

1 Early Eocene infructescences from Argentine Patagonia expand the biogeography of
2 Malvoideae.

3

4 Authors: Caroline Siegert^{1,*}, Maria A. Gandolfo^{1,2}, Peter Wilf³

5

6 ¹LH Bailey Hortorium, Plant Biology Section, School of Integrative Plant Science, Cornell
7 University, Ithaca, NY 14850, USA.

8 ²Museo Paleontológico Egidio Feruglio, 9100 Trelew, Chubut, Argentina.

9 ³Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA.

10 *Corresponding author cms444@cornell.edu

11 ABSTRACT

12 **Premise:** Fossil infructescences and isolated fruits with characters of the subfamily Malvoideae,
13 of Malvaceae (Mallow Family), were collected from early Eocene sediments in Chubut,
14 Argentina. The main goals of this research are to describe and place these fossils systematically,
15 and to explore their biogeographical implications.

16 **Methods:** Fossils were collected at the Laguna del Hunco site, Huitrera Formation, Chubut,
17 Patagonia, Argentina. They were prepared, photographed, and compared with extant and fossil
18 infructescences and fruits of various families using herbarium material and literature.

19 **Results:** The infructescences are panicles that display an alternate arrangement of their fruits.
20 They bear these fruits on short pedicels that are subtended by a bract; the fruits display an
21 infracarpelar disk and split to the base into five ovate sections interpreted as mericarps. Each
22 mericarp is characterized by an acute apex and the presence of a longitudinal ridge. The isolated
23 fruits show the same features as those on the infructescences. The fossils share unique features
24 with members of the cosmopolitan family Malvaceae, subfamily Malvoideae.

25 **Conclusions:** The fossils preserved have a unique combination of characters that does not
26 conform to any previously described genus, justifying the erection of the new genus and species,
27 *Uiher karuen*. This new taxon constitutes the first known Malvoideae reproductive fossils of the
28 Southern Hemisphere, expanding the distribution of Malvoideae during the early Eocene.

29

30 **KEY WORDS:** infructescence; Laguna del Hunco; Malvaceae; Mericarps; Patagonia;
31 schizocarp; South America; Southern Hemisphere.

32

33 INTRODUCTION

34 The angiosperm family Malvaceae, commonly known as the mallow family, comprises
35 approximately 4,225 extant species mostly distributed in temperate and tropical regions around
36 the globe (Stevens, 2001; Bayer and Kubitzki, 2003). Malvaceae are characterized by having
37 flowers in terminal or axillary inflorescences on main or lateral shoots and by producing a broad
38 range of fruit types (Bayer and Kubitzki, 2003) including loculicidal capsules and schizocarps
39 (Bayer and Kubitzki, 2003; Areces-Berazain and Ackerman, 2017).

40 The phylogeny of the family has changed over time, and for the last 30 years taxonomic
41 treatments have considered monophyletic Malvaceae to include the former families
42 Sterculiaceae, Tiliaceae, Bombacaceae, and Malvaceae *s.s.*, nevertheless, the phylogeny of
43 Malvaceae *s.l.* has endured consistent changes (Judd and Manchester, 1997; Bayer et al., 1999;
44 Vogel, 2000; Baum et al., 2004; Tate et al., 2005; Richardson et al., 2015; Carvalho-Sobrinho et
45 al., 2016; Areces-Berazain and Ackerman, 2017; Cvetković, 2021; Xie et al., 2023). Currently,
46 Malvaceae is divided into the subfamilies Byttnerioideae, Grewioideae, Tilioideae,
47 Helicteroideae, Brownlowioideae, Sterculioideae, Dombeyoideae, Bombacoideae, and
48 Malvoideae.

49 Unfortunately, this new Malvaceae classification clusters taxa with a wide range of
50 morphological features, making it difficult to identify traits unique to the family. Malvaceae's
51 dominant features are alternate phyllotaxis, mucilage cavities, and a calyx composed of five
52 valvate sepals; other common traits include the presence of tufted or stellate hairs, actinomorphic
53 flowers with often convoluted corollas, and stamens connate forming a tube or in bundles
54 (Stevens, 2001; Bayer and Kubitzki, 2003). Common leaf traits include palmate venation, teeth

55 with a medial principal vein, and tooth apices at the ends of looping accessory veins (Hickey and
56 Wolfe, 1975; Carvalho et al., 2011).

57 The subfamily Malvoideae is the largest clade within Malvaceae and comprises the
58 historical Malvaceae (Malvaceae *s.s.*) as it was circumscribed prior to the addition of the other
59 families, as well as a few other genera (Bayer et al., 1999; Areces-Berazain and Ackerman,
60 2017). It comprises 110 genera and 1,730 species (Bayer and Kubitzki, 2003), and although it is
61 found worldwide, it is most diverse in the Americas (Stevens, 2001; Bayer and Kubitzki, 2003;
62 Areces-Berazain and Ackermann, 2017; Fig. 1). Members of Malvoideae are generally shrubs
63 and herbs producing schizocarps or loculicidal capsules (Stevens, 2001; Bayer and Kubitzki,
64 2003).

65 The fossil record of Malvaceae is mostly represented by pollen, leaves, and wood, and is
66 predominantly based on Northern Hemisphere reports. In the Northern Hemisphere fossil
67 Malvaceae have been recorded in Asia (Chitaley and Nambudiri, 1973; Qiu et al., 2012;
68 Meshram et al., 2013; Shukla et al., 2014; Anberrée et al., 2015; Kapgate, 2017; Xu et al., 2020;
69 Jia et al., 2021; Wang et al., 2021; Del Rio et al., 2022; Manchester et al., 2023), Europe
70 (Kvaček, 2004, 2006; Kvaček and Wilde, 2010; Worobiec et al., 2010), northern Africa (Pan and
71 Jacobs, 2009), North America (Manchester, 1992; Wheeler et al., 1994; Estrada-Ruiz et al.,
72 2010), and South America north of the equator (Colombia, Carvalho et al., 2011); whereas those
73 from the Southern Hemisphere are from South America (Anzótegui and Cristalli, 2000; Wilf et
74 al., 2003, 2005; Barreda et al., 2007, 2012, 2020; Ramos et al., 2017), Australia (McCurry et al.,
75 2022), and with one possible leaf in Antarctica (Dutra and Batten, 2000). Remarkably, the
76 Malvaceae fossil fruit record is rather scarce compared to the overall fossil record for the family
77 and comprises only around a dozen genera worldwide (Table 1). The Malvoideae fossil record is

78 even more biased towards the Northern Hemisphere, with only three records from the Southern
79 Hemisphere. There are four occurrences from South America; *Malvaciphyllum* Anzótegui leaves
80 from the Paleocene of Colombia, north of the equator (Carvalho et al., 2011), the Miocene of
81 Argentina, and the Pliocene of Brazil (Anzótegui and Cristalli, 2000), as well as Pleistocene
82 *Bastardiopsis* (K.Schum.) Hassl. wood from Argentina (Ramos et al., 2017).

83 Among diverse fossils collected at the early Eocene Laguna del Hunco flora, in Chubut,
84 Patagonia, there is a set of infructescence fragments and isolated fruits previously mentioned in
85 Wilf et al. (2005), but not illustrated or taxonomically identified. These infructescences show a
86 unique combination of characters suggesting strong affinities to Malvaceae, subfamily
87 Malvoideae. The principal goals of this contribution are to describe these putative malvaceous
88 fossil infructescences and to evaluate their biogeographical implications for understanding the
89 past and modern distribution of Malvoideae.

90

91 MATERIALS AND METHODS

92 The Tufolitas Laguna del Hunco, Huitrera Formation, Chubut Province, Patagonia,
93 Argentina deposits preserve a caldera lake assemblage deposited during the early Eocene
94 Climate Optimum, with a diverse flora indicative of a mesic rainforest. The age of these deposits
95 is based on multiple $^{40}\text{Ar}/^{39}\text{Ar}$ analyses from tuff samples below and at various horizons within
96 the 170 m fossil lake sequence, resulting in an age bracket for all but three of the specimens
97 considered here of 52.22 ± 0.22 Ma, the age of a tuff in the middle of the most fossiliferous
98 interval, to the age of the uppermost beds of the underlying ignimbrite analyzed as 52.54 ± 0.17
99 Ma (Wilf et al., 2003; Gosses et al., 2021). The remaining three fossils were from 23 meters

100 above the 52.22 ± 0.22 Ma ash layer but within the same paleomagnetic polarity interval (Wilf et
101 al., 2003, Wilf, 2012).

102 The biota of LH is quite diverse. Faunal fossils include insects such as Mercoptera
103 (scorpionflies; Petrulevičius, 2009), and Anisoptera (dragonflies; Petrulevičius et al., 2010;
104 Petrulevičius and Nel, 2013); along with siluriform fishes (catfish; Azpelicueta and Cione,
105 2011), pipoid frogs (Báez and Trueb, 1997), turtles (Sterli et al., 2021), and birds (Degrange et
106 al., 2021). Floral fossils from the site are far more numerous. The palynoflora encompasses a
107 wide diversity of spores and pollen, including some Malvaceae pollen (Barreda et al., 2020),
108 while macrofossils include leptopteroid ferns, gymnosperms, and angiosperms. The leptopteroid
109 fern *Todea* Willd. ex Bernh. and the presence of the gymnosperm Podocarpaceae are key
110 contributors to the evidence that suggests the site may have once been a rainforest due to
111 environmental constraints on these groups, particularly the Podocarpaceae (Carvalho et al., 2013;
112 Wilf, 2012; Pujana et al., 2020; Andruchow Colombo et al., 2023). Other gymnosperms found in
113 the flora include cycads (Wilf et al., 2016) and Araucariaceae (Wilf et al., 2014; Rossetto-Harris
114 et al., 2020). Angiosperms include members of Solanaceae (Wilf et al., 2017; Deanna et al.,
115 2020), Winteraceae (Brea et al., 2021), Monimiaceae (Knight and Wilf, 2013), Ripigonaceae
116 (Carpenter et al., 2014), Menispermaceae (Jud et al., 2018), Juglandaceae (Hermsen and
117 Gandolfo, 2016), Akaniaceae (Gandolfo et al., 1988), Fagaceae (Wilf et al., 2019), Myrtaceae
118 (Hermsen et al., 2012), Cunoniaceae (Matel et al., 2022), and Euphorbiaceae (Wilf et al., 2023)
119 among others.

120 The fossil reproductive material studied herein was collected from four (LH2, LH4, LH6,
121 and LH27) of the thirty-three quarries located at Laguna del Hunco, Huitrera Formation, Chubut
122 Province, Patagonia, Argentina; paleolatitude $\sim 47^\circ$ S (Wilf et al., 2003, 2005). Seventeen

123 infructescence fragments bearing from two to 58 fruits (on the longest fragment) were examined,
124 as well as seven isolated fruits. Fossils are housed and permanently curated in the paleobotanical
125 collection of the Museo Paleontológico Egidio Feruglio (MEF), Trelew, Chubut, Argentina
126 under the repository prefix MPEF-Pb.

127 Specimens were compared with several extant families that produce schizocarps or
128 loculicidal capsules and previously described fossils. Extant material was gathered from the
129 herbarium at the L. H. Bailey Hortorium (BH), Plant Biology Section, School of Integrative
130 Plant Science, Cornell University, Ithaca, New York, USA; the digital collections of the
131 Department of Botany, National Museum of Natural History, Washington DC, USA
132 (<https://collections.nmnh.si.edu/search/botany/>); and The John G. Searle Herbarium, Field
133 Museum, Chicago, Illinois, USA. Because of the previously established paleobiogeographical
134 connections of Laguna del Hunco to certain areas (Gandolfo et al., 1988, 2011; Hermsen et al.,
135 2011; Wilf, 2012, 2020; Carvalho et al., 2013; Wilf et al., 2014, 2016; Gandolfo and Hermsen,
136 2017; Deanna et al., 2020; Brea et al., 2021), examination of extant taxa focused on material
137 from southeast Asia, Australia, Africa, South America, and the Pacific islands, but North
138 American, European, and northern Asian material was also examined. Herbarium specimens
139 from BH were imaged using a Nikon DSC 950 camera with a 60 mm Nikkor micro lens (Nikon,
140 Melville, New York, USA) and processed using Smart Shooter 4 software (Tether Tools
141 Phoenix, Arizona, USA). Smithsonian material was accessed via the botanical collection digital
142 search catalog. Field Museum material was imaged by the John G. Searle Herbarium staff.
143 Fossils were imaged using a Nikon SMZ18 under a 1.6x objective feeding to Nikon NIS-
144 Elements BR 5.10.01 software. Some images were cropped, resized, and white balanced in

145 Adobe Photoshop (Adobe, San Jose, California, USA), but no other manipulations to the images
146 have been done.

147

148 SYSTEMATIC PALEONTOLOGY

149 **Order** — Malvales

150 **Family** — Malvaceae

151 **Subfamily** — Malvoideae

152 **Genus** — *Uiher* Siegert, Gandolfo, et Wilf gen. nov.

153 **Generic diagnosis** — Paniculate infructescences; schizocarps pedicellate, each subtended by a
154 bract at the base of the pedicel, fruit arrangement alternate. Each schizocarp is composed of five
155 mericarps that split from each other completely from the apex to the base; mericarps ovate in
156 shape with an acute apex; longitudinal ridge present on each mericarp.

157 **Type species** — *Uiher karuen* Siegert, Gandolfo, et Wilf sp. nov. (Fig. 2, 3).

158 **Etymology** — *Uiher*, from the Tehuelche “vessel” referring to the role of the fruits as a vessel of
159 information through time. The Tehuelche are an indigenous tribe that previously inhabited large
160 areas of Patagonia.

161 **Species** — *Uiher karuen*, Siegert, Gandolfo, et Wilf sp. nov.

162 **Species diagnosis** — As for the genus *Uiher*.

163 **Etymology** — *karuen*, “old” (Tehuelche).

164 **Holotype** — MPEF-Pb 8352. Museo Paleontológico Egidio Feruglio, Chubut, Trelew,
165 Argentina. (Fig. 2A, C).

166 **Paratypes** — MPEF-Pb 8353 (Fig. 2B), MPEF-Pb 8357, MPEF-Pb 8354, MPEF-Pb 8356.

167 **Type locality** — Laguna del Hunco quarry LH2, Ypresian (early Eocene), Huitrera Formation,
168 Chubut Province, Patagonia, Argentina
169 **Other localities** — Laguna del Hunco, Ypresian (early Eocene), Huitrera Formation, Chubut
170 Province, Patagonia, Argentina. Quarry LH4: MPEF-Pb 465, MPEF-Pb 1241, MPEF-Pb 8150,
171 MPEF-Pb 8151, MPEF-Pb 8152, MPEF-Pb 8163, MPEF-Pb 8164, MPEF-Pb 8165 (Fig. 3B, D),
172 MPEF-Pb 8166, MPEF-Pb 8167, MPEF-Pb 8355, MPEF-Pb 8358, MPEF-Pb 8359, MPEF-Pb
173 8360, MPEF-Pb 8361, MPEF-Pb 8362; LH 6: MPEF-Pb 8029 (Fig. 3C), MPEF-Pb 8363; LH 27:
174 MPEF-Pb 8168.

175 **Description** — The fossil infructescences are incomplete panicles that bear alternately arranged
176 fruits (Fig. 2A, B). The fragments range from 4.4 cm to 6.4 cm in length. Fruits are borne on
177 short pedicels ranging in length from 0.4 mm to 1.6 mm. The pedicels are each subtended by a
178 bract that ranges in length from 0.5 mm to 1.4 mm (Fig. 2A, B). The mean fruit size is 2 mm by
179 2.1 mm, with length ranging from 1.4 mm to 2.9 mm and width ranging from 1.5 mm to 3.4 mm.
180 The fruits have a superior ovary, display evidence of an infracarpelar disk (Fig. 2C and Fig. 3B,
181 D), and split from the apex to the base completely into five ovate mericarps (Fig. 3C, D). Each
182 mericarp is characterized by an acute apex, rounded base, and the presence of a longitudinal
183 ridge (Fig. 2A, B, C; 3C, D); they have a length ranging from 1.1 mm to 2.6 mm and a width
184 ranging from 0.8 mm to 1.5 mm. Isolated fruits show the same features as those on
185 infructescences.

186

187 DISCUSSION

188 Several families were considered for their potential affinities with *Uiher karuuen*. Because
189 both schizocarps and loculicidal capsules are present in multiple lineages of Malvaceae (Bayer

190 and Kubitzki, 2003; Areces-Berazain and Ackerman, 2017), comparisons to *Uiher karuen* were
191 established with members of families that produce either of these fruit types. Families other than
192 Malvaceae that produce infructescences bearing schizocarps include Apiaceae, Geraniaceae,
193 Rutaceae, Rosaceae, and Sapindaceae. Both Apiaceae and Geraniaceae are herbaceous, with
194 schizocarps that split from the base and remain attached at the apex, unlike the Patagonian
195 fossils. Apiaceae schizocarps are composed of only two mericarps, far fewer than the five seen in
196 *Uiher*, and the mericarps are more elongated (Fig. 3C, D; Plunkett et al., 2018). Geraniaceae
197 schizocarps have a unique manner of splitting, wherein each mericarp separates completely from
198 the center of the schizocarp, but remains attached to the persisting style which has split and
199 curled up (Albers and Van der Walt, 2007). The resulting shape is reminiscent of a candelabra.
200 Although the number of mericarps in Geraniaceae and *Uiher* are often the same, the shape of the
201 mericarps is quite different (Albers and Van der Walt, 2007). The Sapindaceae include species
202 that produce schizocarps with samaroid or inflated mericarps (Acevedo-Rodríguez et al, 2011), a
203 trait that *Uiher* does not possess. Some Simaroubaceae produce schizocarps with drupaceous
204 mericarps (Clayton 2011), which *Uiher* lacks.

205 Other families that occasionally produce schizocarpic fruits are Boraginaceae (Weigend
206 et al, 2016), Capparaceae (Kers, 2002), Celastraceae (Simmons, 2004), Euphorbiaceae (Webster,
207 2014), Rhamnaceae (Medan and Schirarend, 2004), Rutaceae (Kubitzki et al, 2010),
208 Verbenaceae (Atkins, 2004), and Zygophyllaceae (Sheahan, 2007). However, the fruit
209 morphologies of these families are very dissimilar to those produced by the Patagonian fossil
210 taxon; thus they were discarded before detailed comparisons were performed.

211 Although we do not interpret *Uiher* as loculicidal capsules, we investigated families that
212 produce this fruit type, to lend support to our interpretation. Families that produce loculicidal

213 capsules with five locules or valves include Meliaceae, Rutaceae, and Lythraceae. Meliaceae
214 species produce three to six valves, but they generally have a large central axis that is visible
215 when the valves are open (Mabberley, 2010); such an axis is not seen in *Uiher*. The family
216 Rutaceae has a variety of fruit types, including capsules with two to five locules; some capsules
217 split loculicidally and some septicidally, and these capsules are generally globose and lacking an
218 acute apex (Kubitzki et al., 2010). Lythraceae produces loculicidal capsules with two to six
219 sections, but these have a persistent floral tube (Graham, 2007), which *Uiher* does not have. All
220 these families were discarded because although the fossils bear some superficial resemblance
221 they have little overlap of characters.

222 Notably, members of Malvaceae and the Patagonian fossils share several characters,
223 including infructescence type, fruit type, and fruit morphology (the shape and the number of
224 mericarps). Characters that support the placement of *Uiher* within Malvaceae include the
225 superior ovary, the infracarpelar disk, and the presence of bracts subtending the fruits (Fig. 2, 3).
226 The ovary of *Uiher karuuen* is interpreted as being superior because there is no evidence of a
227 hypanthium or a surrounding receptacle, and therefore the fossils are considered hypogynous like
228 the majority of the Malvoideae (Kubitzki and Bayer, 2003). In addition, the “bullseye” mark at
229 the bases of the fossil fruits (Fig. 2D, 3D) coincides with the infracarpelar disk found in many
230 Malvaceae species (Krapovickas, 1988). Furthermore, the bracts that are preserved on most but
231 not all infructescences, suggest that they may senesce at maturity as the fruit dries. Subtending
232 bracts of this type are common in Malvaceae (Kubitzki and Bayer, 2003).

233 As mentioned above, we interpret *Uiher karuuen* fruits to be schizocarps but loculicidal
234 capsules were also investigated, as both types of fruit are produced by members of Malvaceae,
235 especially within Malvoideae (Areces-Berazain and Ackerman, 2017). In particular, the ancestral

236 state of Malvoideae is believed to be a five-carpellate capsule (Areces-Berazain and Ackerman,
237 2017). However, Malvoideae loculicidal capsules almost always bear other features, such as a
238 pronounced calyx or epicalyx, which at least partially covers the capsule (Bayer and Kubitzki,
239 2003). This is not observed in *Uiher*.

240 A single specimen (MPEF-Pb 8150; Fig. 3A) revealed the schizocarpic nature of the fruit
241 because it distinctly shows the separation of the ovoid mericarps at the base, both from each
242 other and from the base of the fruit. This supports our interpretation that *Uiher karuuen* is a
243 schizocarp. As with schizocarps, loculicidal capsules can separate into ovate sections with an
244 acute apex. However, a loculicidal capsule would maintain the connections of the valves to the
245 base of the capsule, if not to each other, and this trait was not observed in these LH fossils (Fig.
246 3A). Regardless of fruit type, *Uiher karuuen* can confidently be placed within Malvaceae based on
247 the characters preserved.

248 **Comparisons with extant Malvaceae:** To compare the fossils with members of Malvaceae, the
249 Patagonian fossil fruits were considered here as schizocarpic but were additionally compared to
250 taxa with loculicidal capsules, particularly because schizocarps have likely evolved at least three
251 times in Malvaceae (Areces-Berazain and Ackerman, 2017). Comparisons were established
252 using the features of the inflorescence/infructescence (presence and type, fruit arrangement) and
253 of the fruits (number, shape, presence of an acute apex, and presence of a ridge on each
254 mericarp). The Patagonian fossils share characters with several extant Malvaceae genera,
255 including the infracarpelar disc, an attribute found in extant Malvaceae of Patagonia
256 (Krapovickas, 1988). In particular, within Malvoideae, the genera *Sidalcea* A. Gray., *Tetrasida*
257 Ulbr., and *Wissadula* Medik. share a large number of characters with *Uiher*, all produce

258 schizocarps with mericarps that have external ornamentation that when fossilized could be
259 interpreted as a ridge.

260 *Sidalcea* is a Northern Hemisphere genus that shares many characteristics with the
261 fossils, most noticeably the paniculate inflorescence with alternate arrangement of the fruits and
262 the schizocarp fruits (Fig. 4A, B). Mostly, *Sidalcea* schizocarps split into 5 to 9 ovoid mericarps
263 (Fig. 4A, B); in some species, the mericarps are characterized by the presence of longitudinal
264 ridges similar to those seen in *Uiher* (Fig. 3C, D). The fruits of *Sidalcea* sit on similarly short
265 pedicels which are each subtended by a bract; the bract is occasionally missing in some fruits on
266 the same infructescences, suggesting the possibility of senescence at maturity (Fig. 4A, B),
267 another trait seen in *Uiher*. *Sidalcea* does have a persistent calyx around the schizocarp (Bayer
268 and Kubitzki, 2003) which *Uiher* lacks.

269 *Tetrasida* is a small genus of species that produce schizocarps composed of five ovate
270 mericarps with an acute apex (fig. 4C). Among *Tetrasida* some species share characters with
271 *Uiher* such as *Tetrasida chachapoyensis* (Baker f.) Fryxell and Fuertes. In this species mericarps
272 bear a longitudinal ornamentation down each mericarp (Fryxell and Fuertes, 1992); however,
273 these schizocarps are borne on long pedicels, rather than the short pedicels as in *Uiher*. *Tetrasida*
274 also lacks a subtending bract at the pedicel base of each fruit; some also produce a transverse
275 endoglossum that splits the upper parts of the mericarp, leaving an opening (Fryxell and Fuertes,
276 1992; Bayer and Kubitzki, 2003).

277 *Wissadula* also shares some characters with *Uiher*, they produce schizocarps with three to
278 six mericarps with some species producing five like *Uiher*. Similarly, some *Wissadula* species
279 bear their schizocarps on long pedicels, and some species on particularly short pedicels on a
280 spike-like infructescence. Its mericarps, like those of *Uiher*, are often ovoid with an acute apex

281 and a ridge down the center of the mericarp (Fig. 4 D.); but unlike *Uiher*, this ridge often
282 facilitates only a partial septicidal dehiscence of the upper portion of the mericarp (Bayer and
283 Kubitzki, 2003; Bovini and Baumgratz, 2016, De Araújo Masullo et al., 2020).

284 Unfortunately, due to the few characters that can be scored for the new fossil species, a
285 phylogenetic analysis did not produce reliable results because the fossil species “jumped” from
286 one clade to another within Malvoideae. Problems with a lack of characters in phylogenetic
287 analysis are abundantly documented (see Gauthier, 1988; Nixon, 1996; Escapa and Pol, 2011).

288 Based on the interpretation that *Uiher* produced schizocarps, combined with other characters
289 including infructescence type, mericarp number, and the presence and shape of ridged mericarps,
290 we hypothesize that *Uiher* is likely to be a member of the Malviodeae tribes Malveae or
291 Hibisceae which although no genus or species produces the same set of traits, all of the major
292 traits of *Uiher* can be found among the various members of both tribes.

293 **Comparisons with Malvaceae fossil fruits:** The fossil record of Malvaceae fruits is relatively
294 limited (see Introduction). Reliable reports include the genera *Tiliaceaeocarpon* Meshram,
295 Narkhede and Bhowal, *Harrisocarpon* Chitaley and Nambudiri, *Hibiscocarpon* Kapgate,
296 *Firmiana* Marsili, *Burretiodendron* Rehder, *Reevesia* Lindl., *Florissantia* (Knowlton)
297 Manchester, *Tilia* L. and *Daberocarpon* Chitaley and Sheik (Table 1).

298 Berry (1925, 1928, 1934, 1938; Fig. 5) described two species of the genus *Malvacarpus*
299 based on fruit remains: *Malvacarpus tertiaris* Berry from Laguna del Hunco, and *Malvacarpus*
300 *guiñazui* Berry. *M. tertiaris* and *Uiher karuensis* are quite different. *M. tertiaris* has nine
301 “carpels” (Fig. 5), which is far more than the five mericarps found in *Uiher*. *M. guiñazui* might
302 have five sections, although it is unclear. The individual sections of both *Malvacarpus* species
303 have starkly different shapes from each other and from *Uiher*. The sections of *M. tertiaris* are

304 thin and tapered at the top and bottom, while the sections of *M. guinazui* bear distinct apical
305 ornamentation and are directly compared to *Malvocarpum* Hollick by Berry. Because of these
306 differences, *Uiher karuen* cannot be placed within *Malvacarpus*.

307 *Malvocarpon clarum*, originally erected by Hollick (1928), was collected at the banks of
308 the Collazo River, Puerto Rico, in sediments of Oligocene age (Nieves-Rivera, 2007). Hollick
309 (1928, p. 214) described it as “consisting of an aggregate of what appears like elongated,
310 apiculate carpels arranged around a common center,” yet later on the same page, he referred to it
311 as “the fruit as a whole and also the individual capsules.” Based on figures 2 and 3 of Hollick
312 (1928), this fruit can be reinterpreted as probably a schizocarp with individual mericarps, rather
313 than individual capsules; however, further evaluation of *M. clarum* is needed to decipher its
314 morphology.

315 *Tiliaceaeocarpon jamsavlii* Meshram represents a six-sided indehiscent capsule with a
316 suggested age of Late Cretaceous (Meshram, 2013), and lacks overlapping features with *Uiher*.
317 *Hibiscocarpon mohgaonensis* Kapgate, referred to as fossil fruit of *Hibiscus esculentus* L., with
318 an unconfirmed Paleocene age (Kapgate 2017), are very similar to those produced by extant
319 *Hibiscus* and are completely different from *Uiher*. *H. mohgaonensis* has single fruits, generally
320 with sepals and stipules below each fruit. *Craigia* spp. W.W.Sm and W.E.Evans are rather
321 prolific in the fossil record when taking into consideration Kvaček et al.’s (2005) reassignment
322 of various fruits and leaves to *Craigia* spp. of the Eocene, Miocene, and Pliocene. *Craigia* spp.
323 and Oligocene *Burretiodendron* spp. fossils are not infructescences and are described as single
324 fruits having winged valves (Kvaček, 2004; Qiu et al., 2012; Anberrée et al., 2015; Xu et al.,
325 2020; Wang et al., 2021; Del Rio et al., 2022), while there is no such wing on *Uiher*. *Firmiana*
326 spp., with examples in the Eocene and mid-Miocene, is a single-valved dehiscent fruit with

327 pinnate venation (Jia et al., 2021; Del Rio et al., 2022) that has no characters in common with
328 *Uiher*. *Reevesia hurnikii* Kvaček, from the early Miocene, represents single fruits that have an
329 acute base with a bulbous apex (Kvaček, 2006), which is the reverse of *Uiher*. *Florissantia* spp.,
330 from the Oligocene, sits on a particularly long pedicel, with large sepals remaining attached to
331 the base of the fruit (Manchester, 1992), neither of these key features are present in *Uiher*.
332 Cretaceous-Paleocene *Daberocarpus gerhardii* possesses ten mericarps, each with an apical awn
333 and a depression in the middle of the schizocarps where the mericarps come together
334 (Manchester et al., 2023). *Harrisocarpus sahnii*, which comes from the same locality as
335 *Daberocarpus gerhardii*, possesses five mericarps but with deep furrows between each mericarp
336 prior to splitting (Chitaley and Nambudiri, 1973; Manchester et al., 2023), compared to *Uiher*'s
337 comparatively shallow furrows (Fig. 3A). *Harrisoncarpus sahnii* also has pinched tips on its
338 mericarps, which *Uiher* lacks.

339 **Palaeoecological and biogeographical implications:** The biogeography of species with possible
340 affinity to *Uiher* is broad, with *Sidalcea*, *Tetrasida*, and *Wissadula* detailed here. *Sidalcea* is
341 native to western North America (Bayer and Kubitzki, 2003; Govaerts, 2023). *Tetrasida* has a
342 very small native range in northwestern South America, including portions of Peru, Ecuador, and
343 Bolivia (Bayer and Kubitzki, 2003; Govaerts, 2023). *Wissadula* has a large native range covering
344 vast parts of tropical and subtropical North and South America as well as Africa, and a more
345 limited range in southern Asia (Bayer and Kubitzki, 2003; Govaerts, 2023). Several species of
346 *Wissadula* are native to Northeastern or Northwestern Argentina, but none range into Patagonia
347 (Bovini and Baumgratz, 2016).

348 Many plant species found at Laguna del Hunco paleoflora and throughout Patagonia have
349 biogeographic connections to Australasia, Malesia, and northern South America. (Carvalho et al.,

350 2013; Gandolfo et al., 2017; Wilf et al., 2013, 2019, 2023). The extant genera compared to *Uiher*
351 grow in a variety of habitats. This diversity of habitats precludes any meaningful conclusions
352 beyond those drawn from the overall temperate and tropical distribution of Malvoideae and
353 Malvaceae (Stevens, 2001; Fig. 1). In this interpretation, the ecological constraints previously
354 suggested for the locality (Carvalho et al., 2013; Gandolfo and Hermsen, 2017; Barreda et al.,
355 2020; Brea et al., 2021) fall within the broad ecological range indicated by the placement of
356 *Uiher*.

357

358 CONCLUSION

359 *Uiher karuen* represents the first confirmed infructescence macrofossils of Malvoideae in
360 the Southern Hemisphere. Based on detailed comparisons between *Uiher* and modern families
361 and genera, it is clear that this Patagonian fossil taxon belongs within Malvoideae. Malvoideae
362 and *Uiher karuen* share several characters including paniculate infructescences, short pedicels,
363 subtending bracts, and ovate mericarps with an acute apex and longitudinal ridges which strongly
364 support the placement of *Uiher* in Malvoideae. *Uiher karuen* is the only fossil fruit of
365 Malvoideae in the Southern Hemisphere, where there are only three previously known
366 Malvoideae leaf macrofossils, and one wood macrofossil. The presence of these fossils at
367 Laguna del Hunco expands the evidence for the presence and diversification of Malvaceae and
368 Malvoideae in the Southern Hemisphere as early as the Eocene.

369

370 ACKNOWLEDGEMENTS:

371 We thank the anonymous reviewers for their feedback; the staff of the MEF, including Rubén
372 Cúneo, Ignacio Escapa, Pablo Puerta, Laura Reiner, Leandro Canessa, Mariano Caffa, Eduardo

373 Ruigomez, and Marcelo Krause; the Liberty Hyde Bailey Herbarium and staff, Gandolfo lab
374 technician Jennifer Svitko; the collections staff of the United States National Herbarium and the
375 Smithsonian Division of Paleobotany in the National Museum of Natural History; and the staff
376 of the John G. Searle Herbarium, Field Museum for photographic work of *Tetrasida*
377 *chachapoyensis*. We also thank the Nahueltripay family and Secretaría de Cultura del Chubut for
378 generously providing land access. This work was supported by National Science Foundation
379 (NSF) grants DEB-0345750, DEB-0919071, DEB-0918932, DEB-1556666, DEB-1556136,
380 EAR-1925755, and EAR-1925552.

381

382 AUTHOR CONTRIBUTIONS

383 C.S.:conceptualization, data curation, formal analysis, investigation, methodology, validation,
384 visualization, and writing (original draft, review and editing); M.A.G.: conceptualization, data
385 curation, funding acquisition, methodology, project administration, resources, supervision,
386 validation, and writing (review and editing); P.F. data curation, project administration,
387 validation, and writing (review and editing).

388

389 DATA AVAILABILITY

390 All specimens of the new fossil species *Uiher karuuen* are curated at the Museo Paleontológico
391 Egidio Feruglio, Trelew, Chubut, Argentina. Extant material used is curated and housed at BH,
392 Bailey Hortorium (BH), Cornell University, Ithaca, New York, USA, or at the United States
393 National Herbarium (US), National Museum of Natural History, Washington DC, USA.

394

395 DECLARATION OF INTERESTS: none

396

397 LITERATURE CITED

398 Acevedo-Rodríguez, P., P. C. Van Welzen, F. Adema, and R. W. J. M. van der Ham. 2011. Sapindaceae. *In* Kubitzki, K. [ed.], Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. The Families and Genera of Vascular Plants, vol 10, 357–407. Springer, New York, New York, USA.

402 Albers, F., and J. J. A. Van der Walt. 2007. Geraniaceae. *In* Kubitzki, K. [ed.], Flowering Plants. Eudicots: Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geriales, Gunnerales, Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance, Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. The Families and Genera of Vascular Plants, vol 9, 157–167. Springer-Verlag, Berlin, Germany.

408 Anberrée Lebreton, J., S. R. Manchester, J. Huang, S. Li, Y. Wang, and Z. Zhou. 2015. First fossil fruits and leaves of *Burretiodendron* s.l. (Malvaceae s.l.) in Southeast Asia: Implications for taxonomy, biogeography, and paleoclimate. *International Journal of Plant Sciences* 176: 682–696.

412 Andruchow Colombo, A., G. Rossetto-Harris, T. J. Brodribb, M. A. Gandolfo, and P. Wilf. 2023. A new fossil *Acmopyle* with accessory transfusion tissue and potential reproductive buds: Direct evidence for ever-wet rainforests in Eocene Patagonia. *American Journal of Botany* 110, e16221.

416 Anzótegui, L. M., and P. Cristalli. 2000. Primer registro de hojas de Malvaceae en el Neógeno de Argentina y Brasil. *Ameghiniana* 37: 169–180.

418 Areces-Berazain, F., and J. D. Ackerman. 2017. Diversification and fruit evolution in
419 eumalvoids (Malvaceae). *Botanical Journal of the Linnean Society* 184: 401–417.

420 Atkins, S. Verbenaceae. 2004. In Kadereit, J. W. [ed.], Flowering Plants. Dicotyledons: Lamiales
421 (except Acanthaceae including Avicenniaceae). The Families and Genera of Vascular
422 Plants, vol 7, 449–468. Springer-Verlag, Berlin, Germany.

423 Azpelicueta, M. M., and A. L. Cione. 2011. Redescription of the Eocene catfish *Bachmannia*
424 *chubutensis* (Teleostei: Bachmanniidae) of southern South America. *Journal of*
425 *Vertebrate Paleontology* 31: 258–269.

426 Báez, A. M., and L. Trueb. 1997. Redescription of the Paleogene *Shelania pascuali* from
427 Patagonia and its bearing on the relationships of fossil and recent pipoid frogs. *Lawrence,*
428 *Kansas: Natural History Museum, The University of Kansas* 4: 1–41.

429 Barreda, V., and L. Palazzi. 2007. Patagonian vegetation turnovers during the Paleogene-Early
430 Neogene: Origin of arid-adapted floras. *The Botanical Review* 73: 31–50.

431 Barreda, V. D., N. R. Cúneo, P. Wilf, E. D. Currano, R. A. Scasso, and H. Brinkhuis. 2012.
432 Cretaceous/Paleogene floral turnover in Patagonia: Drop in diversity, low extinction, and
433 a *Classopollis* Spike. *PLOS ONE* 7: e52455.

434 Barreda, V. D., M. C. Zamaloa, M. A. Gandolfo, C. Jaramillo, and P. Wilf. 2020. Early Eocene
435 spore and pollen assemblages from the Laguna del Hunco fossil lake beds, Patagonia,
436 Argentina. *International Journal of Plant Sciences* 181: 594–615.

437 Baum, D. A., S. DeWitt Smith, A. Yen, W. S. Alverson, R. Nyffeler, B. A. Whitlock, and R. L.
438 Oldham. 2004. Phylogenetic relationships of Malvatheca (Bombacoideae and
439 Malvoideae; Malvaceae *sensu lato*) as inferred from plastid DNA sequences. *American*
440 *Journal of Botany* 91: 1863–1871.

441 Bayer, C., M. F. Fay, A. Y. De Bruijn, V. Savolainen, C. M. Morton, K. Kubitzki, W. S.
442 Alverson, and M. W. Chase. 1999. Support for an expanded family concept of Malvaceae
443 within a recircumscribed order Malvales: A combined analysis of plastid *AtpB* and *RbcL*
444 DNA sequences. *Botanical Journal of the Linnean Society* 129: 267–303.

445 Bayer, C., and K. Kubitzki. 2003. Malvaceae. *In* Kubitzki, K. [ed.], Flowering plants.
446 Dicotyledons: Malvales, Capparales, and non-betalain Caryophyllales. The Families and
447 Genera of Vascular Plants, vol. 5, 225–311. Springer-Verlag, Berlin, Germany.

448 Berry, E. W. 1925. A Miocene Flora from Patagonia. *Studies in Geology* 6: 183–251.

449 Berry, E. W. 1928. Tertiary fossil plants from the Argentine Republic. *Proceedings of the United
450 States National Museum* 73:1–27.

451 Berry, E. W. 1934. Miocene Patagonia. *Proceedings of the National Academy of Sciences of the
452 United States of America* 20: 280–282.

453 Berry, E. W. 1938. Tertiary Flora from the Rio Pichilefú, Argentina. *Geological Society of
454 America Special Papers* 12.

455 Bovini, M. G., & J. F. A. Baumgratz. 2016. Taxonomic revision of *Wissadula* (Malvoideae,
456 Malvaceae) in Brazil. *Phytotaxa* 243: 3.

457 Brea, M., A. Iglesias, P. Wilf, E. Moya, and M. A. Gandolfo. 2021. First South American record
458 of *Winteroxylon*, Eocene of Laguna del Hunco (Chubut, Patagonia, Argentina): New link
459 to Australasia and Malesia. *International Journal of Plant Sciences* 182: 185–97.

460 Carpenter, R. J., P. Wilf, J. G. Conran, and N. R. Cúneo. 2014. A Paleogene trans-Antarctic
461 distribution for *Ripogonum* (Ripogonaceae: Liliales)? *Palaeontologia Electronica* 17:
462 39A.

463 Carvalho, M. R., F. A. Herrera, C. A. Jaramillo, S. L. Wing, and R. Callejas. 2011. Paleocene
464 Malvaceae from northern South America and their biogeographical implications.
465 *American Journal of Botany* 98: 1337–1355.

466 Carvalho, M. R., P. Wilf, E. J. Hermsen, M. A. Gandolfo, N. R. Cúneo, and K. R. Johnson. 2013.
467 First record of *Todea* (Osmundaceae) in South America, from the early Eocene
468 paleorainforests of Laguna del Hunco (Patagonia, Argentina). *American Journal of*
469 *Botany* 100: 1831–1848.

470 Carvalho-Sobrinho, J. G., W. S. Alverson, S. Alcantara, L. P. Queiroz, A. C. Mota, and D. A.
471 Baum. 2016. Revisiting the phylogeny of Bombacoideae (Malvaceae): Novel
472 relationships, morphologically cohesive clades, and a new tribal classification based on
473 multilocus phylogenetic analyses. *Molecular Phylogenetics and Evolution* 101: 56 –74.

474 Chitaley, S. D., and E. M. V. Nambudiri. 1973. *Harrisocarpon sahnii* gen. et sp. nov. from the
475 Deccan Intertrappean beds of Mohgaonkalan, India. *Geophytology* 3: 36–41.

476 Clayton, J. W. 2011. Simaroubaceae. In Kubitzki, K. [ed], Flowering Plants. Eudicots:
477 Sapindales, Cucurbitales, Myrtaceae. The Families and Genera of Vascular Plants, vol
478 10, 408–423. Springer, New York, New York, USA.

479 Cvetković, T., F. Areces-Berazain, D. D. Hinsinger, D. C. Thomas, J. J. Wieringa, S. K.
480 Ganesan, and J. S. Strijk. 2021. Phylogenomics resolves deep subfamilial relationships in
481 Malvaceae s.l. *G3 Genes|Genomes|Genetics* 11: jkab136.

482 Deanna, R., P. Wilf, and M. A. Gandolfo. 2020. New physaloid fruit-fossil species from early
483 Eocene South America. *American Journal of Botany* 107: 1749–1762.

484 Masullo, F., S. F. H. Siqueira, C. F. Barros, M. G. Bovini, and K. L. G. De Toni. 2020. Fruits of
485 neotropical species of the tribe Malveae (Malvoideae - Malvaceae): Macro- and
486 micromorphology. *Acta Botanica Brasilica* 34: 301–311.

487 Degrange, F. J., D. Pol, P. Puerta, and P. Wilf. 2021. Unexpected larger distribution of Paleogene
488 stem-rollers (AVES, CORACII): New evidence from the Eocene of Patagonia,
489 Argentina. *Scientific Reports* 11: 1363.

490 Del Rio, C., T. X. Wang, S. F. Li, L. B. Jia, P. R. Chen, R. A. Spicer, F. X. Wu, and T. Su. 2022.
491 Fruits of *Firmiana* and *Craigia* (Malvaceae) from the Eocene of the Central Tibetan
492 Plateau with emphasis on biogeographic history. *Journal of Systematics and Evolution*
493 60: 1440–1452.

494 Dutra, T. L., and D. J. Batten. 2000. Upper Cretaceous floras of King George Island, West
495 Antarctica, and their palaeoenvironmental and phytogeographic implications. *Cretaceous*
496 *Research* 21: 181–209.

497 Escapa, I. H., and D. Pol. 2011. Dealing with incompleteness: New advances for the use of
498 fossils in phylogenetic analysis. *PALAIOS* 26: 121–124.

499 Estrada-Ruiz, E., H. I. Martínez-Cabrera, and S. R. S. Cevallos-Ferriz. 2010. Upper Cretaceous
500 woods from the Olmos Formation (late Campanian–early Maastrichtian), Coahuila,
501 Mexico. *American Journal of Botany*, 97: 1179–1194.

502 Fryxell, P. A., and J. Fuertes. 1992. A re-evaluation of the *Abutilothamnus* Complex (Malvaceae)
503 I. Two new species and two new genera, *Sidasodes* and *Akrosida*. *Brittonia* 44: 436-447.

504 Gandolfo, M. A., M. C. Dibbern, and E. J. Romero. 1988. *Akania patagonica* n. sp. and
505 additional material on *Akania americana* Romero & Hickey (Akaniaceae), from
506 Paleocene sediments of Patagonia. *Bulletin of the Torrey Botanical Club* 115: 83–88.

507 Gandolfo, M. A., and E. J. Hermsen. 2017. *Ceratopetalum* (Cunoniaceae) fruits of Australasian
508 affinity from the early Eocene Laguna del Hunco flora, Patagonia, Argentina. *Annals of
509 Botany* 119: 507–516.

510 Gauthier, J. A., A. G. Kluge, and T. Rowe. 1988. Amniote phylogeny and the importance of
511 fossils. *Cladistics* 4: 105–209.

512 Gosses, J., A. R. Carroll, B. T. Bruck, B. S. Singer, B. R. Jicha, E. Aragón, A. P. Walters, and P.
513 Wilf. 2021. Facies interpretation and geochronology of diverse Eocene floras and faunas,
514 northwest Chubut Province, Patagonia, Argentina. *GSA Bulletin*, 133: 740–752.

515 Govaerts, R. 2023. The World Checklist of Vascular Plants (WCVP). Royal Botanic Gardens,
516 Kew. Checklist dataset <https://doi.org/10.15468/6h8ucr>

517 Graham, S. A. 2007. Lythraceae. In Kubitzki, K. [ed], Flowering Plants. Eudicots:
518 Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales,
519 Myrtales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance,
520 Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. The Families
521 and Genera of Vascular Plants, vol 9, 226–246. Springer-Verlag, Berlin, Germany.

522 Hermsen, E. J., M. A. Gandolfo, and M. C. Zamaloa. 2012. The fossil record of *Eucalyptus* in
523 Patagonia. *American Journal of Botany* 99: 1356–1374.

524 Hermsen, E. J., and M. A. Gandolfo. 2016. Fruits of Juglandaceae from the Eocene of South
525 America. *Systematic Botany* 41: 316-328.

526 Herrera, F., S. R. Manchester, M. R. Carvalho, C. Jaramillo, and S. L. Wing. 2014. Paleocene
527 wind-dispersed fruits and seeds from Colombia and their implications for early
528 neotropical rainforests. *Acta Palaeobotanica* 54: 197–229.

529 Hickey, L. J., and J. A. Wolfe. 1975. The bases of angiosperm phylogeny: Vegetative
530 morphology. *Annals of the Missouri Botanical Garden* 62: 572 and 576.

531 Hollick, C., 1928. Scientific survey of Porto Rico and the Virgin Islands, vol. 7, pt 3.

532

533 Jia, L. B., G. S. Nam, T. Su, G. W. Stull, S. F. Li, Y. J. Huang, and Z. K. Zhou. 2021. Fossil
534 fruits of *Firmiana* and *Tilia* from the middle Miocene of South Korea and the efficacy of
535 the Bering land bridge for the migration of mesothermal plants. *Plant Diversity* 43: 480–
536 491.

537 Jud, N. A., A. Iglesias, P. Wilf, and M. A. Gandolfo. 2018. Fossil moonseeds from the Paleogene
538 of West Gondwana (Patagonia, Argentina). *American Journal of Botany* 105: 927–942.

539 Judd, W. S., and S. R. Manchester. 1997. Circumscription of Malvaceae (Malvales) as
540 determined by a preliminary cladistic analysis of morphological, anatomical,
541 palynological, and chemical characters. *Brittonia* 49: 384–405.

542 Kapgate, V. D. 2017. Fossil fruit of *Hibiscus esculentus* L. of the family Malvaceae from Deccan
543 Intertrappen cherts of India. *The Paleobotanist* 66: 211–216.

544 Kers, L. E. 2002. Capparaceae. In Kubitzki, K. [ed.], Flowering Plants. Dicotyledons: Malvales,
545 Capparales, and Non-betalain Caryophyllales. The Families and Genera of Vascular
546 Plants, vol 5, 36–56. Springer-Verlag, Berlin, Germany.

547 Knight, C., and P. Wilf. 2013. Rare leaf fossils of Monimiaceae and Atherospermataceae
548 (Laurales) from Eocene patagonian rainforests and their biogeographic significance.
549 *Palaeontologia Electronica* 16, 26a.

550 Krapovickas, A. 1988. Malvaceae. In M. N. Correa [ed.] Flora Patagónica vol 5, 126–153.
551 Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.

552 Kubitzki, K., J. A. Kallunki, M. Duretto, and P. G. Wilson. 2010. Rutaceae. *In* Kubitzki, K. [ed.],
553 Flowering Plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae. The Families and
554 Genera of Vascular Plants, vol 10, 276–356. Springer, New York, New York, USA.

555 Kvaček, Z. 2004. Early Miocene records of *Craigia* (Malvaceae s.l.) in the Most Basin, North
556 Bohemia – Whole plant approach. *Journal of Czech Geological Society* 49: 161–171.

557 Kvaček, Z., S. R. Manchester, M. A. Akhmetiev. 2005. Review of the fossil history of *Craigia*
558 (Malvaceae S.L.) in the northern hemisphere based on fruits and co-occurring foliage. *In*
559 Modern problems of palaeofloristics, palaeophytogeography, and phytostратigraphy, vol
560 1, 114–140. Transactions of the International Palaeobotanical Conference, Moscow, May
561 17–18, 2005. GEOS, Moscow.

562 Kvaček, Z. 2006. Fossil fruits of *Reevesia* (Malvaceae, subfam. Helicteroideae) and associated
563 plant organs (seeds, foliage) from the Lower Miocene of North Bohemia (Czech
564 Republic). *Neues Jahrbuch Für Geologie Und Paläontologie - Monatshefte* 6: 431–448.

565 Kvaček, Z., and V. Wilde. 2010. Foliage and seeds of malvlean plants from the Eocene of
566 Europe. *Bulletin of Geosciences* 85: 163–182.

567 Mabberley, D. J. 2010. Meliaceae. *In* Kubitzki, K. [ed.], Flowering Plants. Eudicots: Sapindales,
568 Cucurbitales, Myrtaceae. The Families and Genera of Vascular Plants, vol 10, 185–211.
569 Springer, New York, New York, USA.

570 Manchester, S. R. 1992. Flowers, fruits, and pollen of *Florissantia*, an extinct malvlean genus
571 from the Eocene and Oligocene of western North America. *American Journal of Botany*,
572 79: 996–1008.

573 Manchester, S. R., D. K. Kapgate, B. Samant, D. M. Mohabey, A. Dhobale. 2023. Fruits and
574 pollen of Malvoideae (Malvaceae) in the Maastrichtian–Danian Deccan Intertrappean
575 Beds of Central India. *International Journal of Plant Sciences* 184: 68–84.

576 Matel, T. P., M. A. Gandolfo, E. J. Hermsen, and P. Wilf. 2022. Cunoniaceae infructescences
577 from the early Eocene Laguna del Hunco flora, Patagonia, Argentina. *American Journal
578 of Botany* 109: 986–1003.

579 Medan, D., and C. Schirarend. 2004. Rhamnaceae. In Kubitzki, K. [ed.], Flowering Plants.
580 Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales. The Families and
581 Genera of Vascular Plants, vol 6, 320–338. Springer–Verlag, Berlin, Germany.

582 Meshram, S. M., S. D. Narkhede, and M. Bhowal. 2013. A new petrified unilocular fruit from
583 the Deccan Intertrappean Beds of Jamsavli M.P. *International Journal of Life Sciences* 1:
584 221–225.

585 McCurry, M., D. J. Cantrill, P. M. Smith, R. Beattie, M. Dettmann, V. Baranov, C. Mage, et al.
586 2022. A Lagerstätte from Australia provides insight into the nature of Miocene mesic
587 ecosystems. *Science Advances* 8: eabm1406.

588 Nieves-Rivera, Á. M. 2007. Paleobotanical notes on mangrove-like plants of Puerto Rico.
589 *Interciencia* 32: 175–179.

590 Nixon, K. C. 1996. Paleobotany in cladistics and cladistics in paleobotany: Enlightenment and
591 uncertainty. *Review of Palaeobotany and Palynology* 90: 361–373.

592 Pan, A. D., and B. F. Jacobs. 2009. The earliest record of the genus *Cola* (Malvaceae *Sensu Lato*):
593 Sterculioideae) from the late Oligocene (28–27 Ma) of Ethiopia and leaf characteristics
594 within the genus. *Plant Systematics and Evolution* 283: 247–262.

595 Petrulevičius, J. F. 2009. A Panorpoid (Insecta: Mecoptera) from the lower Eocene of Patagonia,
596 Argentina. *Journal of Paleontology* 83: 994–997.

597 Petrulevičius, J. F., A. Nel, and J. F. Voisin. 2010. A new genus and species of darner dragonfly
598 (Aeshnidae: Odonata) from the lower Eocene of Laguna del Hunco, Patagonia,
599 Argentina. *Annales de La Société Entomologique de France (N.S.)* 46: 271–275

600 Petrulevičius, J. F., and A. Nel. 2013. A new Frenguelliidae (Insecta: Odonata) from the early
601 Eocene of Laguna del Hunco, Patagonia, Argentina. *Zootaxa* 3616: 597–600.

602 Plunkett, G. M., M. G. Pimenov, J. P. Reduron, E. V. Kljuykov, B. E. Vanwyk, T. A.
603 Ostroumova, and M. J. Henwood et al. 2018. Apiaceae *In* J. W. Kadereit and V. Bittrich
604 [eds.], Apiales, Gentianales (except Rubiaceae). Families and Genera of Vascular Plants,
605 vol 15, 9–206. Springer International Publishing AG, part of Springer Nature, Cham,
606 Zug, Switzerland.

607 Pujana, R. R., P. Wilf, and M. A. Gandolfo. 2020. Conifer wood assemblage dominated by
608 Podocarpaceae, early Eocene of Laguna del Hunco, central Argentinean Patagonia.
609 *PhytoKeys* 156: 81–102.

610 Qiu, W., X. Yan, D. Fang, and J. Hua. 2012. An additional record of *Craigia*-fruits (Malvaceae
611 S.L.) from the Eocene of Hainan Island, South China. *Austrian Journal of Earth Sciences*
612 105: 141–144.

613 Ramos, R. S., M. Brea, and D. Kröhling. 2017. Malvaceous wood from the late Pleistocene El
614 Palmar Formation of northeastern Argentina. *Review of Palaeobotany and Palynology*
615 246: 232–241.

616 Richardson, J. E., B. A. Whitlock, A. W. Meerow, and S. Madriñán. 2015. The age of chocolate:
617 A diversification history of *Theobroma* and Malvaceae. *Frontiers in Ecology and*
618 *Evolution* 3: 14.

619 Rossetto-Harris, G., P. Wilf, I. H. Escapa, and A. Andruchow Colombo. 2020. Eocene *Araucaria*
620 sect. *Eutacta* from Patagonia and floristic turnover during the initial isolation of South
621 America. *American Journal of Botany* 107: 806–832.

622 Sheahan, M. C. 2007. Zygophyllaceae. In Kubitzki, K. [ed.], Flowering Plants. Eudicots:
623 Berberidopsidales, Buxales, Crossosomatales, Fabales p.p., Geraniales, Gunnerales,
624 Mytales p.p., Proteales, Saxifragales, Vitales, Zygophyllales, Clusiaceae Alliance,
625 Passifloraceae Alliance, Dilleniaceae, Huaceae, Picramniaceae, Sabiaceae. The Families
626 and Genera of Vascular Plants, vol 9, 488–500. Springer–Verlag, Berlin, Germany.

627 Shukla, A., R. C. Mehrotra, and J. S. Guleria. 2014. A new fossil leaf of *Kleinhovia* L. from the
628 early Eocene of India and its palaeoclimatic and phytogeographical significance. *Journal*
629 *of the Geological Society of India* 84: 159–162.

630 Simmons, M. P. 2004. Celastraceae. In Kubitzki, K. [ed.], Flowering Plants. Dicotyledons:
631 Celasterales, Oxalidales, Rosales, Cornales, Ericales. The Families and Genera of
632 Vascular Plants, vol 6, 29–64. Springer-Verlag, Berlin, Germany.

633 Sterli, J., E. Vlachos, M. Kraouse, P. Puerta, and C. Oriozabala. 2021. Contribution to the
634 diversity of the fossil record of turtles (Testudinata) from Chubut Province (Argentina)
635 and its significance in understanding the evolution of turtles in southern South America.
636 *Publicación Electrónica de la Asociación Paleontológica Argentina* 21: 118–160.

637 Stevens, P. F. 2001 onwards. Angiosperm Phylogeny Website. Version 14, July 2017 [and more
638 or less continuously updated since].

639 Tate, J. A., J. Fuertes Aguilar, S. J. Wagstaff, J. C. La Duke, T. A. Bodo Slotta, and B. B.
640 Simpson. 2005. Phylogenetic relationships within the tribe Malveae (Malvaceae,
641 subfamily Malvoideae) as inferred from ITS sequence data. *American Journal of Botany*
642 92: 584–602.

643 Vogel, S. 2000. The floral nectaries of Malvaceae *sensu lato* – a conspectus. *Kurtziana* 28: 155–
644 171.

645 Wang, B., S. Zhang, P. Zhang, Y. Yang, J. Chen, Y. Zhang, and S. Xie. 2021. A new occurrence
646 of *Craigia* (Malvaceae) from the Miocene of Yunnan and its biogeographic significance.
647 *Historical Biology: An International Journal of Paleobiology* 33: 3402–3412.

648 Webster, G. I. 2014. Euphorbiaceae. In Kubitzki, K. [ed.], *Flowering Plants. Eudicots:*
649 *Malpighiales. The Families and Genera of Vascular Plants*, vol 11, 51–216. Springer–
650 Verlag, Berlin, Germany.

651 Weigend, M., F. Selvi, D. C. Thomas, and H. H. Hilger. 2016. Boraginaceae. In J, Kadereit, and
652 V. Bittrich [eds.], *Flowering Plants. Eudicots: Aquifoliales, Boraginales, Dipsacales,*
653 *Escalloniales, Garryales, Paracryphiales, Solanales (except Convolvulaceae),*
654 *Icacinaceae, Metteniusaceae, Vahliales. The Families and Genera of Vascular Plants*,
655 vol 14, 14–102. Springer International Publishing, Cham, Zug, Switzerland.

656 Wheeler, E. A., T. M. Lehman, and P. E. Gasson. 1994. *Javelinoxylon*, an upper Cretaceous
657 dicotyledonous tree from Big Bend National Park, Texas, with presumed malvacean
658 affinities. *American Journal of Botany* 81: 703–710.

659 Wilf, P. 2012. Rainforest conifers of Eocene Patagonia: Attached cones and foliage of the extant
660 southeast Asian and Australasian genus *Dacrycarpus* (Podocarpaceae). *American Journal*
661 *of Botany* 99: 562–584.

662 Wilf, P., N. R. Cúneo, K. R. Johnson, J. F. Hicks, S. L. Wing, and J. D. Obradovich. 2003. High
663 plant diversity in Eocene South America: Evidence from Patagonia. *Science* 300: 122–
664 125.

665 Wilf, P., K. R. Johnson, N. R. Cúneo, M. E. Smith, B. S. Singer, and M. A. Gandolfo. 2005.
666 Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina.
667 *The American Naturalist* 165: 634–650.

668 Wilf, P., I. H. Escapa, N. R. Cúneo, R. M. Kooymen, K. R. Johnson, and A. Iglesias. 2014. First
669 South American *Agathis* (Araucariaceae), Eocene of Patagonia. *American Journal of*
670 *Botany* 101: 156–179.

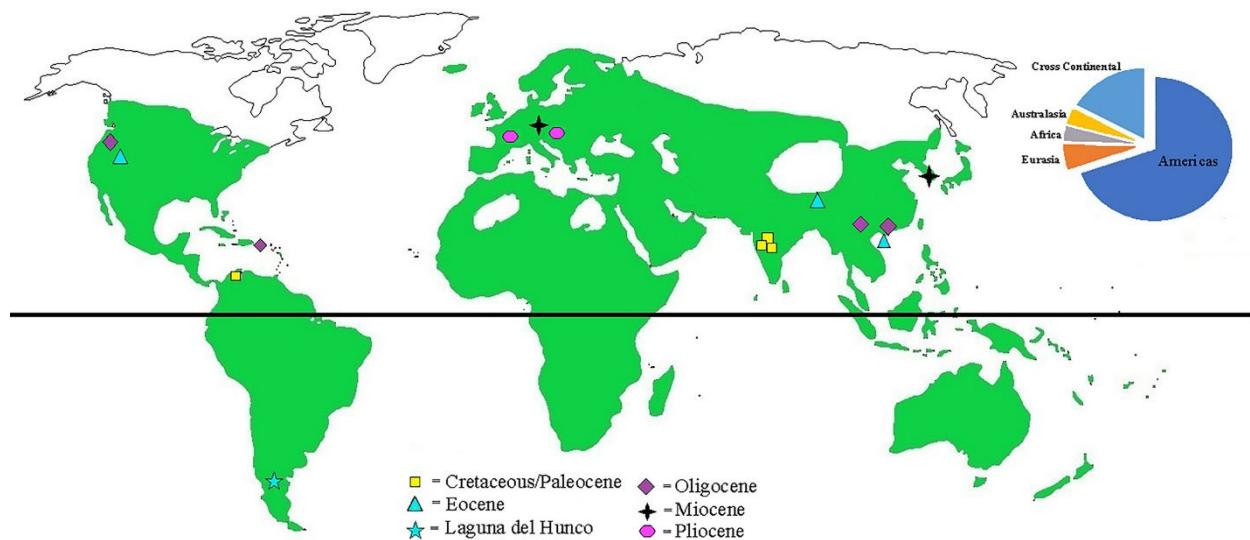
671 Wilf, P., D. W. Stevenson, and N. R. Cúneo. 2016. The last Patagonian cycad, *Austrozamia*
672 *stockeyi* gen. et sp. nov., early Eocene of Laguna del Hunco, Chubut, Argentina. *Botany*
673 94: 817–829.

674 Wilf, P., M. R. Carvalho, M. A. Gandolfo, and N. R. Cúneo. 2017. Eocene lantern fruits from
675 Gondwanan Patagonia and the early origins of Solanaceae. *Science* 355: 71–75.

676 Wilf, P., K. C. Nixon, M. A. Gandolfo, and N. R. Cúneo. 2019. Eocene Fagaceae from Patagonia
677 and Gondwanan legacy in Asian rainforests. *Science* 364: eaaw5139.

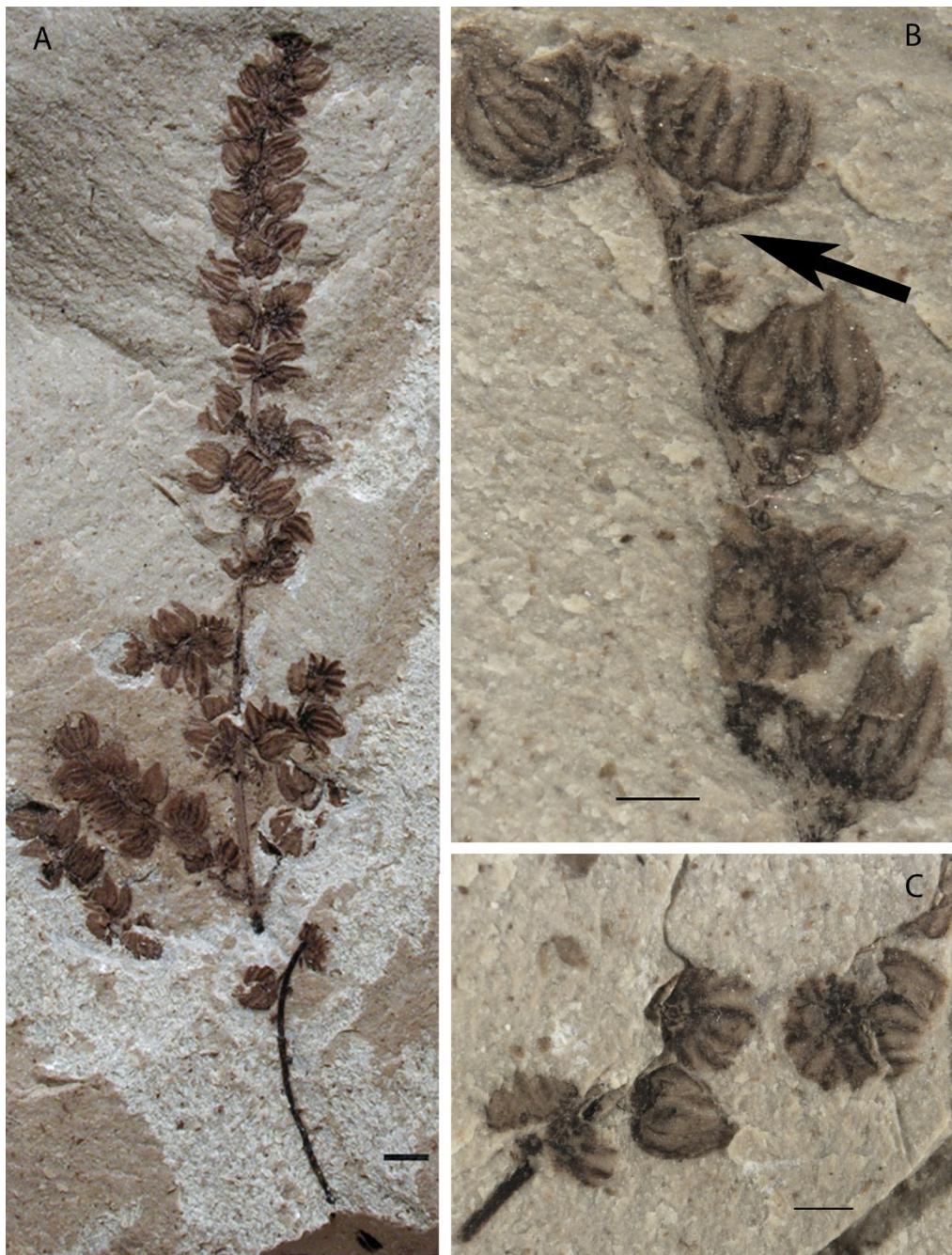
678 Wilf, P., A. Iglesias, and M. A. Gandolfo. 2023. The first Gondwanan Euphorbiaceae fossils
679 reset the biogeographic history of the *Macaranga-Mallotus* clade. *American Journal of*
680 *Botany* 110: e16169.

681 Worobiec, G., E. Worobiec, and Z. Kvaček. 2010. Neogene leaf morphotaxa of Malvaceae s.l. in
682 Europe. *International Journal of Plant Sciences* 171: 892–914.

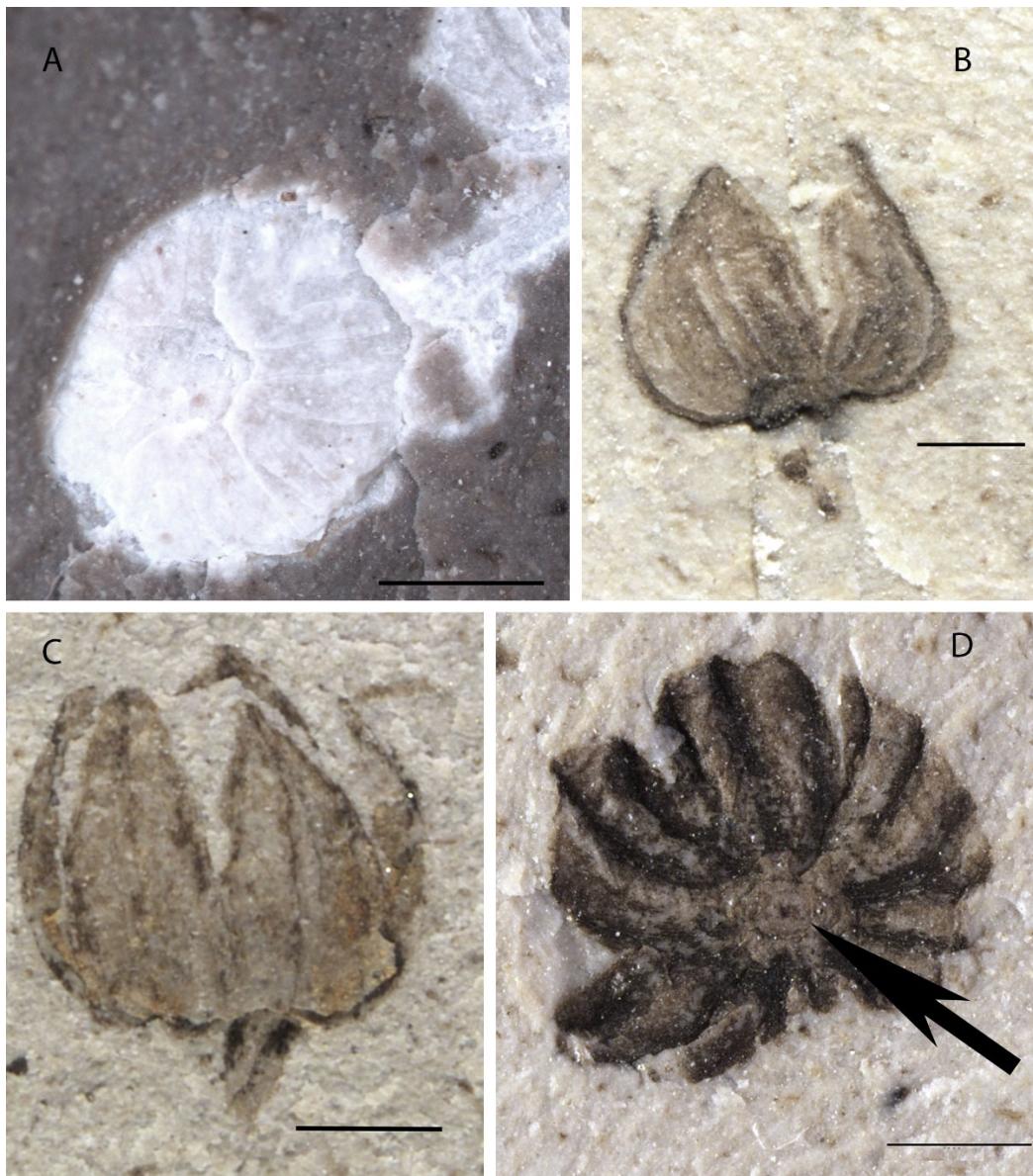

683 Xie, J., P. Del Tredici, M. LaPorte, A. Bekmetjev, A. R. Lemmon, E. M. Lemmon, W. Gong et
684 al. 2023. Phylogenetic Relationships of *Tilia* (Malvaceae) inferred from multiple nuclear
685 loci and plastid genomes. *International Journal of Plant Sciences* 184: 56–67.

686 Xu, S. L., T. M. Kodrul, Y. Wu, N. P. Maslova, and J. H. Jin. 2020. Early Oligocene fruits and
687 leaves of *Burretiodendron* (Malvaceae s.l.) from South China. *Journal of Systematics and*
688 *Evolution* 59: 1100–1110.

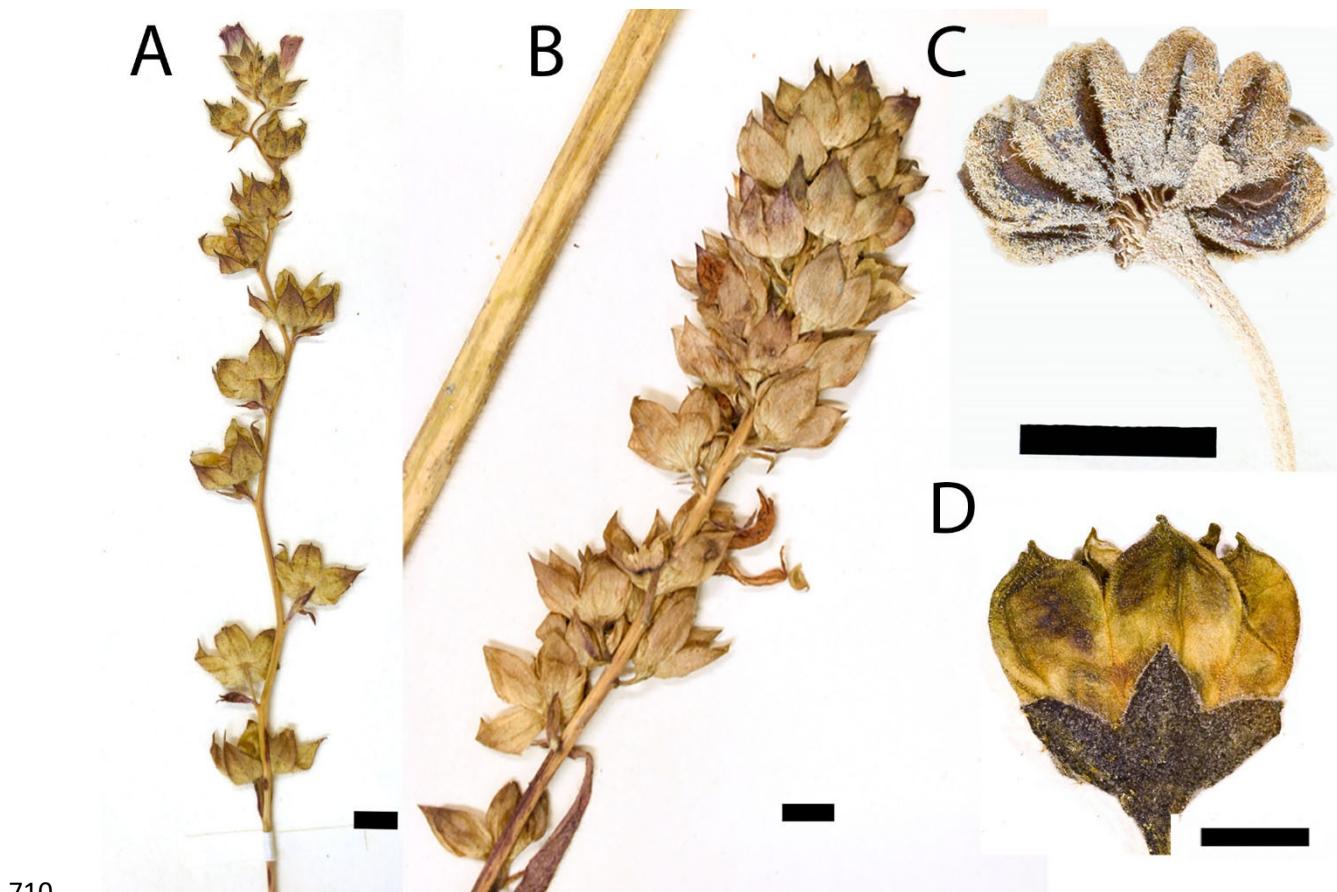
689 Table 1: Malvaceae fossil fruits listing genus, first author, location, and age.


Species	First Author	Location	Age
<i>Daberocarpon gerhardii</i>	Manchester 2023	Deccan Intertrappean beds, India	Late Cretaceous – Paleocene
<i>Harrisocarpon sahnii</i>	Manchester 2023 Chitaley 1973	Deccan Intertrappean beds, India	Late Cretaceous - Paleocene
<i>Tiliaceaeocarpon jamsavlii</i>	Meshram 2013	Madhya Pradesh, India	Late Cretaceous – Paleocene
<i>Hibiscocarpon mohgaonensis</i>	Kapgate 2017	Mohgaonkalan, India	Paleocene
Wind dispersed fruits*	Herrera 2014	La Guajira, Colombia	Paleocene
<i>Malvacarpus tertiarius*</i>	Berry 1925	Chubut, Argentina	Eocene
<i>Malvacarpus guinazui*</i>	Berry 1938	Río Negro, Argentina	Eocene
<i>Craigia</i> sp.	Del Rio 2022	Tibet, China	Eocene
<i>Firmiana</i> sp.	Del Rio 2022	Tibet, China	Eocene
<i>Craigia</i> spp,	Qiu 2012	Hainan, China	Eocene
		Colorado, Oregon, USA; British Columbia, Canada	
<i>Florissantia</i> spp.	Manchester 1992	Colombia, Canada	Oligocene
<i>Burretiodendron parvifructum</i>	Xu 2020	Guangdong, China	Oligocene
<i>Burretiodendron parvifructum</i>	Anberrée 2015	Yunnan, China	Oligocene
<i>Malvocarpon clarum*</i>	Hollick 1928	Puerto Rico, USA	Oligocene
<i>Ustí nad Labem, Czech Republic</i>			
<i>Reevesia hurnikii</i>	Kvaček 2006	Czech Republic	Miocene
<i>Firmiana sinomiocenica</i>	Jia 2021	North Gyeongsang, South Korea	Miocene
<i>Tilia asiatica</i>	Jia 2021	North Gyeongsang, South Korea	Miocene
<i>Ustí nad Labem, Czech Republic</i>			
<i>Craigia bronni</i>	Kvaček 2004	Czech Republic	Miocene
<i>Craigia lincangensis</i>	Wang 2021	Yunnan, China	Miocene

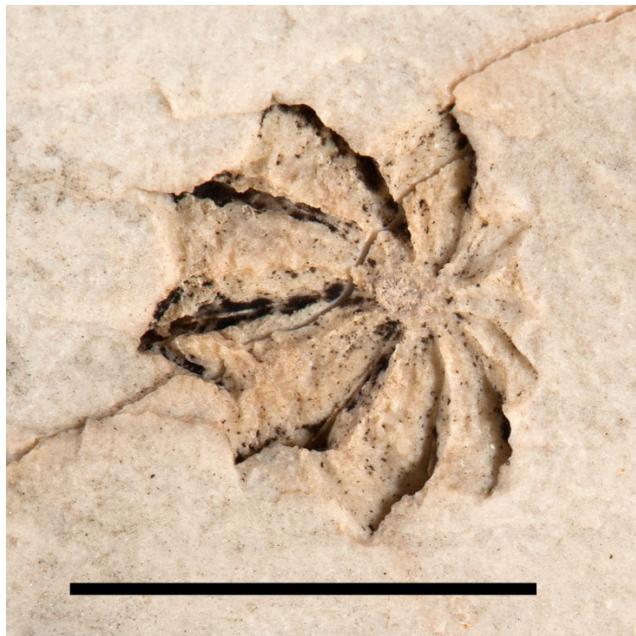
691 * Indicates that doubts have been raised about the validity of the assignment to Malvaceae.


692

693 Figure 1. Map of Malvoideae global distribution, with present-day mapped in green. The pie
694 chart indicates the percentage of species native to each region. Symbols indicate fossil fruit
695 occurrences.


696

697 Figure 2. *Uiher karuen* Siegert, Gandolfo, et Wilf, sp. nov. A. MPEF-Pb 8352, Branching
698 infructescence bearing five-parted fruits. B. MPEF-Pb 8353, Infructescence segment showing
699 alternate phyllotaxis of the fruits; the fruits are pedicellate, subtended by bracts (arrow), and
700 variably closed or open. C. Lateral and basal views of several fruits of MPEF- Pb 8352, showing
701 infracarpelar discs. Scale bars = 1 mm.


702

703 Figure 3. *Uiher karuen* Siegert, Gandolfo, et Wilf, sp. nov. A. Basal view of MPEF-Pb 8150,
 704 showing mericarps separating from the base. The white coloration results from silicate mineral
 705 replacement of the original compression. B. Lateral view of MPEF-Pb 8165, showing several
 706 sections and an infracarpelar disc at the base of the schizocarp. C. Lateral view of MPEF-Pb
 707 8029 opened fruit, showing five sections opening from the apex. Each section is obovoid with an
 708 acute apex and a meridional line. D. MPEF-Pb 8165, Detail of the infracarpelar disk, indicated
 709 by the arrow. Scale bars = 1 mm.

710

711 Figure 4. Selected extant members of the subfamily Malvoideae. A. *Sidalcea calycosa*
712 infructescence, BH 000 307 603. B. *Sidalcea hendersonii* infructescence, BH 000 307 614. C.
713 *Tetrasida chachapoyensis* V0243599F D. *Wissadula subpeltata* fruit BH 000 332 340. Scale bars
714 = 0.5 cm.

715

716 Figure 5. *Malvacarpus tertiaricus* holotype specimen (Berry 1925), USNM 219107. Scale bar =
717 1cm.