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Abstract Regression models (LEEMYR: Low Energy Electron MLT geosYnchronous orbit Regression)
predict hourly 4.1–30 keV electron flux at geostationary orbit (GOES‐16) using solar wind, IMF, and
geomagnetic index parameters. Multiplicative interaction and polynomial terms describe synergistic and
nonlinear effects. We reduce predictors to an optimal set using stepwise regression, resulting in models with
validation comparable to a neural network. Models predict 1, 3, 6, 12, and 24 hr into the future. Validation
correlations are as high as 0.78 (4.1 and 11 keV, 1 hr prediction) and Heidke Skill scores (HSS) up to 0.66. A 3 hr
ahead prediction is more practical, with slightly lower validation correlation (0.75) and HSS (0.61). The
addition of location (MLT: magnetic local time) as a covariate, including multiplicative interaction terms,
accounts for location‐dependent flux differences and variation of parameter influence, and allows prediction
over the full orbit. Adding a substorm index (SME) provides minimal increase in validation correlation (0.81)
showing that other parameters are good proxies for an unavailable real time substorm index. Prediction intervals
on individual values provide more accurate assessments of model quality than confidence intervals on the mean
values. An inverse N‐weighted least squares approach is impractical as it increases false positive warnings.
Physical interpretations are not possible as spurious correlations due to common cycles are not removed.
However, SME, Bz, Kp, and Dst are the highest correlates of electron flux, with solar wind velocity, density, and
pressure, and IMF magnitude being less well correlated.

Plain Language Summary As high levels of electrons in the radiation belts can damage satellites, an
accurate forecasting model is needed. Electron levels can be predicted from regression models using data from
the solar wind, the interplanetary magnetic field, and indices measuring disturbances in Earth's magnetic field.
Dependable predictions can be made using predictors from either an hour or 3 hr before electron changes occur.
A 3 hr ahead prediction is more practical, giving time to respond to electron increases, and results in only
slightly lower prediction ability.

1. Introduction
In the radiation belts, electrons in the ∼10–50 keV range result in damaging surface charging of satellites
(Thomsen et al., 2013), in contrast to >100 keV electrons which generally result in internal charging (e.g., Lam
et al., 2012; Loto'aniu et al., 2015). Low energy electron events are detected during even weak to moderate
substorm activity (Ganushkina et al., 2021; Matéo‐Vélez et al., 2018), but they do not correlate well with
geomagnetic storms. This, and their faster reaction time, makes their prediction more difficult than higher energy
electrons (Choi et al., 2011; Koons et al., 2000; Matéo‐Vélez et al., 2018).

A number of predictive models for electrons >40 keV have been created (e.g., Balikhin et al., 2011; Boynton
et al., 2015, 2019; Capman et al., 2019; Chu et al., 2021; Ganushkina et al., 2019; Koons & Gorney, 1991; Li
et al., 2001; Ling et al., 2010; Ma et al., 2022; Pakhotin et al., 2014; Rigler et al., 2004; Sakaguchi et al., 2013;
Simms, Ganushkina, et al., 2023; Simms et al., 2014; Smirnov et al., 2020), but many fewer for <40 keV electrons
(Denton et al., 2016; Swiger et al., 2022). In this paper, we present a regression‐based model for prediction of
<40 keV electrons at geosynchronous orbit.

The distribution of lower energy (<100 keV) electrons may depend on location in the magnetosphere (Birn
et al., 1997; Thomsen et al., 2001), so daily or orbit averaged predictions may not be useful. Data from
geosynchronous orbit comes from only one L‐shell, but does provide coverage of all MLTs (Magnetic Local
Times). Including MLT as a variable in the model would therefore allow predictions over the entire orbit.
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There are a number of measured parameters that correlate with geosynchronous 1–40 keV electron flux and
therefore may be of use in predictions. These include solar wind and IMF (Interplanetary Magnetic Field) de-
scriptors (e.g., Ganushkina et al., 2019; Hartley et al., 2014; Kellerman & Shprits, 2012; Li et al., 2005; Shi
et al., 2009; Sillanpää et al., 2017; Simms, Ganushkina, et al., 2022), as well as geomagnetic indices such as Kp
(Planetarische Kennziffer), AE (Auroral Electrojet), or SME (SuperMAG Auroral Electrojet) (e.g., Denton
et al., 2015, 2016; Freeman, 1974; Korth et al., 1999; Thomsen et al., 2013) (AE also correlates with electron
dropouts (Boynton, Balikhin, et al., 2016; Ma et al., 2022). While AE or SME correlate better with the flux‐
enhancing substorms, neither is available in real time. The 3‐hr cadence of Kp does not have the capacity to
measure rapid changes in geomagnetic activity associated with fast electron enhancements, but its inclusion in a
prediction model may be helpful to measure the general background level of disturbance. Dst may be helpful to
include as it is available in real time and at an hourly cadence. Similarly, it also may be useful to incorporate the
solar energy flux (f10.7) even though it changes relatively slowly (Swiger et al., 2022).

At higher energies (>40 keV) combinations of predictors, rather than single factors, generally result in better
predictions (Denton et al., 2016; Simms et al., 2014, 2016, 2018a). These combinations may be both additive
(adding more predictors to a model) or multiplicative (adding interaction terms that describe how one parameter's
impact on flux is affected by other variables). Certain factors may also show nonlinear relationships with electron
flux, but this does not preclude using linear modeling techniques (e.g., correlation and regression) because the
relationships between variables are usually intrinsically linear. That is, they can be made linear by log trans-
formations of predictor and response variables (Neter et al., 1990). Log transformations or introducing quadratic
or cubic terms can also better describe the relationships (Balikhin et al., 2011; Simms, Ganushkina, et al., 2023).
In addition, location information can be included by using MLT as a predictor consisting of two variables: sin(2π/
24) and cos(2π/24). If these are also included as multiplicative factors—multiplying each other factor by this
location information—the possible varying influence of predictors by location will also be incorporated.

Due to the high correlations between these possible predictors, issues arise if all are added simultaneously to a
prediction model. High correlation between the predictors (Simms et al., 2014) can lead to overfitting to unique
and inconsequential characteristics of the training data set, meaning that the model may not predict well for a
novel time period. We need some way to choose only those parameters that make a real contribution. The
weighting algorithms used by neural networks are one approach (Chu et al., 2021; Freeman et al., 1998; Kat-
savrias et al., 2022; Koons & Gorney, 1991; Ling et al., 2010; Ma et al., 2022, 2023; Simms & Engebretson, 2020;
Smirnov et al., 2020; Swiger et al., 2022), but stepwise regression can also be used to reduce the number of inputs
to a more optimal subset. In fact, we have previously found little difference in the predictive ability of neural
network versus regression models, provided the regression models also include multiplicative interaction and
quadratic terms, and a time/location variable such as MLT (Simms, Ganushkina, et al., 2023).

We call our current set of regression prediction models the LEEMYR models (Low Energy Electron MLT
geosYnchronous orbit Regression).

2. Data and Model Building
To produce our models, we obtained electron data from the SEISS (Space Environment In Situ Suite) MPS
(Magnetospheric Particle Sensor) on GOES‐16 located at ∼6.6RE (Galica et al., 2016). The sensor consists of
MPS‐LO (low) and MPS‐HI (high) units measuring electrons at energies below and above 40 keV, respectively.
The MPS‐LO for low energy electrons contains 14 telescopes, which cover 12 15° angular zones that allow
determination of pitch‐angle distributions from the orbital data. Total omnidirectional electron flux is obtained
from the fluxes measured by all the directional telescopes taking into account the pitch angles of each telescope's
measured electron flux. Differential electron fluxes are measured in 15 energy bands, logarithmically spaced from
30 eV to 30 keV. We analyze the five highest energy channels with energy band centroids at 4.1, 6.6, 11, 18, and
30 keV (energy band width is 5.8% of the centroid value). Electron flux is measured as spectral density and
angular density (cm−2 ⋅ s−1 ⋅ sr−1 ⋅ keV −1). We average these 5 min fluxes to 1 hr intervals. Level 1b data for
SEISS MPS‐LO instrument and Level 2 data for magnetometer MAG are available at https://www.ngdc.noaa.
gov/stp/satellite/goes‐r.html.

The LEEMYR models are trained using data over the time interval of 1 January 2020–1 February 2021. To validate
the models, we use 28 February 2021–26 August 2021 as the test set. Large data gaps in February 2021 made this
period impractical for use. Solar wind parameters (solar wind velocity V, number density N, pressure P, IMF By and
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Bz), and magnetic indices (Kp and Dst) were obtained from OMNIWeb web
with 1 hr resolution and data time‐shifted to the bow shock nose (https://
omniweb.gsfc.nasa.gov/form/dx1.html). We use the SuperMAG (https://
supermag.jhuapl.edu/) SME index (SuperMAG electrojet index) as a proxy for
substorm activity for only a subset of the models (Gjerloev, 2012; Newell &
Gjerloev, 2011). These models with SME were produced to assess how much
information we miss by not including this substorm proxy, however these
SME‐models are not useful for actual predictions because SME is not available
in real time. All variables which are consistently >0 were log10‐transformed
(this was made possible for Kp by adding 1). Z scores were then calculated by
subtracting the mean and dividing by the standard deviation of each variable
(Table 1). The Z score (or standard score) is the number of standard deviations
an observation lies above or below the mean. It standardizes different variables
to a common scale so that (a) variable influences can be directly compared, and
(b) variable selection methods are less likely to get stuck in local optima
(Hyndman & Athanasopoulos, 2018; Neter et al., 1990). Regressions were
then performed on the Z scores of the log transformed data. The trans-
formations were necessary to linearize the relationship between predictor
and response variables and to normalize the errors, allowing the use of linear
model techniques (such as regression). For presentation in the figures only,
we backtransform predictions to log10 flux. All statistical analysis and
model training was performed in MATLAB (The MathWorks Inc., 2023).

LEEMYR models were built using a variable selection technique: a stepwise regression algorithm which enters
variables one by one, eliminating any variable currently in the model if the next addition makes it redundant. We
enter each variable if its p‐value is less than 0.025 and then eliminate any where the p‐value exceeds 0.05.
Assuming a null hypothesis that there is no influence of a variable, the p‐value is the probability of obtaining a
result at least as extreme, or unlikely, as the result observed (Neter et al., 1990). Thus, choosing only those
variables with a low p‐value is equivalent to choosing those with the most influence. Possible predictors include
the solar wind, IMF, and geomagnetic variables listed above, as well as each of their square and cubic terms and
the multiplicative interaction between each. We convert time to a pair of equations (sin(2 × MLT × π/24) and cos
(2 × MLT × π/24). These sine and cosine variables are also multiplied by the above predictor variables. This gives
information on how the effect of each variable may vary with location.

3. Model Validation
Stepwise regression on the full set of obtainable predictor variables (all but SME which is not available in real
time) gives us a set of coefficients for the LEEMYR models (see Table 2 for the Lag3 coefficients). Over the five
energy levels the models vary somewhat both in which variables are included and in the coefficient weightings,
but due to the high correlations between predictor variables, these coefficients are not interpretable in a physical
sense. Models are created for predicting 1, 3, 6, 12, and 24 hr ahead (Lag1, Lag3, Lag6, Lag12, and Lag24). The
models are available for use at https://zenodo.org/records/7520424, including coefficients for Lag1‐24 models.

Scatterplots of predicted versus observed log10 electron flux for the Lag1 model (prediction 1 hr into the future) at
each of the five energies show a reasonably good correspondence (Figure 1), with validation correlations as high
as 0.78 for the lower energies. At >11 keV, validation correlations are comparable (0.72–0.76), with standardized
RMSE (root mean square error divided by standard deviation) also rising at the higher energies. However, despite
the good validation correlation, which is heavily weighted by the bulk of observations in the mid‐range values, the
lowest flux tends to be overpredicted in value, while the highest flux is underpredicted. This problem is more
obvious at the higher energies. This is typical of models using these predictors at higher energies as well (40–
150 keV and MeV electrons), no matter the algorithm used to create the model (Simms, Ganushkina, et al., 2023).
This is because (a) most observations occur nearer to the mean, with this vast majority of “normal” conditions
creating a built in bias drawing all predictions back toward the mean (He & Garcia, 2009), (b) extreme levels of
the drivers do not always result in extreme levels of electron flux (there is a high degree of variability in the
system), and (c) flux persistence leads to clumping of extreme high values, leading to a high degree of auto-
correlation (Bunde, 2023; Simms et al., 2018). However, weighting extreme values in a regression more heavily,

Table 1
Means and Standard Deviations for Conversion of log10 Electron Flux V, N,
P, B, Kp+1, Dst (Unlogged), and SolarFlux to Z‐Scores

Mean Std Dev

4.1 keV 5.568 0.408

6.6 keV 5.306 0.411

11 keV 4.923 0.408

18 keV 4.614 0.328

30 keV 4.366 0.247

V (km/s) 2.578 0.0816

N (♯/cc) 0.823 0.255

P (nPa) 0.226 0.210

B (nT ) 0.622 0.171

Kp 0.970 0.435

Dst (nT ) −5.260 11.403

SolarFlux (W/m2/Hz) 1.873 0.0361
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while it may result in more true positive “hits,” will also increase false pos-
itive “misses” (as we show below) (He & Garcia, 2009). Flux persistence
could be added to the model by adding a flux lag term as a predictor, however,
this results in predictions that lag behind extreme events, making the pre-
dictions useless (Simms, Ganushkina, et al., 2023).

3.1. Predicting Further Than One Hour Ahead

While predicting from 1 hr before might be expected to give the best result, it
may not give enough lead time to be of any practical use. We therefore
produce models to predict 3, 6, 12, and 24 hr into the future. The validation
correlations of these models do drop off (Figure 2), but the correlations from
the Lag3 model are fairly close to that of the Lag1. Predictions from 12 to
24 hr previous are not very accurate. Predictive ability is somewhat lower in
the higher energies.

It has previously been assumed that a substantial number of previous hours of
input data must be available for accurate predictions of electron flux (Chu
et al., 2021; Simms & Engebretson, 2020) because certain influences appear
to drive flux over many hours or days (Wing et al., 2022). However, when
spurious correlations due to trends and cycles are removed, these “long‐term”
effects tend to disappear (Simms, Engebretson, & Reeves, 2023). Addition-
ally, the persistence of some measured parameters and of their influence
means that the predictive ability of inputs over only a short time frame is often
sufficient (Simms, Ganushkina, et al., 2023). This is demonstrated by the
incorporation of Lag12 inputs into the basic Lag3 model which resulted in
little improvement in the validation r compared to the simpler Lag3 alone
model (Figure 2).

Lag1 solar wind and IMF parameters reported by the OMNIWeb data site
may in fact reach geostationary orbit at the same time as GOES electron flux
is measured or even before. It would not make sense, therefore, to interpret
correlations in these models as causative. In fact, recent work using neural
networks and regression to predict flux, without accounting for confounding
cycles and trends, is unable to determine drivers of flux. In future work with
this 4.1–30 keV flux GOES‐16 data set, we intend to study the relationship
between these predictors and flux, using ARMAX (autoregressive‐moving
average transfer functions) techniques to remove the confounding factors and
identify the actual drivers as we have done previously with GOES‐13 40–
150 keV flux (Simms, Ganushkina, et al., 2022). However, in the present
work, we do not use models to identify the drivers of electron flux, merely to

predict it. As we are already depending on possible non‐causal intercorrelations of variables to create a predictive
model, without regard for which correlations are merely the result of common trends and cycles, the only reason
to avoid using the Lag1 inputs is the practical matter of lead time before predictions would be useful.

3.2. Is SME a Necessary Predictor?

The addition of SME (a substorm proxy) to the models does result in somewhat higher validation correlations
(Figure 2: 0.743–0.814 for the Lag 1 prediction). If a geomagnetic substorm measure were available for pre-
diction, this would improve the forecasts. However, the other variables do appear to act as reasonable proxies for
substorm activity. This means we can produce fairly good predictions even though SME, often the most highly
correlated variable, is unavailable in real time.

3.3. Validation With the Heidke Skill Score

Validation correlation and RMSE are only one way to compare models. The ability of a model to predict a high
flux event may be a more significant capability. This can be assessed using the Heidke Skill Score (HSS)

Table 2
Coefficients of the Lag3 Model, Predicting Electron Flux 3 hr Later

Row 4.1 keV 6.6 keV 11 keV 18 keV 30 keV

(Intercept) 0.0196 −0.0208 −0.0420 −0.0782 −0.0729

lag3V 0.1776 0.2211 0.2603 0.2384 0.1477

lag3N 0.1333 0.1488 0.1713 0.1533

lag3P 0.1220

lag3B 0.0721 0.0648 0.0573 0.0639 0.0641

lag3Kp 0.0947 0.1368 0.1703 0.2018 0.2598

lag3Dst −0.0175 −0.0492 −0.0602 −0.0529 −0.0650

lag3solar −0.2331 −0.2507 −0.2705 −0.2729 −0.2677

coshr 0.4772 0.3563 0.2395 0.1490 0.0371

sinhr 0.6672 0.6599 0.6415 0.5753 0.4714

lag3V:lag3Kp −0.0729

lag3V:lag3Dst 0.0446 0.0782 0.0455

lag3V:coshr 0.0961 0.2056 0.1549 0.1244 0.0541

lag3V:sinhr 0.0610 0.1642 0.1558 0.2230

lag3N:lag3Kp 0.0431 0.0369

lag3N:coshr 0.1279 0.1086 0.0851

lag3N:sinhr −0.0955 0.0750 0.1112

lag3P:lag3B −0.0195 −0.0447

lag3P:coshr 0.0987

lag3P:sinhr 0.1413 0.0645 0.0696

lag3B:lag3Dst −0.0251

lag3Kp:sinhr 0.1940 0.1920 0.1385 0.1052 0.1044

lag3Dst:coshr −0.0503 −0.0770 −0.0529

lag3solar:sinhr −0.0292 −0.0410 −0.0493 −0.0469 −0.0315

coshr:sinhr 0.4136 0.3489 0.2816 0.2160 0.1023

lag3P2 0.0266 0.0612 0.0206 0.0352 0.0455

lag3Dst2 −0.0166

lag3solar2 0.0608 0.0706 0.0794 0.0810 0.0730

Note. Predictors are log‐transformed (when possible) then converted to
Z‐scores using Table 1 values.
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(Heidke (1926), with calculations in Ganushkina et al. (2019), Simms,
Ganushkina, et al. (2023)). Predictions are categorized as correct hits (true
positive: TP), incorrect prediction of an event when none occurs (false pos-
itive: FP), incorrect missed events where one did occur (false negative: FN),
and correct prediction of non‐events (true negative: TN). Using these
numbers, the HSS calculates a score relative to random predictions. A score
below zero will be obtained if the model predicts less well than chance alone.
Scores closer to 1 show greater accuracy in prediction, with a score of 1
representing a perfect prediction.

We categorize “events” as above the 75th, 90th, or 97.5th percentile. The
models do well in predicting flux occurrences above the 75th percentile, with
forecasts 1 and 3 hr in the future having HSS of 0.50–0.659 (Figure 3).
Prediction above the 90th percentile is not as good (0.33–0.50 for the Lag1
and Lag3 models). Forecasts of events above the 97.5th percentile (≈2
standard deviations above the mean) are worse (HSS of 0.18–0.24 at Lag 1,
0.02–0.31 at Lag 3), with predictions from >6 hr before being no better than
chance. Predictions of the rarest high events, therefore, can only be made 1–
3 hr before.

Low electron flux levels are not as well predicted, with the HSS of the lowest
10% of observations ranging from 0.10 to 0.19, and the HSS of the lowest 5%
0 or below (not shown in the figure). This set of solar wind, IMF, and
geomagnetic parameters without a substorm measure are much less able to
predict low electron fluxes than the high fluxes.

3.4. Over and Under Prediction

A more detailed look at when the models under‐ and overpredict even within
the training set is shown in Figure 4 (29 June–11 July 2020). Over this roughly
2 week period (4.1 keV only), observed flux values are often underpredicted
during high flux. This problem becomes more acute if flux is predicted 12 hr
into the future (4c).

A 99% confidence interval (gray dotted lines) paints an overly optimistic view
of the precision of the prediction, even when the accuracy is low. This tight
confidence interval gives the appearance that we have high confidence that
the prediciton is true, but even within the training set, this confidence interval
often fails to include the actual flux value. This is not surprising, as the
confidence interval of a large data set will often be quite narrow. (We use a
99% confidence interval here only so it will be visible on the plot, unlike the
narrower 95% confidence interval.) For this reason, we do not recommend
relying on confidence intervals to assess model quality.

We interpret a confidence interval as meaning that we are 99% sure the
predicted mean lies in this range, but this is not quite what we want. We are
more interested in knowing how confident we are of a prediction for a given

set of input parameters. This metric is a prediction interval. Prediction intervals include uncertainty both for
estimating the mean (as the confidence interval does) but also for the variation due to individual values. For this
reason, a prediction interval is wider than a confidence interval and does not converge to the mean prediction as
the sample size increases (for calculations see Neter et al., 1990). As expected, the prediction interval of Figure 5
contains the mean prediction at every point and the observed values at nearly every point. In the test period, over a
sample period (31 May–12 June 2021), we show predicted flux in dark blue (± a barely visible 95% confidence
interval), as well as the much wider 95% prediction interval (light blue/green outline). Although the prediction
interval is wide, it does contain the observed value (red line) most of the time. As we have already noted from the
scatterplots, the times when observations do not fall inside the prediction interval tend to be spikes of high
electron flux.

Figure 1. Lag1 LEEMYR model predictions versus observations of log10
electron flux during the test period (28‐February‐2021 to 26‐August‐2021).
(a) 4.1 keV, (b) 6.6 keV, (c) 11 keV, (d) 18 keV, (e) 30 keV. Validation
correlation (r) and standardized RMSE are given.
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3.5. Inverse N‐Weighted Least Squares

These regression models use ordinary least squares (OLS), which weight observations equally. This means that a
non uniform distribution of observations over a range of values will tend to be most influenced by values with
larger n. As a result, areas with few observations (e.g., the highest flux values) do not contribute as much to the
determination of the models. However, countering this, observations farthest from the mean are naturally
weighted more heavily by virtue of their larger residuals. Consequently, the weighting by more common values
may not be as extreme as supposed.

The “overweighting” by very common values can be minimized by using an inverse N‐weighted least squares
approach which assigns more influence to observations in sparse areas and less influence to points in the well‐
represented regions. This is similar to the imbalanced regression technique used by Chu et al. (2024). Using
such an N‐weighted approach might be expected to produce a model which more accurately describes rarer events
that are of the most interest such as the high flux events. We create 36 bins (i = 1 − 36) spread equally over the
range of values of the observed, Z score transformed flux, with ni being the number of observations in each bin. As
the bins are determined by the values, the number in each can vary. Using the lscov procedure of MATLAB, we
create a weighted least squares solution with the weight for observations in any bin (i) being 1/ni.

Scatterplots of the inverse N‐weighted models may show a better fit, to the eye, in the higher flux ranges
(Figures 6 and 7). However, the overall validation correlations are lower at both 4.1 and 30 keV (other energies
showed a similar difference). This is due to the much poorer fit in the mid‐range values. The HSS values at a given
threshold (75th, 90th, or 95th percentile) are similar between the OLS and N‐weighted models, with no clear
pattern of which is usually higher. At any given threshold, the TPR may be 2–3 times higher in the N‐weighted
models, which seems promising, however, this comes at the expense of an inflated FPR which can be 5–7 times

Figure 2. LEEMYR model validation correlations for predictions 1, 3, 6, 12, and 24 hr before the flux observation, with and
without SME as an added predictor, for each electron energy (4.1, 6.6, 11, 18, and 30 keV).

Figure 3. Heidke skill scores for LEEMYR model predictions 1, 3, 6, 12, and 24 hr before the flux observation, at the 75th,
90th, and 97.5th percentiles, for each electron energy (4.1, 6.6, 11, 18, and 30 keV).
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higher in the N‐weighted models. This can be seen graphically in the “bump” of midrange values wrongly
classified into the FP region of the N‐weighted regression scatterplot.

Rare observations far from the mean already are weighted more heavily by regression analysis (Neter et al., 1990),
so further manipulation of the weighting may not be as useful as it may appear. Rather than manipulating the
model to weight more heavily on the rare high flux events, a better approach may be to move the threshold for
classifying an event.

4. The Models in Use
As MLT is included as a parameter, we can predict, for given solar wind, IMF, geomagnetic, and solar flux
observations, electron flux levels over the entire orbit, however, a comparison observation is not at a single point
in time but must be gathered over a full orbit. Figure 8 is the observed data, over a full orbit, gathered over the
period centered at 20 March 2021 11:00:00 (UT). For each MLT, in the outer ring, electron flux above the 90th
percentile is marked in yellow, above the 95th percentile in red, and above the 99th percentile in purple. There is
an observed event (flux >95th percentile) in the 4.1 keV electrons. (Note that the viewing geometry is from above
the South Pole.)

Figure 4. Prediction versus observation time plots (29 June–10 July 2020; 4.1 keV). Predictions (gray) often underpredict
observations (orange) at the flux highs (green prediction–observation values). Overprediction (blue) is more common at the
flux lows. Prediction 1 or 3 hr ahead (a, b) show similar accuracy, while 12 hr predictions (c) are somewhat less accurate. A
99% confidence interval around the model output (gray dotted line) lies very close to the predicted values and often does not
include the test set observations.
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Figure 5. Prediction interval versus confidence interval for the Lag1 LEEMYR model (prediction 1 hr ahead) over 31 May–
12 June 2021. (a) 4.1 keV, (b) 6.6 keV, (c) 11 keV, (d) 18 keV, (e) 30 keV. 95% confidence interval of the model (blue dashed
line) is much smaller than the single observation 95% prediction interval (shaded blue with green outline). However, the
single observation prediction interval is much more likely to contain the observed values.

Figure 6. Observation versus prediction of 4.1 keV flux using (a). The Lag3 LEEMYR model (prediction 3 hr ahead, ordinary
least squares) and (b). a Lag3 N‐weighted model. True positive (TP) and false positive (FP) numbers can be more usefully
manipulated by moving the “event” thresholds in the OLS model (75th, 90th or 95th percentiles) than by using an n‐weighted
model.
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For this point in time, a prediction is made over the entire orbit (Figure 9). Alongside the visual prediction, the
model outputs a log10 flux prediction in the accompanying text (± the 95% prediction interval). An event is

predicted for energies ≤11 keV, but not for higher energies. This roughly
approximates the observed flux at this point in time, where an event occurs in
the 4.1 keV flux and there is a rise in flux at 6.6 and 11 keV.

At this one point in time, we then explore how well flux is predicted from
earlier hours (Figure 10). The observed event (flux >95th percentile) in the
4.1 keV flux at 0–6 MLT is labeled as being at the >99th percentile by the 1
and 3 hr ahead predictions. The 6 hr ahead prediction also flags the event, but
the 12 hr ahead prediction warns only of a >90th percentile event and the
24 hr ahead prediction misses it entirely. While the validation correlations and
HSS numbers do show that >3 hr ahead predictions are less reliable, this
single event does suggest that earlier predictions could be monitored for signs
of upcoming increases in flux.

5. Individual Correlations
The use of solar wind, IMF, and geomagnetic parameters in a predictive
model is based on the assumption that these are correlated with electron flux.
We test that assumption with cross correlations of each parameter over each
flux energy (Figure 11). These show an apparent influence of some of the
parameters in the 24 hr leading up to the flux measurement, with this cor-
relation decreasing the further back in time we look. Correlations can be as
high as 0.51 (SME). Although SME cannot be included in an actual prediction
because it is not available in real time, several other variables show peak
correlations that are high enough to be useful in flux prediction (e.g., Kp:
0.40, Bz: −0.39). Importantly, for prediction purposes, these correlations are
often nearly as high at a 3 hr lag as they are at 0 or 1 hr lags. As no one variable
(not even the unavailable SME) is tightly correlated with electron flux, it is
useful to include all these variables in the stepwise regression to choose a set
of parameters that best predict flux. Even though it may be tempting to
manually drop such lower correlating parameters as V, N, P, and B to make a

Figure 7. Observation versus prediction of 30 keV flux using (a). The Lag3 LEEMYR model (prediction 3 hr ahead, ordinary
least squares) and (b). A Lag3 N‐weighted model. True positive (TP) and false positive (FP) numbers can be more usefully
manipulated by moving the “event” thresholds in the OLS model (75th, 90th or 95th percentiles) than by using an n‐weighted
model.

Figure 8. Observed flux over all MLT centered at 20 March 2021 11:00 UT.
Observations above the 99th/95th/90th flux percentile are marked in purple/
red/yellow in the outer ring. (a) 4.1 keV, (b) 6.6 keV, (c) 11 keV, (d) 18 keV,
(e) 30 keV. This is an idealized representation, with viewing geometry from
above the South Pole.
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Figure 9. Example prediction from LEEMYR model over all MLT, centered at 20 March 2021 11:00 UT (3 hr ahead
prediction; predictors measured at 08:00). Tables show log10 electron flux prediction at each MLT, at each energy, ± the 95%
prediction interval. Predictions above the 99th/95th/90th flux percentile are marked in purple/red/yellow, respectively, in the
outer ring. (a) 4.1 keV, (b) 6.6 keV, (c) 11 keV, (d) 18 keV, (e) 30 keV.

Figure 10. Example observation and prediction at 4.1 keV over all MLT, centered at 20 March 2021 11:00 UT. Predictions
made from 1, 3, 6, 12, and 24 hr before. Predictions above the 99th/95th/90th flux percentile are marked in purple/red/
yellow, respectively, in the outer ring. (a) Observed 4.1 keV flux in the 24 hr period centered on the prediction hour,
(b) Prediction from 1 hr before, (c) From 3 hr before, (d) From 6 hr before, (e) From 12 hr before, (f) From 24 hr before.
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more parsimonious model, it is better, to increase predictive ability, to leave this determination to the stepwise
procedure. As these lower correlating variables are often chosen by the stepwise procedure, this does indicate that
there is some independent information contained in them that is worth retaining. In fact, in our models here, Bz
was never chosen, even though it correlates more highly with electron flux indvidually than some other variables.
This suggests (a) we can often get a better model if we allow the inclusion of less correlated variables and (b)
inclusion in the model by a stepwise procedure is not a guarantee that the variables chosen are, individually,
highly correlated with the response. As with other machine learning models, the algorithm is not intended to
always include the most highly correlated variables, but instead the combination of parameters that best describe
the variation in the response. As a consequence, the best predictive model is often not the most explanatory.

While many of these correlations are statistically significant (p < 0.05), this does not allow us to conclude that any
of these variables drive electron flux. Possible confounding correlations with unmeasured variables, common
trends in both flux and predictors, and autocorrelations in time series data all mean that these correlations may be
due to factors other than direct physical relationships. However, even if these correlations were corrected for these
sources of error, this series of cross correlations over time does not show evidence of either long term effects or
cumulative influences because each variable is correlated with itself over these short time periods. Similarly,
although several variables show up in the stepwise regression coefficients with apparently strong quadratic in-
fluences, we are unable to make the case, from this uncorrected analysis, that the physical relationships are
nonlinear.

6. Discussion
1. To predict 4.1–30 keV electron flux at geosynchronous orbit, we develop the LEEMYR regression‐based

models, reduced to a more optimal set of predictors by a stepwise variable selection procedure, from
GOES‐16 data. As we have previously found that regression, ARMAX models, and neural networks all
produce models that predict electrons with about the same level of accuracy (in the 40–150 keV range,
Simms, Ganushkina et al. (2023)), we choose the simplest method here for developing models for lower
energy electrons. It is unsurprising that the algorithm for model development would make little difference in
outcome because (a) the time behavior of flux that can be modeled separately by the autoregressive and
moving average terms of ARMAX models or with the addition of more past behavior (e.g., in a recurrent
neural network) is already inherent in the time series data and therefore modeled by the regression (even more
so if MLT is included as a parameter), and (b) interactive and polynomial terms describing nonlinear re-
lationships that would be included in a neural network can also be easily added in a regression. To reduce
overfitting to the specific training set, and to produce a more optimal set of predictors, the stepwise procedure
of variable addition and elimination can be used, much as a neural network procedure would choose the most
influential variables.

Figure 11. Cross correlations of each parameter with 4.1–30 keV flux over 48 hr previous to the flux observation (1 January 2020–26 August 2021). Statistically
significant correlations lie outside the gray bars.
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As the data in this energy range covers only 2020–2021, in the rising portion of the beginning of Solar Cycle
25, the model may be limited to periods of low solar activity. It is hoped that future work will explore how this
model behaves in more active periods, perhaps with updates to the coefficients for periods of more intense
solar activity.

2. When predicting 1 hr into the future, the LEEMYR models achieve a validation correlation as high as 0.778
for the 4.1 keV flux (0.779, 0.778, 0.759, and 0.718 for 6.6, 11, 18, and 30 keV flux respectively). Validation
correlations for the Lag3 model (predicting 3 hr ahead) are somewhat lower (as high as 0.750 in the 4.1 keV
energy range). These RE ∼ 6.6 (geosynchronous orbit) validation correlations are similar to those obtained for
electrons of this energy in the plasmasheet region (18 and 06 MLT, RE6 − 12) of 0.74–0.76 (Swiger
et al., 2022). The LEEMYR model is also comparable to other models using less similar energy ranges.
Prediction‐observation correlations from within the training sets used to build regression models of plas-
masheet electrons range from r = 0.65 − 0.81 (Stepanov et al., 2021) to 0.82 (Dubyagin et al., 2016), but
these are higher because they are not true validation correlations performed on a withheld test set. The RMSE
for the LEEMYR models (0.58–0.70) exceeds that of the 32 keV Denton et al. (2016) model (0.34–0.36),
however, these are not comparable because (a) the Denton and LEEMYR RMSEs are normalized in different
ways, and (b) the Denton RMSE covers the training period of the model. A validation correlation with a
withheld test set is not provided for the Denton model. The Boynton et al. (2011) 40 keV autoregressive
model accounted for spatial differences by creating separate models for each MLT and thereby achieved an
average validation correlation of 0.67, ranging from 0.51 to 0.79. The LEEMYR model validation correlation
is comparable or better (0.72–0.78 over all MLT) because many of the MLTs show lower validation in the
Boynton model. The Boynton model describes each MLT region separately so as to isolate the dynamics that
may vary by location. However, we were able to incorporate both this location information (MLT represented
by paired cosine and sine variables) as well as the differing dynamics in each region by allowing the models
to choose MLT X input interaction terms if appropriate. In so doing, the LEEMYR model not only accounts
for the different dynamics at various MLTs, it also achieves more predictive ability for the entire MLT range.
At geosynchronous orbit, the Ma et al. (2022) neural network ORIENT‐M model at 54 keV (the closest to the
LEEMYR energies) achieves a validation correlation of 0.67, which is lower than the LEEMYR r for lower
energies. However, the difference is even greater, as the ORIENT‐M model incorporates AE or AL as an
input. We do not use AE or SME in the final models because these are not available in real time and thus
would make the model useless for prediction. When we do include SME as an input, for comparison, the
validation correlation is as high as 0.81 (Figure 2).

3. The validation correlations are weighted heavily by the most common mid‐range values, which are well
predicted. As has been found with 40–150 keV electrons, the highest flux values tend to be underpredicted
(Simms, Ganushkina, et al., 2023). To measure how well these models predict at the high flux events that are
of most interest, the Heidke Skill score may be more informative. The HSS will be >0 if classification is
better than chance, up to a maximum of 1 which indicates perfect sorting above and below the threshold. The
HSS at the 75th percentile (0.548–0.659) is similar to that found for 40 keV electrons with a similar
regression model (0.625, Simms, Ganushkina, et al., 2023). It is higher than that found for 40 keV electrons
by Ganushkina et al. (2014, 2019) (as high as 0.17), probably because our current regression models
incorporate both the nonlinear aspects of flux response (using polynomial and interaction terms) and the
variation of predictor influence by MLT. At the 90th percentile these scores range from 0.449 to 0.496.
Practically speaking, for hourly flux predictions, a dip below the median (50th percentile) occurs in almost
every orbit and the 75th percentile is not much above this threshold. The most extreme events (>97.5th
percentile or roughly 2 standard deviations above the mean) cannot be predicted more than 3 hr beforehand,
and predictions from 1 to 3 hr ahead are less reliable. Thus, flagging increases above the 90th percentile may
be more useful.

4. Both these metrics are slightly improved by the addition of SME to the model (validation r of 0.743–0.814;
HSS at the 75th percentile of 0.564–0.724 and at the 90th percentile, 0.463–0.584). This is of no use for an
actual predictive model, as SME is not available in real time, but it is notable that there is not more
improvement. While substorm activity is related to low energy electron increases (Arnoldy & Chan, 1969;
Birn et al., 1997; Thomsen et al., 2001; Turner et al., 2015), the high correlation of other parameters to
substorms means that a specific measure of substorm activity is not needed in these models. Other parameters
act as a proxy and further manipulation of them into an index is not needed.
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5. However, for low flux values (<10th percentile), this model does not work well. An HSS of 0.10–0.19 is
lower than that achieved for the >90th percentile fluxes. This set of solar wind, IMF, and geomagnetic
parameters is of less use in predicting when fluxes will be low. This may be due to a stronger dependence of
low flux on the AE or SME index (Boynton, Mourenas, & Balikhin, 2016; Ma et al., 2022). However, as we
hope to create a model for real time predictions, the SME or AE substorm index cannot be used.

6. Because these models may be more heavily weighted on the much more numerous mid‐range flux values,
rather than the rarer high values that are of most interest, we produce several inverse N‐weighted models that
draw most influence from the less common but more important high and low values. However, although there
is a modest increase in the number of true positive identifications of high flux events, it comes at the cost of a
large increase in false positive identifications. Besides this, small populations of observations far from the
mean already have an increased influence on the regression slopes (Neter et al., 1990), making this
manipulation of the weightings less useful than it might at first appear. Rather than manipulating the model to
weight more heavily on the rare high flux events, a better approach is to simply move the threshold for event
classification. Moving the threshold increases the number of true positive identifications, but without an
outsize increase in the number of false positives.

7. The lower predictive ability in the 18–30 keV range is also seen in the 40–75 keV electrons (Simms,
Ganushkina, et al., 2023). Better predictive models, using these parameters, can be made for electrons <18 keV
and >75 keV. It may be that we are not measuring the right parameters, or that the midrange of electron flux is
simply more variable or less accurately measured. Whether this is an indication that there are processes we are
simply not measuring, or if there is higher inherent stochasticity in these energy ranges is unknown.

8. We have found that reasonably accurate predictions can be made 1 hr into the future. However, a 1 hr warning
may not be enough for practicality. Predictions 3 hr ahead are nearly as accurate and may be of more use. The
accuracy is lower the further out predictions are made. However, a continuous process of predicting 24, 12, and
6 hr into the future before the 1 and 3 hr predictions would be helpful in notifying when an event might occur.

9. Although processes may act at different time scales, we have found that a Lag3 alone prediction is nearly as
good as the Lag1 prediction, and that adding previous hours (e.g., Lag12) to the Lag3 model results in little
improvement. Persistence of predictors or their influence may account for this, but previous work with MeV
electrons suggests that, when spurious correlations due to cycles are eliminated, much of the influence is
within only a few hours (Simms, Engebretson, & Reeves, 2023).

10. There is an advantage to using data from geosynchronous orbit. Although we are not able to forecast into
other L shells, we are able to produce a full MLT forecast for any point in time.

11. Our models report prediction intervals rather than confidence intervals as we are more interested in knowing
how confident we are of a prediction for a given set of input parameters. Prediction intervals include un-
certainty both for estimating the mean (as a confidence interval does) but also for the variation due to in-
dividual values. A prediction interval is wider than a confidence interval but better describes the uncertainty
in the prediction.

12. Although electron flux in this period shows some correlations with various predictors (most notably, SME,
Bz, Dst, and Kp: Figure 11), these may be “spurious” (resulting from common correlation to unmeasured
factors) rather than explanatory. In space weather data, these unmeasured variables are often common diurnal
cycles and trends associated with long term variation in solar output or satellite measurements (Simms,
Engebretson, & Reeves, 2022). While we may find correlations that produce a successful predictive model,
this may say little about the physical relationships between parameters and electron flux. Loadings from
regression models uncorrected for cycles and trends cannot be interpreted as explanatory. Similarly, the
determination of neural network loadings (via the Shapley method, for example (Ma et al., 2023; Swiger
et al., 2022)), do nothing to distinguish which of the correlation is due to physical relationships and which to
spurious correlation. On the other hand, that Bz was not chosen in these stepwise regressions for the pre-
dictive models does not mean Bz has no physical influence, merely that other, correlated variables are already
describing the physical effects of Bz. Neither the stepwise regression algorithm, nor other machine learning
techniques, is optimized to necessarily include the most individually correlated variables, but instead the
combination of parameters that best describe the variation in the response. As a consequence, the best
predictive model may or may not be particularly explanatory in a physical sense. We therefore warn against
ascribing physical interpretations to purely predictive models. In future work, we intend to remove cycles and
trends to determine the physical drivers of electron flux in this keV energy range.
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Data Availability Statement
OMNIWeb data is available at https://omniweb.gsfc.nasa.gov/form/dx1.html, the SuperMAG SME index at
(https://supermag.jhuapl.edu/), and GOES‐16 electron flux data at https://www.ngdc.noaa.gov/stp/satellite/goes‐
r.html. The Lag1‐24 models and coefficients are available for use at https://zenodo.org/records/7520424.
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