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Premise of research. The Neogene collision of the Australian tectonic plate (Sahul) with Southeast Asia (Sunda)
restructured the vegetation of both regions. The rarity of plant macrofossils from Sunda has limited the understand-
ing of precollision vegetation and plants that migrated from Sunda to Sahul. Despite the importance of legumes in the
living flora, no Malesian reproductive or pre-Neogene fossils of the Fabaceae are known.

Methodology. We collected 47plantmacrofossils from theTambakMember of theTanjung Formation (middle-
late Eocene) while surveying the Wahana Baratama coal mine near Satui, South Kalimantan, Indonesian Borneo.
These fossils represent Southeast Asian forests before the Sahul-Sunda collision. We studied three isolated large
(up to 72 mm in length) seeds from the upper Tambak Member, along with 43 fossil leaves and two palynological
samples from the lower Tambak Member.

Pivotal results. We describe the extinct legume Jantungspermum gunnellii gen. et sp. nov. The J. gunnellii seeds
are flattened on one side, bilobed, and heart shaped with a long hilum (~60 mm) overlain on the suture, closely re-
semblingCastanospermum, the Australian black bean tree. The leaves represent sevenmorphotypes, which include
Fabaceae but are otherwise unidentifiable. One specimen preserves in situ cuticle. The palynoflora includes diverse
ferns and palms, Typhaceae, Onagraceae, and forest taxa, including Podocarpaceae, Sapindaceae, and Fabaceae,
indicating a largely freshwater coastal swamp environment in the lower Tambak Member.

Conclusions. The Jantungspermum seeds are double the length ofCastanospermum seeds, representing a closely
related but extinct papilionoid taxon. The discovery suggests a Sundan precollision history, a much later Sunda-
Sahul migration, and an eventual Asian extinction for the Castanospermum lineage, which today inhabits coastal
rainforests of northern Australasia. The seeds represent the only known fossil relative of Castanospermum, the oldest
legume fossils fromMalesia, and one of the largest fossil angiosperm seeds. The new seeds, leaves, and palynomorphs
provide a window into Eocene Malesian vegetation and rare macrofossil evidence of Sundan history for a living
Australasian lineage.
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Introduction

The collision of the Australian tectonic plate (Sahul) into
Southeast Asia (Sunda), beginning in the late Oligocene, led
to one of the largest biotic exchanges of the Cenozoic (Morley
2000, 2018; Hall 2013, 2017; Kooyman et al. 2019; Joyce
2024. q 2024 The University of Chicago. This work is licensed under a
C BY-NC 4.0), which permits non-commercial reuse of the work with
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et al. 2021a; Skeels et al. 2023). The floristic interchange fun-
damentally restructured the tropical Southeast Asian and West
Pacific vegetation and is considered a major contributor to the
immense diversity seen in the region today (de Bruyn et al. 2014;
Kooyman et al. 2019; Joyce et al. 2021b). The threatened bio-
diversity of the Malay Archipelago is comparable to and may
exceed that of the Neotropics when standardized for land area,
yet it is much less studied (Slik et al. 2015, 2018; Cámara-Leret
et al. 2020; Joyce et al. 2020; Raven et al. 2020; Brummitt et al.
2021; Hagen et al. 2021).

Unlike theNeotropical andAfrican rainforests, where a greater
proportion of biodiversity is attributed to in situ speciation
throughout the Cenozoic, the rainforests of the West Pacific
and Southeast Asia attained much of their modern biodiversity
through floristic interchanges facilitated by tectonic collisions
(Whitmore 1987; Morley 1991, 2000, 2011, 2018; Ashton 2014;
Hall 2017). The two most important Cenozoic events were the
India-Asia and Sahul-Sunda collisions (Schuster 1972; Morley
2000, 2002, 2003; Klaus et al. 2016; Kooyman et al. 2019;
Huang et al. 2021). The Eocene India-Asia collision is thought
to have replaced the low-diversity Paleogene floras with many
of the characteristic tree lineages of today’s Southeast Asian low-
land forests (e.g., Dipterocarpaceae and Alangium, Cornaceae;
Morley 1982, 2000; Bansal et al. 2022). Extant plant lineages
in Asia that arrived from the Australian plate, primarily during
the Sahul-Sunda collision, are most commonly found in mon-
tane forests, and some occur in kerangas (heath) habitats (e.g.,
Dacrydium, Podocarpaceae, and Gymnostoma, Casuarinaceae;
Robbins 1961; Zamaloa et al. 2006; Wilf 2012; Ashton 2014;
Kooyman et al. 2019; Brambach et al. 2020). These Sahul-
sourced lineages have been well studied as a result of decades of
fossil sampling in Australia and the once-connected Gondwanan
continents (e.g., South America, Antarctica, New Zealand; for
summaries of Gondwanan-sourced taxa, see Hill 1994; Hill et al.
1999; Kooyman et al. 2014, 2019).

Conversely, there is little direct macrofossil evidence for
migrations from Southeast Asia into Australasia that are asso-
ciated with the Neogene Sahul-Sunda collision. Macrofossils
provide critical data for testing biogeographic hypotheses (Crisp
et al. 2011; Wilf and Escapa 2015; Carruthers and Scotland
2021), butmost Sunda-to-Sahul dispersal hypotheses for individ-
ual taxa are inferred from palynological and molecular data
(Sniderman and Jordan 2011; Yap et al. 2018, 2020; Brambach
et al. 2020; for examples of hypothesized Sunda-to-Sahul taxa,
see Morley 2000, 2012, 2018; Li et al. 2009; Su and Saunders
2009; Crisp et al. 2010; Grudinski et al. 2014; Federman et al.
2015; Thomas et al. 2017; Liu et al. 2021; Peng et al. 2021;
Holzmeyer et al. 2023). Pollen and spores present the most read-
ily available plant fossil data in Southeast Asia (e.g., Germeraad
et al. 1968; Muller 1968; Morley and Flenley 1987; Morley
1998, 2013; Moss and Kershaw 2000; Lelono and Morley
2011; Berry 2022); however, palynomorphs commonly cannot
be identified with high taxonomic precision and are prone to
taphonomic biases, including long transport distances, low spa-
tial and temporal resolution (Behrensmeyer et al. 2000; Cleal
et al. 2021), and preservation biases in certain important groups
(e.g., Dipterocarpaceae and many Fabaceae; Bera 1990; Huang
1999; Dixit and Bera 2013;Wilf et al. 2022). Sahul versus Sunda
source hypotheses forAsian andAustralasian plant lineages have
been the subject of many recent biogeographic studies (e.g.,
Trethowan 2021; Trethowan et al. 2023; and those cited above)
as well as a long series of seminal papers (Müller 1842; Wallace
1860, 1869, 1876; Huxley 1868; Stapf 1894; Lydekker 1896;
Mayr 1944; Robbins 1961; van Steenis 1964; Hartley 1986;
Whitmore 1987; reviewed in Ali and Heaney 2021).
The majority of Cenozoic paleobotanical (macrofossil) col-

lections in theMalayArchipelagoweremadewell over 100 years
ago (e.g., Göppert 1854, 1864; Geyler 1877, 1887; von Et-
tingshausen 1883; Crié 1888; Kräusel 1929a). Modern sam-
pling in Southeast Asia has been limited (see reviews in Kräusel
1929b; Bande and Prakash 1986; van Konijnenburg-van Cittert
et al. 2004; van Gorsel 2014, 2020; Claude 2017; Wilf et al.
2022), especially in Malesia, the region that contains most
hyperdiverse ever-wet Asian rainforests (Malesia includes penin-
sular Malaysia and the Malay Archipelago; Zollinger 1857; van
Steenis 1979;Webb et al. 2010; Kooyman et al. 2019). Cenozoic
fossil wood has been found in Indonesia andmainland Southeast
Asia, and it often can be identified to extant tree families (e.g.,
Kräusel 1922, 1926; Boureau 1950; Schweitzer 1958;Mandang
and Kagemori 2004; Andianto et al. 2021), but temporal and
ecological information is limited because fossil wood often un-
dergoes extensive predepositional transport and later reworking
(Behrensmeyer et al. 2000). Furthermore, the fossil wood is
mostlyNeogene (or lacks a reliable age), recording plant lineages
present after the onset of the Sunda-Sahul collision.Compression
fossils, mostly leaves with rare reproductive structures, often pre-
serve nearly in situ snapshots of plant communities (Burnham
1989, 1990; Wing and DiMichele 1995). Wilf et al. (2022) pro-
vided a rare contemporary report of compression floras from
the Pliocene of Brunei, but historical collections of Cenozoic
Malesian compression fossils are in need of modern taxonomic
revision (Göppert 1864; Heer 1874, 1881; Geyler 1877, 1887;
Kräusel 1929b; Posthumus 1929; Krijnen 1931; Scrivenor 1941).
Legumes (Fabaceae) are critical components of rainforest eco-

systems globally; they are nitrogen-fixing plants (trees, shrubs,
lianas, and herbs) that thrive in both disturbed and pristine eco-
systems, and their pods are a key food source for many animals
(Gentry 1993; Crews 1999; Gei et al. 2018; Mathesius 2022).
Fabaceae are very diverse but less abundant in Southeast Asian
lowland rainforests than in their Neotropical or African counter-
parts (Gentry 1988; Raes et al. 2013;Menge et al. 2019) because
the Asian wet tropics are dominated by trees of Dipterocar-
paceae, followed by families such as Euphorbiaceae and Fabaceae
(Ho et al. 1987; Newbery et al. 1996; Slik et al. 2003; Ashton et al.
2021). The fossil record of Fabaceae inMalesia is depauperate, and
no reliable nonwood macrofossils from this family are known
there (see more in “Discussion”).
One rainforest legume tree with no fossil record is Castano-

spermum (Papilionoideae). Known as the Australian black bean
tree or the Moreton Bay chestnut tree, Castanospermum is a
coastal taxon found today in northeastern Australasia (New
South Wales and Queensland, Australia; New Britain, Papua
New Guinea; New Caledonia; and Vanuatu; fig. 1; Lim 2012;
Utteridge and Jennings 2022).Castanospermum australeA.Cunn.
ex Mudie is the only living species in the genus, which grows up
to 40 m in height and is dominant in old-growth and disturbed
riparian forests (Floyd 1990; Lott 1997; Kitching et al. 2010).
Castanospermum naturally disperses its seeds through water (via
buoyant, salt-tolerant pods that are often consumed by freshwater
pleurodire turtles; Smith et al. 1990;GunnandDennis 1999; Smith
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and Kinnear 1999; Armstrong and Booth 2005); however, Ab-
original groups extended the range of Castanospermum inland
through deliberate propagation during the Holocene (Rossetto
et al. 2017; Roberts et al. 2021).
Here, we report the first fossil seeds and leaves in more than
a century from the Cenozoic of what is now Indonesia. The
middle-late Eocene fossils and associated pollen samples from
South Kalimantan, Indonesian Borneo, represent a time well be-
fore the Neogene Sunda-Sahul collision (Lohman et al. 2011; Crayn
et al. 2015; Hall 2017). We emphasize the seed fossils, which rep-
resent an extinct genus and species closely related to extant Cas-
tanospermum and comprise the first fossil record for this line-
age, the oldest definite legume fossils from Malesia, and the first
macrofossil evidence from precollision Sunda of an extant Sahul
lineage.

Material and Methods

Study Area and Geologic Setting

The Tanjung Formation is the oldest unit of a sedimentary
succession that fills the Barito and Asem Asem Basins of south-
ern Borneo (Kalimantan, Indonesia; figs. 2, 3). The Proto-Barito
Basin most likely formed through rifting and subsidence during
the early Cenozoic. The basin was later divided by the uplift of
the Meratus Mountain complex in the mid-Cenozoic, form-
ing the modern-day Barito and Asem Asem Basins (van de Weerd
and Armin 1992; Witts et al. 2012; Faturrakhman et al. 2021).
The Tanjung Formation consists of (from oldest to youngest) the
Mangkook, Tambak (studied here), and Pagat Members (fig. 3),
which have been dated in the Barito Basin to range from the late
middle Eocene to the early Oligocene using biostratigraphic data
Fig. 1 Distribution of the extant legume Castanospermum (area
encircled by dashed lines) and location of the fossil site (star), theWahana
Baratama coal mine near Satui in South Kalimantan, Indonesia.
Fig. 2 Map of the Barito and Asem Asem Basins and the Meratus Mountain complex in western Malesia. Inset shows the Wahana Baratama
coal mine (star; adapted from Zonneveld et al. 2024a, 2024b).
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from foraminifera and palynology (Witts et al. 2012). The Pagat
Member in the Asem Asem Basin, overlying the Tambak Mem-
ber strata containing the fossils reported here in the same coal
mine, has most recently been constrained to the late Eocene
(Priabonian) using biozonations from large benthic foraminifera
(Zonneveld et al. 2024b). Thus, all fossils reported here have a
minimum age of late Eocene (Priabonian, ca. 33.9–37.7 Ma)
and a maximum age of late middle Eocene (Bartonian, ca. 40Ma;
Witts et al. 2012).
Geyler (1877) studied plant compression fossils collected

near Pengaron (van Gorsel 2020), probably from the Tanjung
Formation in the Barito Basin (fig. 2); all require taxonomic
revisions. Coal geologists have since noted the presence of plant
macrofossils in the coaly strata of the Tanjung Formation, but
they did not collect or study them (Moore and Ferm 1992; Davis
et al. 2007; Fikri et al. 2022). Otherwise, since Geyler (1877), no
paleobotanists have studied the formation’s plant macrofossils
until now. Pollen and spore taxa from the Tambak Member,
collected in the neighboring Barito Basin, preserved evidence
of swampy vegetation dominated by palms (Nypa and indeter-
minate Arecaceae) with additional likely forest taxa, including
cycads, various ferns, Podocarpaceae, Sapotaceae, Anacoloseae
(Olacaceae), Bombacoideae (Malvaceae), Polygonum (Poly-
gonaceae), and Blumeodendron (Euphorbiaceae; Witts et al.
2012; Kristyarin et al. 2016; Winantris et al. 2017; Faturrakhman
et al. 2021). There are no previous palynological reports from
the Tanjung Formation in the Asem Asem Basin.
During a rapid paleontological reconnaissance in August 2014,

we collected 47 plant fossils from spoil piles sourced from known
stratigraphic levels in temporary mine exposures of the lower and
upper Tambak Member in the Wahana Baratama coal mine
located in the Satui Regency of South Kalimantan, Indonesia
(Asem Asem Basin; figs. 2, 3). The fossil sites were PW1404
(lat. 3.728647S, long. 115.298987E) and PW1405 (lat. 3.730377S,
long. 115.296287E). The Tambak Member is the source of the
bituminous coals mined in this region, which represent coastal
peat swamps (Moore and Ferm 1988, 1992; Davis et al. 2007;
Fikri et al. 2022). The leaf fossils were collected from carbona-
ceous shale and siltstone interbeds in the coaly lower Tambak
Member. Two preliminary palynology samples were later taken
and processed from blocks containing leaf fossils from quarry
PW1404. The upper Tambak Member, the source of the seed
fossils (quarry PW1405), consists primarily of sandy mudstone
lacking coal and represents a transition to offshore coastal, brack-
ish environments seen in the overlying Pagat Member (Witts et al.
2012; Zonneveld et al. 2024a). Palynological samples were not
collected from the seed horizon, because of the oxidized nature
of the sediments and the likely low pollen yield. Other fossils
previously reported from the Tambak Member of the Wahana
Baratama mine include pleurodire turtles, catfish, a crab claw,
and trace fossils of crustaceans, bivalves, annelids, and shore-
birds (Zonneveld et al. 2024a, 2024b). The overlying Pagat
Member locally contains a small sample of chondrichthyans,
diverse large benthic foraminifera, and an abundant invertebrate
Fig. 3 Stratigraphic section of the TambakMember of the Tanjung
Formation at the Wahana Baratama coal mine. Arrows indicate the
stratigraphic positions of plant fossil collection sites PW1404 (leaves
and palynology samples, lower arrow) and PW1405 (seeds and leaves,
upper arrow). Additional fragmentary fossil leaves were observed near
fossilized bird tracks (Zonneveld et al. 2024b) between PW1404 and
PW1405 but were not collected. Mudstone colors approximately repre-
sent those of the outcrop. The S, SL, and SM coal seam labels are the
names used for the respective strata targeted by miners (adapted from
Zonneveld et al. 2024a, 2024b). MFS p marine flooding surface; TSE p
transgressive surface of erosion.
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fauna of echinoids, corals, crustaceans, bivalves, and gastropods
(Zonneveld et al. 2024a).

Fossil Specimens, Repositories, Preparation, and Imaging

Fossil specimens and repositories. The three seed fossils col-
lected from the Tanjung Formation were recovered from two
blocks at the same stratigraphic level (fig. 3). The blocks contain
the large three-dimensionally preserved seed casts (two of them
completely free of the matrix) and their associated compressed
integuments. The casts are also somewhat compressed, and one
of them is embedded in the matrix and could not be safely pre-
pared or extracted. The casts preserve the near three-dimensional
shapes of the seeds. The seed coats, which retain most of the
informative taxonomic characters as well as the inverse seed
shapes, are seen on the matrix as three-dimensional partial com-
pressions for all the seed specimens.No remnants of the fruit body
(thought to be a legume, the fruit type of all Fabaceae) were pre-
served. Becausemost other fossil Fabaceae seeds aremuch smaller
and found still in their pods, not as isolated fossils (e.g., Herrera
et al. 2019; Herendeen et al. 2022), fossil comparisons are diffi-
cult. We compared the fossil seeds to known three-dimensionally
preserved fossil angiosperm seeds through a literature search and
specimens of extant taxa (see “Extant specimens”).
The 42 leaf compression fossils (plus one unidentifiable axis

fragment) were found in the lower coal-bearing portion of the
TambakMember (fig. 3). The fossil leaves are poorly preserved,
with many lacking tertiary or higher-order venation, but we report
them here to supplement the palynoflora from the same hori-
zon and to serve as references for future work about this little-
known location. Additional fragmentary leaf remains were ob-
served throughout the section but were not collected (fig. 3).
All fossils and associated pollen slides (see “Fossil prepara-

tion”) are accessioned at the Institut Teknologi Bandung (ITB)
in Bandung, Indonesia, following their study on loan to the Penn-
sylvania State University Paleobotany Laboratory and to Bio-
stratigraphic Associates (for palynology samples). A macrofossil
specimen and photographic inventory is provided in a figshare
data supplement to this work (see “Data Availability”).
Fossil preparation. The fossil seeds are fragile and were not

prepared after field collection to avoid damaging them. The fossil
leaves were prepared using standard air tools (PaleoToolsMicro
Jack 2 and PaleoAro; PaleoTools, BrighamCity,UT) at the Penn-
sylvania State University Paleobotany Laboratory to remove
excess matrix. In situ cuticle was isolated from one leaf fossil
specimen (LabPal.ITB/024-A/DAUN/1408). The cuticle was
visibly flaking off the leaf, and ca. 20 pieces (varying in size from
~4 to ~80 mm2) were removed using forceps. The cuticle was
submerged in 30%HCl for 7 d and rinsed with deionized water
three times. Next, the coalified plant tissue was removed from
the cuticle by soaking in bleach (7.5% NaOCl) for 24 h. The ab-
axial and adaxial cuticles were dehydrated using a graded ethanol
concentration series (50%, 75%, 99%) in a 1.5-mL centrifuge
tube. Each cuticle specimen was slide mounted using Cytoseal
XYL (Thomas Scientific, Swedesboro, NJ).
The palynology samples were collected from two rock slabs

bearing leaf fossils (LabPal.ITB/011/DAUN/1408 and LabPal.
ITB/032/DAUN/1408; palynology samples are referred to by
slab field numbers PW1404-11 and PW1404-32, respectively)
and processed (by J. E. A.Marshall, University of Southampton)
using standard methods. Samples were rough crushed to frag-
ments that were a few millimeters in size, and 5 g were placed
in a 500-mL plastic bottle. The samples were reacted with HCl
(37%) to remove any carbonates. This was followed by decant
washing to remove Ca21, a single treatment in 30 mL of HF
(60%) to dissolve silicates, and decant washing to neutralize.
This was followed by a brief treatment in hot HCl (37%) to sol-
ubilize neoformed fluorides. The samples were then rapidly diluted
into approximately 200 mL of water, sieved at 6 mm before being
stored in a vial in MilliQ water (Sigma-Aldrich, St. Louis, MO),
and latermounted in Elvacite 2044 (Mitsubishi Chemical, Tokyo).
The samples were dominated by large fragments of plant debris. In
an attempt to concentrate the smaller angiosperm pollen, the resi-
dues were further processed by sieving at 50 mm and mounting
additional slides of the 6–50-mm size fraction.

Fossil imaging and computed tomography scanning. All
macrofossils (and comparative extant material) were imaged us-
ing Nikon D90 and D700 DSLR cameras under polarized light
(Nikon, Melville, NY). A GE Phoenix vFtomeFx L (Universal
Systems, Solon, OH) was used for computed tomography (CT)
scans (raw scan data are available with open access on figshare
[https://10.6084/m9.figshare.23713524]; see “Data Availability”)
of two of the three seed fossils at the Pennsylvania State Univer-
sity State Center for Quantitative Imaging; one was embedded
in the matrix, and one was a free seed cast. The embedded seed
was scanned at 260 kV and 550 mA at a resolution of 57.5 mm.
The free seed cast was scanned at 240 kV and 200 mA at a reso-
lution of 45 mm. A 0.5-mm tin filter was used on the source for
both scans. The scan data were processed using Avizo (Thermo
Fisher Scientific, Hillsboro, OR), Dragonfly (Object Research
Systems,Montreal), andMeshLab (Cignoni et al. 2008) software.

The cuticles were examined and imaged using both trans-
mitted light and epifluorescence microscopy, Nikon LV100
compound microscope with a DS-Ri1 camera, and Nikon NIS-
Elements software (ver. 3) with an X-Cite 120 epifluorescence
illumination unit (EXFO Electro-Optical Engineering, Quebec
City) and an EndowGFP Longpass Emission green filter (exciter
HQ470/40, dichroic Q495LP BS, emitter HQ500LP; set 41018,
Chroma Technology, Rockingham, VT). Vertical z-stacking of
cuticle imageswas done usingAdobe PhotoshopCC (continuous
release versions, align and blend functions; Adobe, San Jose, CA).
The cuticular characters used here follow Dilcher (1974).

The palynology slides were examined and imaged using trans-
mitted light (Olympus CX41 microscope and C-7070 camera;
Olympus, Tokyo). CorelDRAW (Corel, Ottawa), Helicon Focus
(z-stacking functions; Helicon, Kharkiv, Ukraine), and Adobe
Photoshop CC were used to compose illustrations showing the
light micrographs for selected palynomorphs (all other figures
were created using Adobe Photoshop CC and Illustrator CC).
Counts of 300 specimens were made for both palynology sam-
ples. All plant and nonplant palynomorphs were recorded. Ad-
ditional coverslips were used to scan for any palynomorphs
not recorded in the original counts, and these were recorded as
presence/absence.

Extant Specimens and Analysis

Extant specimens. We compared the seed fossils using sev-
eral databases and regional field guides of extant and fossil seeds
to determine family-level affinities (van der Burgh 1978, 1983;

https://10.6084/m9.figshare.23713524
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Tiffney 1984; Knobloch and Mai 1986; Eriksson et al. 2000a,
2000b; Kattge et al. 2011, 2020; Cooper and Cooper 2013;
Cervantes et al. 2019; Ganhão and Dias 2019; Pothasin et al.
2022 and references therein). We also used the Kirkbride et al.
(2000) legume seed and fruit identification key on the Intkey
DELTA software platform and the TRY plant trait database
(https://www.try-db.org; Kattge et al. 2011, 2020) to find poten-
tial extant relatives with seed morphologies similar to those of
the fossils. The Watson and Dallwitz (1991) Intkey DELTA key
to angiosperm families did not have sufficient characters to dis-
tinguish the seed fossils. Angiosperm seeds with notably different
morphological features from the fossils (e.g., seed shape, asym-
metry, hilum shape) were systematically removed, leaving only
Fabaceae (as described in “Remarks”).

Comparisons with extant Fabaceae were done at the United
States National Seed Herbarium (BARC) in the Herbarium of
the National Arboretum in Washington, DC. Identification char-
acters used for this study (table 1) were modified from Kirkbride
et al. (2000, 2003, 2004), Gunn (1984, 1991), Azani et al.
(2017), and Koppooscian and Isely (1966). We used Azani
et al. (2017) as our taxonomic framework for Fabaceae. Botan-
ical authorities are referenced in the text only if necessary
to define new taxa because of the large number of genera dis-
cussed, but nomenclatural authorities follow standard botanical
databases, such as Tropicos (https://www.tropicos.org), Kew’s
Plants of the World (https://powo.science.kew.org), and cited
paleobotanical works for fossils. A phylogenetic analysis includ-
ing the isolated fossil seeds was not conducted because no prior
matrix with sufficient phylogenetic coverage and seed characters
exists, and creatingone de novo is outside the scope of the current
project. Extant seed specimens were photographed using the
same techniques as the fossils (see “Fossil imaging and computed
tomography scanning”), and discrete characters of comparable
taxa were measured (table 1). Published seed length and width
measurements were used for size comparisons and were pre-
ferred over seed volume and mass because of the compression
of the fossil seeds and the lack of published volume andmass data
for many taxa, including Castanospermum. Length was mea-
sured as the longest major axis of the seed body, and width was
then measured as the longest dimension orthogonal to length
(as defined by Kirkbride et al. 2000, 2003).

To compare the fossil leaves with those of potential living
relatives,we used theWilf et al. (2021) open-access image dataset
of ca. 26,000 cleared and X-rayed leaves. For extant cuticle
comparisons, we used the Cuticle Database (http://cuticledb
.eesi.psu.edu; Barclay et al. 2007, 2012), Metcalfe and Chalk
(1950), and Wilkinson (1979). Additional material, such as
herbarium specimens, was not used when studying the leaves,
because the poor preservation for plant macrofossils guaran-
teed that no detailed statements of affinity were possible (see
“Data Availability”; app. A; apps. A, B are available online),
in turn providing no leads to help identify the in situ cuticle.

Morphotyping of fossil leaves. We used the leaf architec-
ture characters defined in theManual of Leaf Architecture (Ellis
et al. 2009), and we tagged images of each fossil with the asso-
ciated characters using Adobe Bridge (continuous release ver-
sions; Adobe) keywords, as described by Rossetto-Harris et al.
(2022). Fossils with the same combinations of leaf architectural
character states were designated as distinct morphotypes (see
app. A; “Data Availability”). Morphotypes allow for the de-
scription of likely leaf species without requiring taxonomic
identification (Dilcher 1974; Johnson et al. 1989; Ash et al.
1999; Wilf 2008). Leaves that lacked any distinctive preserved
characters (ca. 56%) were deemed unidentifiable (“indet.”). Each
morphotype was given a distinct number preceded by the pre-
fix “TT.” No new nomenclature is proposed for the fossil leaves.
Insect damage was also surveyed across the leaves (e.g., Laban-
deira et al. 2007), but only one tentative occurrence of a possible
gall was observed. Length and width measurements were recorded
for morphotypes with less than 1 cm of lamina length or width
estimated as missing. All images are available with open access
on figshare (https://10.6084/m9.figshare.23713524; see “Data
Availability”).

Results

Systematics

Family—Fabaceae Lindl.

Subfamily—Papilionoideae DC.

Genus—Jantungspermum Spagnuolo et Wilf gen. nov.

Type species—Jantungspermum gunnellii
Spagnuolo et Wilf sp. nov.

Generic diagnosis. Seeds bilobed, D shaped, larger than
50 mm in length. Suture linear, wrapping around seed between
the lobes. Hilum long, linear, overlain on the suture, terminating
on the ventral side of the seed.
Etymology. The generic name refers to the heart-like shape of

the seeds and the language of their country of origin, combining
jantung, meaning heart (Indonesian), and spermum, meaning seed.

Jantungspermum gunnellii Spagnuolo et Wilf sp. nov. (Figs. 4–6)

Specific diagnosis. Seeds large, bilobed, flattened on the ven-
tral side, and convex on the dorsal side. Seed length is up to
170mm; seedwidth is up to150mm. Suture longitudinal, linear,
wrapping around much of the seed body. Hilum long, linear,
overlain on the suture through its length, terminating on the ven-
tral side of the seed. Hilar groove medial, linear. Embryonic axis
differentiated from seed, nestled between lobes, straight, parallel
to the major axis of the seed.
Holotype. LabPal.ITB/033/BIJI/1408a, LabPal.ITB/033/BIJI/

1408b, and LabPal.ITB/033/BIJI/1408c, including a cast and its
corresponding and counterpart seed coat compressions in the
matrix (figs. 4A–4C, 4E–4G, ht, 6A–6D).
Paratypes. LabPal.ITB/034/BIJI/1408a and LabPal.ITB/034/

BIJI/1408b, including a cast still embedded in the matrix and its
corresponding seed coat compression on the counterpart block
(figs. 4A, 4B, 4D, 4E, pt1, 6E–6H), in the same split slab as
the holotype; LabPal.ITB/036/BIJI/1408a and LabPal.ITB/036/
BIJI/1408b, including a cast and corresponding seed coat com-
pression in a separate block from the same type locality (fig. 5).
Type locality. TambakMember, Tanjung Formation, Wahana

Baratama mine, Satui Regency, South Kalimantan, Indonesia
(quarry PW1405; location: lat. 3.730377S, long. 115.296287E;
elevation: 13 m asl; figs. 2, 3). The fossils were discovered and
collected on August 25, 2014.
Repository. Institut Teknologi Bandung, Bandung, Indonesia.

https://www.try-db.org
https://www.tropicos.org
https://powo.science.kew.org
http://cuticledb.eesi.psu.edu
http://cuticledb.eesi.psu.edu
https://10.6084/m9.figshare.23713524
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Etymology. Thespecificepithethonors the lateGreggGunnell,
a prominent vertebrate paleontologist (Smith 2017) and valued
friend and colleague.
Detailed description. Seedsare large (upto72mm#55mm),

bilobed (cicer-like), and D shaped in cross-section from having a
convex dorsal side and a flattened ventral side, with a length-to-
width ratio of 1.3∶1 (figs. 4–6). The seeds are bilaterally symmet-
rical across the suture linewith variable shapes and interpreted as
overgrown (seeds grow in the pod to fill available space without
predetermined shape; Azani et al. 2017). The suture is longitudi-
nal and linear (up to 105 mm # 3 mm) and wraps around the
seed (figs. 4F, 4G, 5B, 5C, 6E–6H). The hilum is elongate and lin-
ear (up to 105mm# 4mm), preserved in the seed coat compres-
sions, and overlain on the suture (figs. 4A, 4B, 5A). The hilar
groove is linear, faintly preserved, and positioned longitudinally
and medially in the hilum. The hilum terminates on the flattened
ventral side of the seed. Fleshy aril, pleurogram, and pseudo-
pleurogram are not preserved or are absent. Only the paratype
specimen LabPal.ITB/036/BIJI/1408b preserves evidence of the
embryonic axis that is nestled between lobes, differentiated from
the seed, straight, and parallel to the length of the seed (ca. 6 mm
wide; fig. 5F). The preserved seed density is uniform throughout,
with no noticeable internal features and only sand cast material
observed, as seen in CT scan data (for raw CT scan data, see
“Data Availability”). The embedded paratype seed (LabPal.ITB/
034/BIJI/1408a) is more elliptical and less compressed (ca. 45 mm
wide, with the apex missing; maximum preserved thickness:
~16 mm; figs. 4D, 6) than the holotype specimen (ca. 72 mm #
55 mm; maximum preserved thickness: ~8 mm; figs. 4C, 6) or
the second paratype specimen (fig. 5).
Remarks. To delineate the family-level identification of

Jantungspermum, we systematically compared the fossil seeds
with comparable extant taxa, including Arecaceae (e.g., Bo-
rassus), Lauraceae (Eusideroxylon and Persea), Meliaceae
(Xylocarpus), Sapindaceae (Aesculus), Sapotaceae (Pouteria),
Anacardiaceae (Mangifera), and Malvaceae (Pachira), among
many others (for a list of sources, see “Material and Meth-
ods”). For those with similar sizes or shapes, only Fabaceae
species have a long and linear hilum that wraps around the
seed body. Jantungspermum gunnellii has characters distinct
to Fabaceae and Papilionoideae (Kirkbride et al. 2003; Azani
et al. 2017), including its overgrown shape, linear hilum, and
hilar groove (figs. 4–7). Seed shape variation within legume
species and even single pods is quite common (Singh and
Pokhriyal 2001; Singh and Sofi 2011); all three specimens have
the same hilum features and D-shaped cross section; thus, we
designated all as the same taxon despite minor differences in
aspect.
Within Fabaceae, only a handful of genera have bilobed (cicer-

like) seeds, including Castanospermum and Leucomphalos,
or D-shaped (in cross section) seeds, including Clathrotropis,
Erythrina, Millettia, Alexa, Candolleodendron, and Castano-
spermum (fig. 7C–7H; table 1; Kirkbride et al. 2003). Only
Castanospermum seeds are both bilobed and D shaped,
matching J. gunnellii. Several taxa have a long hilum that almost
entirely wraps around the seed, including some (or all) species of
Castanospermum, Dioclea, Millettia, Strongylodon, Mucuna,
Swartzia, and Afgekia (fig. 7L–7S; Kirkbride et al. 2003); how-
ever, among those listed, only Castanospermum possesses a hi-
lum aligned on the longitudinal suture in the bilobed seed.Many
legume taxa have seed sizes comparable to those of J. gunnellii;
some genera that reach 25 mm or longer in length includeMora,
Mildbraediodendron, Mucuna, Alexa, Angylocalyx, Entada,
Canavalia, andClathrotropis (see table 1; fig. 7F–7K; Mathesius
2022).However, onlyCastanospermum seeds (fig. 7A–7E) share
the same combination of characters with J. gunnellii, namely a
cicer-like, D-shaped, bilobed, presumably overgrown shape; a
hilum overlain on the suture that longitudinally wraps around
the seed; and a straight embryonic axis parallel to the seed body
between the seed lobes.

Although the seeds of J. gunnellii share many morphologi-
cal characters with those of Castanospermum, there are some
noticeable differences. The hilum terminates on the ventral side
of the seeds of J. gunnellii, but it most often extends to the dorsal
side of the seeds of Castanospermum. Additionally, the seeds
of J. gunnellii are approximately double the average length of
the seeds of Castanospermum (72 and 33 mm, respectively; ta-
ble 1; Kirkbride et al. 2000, 2003). Castanospermum seeds also
exhibit significant variability in their roundness and lobation,
but similar variation is seen in Jantungspermum seeds (figs. 4–
6). Several of these shared seed characters are observed in other
legume groups (table 1), most notably extreme seed size (seen
in multiple Fabaceae subfamilies). Nonetheless, no other known
plant but Castanospermum, extant or extinct, shares the same
aforementioned combination of seed characters displayed in
Jantungspermum. The previously mentioned differences jus-
tify the need for a new genus and suggest that J. gunnellii was
a distinct Eocene papilionoid legume closely related to extant
Castanospermum.

Among fossil Fabaceae, most taxa are represented by leaflets,
pods, or wood specimens. Isolated seed fossils are rare for the
family, which makes comparisons with Jantungspermum dif-
ficult. Almost all known legume fossil seeds are preserved as
coalified compressions within fossil pods or, less commonly,
as compressed casts in the pods (e.g., Herendeen and Dilcher
1992; Magallón-Puebla and Cevallos-Ferriz 1994; Calvillo-
Canadell and Cevallos-Ferriz 2005; Wang et al. 2010; Yabe
and Nakagawa 2018). Some of the only other known isolated,
three-dimensionally preserved fossil legume seeds are speci-
mens of Entada palaeoscandens from the Oligocene and Neo-
gene of India and New Zealand (Awasthi and Mehrotra 1995;
Agarwal 2003; Conran et al. 2014). Entada palaeoscandens
seeds are large (43 mm# 43 mm; Conran et al. 2014) and heart
shaped but lack the long linear hilum and D-shaped morphology
of Jantungspermum. Similar to Castanospermum, the seeds of
E. palaeoscandenswere probably water dispersed (hydrochorous),
but they were more likely adapted to long-distance, fully marine
dispersal (sea beans).
Leaf Fossil Morphotypes

The leaf fossil collection from the lower Tambak Member
of the Tanjung Formation (fig. 8; app. A) includes 33 slabs
with 43 fossil leaves. This small collection includes seven dicot
morphotypes, although some of the unidentifiable leaves have
features suggesting additionalfloral diversity.No fern, gymnosperm,
or definite monocot leaf fossils are present. Of the categorized
leaf fossils, 63% of the specimens are attributed to Fabaceae
leaflets (morphotype TT01; fig. 8A–8C) that do not resemble



Fig. 4 Jantungspermum gunnellii gen. et sp. nov. A, Seed coat compression of holotype (ht) specimen (LabPal.ITB/033/BIJI/1408a; inner view
of dorsal side) and seed cast of embedded first paratype (pt1) specimen (LabPal.ITB/034/BIJI/1408a) in dorsal view, showing the hilum (h) and the
suture (s). B, Seed coat compressions of holotype (LabPal.ITB/033/BIJI/1408b; inner view of ventral side) and embedded paratype (LabPal.ITB/034/
BIJI/1408b; inner view of dorsal side) specimens on the counterpart block. C, Lateral view of the holotype cast specimen (LabPal.ITB/033/BIJI/
1408c) to show preserved three-dimensional seed thickness.D, Lateral view of embedded paratype cast specimen (LabPal.ITB/034/BIJI/1408a) to show
three-dimensional seed thickness. E, Natural cast of holotype specimen (LabPal.ITB/033/BIJI/1408c) restored to the position found, fitting its seed coat,
in ventral view (compare with A and B). F, G, Ventral (F) and dorsal (G) views of the seed cast shown in E (LabPal.ITB/033/BIJI/1408c).



Fig. 5 Second paratype specimen of Jantungspermum gunnellii gen. et sp. nov. (LabPal.ITB/036/BIJI/1408a, LabPal.ITB/036/BIJI/1408b).
A, Seed coat compression of specimen (LabPal.ITB/036/BIJI/1408a; inner view of ventral side), showing the hilum (h). B, C, Dorsal (B) and ventral
(C) views of the seed cast (LabPal.ITB/036/BIJI/1408b), showing the suture (s). D, E, Side views of the seed cast. F, Apical view of the seed cast,
showing the embryonic axis (ea). G, Basal view of the seed cast, showing the suture.
Fig. 6 Rotational views of computed tomography scans of the holotype (LabPal.ITB/033/BIJI/1408c; A–D) and paratype (LabPal.ITB/034/BIJI/
1408a; E–H) seed casts of Jantungspermum gunnellii gen. et sp. nov.
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those of extant Castanospermum. Detailed descriptions of each
leaf morphotype can be found in appendix A.

Palynology

The palynology samples from the lower Tambak Member
(fig. 9), the source of our leaf fossils (figs. 3, 8), are detailed in
appendix B and further discussed below (see “Discussion”).
They are dominated by fungal bodies, alongwith palynomorphs
from nine fern families, three monocot families, Podocarpaceae,
and ca. nine eudicot families (without representation of papi-
lionoid Fabaceae or the biogeographically significant family
Dipterocarpaceae). Together, the palynoflora indicate a low-
energy, mostly freshwater swamp paleoenvironment dominated
by palms and ferns, consistent with previous reconstructions of
the lower Tambak Member from stratigraphy, coal geology,
and biomarkers (Guy-Ohlson 1992, 1998; Faturrakhman et al.
2021; Fikri et al. 2022; Zonneveld et al. 2024a). The paly-
nomorphs include apparently new occurrences for Pandaniidites
(possible Pandanaceae; see Stockey et al. 1997; Rozefelds et al.
2022), Arenga (Arengapollenites sp., Arecaceae), Typhaceae,
Onagraceae, Apocynaceae, and Convolvulaceae in the Tanjung
Formation.

Discussion

Jantungspermum gunnellii is the oldest reliable legume fossil
from Malesia. The oldest definite legume fossils globally are
from the earliest Paleocene of the New World, including the
United States (Colorado), southern Argentina, and Colombia
(Iglesias et al. 2007; Brea et al. 2008; Herrera et al. 2019; Lyson
et al. 2019). The earliest fossils of Papilionoideae—the subfamily
including Jantungspermum, Castanospermum, and ca. 70% of
all living legume species (Azani et al. 2017)—are from the latest
Paleocene of Wyoming (Herendeen et al. 2022). By the Eocene,
five of the six extant legume subfamilies had fossil representatives
that were discovered in North America, South America, Asia,
India, Europe, and Africa (e.g., Bhattacharyya 1985; Senesse and
Gruas-Cavagnetto 1990; Herendeen and Crane 1992; Herendeen
and Jacobs 2000; Shukla and Mehrotra 2016; Martínez 2018;
Herendeen and Herrera 2019; Jia et al. 2021).
The macrofossil record of Southeast Asian legumes, like al-

most all plant groups in the region, is scant and requires revision.
The original paleobotanical survey of the Tanjung Formation by
Geyler (1877) reported a Fabaceae leaflet or possible pod frag-
ment (Leguminosites), which is fragmentary and poorly pre-
served and does not resemble TT01. Additional reports of leaf
fossils associated with Fabaceae came from Heer (1881) from
the Paleogene of West Sumatra (attributed to Leguminosites,
Dalbergia, and Cassia) and from Geyler (1887) from the Neo-
gene of Labuan Island in northern Borneo (attributed to Cas-
siophyllites). All these foliage fossils lack features diagnostic of
Fabaceae, such as a horizontally striated pulvinus or pulvinulus
(e.g., fig. 8B, 8C; app. A; Pan et al. 2023), and cannot be assigned
to Fabaceae with confidence. Neogene (and Tertiary) wood
fossils attributed to Fabaceae have been reported from Java,
Borneo, and Sumatra (Kramer 1974; Bande and Prakash 1986;
Mandang et al. 2021); however, these specimens often have poor
age control and postdate the onset of Sunda-Sahul biotic inter-
change. Regional legume fossils are better known outside of
Malesia and generally north of the wet tropics, including north-
ern Vietnam, Thailand, Myanmar, and southern China (e.g.,
Edwards 1923; Prakash 1973, 1979; Prakash and Bande 1980;
Vozenin-Serra 1981; Licht et al. 2014; Wang et al. 2014; Feng
et al. 2015; Xu et al. 2015; Nguyen et al. 2022, 2023). Thus,
the Jantungspermum seeds and Fabaceae leaflets reported here
are the only definite Paleogene Fabaceae macrofossils from
Malesia.
Fig. 7 Seed specimens of extant Castanospermum (A–E) and the
most comparable legume taxa (F–S). A, Small seed pod of Castano-
spermum australe that held two seeds (BARC000081[A]). B, Large seed
pod of C. australe that held five seeds (BARC000081[B]). C, D, Seeds of
C. australe (BARC000053 and BARC000074) showing the hilum (h).
E, Seed of C. australe (BARC000054) with the seed coat removed,
showing the suture (s) and the embryonic axis (ea). F, G, Dorsal and
ventral views of Alexa sp. seed (BARC000039). H, Seed of Erythrina
acanthocarpa (BARC000060). I, Seed of Camoensia brevicalyx
(BARC000049). J, Seed of Clathrotropis sp. (BARC000056). K, Seed
of Inocarpus sp. (BARC000082). L, M, Seed of Dioclea reflexa
(BARC000057). N, O, Seed of Strongylodon sp. (BARC000069).
P,Q, Seed ofXanthocercis madagascariensis (BARC000073).R, S, Seed
of Mucuna sp. (BARC000064).
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Despite the large size of the fossils, relatively few Fabaceae
genera can reach seed sizes comparable to (or larger than; e.g.,
some Entada spp.) those of Jantungspermum, and most legume
seeds are 5–15 mm along their longest axis (Gunn 1984, 1991;
Kirkbride et al. 2003; Mathesius 2022). Today, large-seeded
plants are correlated with water and animal dispersal, tree
growth form, and tropical environments (Moles et al. 2005,
2007; Eriksson 2008; Sims 2010; Stevenson et al. 2023). Trop-
ical trees with larger seeds also tend to disperse farther than
higher-latitude trees with smaller seeds (Chen et al. 2019; de
Jager et al. 2019). Over geologic time, angiosperms have evolved
the largest range in seed size compared to those of gymnosperms
and extinct seed plants; angiosperm seed size exponentially in-
creased following the Cretaceous-Paleogene mass extinction
event and may have peaked in the Eocene (Wing and Boucher
1998; Eriksson et al. 2000a; Sims 2012; Benton et al. 2022).
To our knowledge, Jantungspermum is the largest Fabaceae seed
fossil and one of the largest nonpalm (Gómez-Navarro et al.
2009) angiosperm seed fossils ever described.

Jantungspermum may have had similar ecological traits to
living Castanospermum. Today, Castanospermum disperses
its seeds using buoyant and salt-tolerant pods that can travel
kilometers in rivers and oceans, especially after storm events
(Smith et al. 1990; Gunn and Dennis 1999; Smith and Kinnear
1999). Unlike their pods, Castanospermum trees are not salt
tolerant and are restricted to freshwater riparian habitats,
limiting their dispersal compared to that of more salt-tolerant
plants, such as the Cocoseae (Arecaceae) or Barringtonia (Le-
cythidaceae; Morley 2000, 2018). The seed fossils of Jantung-
spermum were recovered from the upper Tambak Member in
a coastal, probably brackish depositional paleoenvironment
(different from the more freshwater environment inferred for
the lower Tambak Member; fig. 3; Zonneveld et al. 2024a,
2024b), which suggests that their pods traveled a significant
distance from a riparian parent plant before disintegrating
and dropping their seeds. The pods of Castanospermum are
large (10–40 cm in length; fig. 7A, 7B) and contain up to five
seeds each. Assuming that there was a similar number of seeds
Fig. 8 Leaf fossils (for morphotype descriptions, see app. A; apps.
A, B are available online).A,B, TT01 legumemorphotypewith striatedpet-
iolule (LabPal.ITB/025-A/DAUN/1408, LabPal.ITB/012/DAUN/1408).
C, Detail of pulvinulus of TT01 with faint horizontal striations (LabPal.
ITB/012/DAUN/1408). D, E, TT02 dicot morphotype (LabPal.ITB/
016-C/DAUN/1408, LabPal.ITB/018/DAUN/1408). F, TT03 dicot mor-
photype (LabPal.ITB/030-A/DAUN/1408). G, TT04 dicot morphotype
with widely spaced, recurved secondary veins (LabPal.ITB/001/DAUN/
1408b). H, TT05 dicot morphotype with three actinodromous primary
veins and a flattened petiole (LabPal.ITB/023/DAUN/1408). I, TT06 di-
cot morphotype with high-angle, thinly gauged, and densely spaced sec-
ondary veins terminating in a fimbrial vein, along with random reticu-
late tertiary venation (LabPal.ITB/021-B/DAUN/1408). J, K, TT07 dicot
morphotype with recurved secondary veins and random reticulate ter-
tiary veins (LabPal.ITB/021-A/DAUN/1408). L, Dicot specimen with
cuticle preserved (LabPal.ITB/024-A/DAUN/1408). M, Abaxial cuticle
extracted from LabPal.ITB/024-A/DAUN/1408 under epifluorescence
microscopy. Arrows indicate stomata (lower left) and possible hydathode
(center).N, Detail of a possible hydathode under epifluorescence.O, Ad-
axial cuticle under epifluorescence. P–R, Gall-like structure on minute
veins under transmitted light (P, Q) and epifluorescence (R).
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per pod in Jantungspermum, the largest pods could have
reached close to a 1 m in length. Taken together, we reconstruct
J. gunnellii as an extinct riparian legume tree species with water-
dispersed propagules.
Jantungspermum gunnellii is the only known fossil relative
of Castanospermum and presumably its larger tribe Angylo-
calyceae—one of the earliest-diverging papilionoid clades (Car-
doso et al. 2013; Azani et al. 2017). The closest extant relatives
Fig. 9 Selected palynotaxa from the lower Tambak Member of the Tanjung Formation. A, B, Algae. A, Botryococcus braunii. B, Zygnema-
type algal body. C, Lycopodiumsporites sp. D–K, Ferns. D, Asplenium sp. E, Blechnum sp. F, Verrucatosporites usmensis. G, Cyathidites sp. H, Os-
mundaceae. I, Drynaria sp. J, Verrucatosporites favus. K, Acrostichum sp. L–U, Eudicots. L, Lanagiopollis microrugulatus. M, Cricotriporites sp.
N, Perfotricolpites digitatus. O, Possible Fabaceae species. P, Margocolporites vanwijhei. Q, Possible Olacaceae species. R, Corsinipollenites sp. S,
Pometiapollenites sp. T, Syncolporites sp. U, Triporopollenites. V–AA, Monocots. V, Arengapollenites sp. W, Spinizonocolpites echinatus. X,
Longapertites sp.Y, Palmaepollenites kutchensis.Z, Pandaniidites sp.AA,Typha sp. pollen cluster.AB, Peltate trichome.AC–AF, Fungi.AC,Quilonia
sp. AD,Meliolinites sp.AE, Scolecosporites sp.AF, Fungal hypha. For a complete list of the palynomorphs with their affinities, see table B1 (available online).
Scale barsp 20 mm.
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of Castanospermum, determined mostly through molecular
data (Cardoso et al. 2012, 2013; Azani et al. 2017), are found
in Africa (Angylocalyx, Xanthocercis) and the Neotropics
(Uleanthus, Alexa; Kirkbride et al. 2003). Jantungspermum
extends the past range of Angylocalyceae into Southeast Asia,
where the tribe is notably absent today, but the new fossils
are not sufficient to support dispersal scenarios for the en-
tire tribe, and we restrict our biogeographic inferences to the
Jantungspermum-Castanospermum lineage. Without the new
fossils, there would be no reason to suspect that the lineage, with
an extant Gondwanan-style distribution (fig. 1), was present in
Eocene Sunda or that it had migrated into Australasia through
the Sahul-Sunda collision (see the introduction).
During the late Eocene, Borneo was connected to mainland

Southeast Asia, and Australia was remote and still adjacent to
Antarctica (Hall et al. 2008; Baldwin et al. 2012; Hall 2012,
2013, 2017). Even considering the likely hydrochorous seeds
of Jantungspermum, arrival in Sunda from Australia by the
late Eocene would be nearly impossible considering the latitu-
dinal range involved, and there is no general fossil evidence of
a floral (or faunal) Sahul-Sunda interchange until the Miocene
(Burnham 1990; Lohman et al. 2011; Macphail and Hill 2018;
Morley 2018; Kooyman et al. 2019; Skeels et al. 2023). Addi-
tionally, there is no fossil evidence of Castanospermum in
Australia, which is substantially more paleontologically sam-
pled than Malesia (Hill 1994), before the Sunda-Sahul inter-
change. The most parsimonious explanation for the presence
of Jantungspermum in late Eocene Sunda and Castanospermum
in modern Australasia is a Sundan precollision history for the
lineage, a dispersal into Sahul after the late Oligocene onset of
the Sunda-Sahul collision, and a later Asian extinction. Thus,
Jantungspermum and Castanospermum provide the first exam-
ple of a probable Sunda-to-Sahul migration from the paleo-
botanical record. Many Sunda-to-Sahul taxa (suggested from
pollen or molecular data; see the introduction) originated in Afro-
Arabia, India, Eurasia, or other regions before migrating from
Sunda to Sahul (e.g., Ctenolophon, Ctenolophonaceae; Morley
2000, 2018). However, without any other macro- or micro-
fossils related to Jantungspermum, we have no basis to extrap-
olate its earlier history.
The seeds and leaves also provide the first macrofossil floris-

tic data on the terrestrial ecosystems of Eocene Borneo in over
100 years, complementing the coastal and marine vertebrate,
invertebrate, microplankton, and trace fossil assemblages from
the Tanjung Formation (Zonneveld et al. 2024a, 2024b; see
“Study Area and Geologic Setting”). The leaves, dominated
by Fabaceae leaflets, preserve small fragments of a presumably
once-diverse flora. Though rare, better-preserved specimens
(e.g., TT06; fig. 8I) and in situ cuticle preservation (fig. 8L–
8R) show promise for future work. The palynoflora (fig. 9;
app. B) records a diverse fern assemblage composed of at least
nine families and many life history modes, such as ground
cover (Pteris, some Thelypteris, and some Blechnum), possible
tree ferns (Osmundaceae and some Blechnum), mangrove swamp
associates (Acrostichum and Thelypteris), aquatics (Ceratopteris),
climbers (Pyrrosia and some Stenochlaena), and epiphytes
(Asplenium andDrynaria), none ofwhich has yet been recovered
in the macroflora. The Tanjung Formation palynoflora also
preserves at least seven distinct Arecaceae taxa (app. B), which
supports the hypothesis that Eocene Southeast Asia was an
ancient hot spot for palm diversity (Huang et al. 2020).
Alangium, Caesalpinia, Olacaceae (specifically Anacolosa), and
Onagraceae (specifically Ludwigia) are hypothesized to have
out-of-India and later Sunda-to-Sahul biogeographic histories
(Phadtare and Thakur 1990; Morley 2000, 2018; Prasad et al.
2018; Farooqui et al. 2019; Huang et al. 2021). Both ideas are
consistent in timingwith their presence here in themiddle-late Eo-
cene of Borneo. Last, the absence of Dipterocarpaceae—the
dominant tree family in modern Malesian lowland forests—in
the macro- and microfossil record is an important feature to
note because its rise to dominance in Southeast Asian rainforests
is still poorly understood (Ashton et al. 2021); however, this ab-
sence is not definitive because of the small sample size.

Conclusions

We describe Jantungspermum gunnellii Spagnuolo et Wilf
gen. et sp. nov., a papilionoid legume closely related to Cas-
tanospermum, as well as seven leaf morphotypes and a diverse
palynoflora from the Tanjung Formation of South Kaliman-
tan, Indonesia. The plant macrofossils are the first (other than
wood fossils) reported from the Cenozoic of Indonesia and the
Paleogene of all of Malesia in over 100 years. The macro-
fossils and the palynology highlight the paleobotanical poten-
tial of the Tanjung Formation (and Southeast Asia as a whole)
and the need for additional paleobotanical research in the
biodiverse region. These fossils are fragments from the coastal
plant communities represented in the middle-late Eocene Tambak
Member of the Tanjung Formation, which adds to recent discov-
eries of ichnofossils and marine biotas (Zonneveld et al. 2024a)
from the same location to increase understanding of ecosys-
tems and biodiversity present in Southeast Asia between the
India collision and the Sahul collision. Jantungspermum seeds,
legume leaflets, and Fabaceae palynomorphs together fill in a
critical gap in the scant Paleogene legume fossil record of Southeast
Asia, compared with the rich records elsewhere. Jantungspermum
gunnellii is the only known fossil relative of Castanospermum,
which is only found today in the coastal rainforests of Australia
and its neighboring islands (Kitching et al. 2010). The discovery
of Jantungspermum provides rare macrofossil evidence of the
Sunda-to-Sahul plant migration and the role of the Castano-
spermum lineage in the floristic interchange that led to the im-
mense living biodiversity of Southeast Asia and tropical Aus-
tralasia (Lohman et al. 2011; de Bruyn et al. 2014; Kooyman
et al. 2019).
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