hidden among the local terms, and is
not directly accessible. See Remark IX.2 for a discussion.

resemble the connectivity of the Hamiltonian. In Lemma II1.4,
we prove that the mixing time of our Lindbladians is ¢,,;, =
O(4%1log n) via a modified log-Sobolev inequality. In principle,
this step is already a thermal algorithm, in the sense that
“placing the system in a fridge” would drive it to the Gibbs
state in time t,,45 - log(1/¢).

The second step is the simulation of the dissipative (non-
unitary) dynamics on a quantum computer. We employ the
block-encoding framework of [13] which we significantly
simplify as our family of Hamiltonians is commuting and has
integer spectra. The quantum simulation adds a factor of n
to the running time, which may be hard to improve due to
the absence of geometric locality. In Section V, we discuss an
alternative method for Gibbs state preparation assuming finite
dimensional lattice geometry using the framework of [26].

2) Fault-tolerance of shallow IQP circuits: The key ingre-
dient for the classical hardness of sampling from quantum
Gibbs states is to produce a shallow quantum circuit which
is hard to sample from even under input noise. For this
purpose, we design a fault-tolerance scheme for shallow 1QP
circuits [4], [5] since their gate set works nicely with fault
tolerance techniques. Our result ensures that any IQP circuit
can be made robust to input noise with only a small additive
blow-up to the circuit depth (see Lemma VIII.1 for a more
general statement).

Lemma L3. Let p < % be a constant bit-flip error rate, and
let C be an n qubit IQP circuit of depth d. Then, there exists
an O(nlog ) qubit circuit C of depth d+o(log ), such that
a sample from C under input noise (Fig. 1b) can be efficiently
post-processed into a sample within € total variation distance
to the output distribution of C.

This result significantly reduces the blow-up in circuit
depth compared to a prior fault-tolerance scheme of [20].
Moreover, the locality of the resulting parent Hamiltonian
H=-%, CzZ,Ctis only a constant. Our key idea is a non-
adaptive state distillation scheme, drawing inspiration from
magic state distillation [27]: distilling a near-perfect initial
state from noisy initial states, up to a known but uncorrected
Pauli error. The error is propagated through the circuit and
corrected in post-processing, similar to [25]. Propagating Pauli
errors through non-Clifford circuits is hard in general, but here
it works thanks to the structure of IQP circuits.

3) Applications:

a) BOP Completeness under adaptive single-qubit mea-
surements: In addition to quantum advantage, using our tech-
niques we can show that constant-temperature Gibbs states
do have some inherent form of universality for quantum
computation. In Section X we prove that there exist local
Hamiltonians whose Gibbs states are universal resource states
for quantum computation, in the sense that they can be used
for universal measurement-based quantum computation.

Theorem 1.4. Fix an inverse-temperature 3 = ©(1). Then,
there exists an n-qubit, O(1)-local commuting Hamiltonian,
whose Gibbs state at inverse-temperature 3 is a universal
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resource state for quantum computation and is efficiently
preparable on a quantum computer.

Theorem 1.4 is based on the universality of cluster-states
for measurement-based quantum computation. That is to say,
any quantum computation of bounded size can be implemented
using adaptive single-qubit measurements on top of a fixed 2D
cluster-state (e.g. [28]). We design a Hamiltonian whose Gibbs
state resembles a noisy version of a cluster-state, such that
under adaptive single-qubit operations, one can nevertheless
correct and distill out computation.

b) Gibbs sampling under measurement errors: An in-
teresting question is whether the thermal quantum advantage
demonstrated in this paper, is itself robust to noise. That
is, in realistic physical platforms, we expect imperfect state
preparation, noisy system-bath couplings, and erroneous mea-
surements. As a starting point to this problem, we consider a
model where the Gibbs state preparation is ideal, but there are
random bit-flip errors in the measurement outcome.

We show that the quantum advantage survives in this model,
albeit at a higher locality.

Theorem 1.5. Fix an inverse temperature 3 = ©(1), and a
measurement error rate p < % There exists a family of n-
qubit, O(logn)-local Hamiltonians, such that sampling from
their Gibbs state at inverse-temperature (3, under measure-
ment errors of rate p, is classically intractable under certain
complexity-theoretic assumptions. Moreover, there exists a

poly(n) time quantum algorithm to produce said Gibbs state.

The Hamiltonians of Theorem L.5 are similar to that of
Theorem 1.1, in the sense that they are parent Hamiltonians
of fault-tolerant IQP circuits. However, to ensure classical
hardness under measurement errors, our quantum circuits now
need to be fault-tolerant against both input and output errors.
(Recall that the “input errors” come from temperature, while
“output errors” come from actual physical noise in measure-
ments.) To do so, in Section XI we appeal to an optimized
construction of a prior fault-tolerance scheme by [20], at the
cost of an increase to the locality of the Hamiltonians, which
also changes the mixing time from n°() to poly(n).

C. Discussion

We conclude by discussing two future directions, broadly
related to the complexity of Gibbs sampling. The first of which
concerns the BQP Completeness of Gibbs sampling (without
adaptivity).

Question 1 (BQP Completeness of Gibbs Sampling). For
every n qubit, poly(n) depth quantum circuit C, does there
exist a Hamiltonian H and a constant inverse-temperature
B > 0 such that by sampling from its Gibbs state one can
recover the output of the quantum computation C?

Partial progress on this question has recently been made
by [10], albeit, only at very low temperatures where the Gibbs
state approximates the ground state. In particular, they showed
how to embed an arbitrary quantum computation into a (mod-
ified) Feynman-Kitaev circuit-to-Hamiltonian mapping, which

could be efficiently prepared by a Lindbladian evolution.
Whether similar ideas could work at constant temperatures
remains an open problem.

Another interesting direction lies in the time overhead
for fault-tolerance, and for quantum advantage using shallow
circuits which are robust to noise.

Question 2 (Quantum Advantage in Noisy Shallow Circuits).
Does there exist a family of constant depth quantum circuits
(using only quantum gates) which is classically hard to sample
from in the presence of depolarizing noise on each gate?

Its main motivation lies in the design of quantum advantage
experiments, which can be implemented on near-term devices.
Depolarizing noise on each gate of the circuit, however,
is naturally a significantly more general noise model than
input noise. Nevertheless, the same question with input noise
remains open as well.

II. TECHNICAL OVERVIEW

In this section we give a sketch of our two main technical
contributions: (1) A proof of a modified log-Sobolev inequality
for a family of Davies generators, via a lightcone argument
(Section II-A); and (2) A fault-tolerance scheme for shallow
IQP circuits against input noise, via non-adaptive state dis-
tillation (Section II-B). We begin by presenting some basic
notation and background on thermal Lindbladians.

A. Gibbs state preparation via rapid mixing

Fix a Hamiltonian H € J#. By definition, there exists a
shallow circuit C' such that

H=> hi where h;=C([1}1];®T,)CT, ()

i€[n]

and each [1)(1|, is a single-qubit projection. Note that Eq. (2)
is equivalent to Eq. (1) up to a shift. The eigenstates of H of
energy k € [n] are all the states C'|z), where z € {0,1}" has
Hamming weight |x| = k. We denote the projection ITj onto
the eigenspace of H of energy k as

I, = c( > |$><I|)CT. 3)

|z|=k
We consider two notions of locality for C' and H respectively:

o The circuit lightcone. The lightcone L; of qubit ¢ is the
set of qubits that can be reached by ¢ via gates in C, and
we define the lightcone size as £ = max; |L;|.

o The Hamiltonian locality. Let S; = supp(h;) =
supp(CZ;C) be the set of qubits that h; acts nontrivially
on. The locality of the Hamiltonian H is defined as
r = max; |S;|.

Note that S; is related to the propagation of Z; under C,
and thus by definition we have S; C L;. In fact, r < £ for the
family of circuits we consider.

1066

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 13,2025 at 11:45:32 UTC from IEEE Xplore. Restrictions apply.



1) Our Davies generators: We determine our family of
thermal Lindbladians, or Davies generators, by specifying two
ingredients: a set of jump operators, and transition weights.
Technically, general thermal Lindbladians for noncommuting
Hamiltonians need not take the Davies’ form (see, e.g, [13],
[14]), but for commuting Hamiltonians, the Davies’ generator
is nonetheless sufficient for all our discussions.

o Jump Operators. To generate the transitions, we con-

sider the set of jump operators which are local, ¢-qubit
Pauli operators on the support of each lightcone L;,”

{A%Ypen =275 {PLi T\, 27 € [n], P € 7’@}7 “

where P, = {I,X,Y,Z}®‘1% In contrast to clas-
sical Markov Chain transitions, these quantum jumps
will change the energy of the system in superposition.
Thereby, it will be convenient to decompose the jump

operators into the energy basis:
Al =Y Ty AT, suchthat Y A= A“
ke([n] ve[—n,n]
(%)

« Transition Weights. The transition weight is selected to
be the Glauber dynamics weight, v(v) = 1/(1 + e~#)
for all v € [—n,n].

Put together, the associated family of Davies generators £ can
be written down as'!

Llp] = V)| A% Aﬁ*—l{Al‘iTA,‘; }) 6
o ggjw( pan)t — SLantaz o). ©

This construction satisfies the quantum detailed balance
condition, which implies that the desired Gibbs state is a fixed
point L[pg] = 0 of the evolutions (see e.g. [29], or Fact IIL.1).
It remains to show that the Lindblad dynamics, governed by
the exponential map

%P = L[p] = p(t) = “'[po], Q)

converges quickly to pg. This is achieved by presenting a
bound on the mixing time of £, which is the shortest time
tmiz such that

1
[[eStmi=[p — |, < 3 lp—oll,, for all density matrices p,o.

®

2) A lightcone argument for the modified log-Sobolev in-
equality: To study the mixing time of our algorithm, our
starting point is first to study the trivial non-interacting
Hamiltonian Hni = 3 ;¢ [1X1]; @ Ijpp (). and prove a
rapid mixing bound for the associated Davies generator Ly;.
Subsequently, we argue that the mixing time of £ can be
compared with that of Ly;. This is achieved by leveraging

9This set of jump operators which “drive” the transition can be essentially
arbitrary, however, this choice resembling the connectivity of the underlying
Hamiltonian will play an important role in our analysis.

10Note that there are |.A| = n - 4¢ jump operators.

'Where {A, B} := AB + BA is the anti-commutator.

the lightcone structure of shallow quantum circuits. We begin
by presenting basic definitions of Log-Sobolev bounds.

a) Mixing time bounds via log-Sobolev inequalities:
There are two general purpose methods to bound the mixing
time of Lindbladian evolution. The first of which consists of
a bound on the spectral gap of L. Unfortunately, a spectral
gap bound comes at an inherent polynomial overhead to the
mixing time, see Section III. Instead, we make use of a
much sharper notion of convergence known as a modified log-
Sobolev inequality (MLSI) [15]. Informally, a MLSI quantifies
the rate of decay of the relative entropy,'? by relating it to the
relative entropy itself:

4
dt|,_,

for every density matrix p, where « is known as the
MLSI constant. This clearly implies an exponential decay of
D(e*t[p]||ps) < e~ - D(p||pp). Which, in turn, tells us the
mixing time is bounded by t,,;. < a~! - O(logn) (Pinsker’s
inequality). This logarithmic mixing time bound is known as
rapid mixing, and proving good lower bounds on the constant
« has proven to be quite challenging in the quantum setting.

b) The non-interacting Lindbladian: The simplest
Hamiltonian in the family .57 is the non-interacting sys-
tem Hyy. Its Gibbs state is the tensor product state og o
(e? ‘1><1|)®n. Under our framework (described in Eq. (6)), its
associated Lindbladian Ly, has the same form as £, except that
the circuit C' has been replaced by the identity. In this manner,
Ly itself can also be written as a sum of non-interacting,
single-qubit components:

Lni= Y Ligie ® Ipp iy )

i€[n]

D(e"“[plllpg) < —a- D(pllps) (MLSI)

Since each single qubit Lindbladian Ly g is highly explicit
(it acts on 2 X 2 matrices), in Section III, following now
standard techniques, we are able to prove simple bounds on
its MLSI constant.

Claim IL1. Ly satisfies a MLSI with constant Q(e™").

c) The convex combination argument: The main tech-
nical challenge in our analysis lies in relating Ly, with our
family of Davies generators £ from Eq. (6), in order to inherit
the rapid mixing properties from the former. The crux of our
proof lies in analyzing £ in a basis rotated by C, to show
that the rotated Davies generator is a convex combination of
Ly and some other Davies generator. This involves a delicate
lightcone argument shown in Fig. 2, and discussed shortly.

Claim IL.2. In a basis rotated by C, the Lindbladian L from
Eq. (6) can be written as a convex combination

L=CTL[C-CTC=q La[]+ (1= q) Lrest[], (10)

where both LNy, Lyest Share the fixed point o5, and q = 41~%.

12The quantum relative entropy between two density matrices p, o is given
by D(pllo) =Tr[p- (logp — logo)].
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We emphasize that the parameter ¢ € [0,1] only depends
on the lightcone size of C'. Moreover, while Ly is the well-
understood non-interacting system discussed previously, £, .¢s:
may apriori be arbitrary. However, at the very least we know
it shares a fixed point with Ly.

Neverthless, in Section II-A we show that convexity is
precisely enough'? to exhibit an MLSI for £, with a constant
which is only a multiplicative factor of ¢ off of that of Ly;.

Lemma IL3. £ satisfies a MLSI with constant Q(4=%e=").

d) The lightcone argument: We conclude by discussing
the key technical step: a proof of Claim II.2 via a lightcone ar-
gument. The starting point is to examine the Davies generator
L (Eq. (6)) and its rotated version £ = CT£[C-C1]C. The goal
is to show that “a fraction of” £ equals the Davies generator
of the non-interacting Hamiltonian Hy;, that is, within that
fraction, the effect of C' is erased.

To begin, note that the Davies generator £ (Eq. (6)) only
depends on the circuit C' through the jump operators decom-
posed into the frequency basis, A%, which we recollect can be
written as

= Ty, AL,
“yel, 3 mn)erse(5 e

Y

Crucially, due to the rotation of L to ﬁ,” we observe that the
dependence of C' within L is only through second-moment
operators of the form

E [CTPC® CTPC], (12)

~Fe
where we consider the sum of all jump operators that act on
a specific lightcone L; of size ¢, and recall that the jump
operators are ¢-qubit Pauli operators. It remains to express
this operator as a convex combination, as shown in Fig. 2. A
sketch of the argument follows:

o Step (i): Uses the identity Ep.p, [P ® P| =
and linearity of expectation.

o Step (ii): Since C' is a low-depth circuit, one can cancel
the quantum gates within the lightcone of qubit ¢ with
their inverse.

« Step (iii): Uses the identity Ep,p, [P ® P] =
again, but in the other direction.

o Step (iv): Re-writes the expectation into two parts: the
first part is over the 4 single-qubit Paulis that act only on
qubit 4, and the second part, is all the remaining /-qubit
Paulis.

77 - SWAP,

77 -SWAP

The crux of the argument lies in noting that in the first part
of Step (iv), the ¢th qubit has been completely disentangled
from the remaining circuit. Thereby, the single-qubit Pauli acts

13This is inspired by [30], who leveraged the concavity of the spectral gap
to prove mixing properties of stochastic Hamiltonians.
14And the fact that our jump operators are Pauli operators.

on a disentangled wire, and all remaining gates cancel with
each other.

This gives the desired convex combination, where the first
term corresponds to the non-interacting Hamiltonian with
single-qubit jump operators. Finally, note that our choice of
the jump operators (as {-qubit Paulis acting on each lightcone)
is crucial for this argument, and it is unclear if an arbitrary
choice of jump operators would suffice.

3) Efficient implementation on a quantum computer: Rapid
mixing of the Davies generator implies that the Gibbs state can
be efficiently prepared in the thermal model of computation,
described by coupling the quantum system to a thermal bath
[31]. Next, we briefly discuss how to simulate the dissipative
Lindbladian evolution e¢“* on a quantum computer.

We leverage the “continuous-time quantum Gibbs sampler”
framework of [13]. They show that to implement the map e“*
one requires O(t) black-box invocations to a unitary block-
encoding of the Lindblad operators ([13], Theorem I.1). In
turn, to implement such a block-encoding for Hamiltonians H
of integer spectra, it suffices to design quantum circuits which
implement the Hamiltonian simulation of I, a block-encoding
for the jump operators A®, as well as a certain“frequency
filter” which implements the Glauber dynamics weight. In
Section IV, we discuss circuit implementations of all these
ingredients, summarized in the following Lemma.

Lemma II.4 (Dissipative Lindbladian Implementation). Fix
parameters t > 1 and ¢ < % Let L denote the Lindbladian of
Eq. (6), defined by a quantum circuit C on n qubits of depth
d and lightcone size (. Then, we can simulate the map e'*
to error € in diamond norm using a quantum circuit of depth
O(t-n-4"- 2% poly(¢,logn,log 1,logt)).

Put together with our bound on the mixing time, we arrive at
our main statement on Gibbs state preparation in Lemma 1.2.

B. Classical hardness of Gibbs sampling

As discussed in Section I, to obtain the classical intractabil-
ity of quantum Gibbs sampling it suffices to construct a family
of low depth quantum circuits which are hard to sample
from even in the presence of input errors (Fig. 1b). The
reason this imposes a challenge is two-fold. First, it is known
that many classically hard shallow quantum circuits actually
become classically simulable under input noise [20], thereby
suggesting a need for fault-tolerance techniques. However,
standard fault-tolerance techniques [24] often come with a
prohibitive circuit depth overhead, which blows up the locality
of the parent Hamiltonian. We address these challenges by
designing a fault-tolerance scheme tailored to the input noise
model with small overhead.

Our plan is to focus on IQP circuits, which are known to
be already classically hard at constant depth. We show that
their commuting structure plays an important role in our fault-
tolerance techniques at low overhead.

1) Quantum computational advantage with shallow IQP
circuits: Recall that IQP circuits can be written as C =
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Fig. 2: A lightcone argument for proving the modified log-Sobolev inequality.

H®"DH®™ where D is a diagonal unitary. The induced prob-
ability distribution p(z) = | (x|C|0™) |? is hard to sample from
classically in general [32]. While any family of constant-depth
and classically-hard IQP circuits suffices for our purpose, in
this paper we use the concrete example of cluster states on
regular lattices composed with random Z-rotations!®, which
have become the basis for various proposals of sampling-based
quantum supremacy using low-depth circuits [32], [20], [4],
[51, [33], [34].

We present the structure of these circuits in more detail in
Section VII, where we additionally present a comprehensive
discussion on the foundations of their hardness. As a brief
overview, note that 2D cluster states with single-qubit Z
rotations is a universal resource state for measurement-based
quantum computation (MBQC) [28]. This implies that exactly
sampling from their output distribution is hard in the worst-
case [35]. The hardness of approximate sampling from these
architectures are based on further assumptions [36], [4], [33],
which we rigorously define in Section VII. The following
theorem thus provides the complexity-theoretic basis of our
hardness arguments.

Theorem IL5 (Complexity of constant-depth IQP sam-
pling [4], [5]). There exists a constant § > 0, and a family of
constant depth IQP circuits {C,, },,>1 on n qubits, such that no
randomized classical polynomial-time algorithm can sample
from the output distribution of C), up to additive error § in to-
tal variation distance, assuming the average-case hardness of
computing a fixed family of partition functions (Conjecture 1),
and the non-collapse of the Polynomial Hierarchy.

I5Tn the literature, these circuits are also known as the “evolution (quench)
of an nearest-neighbor, translationally invariant (NNTI) Hamiltonian”.
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To establish classical hardness of the Gibbs sampling task,
it suffices to map the above circuit C' to a fault-tolerant circuit
C, such that a sample from the output distribution of C under
input noise can be efficiently post-processed into an ideal
sample from C. The key challenge is to reduce the fault-
tolerance overhead in C, so that the corresponding parent
Hamiltonian has small locality.

2) Fault-tolerance of IQP circuits against input noise:
The starting point in our approach is the observation that
it suffices to error-detect the random inputs bits, instead of
correcting them, to preserve the hardness-of-sampling of C.
Indeed, bit-flip errors (which are Pauli-X errors) on the input
of IQP circuits, become phase-flip errors after the first layer
of Hadamard gates, and thus commute with the entire IQP
circuit. In this manner, they are equivalent to bit-flip errors on
the measured output string. Therefore, if we could identify the
computational basis state |r) = ®; |r;) fed into the IQP circuit,
we would be able to correct the measured output sample by
simply subtracting » € {0,1}". Indeed, we emphasize we
don’t intend to correct the input error within the quantum
circuit at all, as this would require decoding and feedforward,
and potentially a much deeper circuit. Instead, we correct the
error only during classical post-processing (that is, after all
qubits are measured).

The crux of our approach is the design of a “distillation”
gadget, which independently pre-processes each input bit r;
into k others in such a manner which enables us to reconstruct
r; (with high probability) given only the other k£ — 1 noisy
bits. We illustrate this task with a simple example, based on
the repetition code.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 13,2025 at 11:45:32 UTC from IEEE Xplore. Restrictions apply.



(a) Repetition gadget

(b) Recursive concatenation

(c) Fault-tolerant circuit

Fig. 3: Fault-tolerance via state distillation gadgets. (a) The repetition code gadget. (b) A B-Tree and the recursive concatenation
scheme. Arrows denote the direction of CNOT gates. (c) Pre-processing the circuit using distillation gadgets.

a) A distillation gadget based on the repetition code:
Recall that all input bits are noisy: each of them is flipped
from O to 1 with probability ¢. Given k bits drawn from
s < Bern®(q), suppose we designate the k-th bit as the “root”
and apply a CNOT gate from it to the other k—1 bits (Fig. 3a).
During the decoding stage, we would like to reconstruct the
root bit given the other k£ — 1 bits. To do this we simply
compute the majority of the “leaves”:

5, = Maj(s1 @ sk, 52 ® Sy -+, S5k—1 D si).  (13)

We show that the probability of failure (when §; # si) equals
§ = 2k,

To highlight how these gadgets can be used for fault-
tolerance, given an n-qubit IQP circuit C, we begin by pre-
processing each of n input bits independently into a distillation
gadget of size k, resulting in a circuit on n - k bits. Each
of the n “root” bits are then fed into C (Fig. 3c). Note
that the n - (k — 1) remaining bits are untouched by C.
In the end, after all qubits are measured, we can use the
n - (k — 1) ancilla bits to infer if an error had happened on
each of the “root” bits fed into the circuit. As argued earlier,
if an error did happen, it can be corrected by simply flipping
the measurement outcome since the error commutes with the
circuit. If we choose k& = ©O(logn), then the entire error
correction process succeeds with high probability.

b) Recursive concatenation and B-Trees: In effect, the
scheme above distills the “root” bit s; with an effective bit-
flip error rate ¢***), using k — 1 redundant “syndrome” bits
of error rate ¢q. Note that it used no information about the
distribution of sy, only that of the “leaves” s, -, Sk_1.

To improve on this example, we bootstrap the above tech-
nique by recursively preparing “syndrome” bits of better and
better fidelity.'® Suppose we organize & bits into a tree of arity
B and depth 2, such k = 1 + B + B2. Moreover, apply the
repetition code gadget on each layer, from leaves to root of

19This construction is largely inspired by recursive magic state distillation
schemes.

the tree, by applying a CNOT gate from each parent bit to
their respective children bits in the tree. In doing so, by the
previous analysis we can identify each bit at the middle layer,
just using the bits at the leaves, with error probability ¢**(5).
By performing majority again at the middle layer, we are now
able to identify the bit at the root of this two-layer tree with
error rate (¢(B))2(B) = quZ). By recursively applying this
approach on a B-tree of depth d, the error probability at the
roofg( gf the tree scales doubly-exponentially with the depth d,
B
At face value, it may seem that we haven’t gained anything
over the repetition code, as the error probability still only de-
cays exponentially with the size of the gadget. The advantage
lies instead in the locality of the gadget. Indeed, consider the
lightcone of the orange qubit w at the leaf of the tree in Fig. 3b.
By examining the causal influence of this qubit, we conclude
that only the qubits in the neighborhood of its path to the root
(the purple nodes in Fig. 3b) can lie in its lightcone. That is,
if
U=1uUy —> U —> - — uqy = root (14)

denotes the path from leaf to root, then the lightcone of u
is contained the union of the neighborhoods L, = UIN (u;).
Therefore, |L,| < O(B - d), which is a linear function of the
depth of the tree. By further studying the propagation of Z
Pauli’s through the gadget, we analogously show that that the
locality of the parent Hamiltonian of the distillation circuit is
|S.| < d; precisely the nodes on the path from leaf to root.
Lemma 1.3 then follows from a careful choice of B and d.

C. Organization

We organize the rest of this work as follows.

Gibbs State Preparation. In Section III, we prove our rapid
mixing bounds for Davies Generators, and in Section IV
discuss their simulation on a quantum computer. In Section V,
we discuss alternative state preparation algorithms for parent
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Hamiltonians of circuits which lie on lattices.

Classical Intractability of Gibbs Sampling. In Section VI,
we prove that the constant temperature Gibbs states of the
Hamiltonians in ., can be interpreted as the output of
noisy circuits. In Section VII, we present an overview of
the computational complexity of shallow IQP sampling. In
Section VIII, we present our fault-tolerance scheme based on
state distillation.

Finally, in Section IX, we put everything together and prove
our main result (Theorem 1.1).

Applications. In Section XI, we present our results on Gibbs
sampling with measurement errors, and in Section X, we dis-
cuss the BQP completeness of Gibbs sampling with adaptive
single-qubit measurements.

III. RAPID MIXING AND EFFICIENT GIBBS STATE
PREPARATION

We dedicate this section to a proof of the rapid convergence
of our dissipative Lindbladians. We defer a discussion on
its implementation using quantum circuits to Section IV.
For simplicity, henceforth we re-scale the class of parent
Hamiltonians, !’

H=13 h=> c(niely)ct s

to ensure frustration-freeness and positive integer spectra
[n] ={0,--- ,n}. Recall this Hamiltonian is commuting, and
its eigenstates are given by {C'|z) : x € {0,1}"}. Let £ be
the lightcone size of C. The jump operators of our Davies
generator are (-qubit Pauli operators on the support of the
circuit lightcone. We refer the reader to Section II-A, Eq. (6)
for a description of our Lindbladian.

Remark IIL.1. The support S; of each Hamiltonian term
h; is contained within the lightcone L;, see below Eq. (3).
In general, h; acts nontrivially on the entire lightcone (for
example, when C' uses Haar random gates), but for our
hard instances |S;| < |L;|. To ensure the quantum algorithm
always “knows” {L;} when it only sees {h;}, we assume
this information is encoded in the definition of the family of
Hamiltonians, and is given to the algorithm.

A. Preliminaries on thermal Lindbladians and their conver-
gence

We dedicate this subsection to background on the evolution
and convergence of open quantum systems described by a
Lindbladian. Recall, a general Lindbladian is a continuous-
time Markov chain acting on density operators:

1
Ll = JipT} = 3737}, 0} (16)
J

7Note that we are simply applying an affine transformation, H = %(n .
I+C> ZiCT), such that the Gibbs state of H at temperature 3 is the same
as that of C'Y" Z;C1 at temperature 3/2.
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for some set of Lindblad operators {J;};, which generates a
family of completely positive and trace-preserving map

£tp] for each t > 0. (17)

e~ [p]

Our Lindbladians of interest satisfy a particular property
known as detailed balance.

Definition III.1 (s-Inner Product). Fix a full rank density
matrix o and s € [0,1]. We define the weighted Hilbert-
Schmidt inner product: for any A, B,

(A,B), = (A,0'7°Bo®) = Tr[ATol_SBUS]. (18)

Definition IIL.2 (s-Detailed Balance). A Lindbladian L is s-
Detailed Balance with respect to o if LT is self-adjoint with
respect to (-, -)s:

VA, B : (A, LT[B))s = (LT[A], B), (19)

There are two important structural consequences of this
detailed balance condition. The first is that the density operator
o is a fixed point of Lindbladian evolution:

Llo] =0 (20)

The second, as discussed shortly, is that it implies a pow-
erful means to understand the convergence of the mixing
process. For the reader most familiar with classical Markov
chains, the detailed balance condition above is an analog to
its classical counterpart, however, with an additional degree of
freedom 0 < s < 1 which arises due to non-commutativity.

Two special cases of the above are the GNS (where s = 1)
and KMS (s = 1/2) detailed balance conditions. Fortunately,
under minor constraints on the family of Lindbladians (which
our Lindbladian satisfies), all these definitions collapse. We
refer the reader back to Eq. (6) for the definition of the family
of Lindbladians we consider, Davies Generators.

Fact III.1 (Davies’ generators are detailed balanced). Con-
sider the Davies generator L described in Eq. (6), subject
to the constraint that the transition weights satisfy Vv
Y(W)/v(=v) = e P, and the jump operators contain their
adjoints {A,} = {AL}. Then, L satisfies s-DB Vs € [0,1]
w.r.t. the Gibbs state pg o< ¢

In this manner, the Gibbs state pg o< e~ PH is a fixed point of
the Davies generator we designed in Section II-A. However, it
may not be the unique stationary state, nor may its evolution
converge rapidly. To understand the rate of convergence of
this process, we need a bound on its mixing time t,,;(L).
Physically, the mixing time provides an estimate for the
thermalization time of the system.

Definition IIL.3 (Mixing time). The mixing time tp,;.(L) of
a Lindbladian L is the smallest time t > O for which
1
e (p1 = p2)lli < Sllpr = p2ll  for any two states py. po.
21

In what remains of this subsection, we describe two means
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to analyze t,,;,. The first of which consists of a bound on
the spectral gap of L. Apriori, however, the super-operator
L is not even Hermitian, and its spectral gap may not even
be well-defined. Fortunately, under an appropriate similarity
transformation, we can appeal to a related Hermitian quantity
known as the discriminant:

Definition ITL.4 (Quantum discriminant). Fix s € [0, 1] and a
Sull-rank density matrix o. The discriminant ICs of L consists

of the super-operator
1—s s s
(O’T . O'§> o2,

Lemma IIL.1 ([29], Lemma 5 and 7). The discriminant K
of L satisfies the following properties

s

Ks()=0""TL

(22)

1) L satisfies s-DB if and only if K, is Hermitian.

2) If L satisfies s-DB, then the eigenvalues of L are the
same as that of K, which are real.

3) If L is a Davies generator satisfying the constraints of
Fact 1111, then K = K is independent of s € [0, 1].

The spectral gap A(L) = A(Ks) of a given Lindbladian is
defined to be that of the associated discriminant. Analyzing
this gap can be a challenging task, and concrete bounds are
often case-dependent. Nevertheless, it provides a powerful
means to control the convergence of the time-evolution.

Lemma IIL.2 (Mixing time from the Spectral Gap, [15]). If a
Lindbladian L satisfies KMS reversibility with fixed point o,
then

log(2[a—"/2]])

; (23)

We remark that the dependence on log |0~ /2| ~ O(Bn)
often-times incurs a polynomial overhead to the mixing time.
The notion of a (modified) Log Sobolev inequality provides
a significantly stronger means of analyzing the mixing time.
To formalize this method, we first require the definition
of the conditional expectation of an operator X, £[X]| =
lim;_, o e[ X].

Definition IIL.5 (Modified Logarithmic Sobolev inequality).

The Markov semigroup (e'*);>o satisfies a Modified Loga-

rithmic Sobolev inequality (MSLI) with constant « if for any
t=0

12
(e“[pmem)
< —a-DEL),

where D(p||o) = Tr p(log p — log o) is the quantum relative
entropy.

d
—D

= = Tr L[p](log p — log E[p])

24

In other words, a MLSI quantifies the decay of the relative
entropy, which converts to a bound on the mixing time through
Pinsker’s inequality.

Lemma III.3 (Mixing time from MLSI, [15]). If a Lindbla-
dian L satisfies KMS-detailed balance with fixed point o and
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a MLSI with constant «, then
2-log(4 - log |lc™1]))
«@

This polylogarithmic overhead in system size is known
as rapid mixing. Moreover, if given an additional entangled
reference system R the semigroup (et* ® Ir)e>0 satisfies
an MSLI, then £ is said to satisfy a complete modified
logarithmic Sobolev inequality (CMLSI).

B. Analysis

The main result of this subsection is a bound on the mixing
time of our family of Lindbladians,

Lemma I11.4. The mixing time of our family of Lindbladians
L defined in Eq. (6) is bounded by

tmiz (L) = O(4% - €® -logn). (26)

The starting point of our analysis is based on that of a
much simpler Lindbladian, namely, that corresponding to the
trivial circuit C' = L. In this setting, both the associated parent
Hamiltonian, and the associated Lindbladian, are a sum over
non-interacting, single-qubit terms:

Hy = Z |1><1|z and £NI = Z ﬁ.ii,ng,‘rle7 @7
i i€[n]

where £{;, ;. [05] = 0 and o} o e~PIXM: The jump oper-
ators of £§mgle are simply single—qubit Pauli operators, and
the single-qubit Gibbs state oy is its fixed point. Using now
standard techniques, one can prove that this non-interacting

Lindbladian is both gapped and mixes rapidly:

Claim IIL5 (The Non-Interacting Lindbladian is rapidly mix-
ing). The non-interacting Lindbladian Ly, has a constant
spectral gap A(Lny) > 471 and satisfies a MSLI with constant
aN| = Q(e‘ﬁ )

The unique fixed point of Ly is thus the tensor product
state og = ®ioé o e AHn_ We defer a proof of Claim IIL5
to the next subsection. In the rest of this subsection, we show
how to relate our Lindbladian £ of Eq. (6) (implicitly defined
by the quantum circuit C'), to Ly, and moreover how to inherit
its rapid mixing properties.

Claim IIL.6 (A Convex Combination of Lindbladians). In a
basis rotated by C, the Lindbladian L can be written as the
convex combination

ciejc-cliC =q-Lal]+ 1 —q) Lrest|], (28)

of two Lii;dbladians L1, Lrest Which share the fixed point
og = Q0. Moreover, the parameter ¢ = 4% depends only
on the lightcone size of C.

A proof of which we also defer to a future subsection. The
convex combination claim above is the heart of our analysis, as
it enables us to inherit the gap and mixing properties of Ly,
without knowing properties of L,..s¢ except for its (common)
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fixed point. To conclude this subsection, we present a proof
of the MLSI of L :

Claim III.7 (The Modified Log-Sobolev Inequality). The
Lindbladian L satisfies a MSLI with constant o > q - an; =
Q4. e P,

Proof. [of Claim III.7] From Claim IIl.6, we can write our
Lindbladian £ in a basis rotated by the circuit C' as a convex
combination

L=CL[C-CNC=q L[]+ (1 —q) Lrest|] (29

Since relative entropy is basis independent, proving a MLSI
for £ similarly implies one for £ with the same constant. To
do so, we begin by expressing the “entropy production rate”
as a convex combination.

EP 2(p) = Tr[Z]p)(log p — log 75) |
= qTr[Lnp](log p —log o3)]
+ (1= q) Tr[Lyest[p](log p — log o3)]
To the first term on the RHS above, we can simply apply the
MLSI for the non-interacting Lindbladian Claim IIL5:
Tr[Lnip](log p —logog)] < —ani - D(p||og). 31

In turn, we claim that the second term on the RHS above
is non-positive. Indeed, note that by Claim III.6, o3 is a fixed
point of L,.s:. The data-processing inequality for the relative
entropy then tells us that

(30)

TT[LTest [/’} (log p — log ‘76)]

d
= S D(EE o]]log)

= D(E e g o)

(32)

<o
t=0

Put together, we conclude EPz(p) < —q-ani - D(p|log). O

C. The non-interacting Lindbladian is gapped (Claim II1.5)

We dedicate this subsection to an analysis of the non-
interacting Lindbladian £y (Claim IILS).

Lemma IIL8. The spectral gap of the single-qubit Lindbla-
dian Esingle is A(£single) > 471

To understand this spectral gap, we revisit the (Hermitian)
Discriminant super-operator /C defined in Definition III.4.
Recall, from Lemma III.1, that (under detailed balance) this
super-operator has the same eigenvalues of £. In turn, to
understand the spectral gap of K, we vectorize this super-
operator (on 2 X 2 matrices) into an operator (a 4 X 4 matrix).

K[1=> A;[1B; - K=Y A;®B]. (33)
J J

Proof. To analyze the gap, we consider the discriminant
Ksingte of the Lindbladian Lgipngie, and in particular its

vectorization:

Koingie = 3. 3 — VA1) - AL ® (A2)°

acAve[—n,n]

) (34)
v

+ B (apyas o+ 1o (azyCazy)

which is PSD, frustration free, and preserves the eigenvalues
of Lgingle (up to a factor of —1) Lemma III.1. Moreover, via
detailed balance, the purified Gibbs state |,/Uﬁ> x [00) +
e*ﬁ/2|11) is a ground state of Kgngie. Since the jump
operators are single qubit Pauli operators {I, X,Y, Z}, they
can be written in the energy basis as

10
35)

and such that the conjugates can be inferred from the identity
Af = A‘i. The 4 x 4 vectorized discriminant can therefore
be written as

AT and AY « Z; and Af = (—i)AY « {O 0}

(1) 0
YD+ (=1)

Kiingte = 3 8 2 o +(0
=)y (=1) 0

which we identify to be; frustration free and have spectral gap
20 min(1 4 ef, 1 %) = 11 > 1 under Glauber
Dynamics, where y(v) = (14 ¢~ #)71, O

The positivity of the spectral gap can be used to show a
complete MLSI, as shown by [37]. This conversion comes at
the cost of factors of the local dimension of the Lindbladian
- which in the case of Lgingie, is just 2.

Theorem II1.9 (CMLSI from the Spectral Gap, [37] Theorem

4.3). Suppose a Lindbladian G, acting on a D-dimensional
Hilbert space, is GNS-symmetric w.r.t a fixed state o > 0.
Then, it satisfies a CMLSI with constant
e

ac > A(G) - Dz

In this manner, Lgingie satisfies a CMLSI with constant
18 We are now in a position to prove the

(37

Asingle = m
MLSI for £NI-

Proof. [of Claim III.5] We begin by leveraging the Com-
plete MLSI, on the local Lindbladians (Theorem III.9 and
Lemma IIL.8):

Tr[Ln1lpl(log(p) —log(op))]

= 3 Tr[Lingielp(log(p) —log(os))]
i€[n]

= > Tr[Llingielol(log(p) —log(&lp]))] ¥
i€n]

< ~Cuingle Y, D(pl|Elp))

i€[n]

18 As remarked by an anonymous reviewer, it may be possible to remove the
B dependence, since the Lindbladian is non-interacting, following the results
of [38], [39], [40] or [41].
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where &; is the conditional expectation of the ith semigroup
e!Fuingte . Next, we leverage the strong subadditivity of non-
interacting conditional expectations [37] (eq. 5), see also [42]:

> D(llEl]) = Dol [ &ile))- (39)
i€[n] %

To conclude, observe that for any p, the collection of con-
ditional expectation [[;c(, €[] = o maps to the unique
stationary state. ]

D. The convex combination claim (Claim I111.6)

Recall that the parent Hamiltonian /' has solvable eigen-
states given by {C'|z) : © € {0,1}"}, with energies given by
the Hamming weight |z| € [n].

Proof. We begin by explicitly writing down each jump oper-
ator in the frequency basis:

AL = g, AL

k
:C(Z > \y><a:|~<y|OTA“O|ac>)CT
ly|=k+v
=rC<Z > |y><x|-zv;;,y)c+.
k€[n] |z|=k
ly|=k+v

For conciseness, we have denoted the coefficient by Na?,y =
(y| CtA°C |z). Our Lindbladian £ of Eq. (6) can thus be
written in a basis rotated by the circuit C, in terms of the
second moment of these coefficients:

C"'E[Cp(?"’]CzZ%wZ( DX > N, (WE L)y (el pla) (]

a k.k'€ln] |z|=k |2'|=k"
lyl=k+v |y |=k'+v

3 > wewny {Wela)).

keln] |z, |2’ |=k
lyl=k-+v
(41)
For i € [n], consider the subset of jump operators A,
centered around the ¢-th lightcone L;:

A =275 AP, @I, - P €Pe} 42)

By definition, these subsets are disjoint, and form a partition
U;A; = A. We claim that we can rotate the jump operators
in each subset, by substituting

for an arbitrary choice of unitary U; of support contained
in L;, while keeping the Lindbladian £ invariant. Essentially,
this is because the Lindbladian is only defined by the second
moments of the jump operators, and that the second moment
of random Pauli operators is Haar random (via the 1-design
property) and thus invariant under unitary conjugation:

1
> AYJAT = ot ] = > ufAwulufAtU; @44
acA; acA;

for any U, supported on L;. Indeed, for every choice of basis
elements z,z’,y,y’ € {0,1}", the pre-factor

> ONE, (NG

aEA;

=) WCTAClz) (| CTALC )
a€A;

=Y WCTUAUIC ) (2| CTU AU C ly)
a€EA;

= D NI, (NE)

a’c A

(45)

is preserved, whether in A; or A.

Finally, let U; be the gates in C' contained in the lightcone
of the ith qubit. The sum over jump operators a € A can be
written as an expectation over random ¢-qubit Paulis, P € Py,
and then an expectation over the center ¢ € [n] in which to
place P. With probability 4/4¢, P is a single qubit Pauli P;
centered at ¢. Moreover, for a single-qubit Pauli P; centered
at 7, the choice of U; exactly cancels with the circuit ct:

(y| CTU; <Pi ® H[n]\{i})UiTC lz) = (yl <Pi ® Hn\{i}) |lz) .
(46)

foreach z,y €{0,1}" and P, e{l,X,Y,Z},;. 47

We note that these are precisely the jump operators we
expect in the non-interacting case Ly;, where the circuit is
replaced by the trivial circuit C' = [. In this manner, we
conclude that the rotated Lindbladian can be written a convex
combination:

cieje-che = 22079 Lul ]+ (1—=22079) . L[], (48)

where both Lyj[-], Ly est[-] are Davies’ generators defined on
disjoint sets of jump operators. Both of them satisfy detailed
balance and share the Gibbs state as the stationary state. [

IV. CIRCUIT IMPLEMENTATION OF THE DISSIPATIVE
LINDBLADIAN

The main claim of this section is an efficient implementation
of the Lindbladian time-evolution using a quantum circuit. Put
together with our bound on the mixing time of our Lindbla-
dians, this all but concludes the proof of the preparation of
Gibbs states of the parent Hamiltonians of quantum circuits.

Lemma IV.1 (Dissipative Lindbladian Implementation). Fix
parameters t > 1 and € < % Let L denote the Lindbladian of
Eq. (6), defined by a quantum circuit on n qubits, of lightcone
size ¢ and depth d. Then, we can simulate the map e* to
error € in diamond norm using a quantum algorithm of depth
O(t-n-2% .27 poly(¢,log n,log 1, log t)).

We dedicate Section IV-A to presenting the required back-
ground results on implementing Lindbladian evolution using
quantum circuits. In the ensuing section Section IV-B, we
discuss optimizations both particular to our systems, and
generic, to the runtime of our algorithms.
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A. Preliminaries on simulating Lindbladian evolution

Our implementation of the map e* follows the framework
of [13], in reducing the task to constructing a block-encoding
of the Lindblad operators. To implement their scheme it is
suitable to renormalize the time-scale and Lindblad operators
{L;}jea such that the resulting Lindbladian has norm 1:

t—t-||> LILj[land L; — L; - | Y LIL; |72 (49)
J J

Given the choice of jump operators from Eq. (6), under this
normalization we have t — n - t.

Definition IV.1 (Unitary block encoding for Lindblad Opera-
tors [13, Definition 1.2]). Given a purely irreversible Lindbla-
dian determined by the Lindblad operators {L;} jc A, a unitary
U is said to be block-encoding of the Lindblad operators if

(" @D U(j0)°@I) = > |a) @ L; for bc €N (50)
acA

Given a black-box circuit corresponding to a block-encoding
of L, the following theorem stipulates that one can simulate
the corresponding Lindbladian evolution for time ¢ using just

O(t) invocations of the black-box:

Theorem IV.2 (Theorem 1.2, [13]). Suppose U is a unitary
block-encoding of the Lindbladian L as in Definition IV.1. Let
time t > 1 and error ¢ < %, then we can simulate the map
etf 1o error € in diamond norm using

1) O((c+log £)log L) resertable ancilla qubits,
2) O(t) controlled uses of U and U', and
3) O(t+ c) other 2-qubit gates.

We remark that since our Hamiltonian has a integer spectra
[n], one can exactly implement the projection of the jump
operators {A®} onto the energy eigenbasis by performing an
operator Fourier transform with uniform weights:

A?,OC Z 6iut_ez'Hz?Aaefth_ 51)
fES,\-/n
where S/, = = - {-n,—(n —1),---,-1,0,1,--- ,n}. In

this setting, we can now apply a lemma on the efficient
implementation of block-encodings from [13], simplified to
the context of integer spectra Hamiltonians.

Lemma IV.3 (Lemma L1, [13]). In the setting of Theo-
rem 1V.2, a unitary block encoding for the Lindblad operators
corresponding to a Hamiltonian H of integer spectra [n] can
be created using O(n+log|A|) ancilla qubits, as well as one
query to

1) The controlled Hamiltonian simulation: 3 zc g |6} ®
eHiHi
2) A block-encoding of the jump operators: Y - 4 |a)y®A®,

3) O(logn) qubit Quantum Fourier transform: |t) —
(277,)71/2 Zwe[—n,---n] et |w>

4) And a controlled filter for the Boltzmann factors:

- Vi) —V/1-9(w) wi{w
T we[—zn;..,n} {m ) | Bl
52)

B. Optimizing the circuit implementation

In light of Theorem IV.2 and Lemma IV.3, in what re-
mains of this section, we describe how to implement the
controlled Hamiltonian simulation (Claim IV.5), the block-
encoding of the jump operators (Claim IV.6), and the con-
trolled Boltzmann filter (Claim IV.7), in circuit depth 0(42 .
2¢.poly(log n, log %, £)). While the first two optimizations are
particular to our family of Hamiltonians, the latter may find
independent application to the framework of [13].

We begin with a simple lemma which “colors” the inter-
action graph of the Hamiltonian, partitioning the interactions
into disjoint subsets S1,S2---Sa C [n] such that no two
terms h;, h; of the same subset have overlapping support.

Lemma IV4. Any parent Hamiltonian H € ¢ defined by
a quantum circuit of depth d and lightcone size £ can be A-
colored with A < ¢ -2% 4+ 1 colors.

Proof. Two interactions h;, h; overlap at a qubit only if their
lightcones intersect in the underlying circuit C, which deter-
mines H. Let ¢,. denote the maximum “reverse lightcone” size
of the circuit, that is, the maximum number of qubits which
have a given qubit in their lightcone. Since the Hamiltonian is
at most ¢-local, any interaction h; overlaps with at most ¢ - /..
other terms, which in turn tells us the interactions can then be
partitioned using A < ¢-/¢,. + 1 different colors. If the depth
of the circuit C' as measured by layers of 2-qubit gates is d,
then £, < min(n, 2%). O

Claim IV.5. The controlled time-evolution of an n qubit parent
Hamiltonian of a quantum circuit with lightcone size {, can be
implemented using a quantum circuit of depth O(4°- A -logn)
and size O(4°- A -n -logn).

At a high level, the circuit of Claim IV.5 partitions the
terms of the (commuting) Hamiltonian into disjoint subsets
of non-overlapping terms, which can be implemented in par-
allel. However, since we need to implement the controlled
Hamiltonian simulation, all of these Hamiltonian terms need
to act conditioned on the time-register, which is a sequential
bottleneck to the circuit depth. In order to further compress
the depth, we parallelized the access to the time-register by
encoding it into a GHZ state.

Proof. Since the Hamiltonian is commuting, let us restrict our
attention to a fixed subset S in the partition guaranteed by
Lemma IV.4. It suffices to prove how to implement the con-
trolled time evolution of each subset of non-overlapping terms
Hg = 3 ,c hs. For this purpose, we begin by parallelizing
the access to the clock register: |£) — |£)*", using a O(logn)
depth circuit of CNOT gates, of size O(nlogn).

Next, controlled on the jth clock register, we apply the time
evolution of the jth interaction. Although this gate acts on
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O(logn) + ¢ qubits, it can be implemented via a sequence
of O(logn) gates acting only on ¢ + 1 qubits, by applying a

binary expansion of the time register £ = Z . %", 2k,

Zf |ﬂ<ﬂ @ e'thi = Hk H\k ® kae{o,l} ‘{ergﬂ ® exp [Z% . 2k£k . h’_]} .

(53)
In turn, each unitary on ¢ + 1 qubits can generically be
implemented in O(4¢) size and depth. After all the colors have
concluded, we revert the copies of the clock register. O

Claim IV.6. A block encoding of the jump operators can be
implemented using a quantum circuit of depth O(A-({+logn))
and size O(n - A - (£ +logn)).

Proof. There are |A| = n - 4° jump operators, which we
represent by indexing them using a pair a = (¢, P) in terms of
the center of its support i € [n], using logn qubits, as well as
the ¢-local Pauli P, using 2 - £ qubits. Next we proceed using
similar techniques to Claim IV.5. We begin by partitioning
the jump operators into A disjoint subsets using Lemma IV.4,
where any two jump operators in the same subset either
have the same center, or do not intersect. Our implementation
proceeds by addressing each color ¢ € [A] independently.
First, we create copies of the control register |a) — |a)®"
to parallelize access to it. Suppose all the jump operators
centered at j have been colored c. Our goal is to coherently
apply all the controlled jump operators of the form (j, P) by
acting only on the support (centered at j) and the jth control
register |a = (4, Q)) . For this purpose, we first check whether
i = j, and controlled on the one-qubit outcome, we apply the
Pauli Q). The check can be implemented using O(logn) size
and depth, and the controlled Pauli in O(¢) size and depth. We
conclude by inverting the checking and copying steps. O

>

Claim IV.7. The controlled filter W can be implemented up to
error ¢ in spectral norm using a circuit of size O(polylog(2))
2-qubit gates.

Proof. Let us denote ns = ﬁ_llog%. Then, the Glauber
dynamics weight v(v) = (1 + e~#¥)~! satisfies

() <9
and y(v) >1-9¢

if v < —ng, (54)
if v >ngs. (55)

We claim that the W gate can be replaced by a truncation W,

_ VG —VIZA@) o s
wi= B A e e

wE[—n, ]
Y(w) if w € [—ng,ne]
Fw) =<1 if w>ns
0 if w< —ng
(56)

Indeed, the truncation error is controlled by

W — Wil
V(W) 1—+/1—-7(w)
<j€[_§n;_né]'{ = E IV oL
(57)
Vy(w) =1 1—v(w)
PN [ﬂw(w) w(w)fl}”

J€[ns,n]

< 2n - (2V6 +26) < 8n - V5,

where the last line uses that 1—+/1 — z < z when z € [0,1/2].

It only remains now analyze the gate complexity of imple-
menting W;. Following [13] (pg. 25, footnote 33), the W filter
for the Glauber weight between [—ng, ns] can be implemented
using the QSVT up to error ¢ using O((1 + fBns)polylog?)
2-qubit gates. With the choice & = O(£), we arrive at
the advertised bounds by combining with the trivial cases

w & [-ns, ns). O

We remark that this error in spectral norm between unitaries
is equivalent to the channel diamond norm distance, up to a
constant: ||[U — V|, <2-||U—-V].

Put together, Claim IV.5, Claim IV.6 and Claim IV.7 imply
Lemma IV.1.

V. LOW-DEPTH STATE PREPARATION ON LATTICES

We dedicate this section to a proof of Theorem V.1, on the
preparation of Gibbs states of parent Hamiltonians of quantum
circuits defined on lattices.

Theorem V.1. Fix an inverse-temperature 8 > 0, and let H be
the parent Hamiltonian of an n qubit, depth d, quantum circuit
comprised of 2-qubit nearest neighbor gates in D dimensions.
Then, there exists a quantum algorithm which prepares the
Gibbs state of H up to error € in depth 20(d”) . polylogZ.

The algorithm of Theorem V.1 based on that of [26], who
showed that if the Gibbs state satisfies two structural decay-
of-correlations properties, then it can be efficiently prepared
by a quantum computer. In particular, a decay of the condi-
tional mutual information (CMI) and a certain clustering of
correlations. In this section we show that parent Hamiltonians
of low depth circuits satisfy strengthened versions of both of
these properties, giving rise to a state preparation circuit of
nearly constant depth.

A. The Markov Property

The condition mutual information is an information-
theoretic measure of the correlations in a tripartite state p:

I(A:C|B),=S(AB), + S(BC), — S(ABC), — S(B),,
(58)
where S(A), = —Trpalogpa is the von Neumann entropy.
Roughly, this quantity captures the mutual information be-
tween systems A and C, conditioned on system B.
The quantum states with vanishing conditional mutual in-
formation are known as quantum Markov chains, which is
equivalent to the existence of a local recovery map that
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reconstructs p from just its subsystems. The following results
also handle the cases with errors.

Theorem V.2 ([43]). For any state p on ABC, there exists a
quantum channel Rp_ pc such that

1
I(A:01B), > =5 llp — L4 @ Roscl(pas)lli- (59

In the special case of I(A : C|B), = 0, the recovery map is
explicit and can be chosen to be the Petz (or transpose) map
[42], [44]:

RB%BC[X] (

In the context of this work, we require characterization of
the CMI of the Gibbs states of commuting Hamiltonians. Fix
a local commuting Hamiltonian  defined on a set of vertices
(the qubits) and hyper-edges (the interactions). Given three
disjoint subsets A, B, C' of the qubits of H, we say that B
shields A from C' if all paths on the hyper-edges from A to C'
must pass through B. For instance, the boundary of a region
C, comprised of the qubits which share an interaction with C,
shield C' from the rest of the lattice/qubits.

The Quantum Hammersley-Clifford Theorem states that the
Gibbs states of commuting local Hamiltonians form quantum
Markov Chains, for shielding tripartitions.

Fact V.1 (The Quantum Hammersley-Clifford Theorem, [45]).
Let H denote a commuting local Hamiltonian and A, B,C
three disjoint subsets of the qubits of H such that B shields
A from C. Then,

I(A:C|B), =0, where p=e"/Tre ",

1/2

~1/2
= PBC

PB /

1/2

Xp;;l ? ®HC)PBC (60)

(61)

We remark that parent Hamiltonians of depth d quantum
circuits have local interactions of range 2 - d. In this manner,
the boundary of any region C on the lattice is comprised of
all the qubits at distance < 2-d from C, which aren’t already
in C.

B. Local Indistinguishability

Given a local Hamiltonian H defined on a lattice A, and
a subset of said lattice X C A, we refer to the subsystem
Hamiltonian Hx as all the interactions contained entirely in

X1
Hx = he.

eCX

(62)

Henceforth let us denote as p oc e #H the Gibbs state of
H, and pX o« e #Hx the Gibbs state of the subsystem
Hamiltonian.

Definition V.1 (Local indistinguishability). Let H be a local
Hamiltonian defined on a lattice A, 3 an inverse temperature,
and ABC = X C A be a partition of a subset of the
lattice. Then the Gibbs state of H is said to satisfy local
indistinguishability on ABC' if

Trpc p* = Trp p*P. (63)

19i ¢., the interactions act trivially outside subsystem X
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That is, the thermal expectation of local observables for a
global Hamiltonian can be evaluated using only knowledge
of a local Hamiltonian patch. This notion is closely related
to the stability of gapped phases [46]. [26] show that an
approximate version of the above follows if one assumes a
clustering property for the correlations in the Gibbs state of
H.

In the context of this work, we claim that the structure of
parent Hamiltonians of low depth circuits implies an exact
local-indistinguishability property for their associated Gibbs
states.

Claim V.3 (Exact local indistinguishability for our parent
Hamiltonians). Let C' be a quantum circuit comprised of d
layers of nearest neighbor gates on a D dimensional lattice
A, and H its associated parent Hamiltonian. Then, the Gibbs
state of H satisfies local indistinguishability for arbitrary
ABC = X C A such that the distance d(A,C) >4-d+ 1.

Here we define the distance between subsets of the lattice
d(A,C) = min;ec 4 jec d(1, j), defined by the path-length over
edges of the lattice.

Proof. We claim that the unitary U comprised of all the gates
in the reverse-lightcone of B i.e, the union of all the lightcones
L; which are entirely contained in B, disentangles A from C
in the Gibbs state:

UT@D)pX(URI) =oap, ®vB,c- (64)

This decoupling implies the desired property. To begin, note
that the depth d of the circuit C implies a bound of < 2d on
the range of interaction of the terms in the Hamiltonian H. In
this manner, if d(A4,C) > 2-d+ 1 then B screens A from C
in the subsystem Hamiltonian Hx.

Suppose we partition the qubits of B into B 4, all qubits of
B at distance < d from A, B¢, those at distance < d from C,
and B_ = B\ (Ba U Bg). Since d(A,C) > 4d + 1, no two
terms h;, h;, i € AU By and j € C'U B¢ have intersecting
support. Moreover, for k& € B_ such that the lightcone Ly C
B,

UthpU = UTC(|1X1]), @ Iy 1) CTU = [1X(1],,  (65)

and therefore other U'h;U has support on any element of
B_. Thus, the unitary U partitions the Hamiltonian into non-
interacting components:

U'HxU = Hup, + Hp_po.c- (66)

To conclude, we observe that UTpX U is the Gibbs state of
UtHxU. O

We remark that the claim above can alternatively be seen
as a consequence of both clustering of correlations and the
quantum belief propagation equations with 0 error [26], [47].

C. The Algorithm

We can now invoke a much simplified version of the
algorithm of [26], on the preparation of Gibbs states of Hamil-
tonians of D-dimensional lattices. Their algorithm is based on
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the operation of recovery maps on finite-sized regions, namely
up to a certain correlation length-scale ¢y. To instantiate their
algorithm, it remains to show how to perform these recovery
maps.

Fortunately, we can appeal to the explicit structure of the
Petz map of Eq. (60). Via a Stinespring dilation?°, each such
recovery channel can be purified into a quantum circuit on a
doubled Hilbert space. In turn, said circuit can be implemented
in exponential time in the volume (the number of qubits) of
the region, up to factors of polylog%. See also [49] for a more
general discussion on implementing Petz recovery maps.

Theorem V.4 ([26], Theorem 6, Simplified). Fix 8 > 0, let
H be a bounded local Hamiltonian defined on D dimensional
lattice A, and let p be its Gibbs state at inverse-temperature
B. If p is both locally indistinguishable and exactly Markov
Sor all tripartitions ABC = X C A such that d(A,C) > £,
then a purification of p can be prepared up to error € using
a quantum circuit of depth 200 . polylogZ.

In full generality, [26]’s result applies to Gibbs states which
are approximately Markov and approximately locally indis-
tinguishable. However, the typically exponentially-decaying
tail in the approximation error implies quasi-polynomial-
depth state preparation algorithms. By appealing to their exact
counterparts, we arrive at a polylog depth state-preparation
algorithm. To conclude Theorem V.1, we note that £, = O(d)
from Fact V.1 and Claim V.3.

VI. THE INPUT NOISE MODEL AND GIBBS STATES OF
QUANTUM CIRCUITS

In this section, we show that the Gibbs states of parent
Hamiltonians of quantum circuits correspond to noisy versions
of the output of the quantum circuit, under a certain input noise
model. To begin, let us recollect the noise model. Fix a noise
rate p € (0,1). The single-qubit bit-flip error channel consists
of the superoperator

Dp(o)=(1—-p)-c+p-XoX. (67)

Given a quantum circuit C' on n qubits, the input noise
model consists of independent applications of the bit-flip error
channel on the input wires of C. In particular, the mixed state
given by the output of the noisy circuit is:

Xn
p=c(p,0000) (68)
For a fixed n qubit quantum circuit C, recall that we refer to
the parent Hamiltonian of C' as
)

> X1 @ Ty

i€[n]
Lemma VIL.1. Fix § > 0, and let Hc be the parent Hamil-
tonian of a quantum circuit C. The Gibbs state of Hc at

He — c( 69)

20See e.g. Chapter 2 of [48]
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inverse-temperature (3 is given by the output of the circuit C
under input level noise with probability p = (1 + e?)~1 :

e BHco

e = (paton0n) "t

Proof. It suffices to consider the Gibbs state og of the Hamil-
tonian H = 3, 111, as ps = CopCl. Since H is
commuting, the partition function can be written as:

P = (70)

n
Tre e =Tre™ M = 30 [T w0 as) @)
zef{0,1}" i

n
=TI > G@le?hje) = @+ e

i x;€{0,1}

(72)

Therefore, the Gibbs state of H can be expressed as the
outcome of the depolarizing channel:

o= (1+e Py e PH

_ o (_10)0] [ 11|
_®(1+e—ﬁ+1+65) (73)
/ KXn
= (Puo0D)
with p = (1 +¢%)7%.
O

VII. COMPUTATIONAL COMPLEXITY OF SHALLOW IQP
SAMPLING

In recent years several architectures have been proposed for
achieving a quantum speedup, based on quantum processes
which resemble or are equivalent to the IQP Circuit Sampling
task discussed in Section II-B. The basis for these speedups
is on standard complexity-theoretic conjectures, including the
non-collapse of the Polynomial Hierarchy, often in addition to
strong assumptions on the hardness of computing permanents
or partition functions. We dedicate this section to a discussion
on the background behind Theorem IL.5, as well as a compar-
ison to related statements in the literature.

To begin, let us recollect the circuit described in Sec-
tion II-B, comprised of a 2D cluster state and random phase
gates [5], [4] (see Fig. 4).

If instead of random powers of single-qubit T' gates, the
powers were chosen adaptively given partial measurements of
the circuit, this scheme would implement measurement-based
quantum computation [28]. The universality of MBQC under
adaptivity (or post-selection) implies the hardness of exactly
sampling from the output distribution, unless the polynomial
hierarchy collapses to the third level [32], [4]. To reproduce
their argument, universality implies

PP.

PostlQP = PostBQP
[32]

(75)
(501

If we now assume there existed a classical algorithm to exactly
sample from arbitrary IQP circuits, that would imply PP =
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1) Prepare an n qubit cluster state on a 2D rect-
angular lattice using a layer of Hadamard gates
and 4 layers of CZ gates.

2) Sample a random string b € [7]", and apply
powers of 1" gates to each qubit:

X Tb’< II ¢z, +>®”) = |0)%",

i€[n] <i,j>
74)

0
0 eim /4|
3) Finally, measure the output in the X basis.

where T =

Fig. 4: A family of random IQP circuits, {C5}.

PostlQP C PostBPP, which in turn gives us a collapse of the
Polynomial Heirarchy (henceforth, PH):
PH _ PPP — PPOStBPP _ 23. (76)
—~— ~—

Toda’s Theorem By assumption

In fact, by similar reasoning [32] (Theorem 2) showed that
no classical algorithm can even weakly approximately sample
from IQP circuits - i.e. up to some fixed multiplicative error.
To extend these hardness results to approximate sampling (up
to some additive error) in total variation distance, we require
stronger assumptions.

[36] were the first to show that, assuming an additional
complexity-theoretic conjecture on the average-case hardness
of computing partition functions, approximately sampling
from the output of IQP circuits remains classically intractable
even up to small total variation distance. They noted that the
output distribution of IQP circuits,

n —n 2
pe = (@|ClO)*" P =271 |2,]", 7

precisely resembles a complex-valued partition function, de-
fined by w,, ., w, real-valued edge and vertex weights on some
underlying architecture graph G:

Z= )
ze{*1}n <u,u> u

(78)

They prove that approximating |Zz 2, and therefore p,, up
to multiplicative error is # P hard in the worst-case, and pose
as a conjecture its hardness in the average case over x. Under
this conjecture, [36] show that the existence of an efficient
classical algorithm to approximately sample from {p.}, even
up to constant TVD, would imply a collapse of the polynomial
hierarchy.

However, the original results of [36] referred to a complete
graph G, which, roughly speaking, correspond to IQP circuits
of some polynomial depth. In follow up work by the same
authors [20], they reduced the circuit depth to logarithmic
under a sparsified version of the graph G. It was only in [4]

exp |:L< Z Wy ZuZy + Z(TP s Ty + wu)zu:| .

and [5] that the #P hardness of approximately computing
p, on 2D circuit architectures was established (in the worst-
case), corresponding to constant depth IQP circuits in 2D.
Their analogous average-case conjecture for approximately
computing p,, on 2D circuits, is reproduced below:

Conjecture 1 ([4]). There exists a choice of vertex and edge
weights {Wuyy, Wyt vem) on a 2D lattice G, and constants
€,6, such that approximating the measurement distribution
{p=} to the following mixture of multiplicative and additive
errors

1 €
poly(n) "Pa 0-2n (79)

is #P hard for any 1 — § fraction of instances x.

|ﬁz _pz| §

[4] show that Conjecture 1 implies Theorem IL.5:

Theorem VII.1 ([4], restatement of Theorem I1.5). Assuming
Conjecture 1, simulating the distribution {p,} up to ¢ total
variation distance is classically intractable, assuming PH
doesn’t collapse.

A related result was shown by [5]. They start from the
(weaker) conjecture that computing p(z) up to a multiplicative
factor is hard-on-average, and combine it with a further
conjecture on the anti-concentration of the output distribution
of random linear-depth IQP circuits. Put together, they also
arrive at Theorem IL.5.

VIII. FAULT TOLERANCE OF IQP CIRCUITS UNDER INPUT
NOISE

We dedicate this section to a proof of Lemma L.3, on the
fault tolerance of IQP circuits under input noise.

Lemma VIIL.1. Fix an input noise rate p < % and a positive
integer D. Let C' be an n qubit IQP circuit with depth d and
lightcone size (. Then, there exists another quantum circuit
C, such that a sample from the output ofC’ under input bit-
flip errors can be post-processed using an efficient classical
algorithm into a sample e-close to the output distribution of

C. The circuit C
1) acts on O(nlog 2) qubits,
2) has lightcone size ¢ + O (D logl/D (%))

3) depth d+ O (D log!/P (g)), and
4) the locality of its parent Hamiltonian is { + O(D).

For any sufficiently large constant D, we recover the
claimed fault-tolerance result of Lemma L3. If D =
O(loglog 2), then the circuit depth, lightcone size, and lo-
cality are all increased by an additive O(loglog Z) factor.

At a high level, our approach is based on pre-processing
each of the n input bits into “code-blocks” or gadgets of size
k = O(log 2) bits, where each gadget has a designated “root”
bit. The n root bits are then input into the IQP circuit C.
Since bit-flip errors commute with the IQP circuit, to be able
to sample from the original output distribution of C, it suffices
to identify these root bits. Indeed, we emphasize that we do
not use the encoding to correct the errors within the circuit, as
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this would require adaptivity and an increase in circuit depth,
and instead perform the correction only in post-processing.

A. The Distillation Gadget

We place the noisy bits into a tree of arity B (a “B-tree”) of
depth D. For notational convenience, let us partition the nodes
in the tree into disjoint subsets, L; U Ly---U Lp = [k], the
“layers” of the tree. Moreover, for each node u in the tree, let
the subset V,, denote its children or (downwards) neighbors
in the tree. The encoding circuit proceeds over the layers from
the leaves to the root, where at the ith layer L; of the tree,
a CNOT gate is applied from each parent bit to each of its
children.

Note that the size of the tree k is implicitly defined by B
and d: k=Y )' B/ = ©(BP).

Algorithm 1: The Distillation Gadget U
Input: k£ qubits in the computational basis |s), where

s« Ber*(p/2).

1: For each layer ¢ € [2,--- , D] from leaves to root,

2: For each child ¢ € IV, of a parent node p, apply a
CNOT gate from p to c.

[T ® ( I1 cvom,.c) 1 =vls.

i€[D] peL; “ceN,

We emphasize that the ordering of operations, from leaves
to root, matters crucially. In this manner, the ith layer acts as a
“parity check syndrome” for the (i + 1)st. When implemented
using 2-qubit gates, the depth of the distillation circuit is B- D,
as the CNOT gates at the same layer but operating on different
subtrees can be performed in parallel, but the B CNOT gates
which act on the same parent must be performed sequentially.

B. The Decoding Algorithm

Next, suppose that all the qubits of U |s) except for that
at the root of the tree have been measured, resulting in bits
by, -+ - br. Can we reconstruct si, the bit at the root? The
decoding algorithm below traverses the tree layer by layer,
from leaves to root, attempting to reconstruct the bit s, of the
next layer.

The decoding algorithm above maintains the invariant that
S, 1s a “guess” for the original noisy bit s, input into
the distillation gadget. Since U acts from leaves to root,
the children in each layer contain (with high probability)
the necessary information to reconstruct the parents’ bit s,,.
Together with the measurement outcome b, - which reveals
information about the layer above - we can continue the
reconstruction up the tree.

C. Analysis

We divide the analysis into three claims, which consider
the correctness, the lightcone size of the circuit, and the

Algorithm 2: The Decoding Algorithm
Input: (k — 1) bits bo, - - , by, organized into a

B-tree, where the root bit has been removed.
Output: A single bit 51, a guess for the bit at the root.
1: At the leaves L; C [k], let us denote by = by for u € L.
2: For each layer i € [2,--- , D], from leaves to root,
3: For each parent node p € L;, let 5, = Maj(b, : c € Np)
be the majority of its children bits.
4: If the root hasn’t been reached, update b, < 5, © b,,.

Otherwise, output 3.

“Z-locality” of the distillation gadget which determines the
locality of the parent Hamiltonian.

Claim VIIL.2 (Correctness). Fix any noise rate p < 1%5 and
let B = Q(072). Then, the effective bit-flip error rate at the
root of the depth d B-tree is < 9- B,

Proof. We prove inductively that the effective bit-flip error rate
p; at the ¢th layer, i.e.,

Pi = Py _germt () [Su # 8u] for each node u € Li,  (80)

decays doubly-exponentially with the layer index i > 2. As
the base case, p; = p is the probability of a bit-flip error on
the leaves. Suppose p = 1;2‘5. Then, after the first layer, the
probability the majority vote of the children bits is incorrect
is

e 3 (Mora-m

<
j=B/2
5 <~ (B j B-j @1
=277} <,>(175) (1+9)
=82 N
<(1-9)" (149" (- < L

so long as B is chosen to be Q(672). For each layer i > 2,
the effective bit-flip error rate on the (i + 1)st layer is

. B 5
it < S5 pys () - (1=pi) "7 <28 ()2 < p"".
) (82)

In this manner, p; 1 < 2-B/9" for i > 1.
O

Claim VIIL.3 (Circuit lightcone size). The circuit lightcone
size of the distillation scheme is < B - D.

Proof. The lightcone size of the quantum circuit U is upper
bounded by the size of the lightcone of the qubits at the leaves
of the tree. Crucially, we claim that if

U= U] — Uy —> U3+ — Up = root (83)

denotes the path from a leaf u € L; to the root, then only the
children of these nodes can be in the lightcone of u. Indeed,

1080

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on May 13,2025 at 11:45:32 UTC from IEEE Xplore. Restrictions apply.



this is since the CNOT gates in Line 1 are applied layer by
layer in increasing order, so the only nodes which are causally
connected to u in the circuit are its immediate ascendants or
their neighbors. In turn, the size of this set is bounded by
B-D.

O

The last key claim makes reference to the locality of the
parent Hamiltonian of the distillation circuit, that is, the size of
the support of the operator U (Z; ® 1)UT, maximized over bits
¢ in the gadget. We thank Joel Rajakumar and James Watson
for the observation that the locality of the Hamiltonian is only
related to the propagation of Pauli-Z instead of the full circuit
lightcone (see also [3]).

Claim VIII.4 (Parent Hamiltonian Locality). The locality of

parent Hamiltonian of the distillation circuit is < D.

Proof. The following two circuit identities describe how Pauli
Z operators propagate through CNOT gates.

CNOT,; ;(Z; ® I)CNOT, ; = Z; ® 1

CNOT, ;(I® Z;)CNOT, ; = Z; ® Z;

(84)
(85)

Crucially, the locality only increases (or propagates) from
the target qubit to the control qubit. Applied to our gadget
in Line 1, we conclude that the qubits in the Z-lightcone of
any qubit ¢ in the tree, are precisely the ancestors of ¢. Thus,
|supp(U(Z; @ I)U)| < D, the depth of the tree. O

We are now in a position to conclude the proof of
Lemma VIIL.1.

Proof. [of Lemma VIII.1] By Claim VIIL.2, if p < %(1 —9),
then, so long as

the probability the decoding algorithm incorrectly outputs the
bit at the root of the tree is < en~!. By a union bound, all
the gadgets succeed with probability > 1 — . Conditioned
on this event, the output distribution of C corrected by the
output of the n decoding algorithms is exactly that of C, which
implies the bound on the TV distance. To conclude, the locality
parameters are then implied by Claim VIII.3 and Claim VIIL.4

(|

2)

<

B = max (@(6‘2)7logl/D ( (86)

IX. QUANTUM ADVANTAGE IN GIBBS SAMPLING

We dedicate this section to combining all the aforemen-
tioned ingredients and concluding the proof of our main result
in Theorem I.1.

Theorem IX.1 (General version of Theorem I1.1). For any

constant inverse-temperature 3 = ©(1) and integer L, there

exists a family of n-qubit commuting O(L)-local Hamiltoni-
ans, such that the n-qubit Gibbs state pg is both

1) Rapidly Thermalizing. It can be prepared within small

trace distance by the Davies generator (Eq. (6)) which

has mixing time eOLrlog = (m) addition, this process
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can be simulated on a quantum computer in time n -
eOLrlog™ = (n) - Apq yet,

Classically Intractable. Under Conjecture 1, there is no
polynomial time classical algorithm to sample from the
measurement outcome distribution p(x) (x| pg|x)
within small constant total variation distance.

2)

In particular, the choice of a sufficiently large constant L
recovers our main result of Theorem I.1. When L = loglogn,
we obtain a mixing time of polylog(n).

Proof of Theorem IX.1. To begin our proof, let us fix an
inverse-temperature 3 = ©(1), and consider the equivalent
bit-flip error rate

p=(1+e’) < (87)

1
5 )
as guaranteed by Lemma VI.1.

a) Classical Intractability: Consider the family of
constant-depth, classically intractable, n-qubit IQP circuits C
guaranteed by Theorem II.5 (Conjecture 1). Using Lemma 1.3,
let us fix a depth parameter L, and embed each circuit in said
family into a new circuit C, which is fault tolerant to input
noise of rate p = (1 — O(1)). C now has Z-locality O(L),
circuit depth and lightcone size O(L log'/ L(g)), and a noisy
sample from C can be efficiently classically post-processed
into a sample e-close in trace distance to an ideal sample from
C.

Now, consider the family of parent Hamiltonians defined by
the family of Fault-Tolerant circuits C,

H=>" C*(ZZ- ® ]1[,1]\1-) ct.

The support size of each term is given by the Z-locality of
the fault-tolerant circuit C', which is O(L).

If, by assumption, there was a polynomial time classical
algorithm A to sample from the Gibbs state of H at inverse-
temperature /3, then we could construct a polynomial time
classical algorithm to sample from a distribution e-close to the
ideal distribution of C, as follows: First, construct C' and thus
the local terms of H from C. Then, leverage A to sample
from oc e~ A Finally, process the output sample using the
post-processing algorithm from the fault-tolerance statement
of Lemma 1.3.

b) Rapid Thermalization: To conclude, via Lemma 1.2,
the Gibbs state of H can be prepared using the Davies
generator of Eq. (6) of mixing time exponential in the

circuit lightcone size, logn - exp(O(L‘logl/L(n))) =

(88)

exp (O(L . logl/L(n))>. To simulate this process on a quan-

tum computer, the overall runtime n - exp (O(L -log'/t (n)))
has an additional quasi-linear overhead.

Remark IX.1. Theorem 1.1 asserts that for every constant
temperature, there exists a Hamiltonian H which is classically
hard-to-sample from. Conversely, results by [6] and [7] show
that every local Hamiltonian (of fixed degree) has a critical
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temperature, such that above said threshold one can efficiently
classically sample from their Gibbs state. The resolution to
this apparent contradiction lies in the order of quantifiers.
The degree/locality of our Hamiltonians increases with the
temperature, see Section VIII for their dependence on the noise
rate.

Remark IX.2. Since the Gibbs state is determined by a low
depth quantum circuit C, with access to a description of
C, one could trivially produce it on a quantum computer.
However; if given access only to the local Hamiltonian terms
{hi}s = {=CZ;CT},;, we do not believe it to be computation-
ally efficient to recover the global structure of C, in general.
While this is not a rigorous statement, we only know how to do
so for 1D circuits, via dynamic programming. It is worthwhile
to contrast this to the Feynman-Kitaev circuit-to-Hamiltonian
mapping [11], wherein the gates of the circuit can be exactly
read-off from the local Hamiltonian interactions.

X. BQP COMPLETENESS WITH ADAPTIVE SINGLE-QUBIT
MEASUREMENTS

We dedicate this section to a proof of Theorem 1.4, on
the BQP completeness of Gibbs Sampling with adaptive
measurements.

Theorem X.1. Fix an inverse-temperature 3 = O(1). Then,
there exists an n-qubit O(1)-local Hamiltonian, whose Gibbs
state at inverse-temperature (3 is a universal resource state
for quantum computation and is efficiently preparable on a
quantum computer.

This result is all but a corollary of our fault tolerance
techniques for IQP circuits, applied to measurement-based
quantum computation. Indeed, it is well known that 2D cluster
states, in addition to single-qubit measurements in adaptively
chosen basis on the X — Y plane, is universal for quan-
tum computation. The following lemma shows that one can
produce said cluster state out of the Gibbs state of a local
Hamiltonian, so long as we are allowed to measure a subset
of the qubits, and subsequently apply a Pauli correction to
“distill” out the cluster state.

Lemma X.2. There exists a n-qubit, O(1)-local commuting
Hamiltonian, whose Gibbs state at inverse-temperature 3 can
be used to prepare a cluster state. That is, by measuring a
subset of the qubits of the Gibbs state, and then with I round
of adaptive Pauli correction, one can produce a 2D cluster
state on O(n/log 2) qubits with probability 1 — e.

Proof. Let C' be the circuit which prepares a 2D cluster state
on m qubits, comprised of Hadamard gates and CZ gates. Let
C be the n = ©(mlog ™) qubit circuit defined by the fault

tolerance scheme of Lenima VIII.1, which is robust to input
errors of finite probability < % Then, consider the parent
Hamiltonian H of C, on n qubits and with locality O(1).
By construction, its Gibbs state is a quantum-classical
state, of classical bits lying in the fault-tolerance gadget of

Lemma VIII.1, and qubits comprising a cluster-state under

input noise. Again, recall that input bit-flip errors are equiva-
lent to output Z errors, due to the gate structure of C'. From
Lemma VIIL.1, by measuring the classical bits of the fault-
tolerance gadget, one can recover the output Z error with
probability 1 — €. O

We remark that the adaptively chosen X —Y measurements
can be performed simultaneously with the Pauli corrections.
In this manner, after producing the desired resource Gibbs
state, it suffices to perform adaptively chosen single-qubit mea-
surements to achieve universal measurement based quantum
computation.

XI. ADDRESSING OUTPUT MEASUREMENT ERRORS

In this section, we prove Theorem 1.5 on sampling from
finite-temperature Gibbs states subject to measurement errors.

Lemma XIL.1. Fix an inverse temperature 3 = (1), and a
measurement error rate p < % There exists a family of n-
qubit, O(logn)-local Hamiltonians, such that sampling from
their Gibbs state at inverse-temperature 3, under measurement
errors of rate p, is classically intractable under Theorem IL5.
Moreover, there exists a poly(n) time quantum algorithm to

produce said Gibbs state.

Our construction of Lemma XI.1 is similarly based on
the parent Hamiltonians of fault-tolerant IQP circuits, which
are hard-to-sample from in the ideal case. We note that
the distribution defined by sampling from the Gibbs state
of the parent Hamiltonian of a quantum circuit C, given
measurement errors, corresponds exactly to sampling from C'
under both input and output noise, albeit with different noise
rates. Unfortunately, to address this mixed noise model, we do
need to appropriately modify our fault-tolerance scheme. For
this purpose, we appeal to prior work by [20], at the cost of
a higher locality.

A. Overview

To model the noise in this section, recall the definition of
the bit-flip error channel D, in Eq. (67). Given a quantum
circuit C on n qubits, and fixed noise rates pi,, Dout € [0, %),
the noisy output distribution of C' given input and output noise
is given by

Rn
ja¥a] - D oC(meoooxon) of|.

Pout
, (89)
If A:{0,1}" — {0,1}" is a deterministic classical post-
processing algorithm, we denote as A o p the distribution
given by sampling 2 <+ p and outputting A(z). The following
lemma is a fault-tolerance statement for IQP circuits against
this input/output noise model.

pc~pz7npout ({E) =Tr

Lemma XIL.2. Let C be an n qubit IQP circuit of depth d
and lightcone size {, and fix input and output bit-flip error
rates Pin,Pout € [0, %) Then, for every r € N there exists a
quantum circuit C,. and a deterministic, O(n,.)-time decoding
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algorithm A, : {0,1}" — {0,1}", such that in the presence
of input and output noise, the statistical distance

A © DC, pin powe — P00l < 1- (4g(1 —¢))"7%, (90)

where ¢ = Pin(1 — Pout) + Pout(1 — Pin) < % Moreover, C,
is defined on n, = n - r qubits, has depth d, = d - logr and
lightcone size < { - .

In other words, noisy samples from C, can be post-
processed into nearly-ideal samples from C. Note that ¢ < %
implies the total variation distance above decays exponentially
with 7.

Corollary X1.3. Fix input and output bit-flip error rates < %
Then, any IQP circuit on n qubits and constant depth can be
efficiently transformed into a quantum circuit of O(loglogn)
depth and O(logn) lightcone size, robust to input and output
noise with error n=*(\),

Starting from the hard-to-sample IQP circuits ensured by
Theorem II.5, we can construct circuits fault-tolerant to input
and output noise via the Corollary above. In turn, these fault-
tolerant circuits define a parent Hamiltonian, which is rapidly
thermalizing (via Lemma 1.2), and yet, classically hard to
sample from. Put together, we prove Lemma XI.1.

B. Analysis

We remark that if the circuit C itself is an IQP circuit, then
the bit-flip noise model B, commutes with the circuit, and
thus the input/output noise is equivalent to input noise at a
higher rate: pc p,,. po.. () = Pc,q,0(x), With

q= pzn(l - pout) +pout(1 - pzn) < (91)

N =

To leverage this equivalence, however, we need to design a
fault-tolerant circuit which itself is an IQP circuit. Fortunately,
here we can appeal to [20], who achieved precisely that. To
summarize their construction, their circuit embedding lever-
ages the following property of IQP circuits. The diagonal part
D of any IQP circuit can be expressed as a matrix-exponential
of a polynomial of Z Pauli matrices:

D = exp {z Z 0; ® ZiMji], (92)

jE€[mM]  i€n]

for real coefficients {0;}, and a boolean matrix M € F5**". If
D is comprised of 2-qubit gates, then the weight of any row of
M is < 2. Now, suppose G € IF(Q""‘)X" is the generator matrix
of a repetition code, on n’ = n - r bits and rate n/n’ = %
[20] observe that the new IQP circuit defined by mapping
M — M = M - G7 is robust to input noise, up to (roughly)
the random-error-correction capacity of G. Indeed, this follows
from the fact that

(GT2| D |GTz) = (x| D|z) Vo € {0,1}".  (93)

Therefore, the output distribution of the new circuit C' under
input (or output) noise is the same as sampling y € {0,1}"
from C, encoding y into the code § = Gy € {0,1}", and

finally flipping each entry of § independently with probability
q. If the repetition code can tolerate random bit-flip errors with
rate ¢, then one can approximately sample from C' using noisy
samples from C.

The caveat in their approach is that the resulting IQP circuits
maybe polynomially larger. Indeed, each two qubit gate in the
original circuit C, is mapped to a 2 - r multi-qubit gate in C"

. . 1 2 r 1 T
eZGZa@JZb N ezGZ(,@Z,lmZa@meZb (94)

which is complex to implement using only diagonal oper-
ations. Instead, we dispense with the requirement that the
intermediate gates in the circuit be diagonal (and thus the
circuit is not an IQP circuit), however, globally it is equivalent
to the same (IQP) unitary operation.

Definition XI.1. A k-local Pauli rotation gate is the k qubit
unitary U defined by an angle 0 € [0, 2w and a k-qubit Pauli
P where U = €97,

Of particular note to us are multi-controlled Z rotations,
where P=71® Zs -+ Z.

Claim XI.4. Any k-local Pauli rotation gate can be imple-
mented using an < logk depth circuit on a fully connected
architecture of 2-qubit gates.

For simplicity, we prove the above for multi-qubit Z Paulis,
as the general case is analogous.

Proof. Let U be a k-local Z rotation gate, and V' be any
unitary. Then, the identity Vei#PVT = ¢iVPV' tells us that it
suffices to find a depth d < log k Clifford circuit V' such that
V(®8Z;)VT = Z1 @ Iy 1. We claim that this can be done
recursively, where each layer of V' halves the weight of the
remaining Z’s. Indeed, since (I® Z) = CNOT(Z® Z)CNOT,
layers of CNOT gates on a matching of the remaining Z’s will
suffice. O

To prove our statement, we instantiate the lemma below
with our implementation of multi-controlled Z gates.

Lemma XI1.5 ([20]). Let C' be an n qubit IQP circuit of depth
d. Then, for every r € N, there exists a deterministic, O(n-r)-
time decoding algorithm A, : {0,1}"" — {0,1}", and a
quantum circuit C,. on n, = n - r qubits, comprised only of
Hadamard gates and O(d) layers of < 2r-local Z rotation
gates, satisfying
1) In the absence of noise, the distribution A, o pc, 0.0
given by sampling y < P&, 0.0 from the output of C,,
and outputting A, (y), is the same as sampling from C.
2) In the presence of input-level noise with probability q,
the statistical distance

I Ar 0 pe, 00 —Peoollt <n-(4-q-(1—q))"7% (95)
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