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ARTICLE INFO ABSTRACT

Keywords: Camera trapping networks have the potential to monitor wildlife diversity at large scales. However, their efficacy
Fractional Richness in detecting different species varies, leading to considerable disparities in population density estimates.
Detectability

Furthermore, species of different trophic levels and body sizes naturally occur at different densities, challenging
the evenness assumptions inherent in conventional diversity indices. Here we present a novel index: Fractional
Richness, which is specifically designed for application in extensive camera trap networks. The index addresses
situations where evenness is uninformative, for example in communities characterized by multiple trophic levels,
diverse body sizes, variable population densities, or other complications. To determine the effectiveness of our
Fractional Richness index, we modeled spatial patterns of Shannon diversity, species richness, and Fractional
Richness for two wildlife communities in Wisconsin USA to quantitatively measure which index best reflected
ecologically relevant landscape patterns. One community was much more uneven than the other, with detection
rates ranging across three orders of magnitude. The more even community could be modeled accurately with
both Shannon diversity and Fractional Richness, but the highly uneven community could only be modeled
accurately with Fractional Richness. Maximum population density varies by species, and most wildlife survey
methods are not equally capable of detecting all species. In communities with both high and low-density species,
or when detectability varies, evenness may not be the most informative measure. In these situations, Fractional
Richness may be a more suitable index.

Camera trapping

1. Introduction decline. Species across plant and animal taxa are suffering from popu-

lation declines on a global scale, and the field of ecology would benefit

Understanding where species diversity is highest, and what factors
facilitate high diversity in an ecosystem, is a high priority question in the
field of conservation ecology. Measuring global declines in species di-
versity, shifts in community abundances, and successfully assessing
progress towards conservation and restoration goals all depend on
reliable and intuitive indexes of diversity. However, typical indexes
neglect a key aspect of ecosystem health: population density and
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from an index which measures the robustness of populations in a com-
munity, in addition to traditional measures like Shannon diversity and
species richness. Typical diversity indexes which incorporate measures
of evenness also struggle to intuitively predict wildlife diversity when
not all species are equally easily detected, or when maximum population
density varies between species. Using megafauna in the state of Wis-
consin, USA, as a case study, we present a novel index which is sensitive
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to population declines and can be used effectively when evenness proves
uninformative.

1.1. Modeling diversity in large camera trap networks

The use of camera traps has increased exponentially in recent de-
cades (Burton et al., 2015) with camera trapping networks established
across the globe (e.g. Ahumada et al., 2011, McShea et al., 2016) and
ongoing efforts to coordinate existing camera trapping efforts into still
larger networks (Steenweg et al., 2017, Cove et al., 2021). This study
uses data from Snapshot Wisconsin, a network of camera traps deployed
throughout WI, USA, and maintained by community scientists in an
effort to promote wildlife monitoring, research, community involve-
ment and education (Townsend et al., 2021). Camera trap networks
have the potential to monitor wildlife species diversity on large scales, so
long as their limitations and biases are accounted for in diversity in-
dexes. Most camera trap studies implicitly assume that all species are
equally detectable (Burton et al., 2015), but detection rates are affected
by a number of factors, including body size (Rowcliffe & Carbone, 2008,
Tobler et al., 2008), range size (Popescu et al., 2014), heat signature
(Welbourne et al., 2016), movement characteristics (Rowcliffe & Car-
bone, 2008), behavioral response to trail cameras (Hofmeester et al.,
2019), and the amount of time spent on the ground for semi-arborial,
scansorial, and fossorial species. Camera trap placement (Sollmann
et al., 2013) can also favor particular species. Detection rate is affected
by detectability and may not be directly related to population density.
All these factors bias indices like Shannon diversity.

Furthermore, maximum population density varies greatly by species,
sometimes by orders of magnitude. A healthy ecosystem with robust
populations would be expected to have higher densities of mice than
deer, and higher densities of deer than wolves. Species with larger body
mass and at higher trophic levels typically occur at lower densities.
Typical diversity indexes, including Shannon (1948), Simpson (1949),
and other Hill family indexes (Jost, 2006, Hill, 1973), define an ideal
diverse community as one where all species occur at equal densities, and
implicitly assume that the maximum population density of all species is
the same. In the context of many wildlife studies, but in camera trap
networks in particular, the assumptions of equal detectability and equal
maximum population density are often violated. In these contexts, using
evenness as a component in diversity metrics can produce counterin-
tuitive results.

1.2. A novel index

Here, we present a novel index: Fractional Richness. Fractional
Richness goes a step beyond simple species richness in that it accounts
for abundances, but unlike typical biodiversity indices which measure
the evenness of species, Fractional Richness uses normalized fractional
population density (NFPD) to measure how robust or scarce a popula-
tion is at a particular site in relation to its own maximum population
density across sites. Our index weighs all species equally, regardless of
population density or detectability, and is intended to replace Hill-
family indexes like Shannon diversity in contexts where evenness is
uninformative. We use Wisconsin, USA as a case study to compare our
index with both Shannon diversity and species richness in their ability to
quantify two wildlife communities with different levels of evenness.

1.3. Wisconsin’s north-south ecoclimatic and land-use tension zone

Wisconsin has a well-described ecotone between the forested
northeast and prairie/savannah southwest (Curtis, 1959), often called a
“tension zone” (Livingston, 1903), resulting in distinct plant and animal
assemblages in each ecoregion (Temple and Temple, 1986). However,
anthropogenic influences also exert a significant impact on species dis-
tributions and abundances (Boivin et al., 2016), and recent land use
history plays an important role in current mammal distributions in the
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study region. During pre-colonial times, wolves, black bears, fishers,
bobcats, and porcupines occurred throughout Wisconsin (Jackson and
Lepage, 1961), but intensive logging and agricultural conversion
deforested the majority of the state (Allosso, 2019, Conzen, 2014, Kurta,
1995), causing these forest-dependent species to constrict their ranges
northwards. The extensive agricultural conversion of southern Wiscon-
sin caused white-tailed deer and coyotes to become more abundant, led
species including eastern cottontails to expand their northern range
boundaries, and allowed species like virginia opossums, which had
previously never occurred in the state, to flourish (Jackson and Lepage,
1961, Kurta, 1995). Today, Wisconsin is divided more or less north to
south, with the north containing intact forest and the south having been
converted mostly into settlements and farmland. In addition to the
north-south divide in land use, the vegetative ecotone between northern
mixed coniferous forests and southern dry prairie-hardwood (Curtis &
MclIntosh, 1951) coincides with the southern range boundary of mam-
mals like Snowshoe Hares. These southern range boundaries have been
creeping northwards through a combination of habitat loss and climate
change (Sultaire et al., 2016). This divide creates two semi-distinct
wildlife communities within the state, with human-sensitive species
being much more abundant in the northern forests, and human-
associated species (Gallo et al., 2017) much more abundant in the
south. As will be illustrated in the results, attempting to map the di-
versity of Wisconsin without acknowledging the high turnover in species
abundances across this ecotone proves uninformative. For that reason,
in this study species were categorized into one of two communities:
human-sensitive species in the north, and human-associated species in
the south.

1.4. BioCube geospatial layers

Landscape context is central to any analysis of biodiversity indices. A
biodiversity index whose assumptions have been violated will not al-
ways produce ecologically intuitive values, and as a consequence may
not exhibit consistent correlations with ecologically relevant variables
across the landscape. If Shannon diversity’s assumptions are violated in
camera trapping datasets, and if our novel Fractional Richness index is a
more effective measurement in the context of camera trap data, then we
would expect the predictability of Fractional Richness to be higher than
Shannon diversity when modeling that data. To effectively compare
diversity across landscapes, it is necessary to account for as many
ecologically relevant variables as possible. BioCube (Pavlick et al.,
2022) is a geospatially explicit data cube on a common global 1 km grid
(WGS-84) that comprises a large collection of ecologically relevant data
layers assembled to help predict and understand the distribution and
change of various aspects of biodiversity at broad spatial scales. Layers
in BioCube have been selected with the prerequisite that they can be
produced, or are available, at national to global scales, and that they are
related to aspects of biodiversity such as animal species diversity, plant
species and functional diversity and patterns of rare and endemic spe-
cies. BioCube includes several categories of variables that are typically
used for biodiversity modeling, such as climate, soil and geology,
topography, phenology and anthropogeny. BioCube layers were used to
validate the ecological relevance of Fractional Richness as compared to
other indices.

1.5. Objectives

In this study we use a network of 2,218 camera traps deployed
throughout Wisconsin from 2017-2022 alongside the BioCube, a
collection of geospatial data layers assembled to help predict different
aspects of biodiversity on a common 1 km grid, to map the diversity of
megafauna in Wisconsin, USA. We compare three metrics: Shannon di-
versity, species richness, and our novel metric Fractional Richness, in
their ability to parsimoniously model two semi-distinct wildlife com-
munities with inherently imbalanced species densities. Our key
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assumption is that an index that more closely reflects true ecological
patterns can be modeled more parsimoniously. Species were subset into
those which occur more often in undisturbed habitat (human-sensitive
species) and those which occur more often in modified habitat (human-
associated species) and the diversity of each of these categories were
mapped separately. We hypothesized that Fractional Richness could be
modeled more parsimoniously than Shannon diversity, and that the
difference would be most evident among human-associated species
because that community had a wider range of detection rates.

2. Methods
2.1. Fractional Richness

Our novel index, Fractional Richness, replaces the evenness
component typical of most diversity indexes with a measure of
normalized fractional population density (NFPD). Where Shannon or
Simpson diversity indices define an ideal diverse community as one
where many species are equally abundant, Fractional Richness defines
an ideal diverse community as one where many species are at high
relative population densities. What is considered to be a “high” relative
population density differs for each species, based on the average and
maximum detection rates of that species across all sites. For example, if
bobcats are never detected more often than once per week across all
sites, then a site which detects bobcats once a week has a very high
relative density of bobcats, but a site that only detects white-tailed deer
once per week would have a low relative density of deer if some sites see
20 deer per day. Detection rate for each species at a site (ds) is calcu-
lated as the total number of events with the classified species, divided by
the total number of days a camera was active at that site. To get the
fractional population density for a species, the detection rate at a site is
divided by the maximum detection rate for that species across all sites,
which means that the density of each species is calculated relative to
itself rather than other more- or less-detectable species. Fractional
population density for each species is then normalized so that the mean
is 0.5, the maximum is 1 and the minimum is zero (Fig. 1). Normalizing
the distributions accounts for the right-skewed Poisson distribution
typical of camera trap data, while simultaneously ensuring that all
species influence the index equally and reducing the impact of high

outliers. The mean fractional population density (;j\‘%) is the mean at

sites where the species occurs, excluding sites where d; = O; this ensures
that sites outside the species’ range or habitat do not skew the mean. The
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normalized fractional population densities for each species are summed
to produce the Fractional Richness for each site (Equation 1). R code for
calculating Fractional Richness can be found in the Supplementary
Materials and on GitHub (https://github.com/EnSpec/Fractional-Rich
ness). Fractional Richness can be calculated from raw camera trap
detection rates with a simple R function; no external data is needed.

1og0.5

N i i
. . Gsite i log dmaxi
FractionalRichnessg, = Z I

i—1 dmax,i

FractionalRichnessg;, = Fractional Richness at the site
i = species
n = total number of species
dyire,; = detection rate of species i at a site
dmax,i = maximum detection rate of species i across sites

dsed . . . Lo .
(—d . ) = mean fractional population density of species i across sites
i

where species i occurs
Fractional Richness behaves differently than Shannon diversity in
several key ways:

1. All species are valued equally. With Shannon Diversity, low-
density or rare species have less impact on the overall diversity
score. With Fractional Richness, all species contribute equally to the
diversity score (Fig. 2, rows C, D, E).

2. Fractional Richness increases linearly with species richness.
Shannon Diversity has a plateauing curvilinear distribution, so that
the resolution is reduced at higher species richness. Fractional
Richness has a linear relationship with species richness and performs
equally well at high and low species richness. When all species are at
their average population densities, Fractional Richness is equal to !4
species richness. When all species are at their maximum population
densities, Fractional Richness is equal to species richness (Fig. 2,
rows A, B).

3. An increase in richness or abundance always results in an in-
crease in Fractional Richness. With Shannon diversity, if the
abundances of species are very uneven, then a decrease in population
or a complete loss of the most common species can counterintuitively
result in a higher measured diversity (Fig. 2, row C). This is never the
case with Fractional Richness.

4. Population decline results in a loss of Fractional Richness. If all
species become scarce but evenness remains the same, Fractional
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Fig. 1. Visualization of how species detection distributions are normalized. A) Histogram of deer detection rates across sites. The maximum detection rate is 23.51
deer per day, but on average detection rates skew low. B) Fractional population density of deer across sites. Dividing the detection rate at each site by the maximum
detection rate fixes the range between 0 and 1. C) Normalized fractional population density (NFPD) of deer across sites. The exponent adjusts the skewness of the

distribution, setting the mean fractional population density at 0.5.


https://github.com/EnSpec/Fractional-Richness
https://github.com/EnSpec/Fractional-Richness

L.M. Berman et al.

log 0.5

0.11 0.35

g
(0.0011)10g 0. + (0.0035

Ecological Indicators 166 (2024) 112266

Detections per day at site

”~ o

0.11 0.35 2.36 23.51 0.398 4
0.008 0.02 0.08 1.9 0.249 2
0.11 0.35 2.36 0 0.535 3
0 0.35 2.36 23.51 0.372 3
0.11 0.35 0 23.51 0.105 3
0.0011 0.0035 0.0236 0.2351 0.398 1.29
N e R

log 0.5 log 0.5 log 0.5
log 0.06 0.0236Y\10g 0.03 0.2351\1og 0.08
)g +(—)g +( )g =1.29
2.36 23.51

Fig. 2. Case examples of how Shannon Diversity and Fractional Richness behave differently. A) When all species are at their maximum population densities,
Fractional Richness is equal to species richness. B) When all species are at their average population densities, Fractional Richness is equal to ' species richness. C)
When population densities are highly uneven and the most common species is lost, Shannon diversity counterintuitively increases. D, E) The loss of a low-density
species affects Shannon diversity much less than the loss of a higher-density species. A,F) If all species become scarce but evenness remains the same, Fractional
Richness decreases while Shannon diversity remains the same. Values within triangles are the actual maximum detection rates and average detection rates of bobcats,
black bears, cottontail rabbits, and white-tailed deer in the Snapshot Wisconsin database.

Richness decreases while Shannon diversity remains constant (Fig. 2,
rows A, F).

5. Species detectability does not bias the index. Practically
speaking, the measured abundance of a species, or its detection rate,
is never exactly the same as the true abundance. Some species are
more easily detectable than others. Because Fractional Richness
values all species equally, and dgjs; and dpayx,; are affected by the
same set of biases, species detectability bias is effectively canceled
out and does not affect the index, so long as a species that is present is
detected.

6. Multiple sites are required. The main drawback of Fractional
Richness when compared to Shannon diversity is that it requires
more information. Shannon diversity can be calculated for a single
site, while Fractional Richness requires either multiple sites or
multiple time points in order to calculate d,q, and mean fractional
population density.

2.2. Camera trap deployment

A total of 2,218 camera trapping sites (Bushnell TrophyCam models
119,636, 119,836 and 119,837) were established as part of the Snapshot
Wisconsin program (Townsend et al., 2021). Cameras were located on
both private and public lands throughout the state of Wisconsin, USA,
and were deployed and maintained by community scientists. Cameras
were affixed to trees 0.75-1 m above the ground, parallel to the ground,
facing north when possible, and 10-15 m from a trail. On average, there
was one camera for every 30 mi? (76 kmz), and cameras were on average
about 5 miles (9 km) apart. When motion activated, cameras recorded 3
images in quick succession, each 3-image burst was considered a single
event. Wildlife within the images were identified by community scien-
tists maintaining trail cameras, on Zooniverse by community scientists,
and more difficult species to identify (e.g., canids, mustelids) were
verified by experts. Cameras were not baited. Deployment date and

duration varied by camera site. The data collection period ranged from
January 1st 2017 until December 31st 2022, a total of 6 years. Each
camera site was active for a minimum of one year and had a minimum
coverage of 95 %. Coverage (Chao and Jost, 2012, Roswell et al., 2021)
is the estimated percentage of species occurring at the site which have
been detected, based on the number of singleton detections, and is a
measure of whether enough data has been collected to accurately
measure richness at a site. Average camera deployment duration was
978 days. Species detection rates (dsi) were calculated as the total
number of events with the classified species divided by the total number
of days a camera was active at that site. dpqy for each species was the
maximum detection rate for that species across all 2,218 camera sites.

2.3. Defining human-sensitive and human-associated species

Species were categorized as human-sensitive or human-associated
based on their relationship with Global Human Modification of Terres-
trial Ecosystems (GHM, NASA SEDAC v1; Fig. 3). Linear models were
made in R to find the relationship between GHM and species detection
rate using the formula Im(species ~ GHM), where a negative coefficient
estimate indicates a negative relationship with GHM. Coefficient esti-
mates and p-values for each species are available in the Supplementary
Materials. Communities included both mammals and large birds, since
both were detected frequently in the dataset. This semi-arbitrary com-
munity definition was selected primarily as a quantitative way of
dividing detected species into two distinct categories. Human-sensitive
species were significantly more likely to be detected in less modified
habitat and included black bears Ursus americanus, beavers Castor can-
adensis, bobcats Lynx rufus, fishers Pekania pennanti, grey foxes Urocyon
cinereoargenteus, ruffed grouse Bonasa umbellus, North American por-
cupines Erethizon dorsatum, and grey wolves Canis lupus. Human-
associated species were significantly more likely to be detected in
more modified habitat and included eastern cottontail rabbits Sylvilagus



L.M. Berman et al.

Human-sensitive species

o
»

Grouse

Detections per day
Detections per day

Porcupine
Wolt

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75
Human Landscape Modification

Human Landscape Modification

Intermediate species

0.4
0.02 15
03
Species
1.0
0.01 Bear ;
Beaver i
Mink
Bobceat Species
3 Opossum
Fisher Deer
. I Raccoon
l GreyFox s Turkey

Ecological Indicators 166 (2024) 112266

Human-associated species

Species

Cottontail
Coyote

o

o

RedFox

Detections per day

SandCrane

Squirrel
Woodchuck

0.75 1.00 000 025 050 075 1.00

Human Landscape Modification

Fig. 3. Relationship between species’ detection rates and human landscape modification. Human-sensitive species: species with a significant negative relationship
with landscape modification. Human-associated species: species with a significant positive relationship with landscape modification. Intermediate species: species
which are most abundant at intermediate levels of landscape modification. The y-axis is on a logarithmic scale to make the lower-density species more visible.

floridanus, coyotes Canis latrans, American mink Neovison vison, Virginia
opossums Didelphis viginiana, raccoons Procyon lotor, red foxes Vulpes
vulpes, sandhill cranes Antigone canadensis, squirrels Sciuridae, and
woodchucks Marmota monax. Due to the inherent ambiguity of camera
trap images in regard to small mammals, squirrels were not identified to
species level. Some species, including white-tailed deer Odocoileus vir-
ginianus and turkeys Meleagris gallopavo, did not show a clearly positive
or negative correlation with Global Human Modification and were not
included in either human-sensitive or human-associated species cate-
gories. Overall diversity indices include all species listed here; human-
sensitive species, human-associated species, as well as white-tailed
deer and turkeys.

2.4. Geospatial predictor variables

Predictor variables used to model biodiversity maps were obtained
from BioCube, an open-source data cube framework integrating many
geospatial data layers on a shared 1 km raster grid, specifically devel-
oped for modeling and understanding biodiversity patterns (Pavlick
et al., 2022). Geospatial layer values at camera locations were consid-
ered to be the weighted average of pixel values within a 500 m radius of
each camera, where weighting was determined by how much of the pixel
fell within the 500 m radius. We used a total of 177 geospatial data
layers during model selection, see details in the Supplementary Mate-
rials. This large contingent of predictor variables was used to ensure that
the final models were of the highest possible quality, in order to validate
the usefulness of the Fractional Richness index.

We used 71 soil variables from SoilGrids 250 m v2 describing cation
exchange capacity, soil nitrogen content, organic carbon density, soil
PH, organic carbon density, organic carbon stocks, and proportion of
clay, silt, sand, and coarse fragments at depths from 0 cm to 200 cm
(SoilGrids, Poggio et al., 2021). We reprojected and regridded the 250 m
SoilGrids layers to the 1 km WGS-84 BioCube grid using bilinear
resampling. We used 10 topographical variables describing aspect
northness, elevation, curvature, roughness, slope and TPI (EarthEnv,
Amatulli et al., 2018).

We used 49 bioclimatic variables describing air temperature, sea-
sonality, isothermality, precipitation, growing degree days, snow cover
and frost change frequency (CHELSA BioClim v2.1, Karger et al., 2017),
potential evapotranspiration, aridity, continentality, emberger’s plu-
viothermic quotient, and thermicity index (ENVIREM, Title and

Bemmels, 2018), cloud cover (EarthEnv, Wilson and Jetz, 2016), and
MODIS winter habitat indices snow season length, snow cover vari-
ability, and percent frozen ground without snow (SILVIS, Zhu et al.,
2017, Gudex-Cross et al., 2021) at 1 km, matching the BioCube grid. We
used 25 phenological variables describing cumulative, minimum and
seasonality of normalized difference vegetation index, enhanced vege-
tation index, fraction of absorbed photosynthetically active radiation,
leaf area index, and gross primary productivity at 1 km (SILVIS, Hobi
etal., 2017, Radeloff et al., 2019). As well as the start, end, duration, and
amplitude of photosynthetic activity in the canopy at 250 m (USGS
EROS 2018, https://doi.org/10.5066/F7PC30G1). We regridded the
250 m USGS phenology layers to the 1 km BioCube grid.

We used 22 anthropogenic variables describing human population
count and population density (GPW,CIESIN, 2018), nighttime lights (Li
et al., 2020), contextual intactness (Mokany et al., 2020), on-road CO2
emissions (Gately et al. 2019), global human modification of terrestrial
systems (Kennedy et al., 2019,2020), biodiversity intactness (Newbold
et al., 2016), existing and impacting sound (Mennitt et al., 2014), access
to cities (Weiss et al., 2018) and land use proportions categorized into
cropland, pasture, primary land cover, secondary land cover, and urban
areas (Hoskins et al., 2015,2016), agriculture, built-up, energy pro-
duction, human intrusions, and transportation (Theobald et al., 2020).

2.5. Model selection

Of the 2,218 camera locations, a random 70 % were sampled without
replacement to be used as training data and the remaining 30 % were set
aside as test data. Nine models were made: Shannon diversity, species
richness, and Fractional Richness, of human-sensitive species, human-
associated species, and all species. Due to the computational
complexity of performing best subset selection on 177 predictors, the
best performing model was chosen from a hybrid stepwise selection. For
each diversity metric, geospatial variables were prioritized by making
single-variable linear models for each variable and sorting by r-squared,
highest r-squared values being first. To make the full model, starting
with the variable having the highest r-squared value, variables were
added one at a time. After each addition, variables were checked for
statistical significance and collinearity, and the updated model was
judged based on AIC and accuracy against the test dataset: If the addi-
tion of a new variable caused any variable to become insignificant (p >
0.05), the least significant variable was removed. If any two spatial
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variables in the model were more than 80 % similar, the least significant
of the two was removed. If the addition of the new variable did not
improve the AIC score, the variable was removed. Predicted values
based on training data were compared with measured values from the
test dataset, and if correlation between the two did not increase, the
newest variable was removed. Variables were added in this manner until
all 177 spatial variables had the opportunity to be incorporated into the
model. The entire model selection process was executed through a loop
code in R using a set seed for randomization of test and training data to
ensure the process was reproducible. Most final models had 10 or fewer
coefficients. The model selection code is available in the Supplementary
Materials.

2.6. Comparison of diversity indexes

It was assumed that a more valid and informative index which re-
flects true ecological dynamics in the landscape would contain less
stochasticity and follow ecologically relevant landscape variables more
closely, and therefore could be modeled more parsimoniously. To
determine whether one index was significantly and consistently more
accurate than another, 10 iterations of each model were made. Training
and test data were re-randomized and model selection repeated 10 times
to create 10 iterations of each model, for a total of 90 models (3 indices x
3 species communities x 10 iterations). Iterations were used to deter-
mine the average model accuracy of each model type. Model accuracy
was measured as the correlation between predicted values based on
training data and measured values from test data, where higher values
indicated higher model accuracy.

3. Results
3.1. Community evenness

The community of human-associated species had highly uneven
detection rates between species. The average community evenness
across sites was 0.65 (SD = 0.17) and the maximum detection rates
ranged across three orders of magnitude. In contrast, the community of
human-sensitive species was more even. Average evenness across sites
was 0.72 (SD = 0.20) and maximum detection rates stayed primarily
within the same order of magnitude (Table 1).

Table 1
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3.2. Model accuracy

Species communities and diversity indices differed in how easily they
could be modeled by geospatial variables (Fig. 4). All three diversity
indexes could be modeled fairly accurately for Human-sensitive species,
but differed significantly in their accuracy for Human-associated species
(Fig. 5). Fractional Richness performed significantly better than species
richness (t-test, p = 1.8e-5) for Human-associated species, while Shan-
non performed significantly worse than both Fractional Richness (t-test,
p = 1.8e-5) and Richness (t-test, p = 2.6e-7) (Fig. 5). None of the di-
versity indexes were able to make accurate models of the overall species
community: correlation between test data and model predictions was
less than 25 % for all models of this type. Best models used 11 or fewer
predictor variables. Model summary statistics can be found in the Sup-
plementary Materials.

3.3. Partial dependence of geospatial variables

Human-associated species and Human-sensitive species diversity
models showed nearly opposite patterns of diversity (Fig. 6) and were
correlated with different geospatial variables. In models using a single
variable to predict diversity, climate variables tended to have the
highest r-squared values. Overall, the variables which were most
frequently incorporated into best models included minimum enhanced
vegetative index with quality assessment (EVIQA_2, 30/90 models),
mean monthly potential evapotranspiration of the coldest quarter
(PETColdQuart, 25/90 models), and seasonality of normalized differ-
ence vegetative index (NDVIQA_3, 24/90 models). When modeling
human-associated species, the most frequently incorporated variables
were NDVIQA_3 (20/30 models), and PETColdQuart (18/30 models), as
well as global human modification (18/30 models). For human-sensitive
species, the best variables were EVIQA_2 (26/30 models), contextual
intactness (15/30 models) and mean daily air temperature of the coldest
quarter (15/30 models). Details on specific models and variables are
available in the Supplementary Materials.

4. Discussion

Our novel Fractional Richness index is similar to diversity indices in
that it incorporates both abundance and species richness information

Maximum detection rates and mean fractional population density of each species. Smaller mean fractional population density values indicate a distribution skewed
further towards zero. Deer and Turkey are commonly detected species, but were not placed in either the human-associated or human-sensitive species categories
because these two species did not have a significant linear relationship with Human Landscape Modification.

Species Amax.i

Maximum detections per day

(d_me_i ) Community Evenness
inax i

Mean Fractional Population Density

Human-sensitive Bear 0.35
Beaver 0.41
Bobcat 0.11
Fisher 0.24
Grey Fox 0.53
Grouse 0.09
Porcupine 0.17
Wolf 0.64
Human-associated Cottontail 2.36
Coyote 0.91
Mink 0.26
Opossum 1.01
Raccoon 6.37
Red Fox 1.23
Sandhill Crane 0.93
Squirrel 3.71
Woodchuck 0.06
Deer 23.51

Turkey 3.35

0.06 Mean = 0.72
0.07 (SD = 0.20)
0.08

0.03

0.02

0.07

0.05

0.02

0.03 Mean = 0.65
0.07 (SD =0.17)
0.03

0.04

0.03

0.01

0.03

0.06

0.07

0.08

0.04
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Fig. 4. Raw point maps of A) Shannon diversity of all species, B) Fractional Richness of all species, C) Species richness of all species, D) Shannon diversity of human-
sensitive species, E) Fractional Richness of human-sensitive species, F) Species richness of human-sensitive species, G) Shannon diversity of human-associated species,
H) Fractional Richness of human-associated species, I) Species richness of human-associated species. Shannon = Shannon diversity. FRichness = Fractional Richness.
Richness = species richness. Human-sensitive species include black bear, beaver, bobcat, fisher, grey fox, grouse, porcupine, and grey wolf. Human associated species
include cottontail rabbit, coyote, mink, opossum, raccoon, red fox, sandhill crane, squirrel, and woodchuck. ‘All species’ includes all members of both the human-
associated and human-sensitive species communities, plus white-tailed deer and turkey. Each point represents one of the 2,218 camera trap locations. Generated
using Mapview v 2.11.2 (Appelhans et al., 2023). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

but differs from true diversity indices because it does not measure the
entropy of the system (Jost, 2006). All true diversity indices essentially
address the question: when selecting an individual at random from the
community, how accurately can one predict the species? Entropy is a
useful measure when studying a system like, for example, trees in a
forest, where the presence of one species in one location necessarily
precludes the presence of another, but wildlife does not saturate the
landscape in the same way flora does. Our index fills a similar function
to diversity indices, but is mathematically distinct and has properties

better attuned to the dynamics of wildlife. Fractional Richness is
designed to handle datasets with highly uneven detection rates among
species, inherently different population densities due to the presence of
multiple trophic levels or a wide range of body sizes, and communities
where not all species are equally easily detected. Fractional Richness is
also sensitive to population decline.

To assess the ability of our index to handle these sorts of datasets, we
looked at two semi-distinct wildlife communities in Wisconsin, USA:
human-sensitive species and human-associated species. Of these two
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Fig. 5. Accuracy of best models for each diversity index and species cohort. Box plots show accuracy across 10 iterations of each model type. Accuracy is the

correlation between measured test data and model predictions.
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Fig. 6. Predicted Fractional Richness maps of A) Human-sensitive species and B) Human-associated species. Values for each pixel are averaged across 10 model
iterations. Human-sensitive species include black bears, beavers, bobcats, fishers, grey foxes, grouse, porcupines, and wolves. Human-associated species include
cottontail rabbits, coyotes, minks, opossums, raccoons, red foxes, sandhill cranes, squirrels, and woodchucks. Fractional Richness is equal to ! species richness when
all species are at average population density. Pixels from built-up urban areas and water bodies were excluded from the prediction. Cor = average Pearson’s cor-
relation between predicted values and measured test data of the 10 model iterations. R? = average r-squared of the 10 model iterations. Generated using Mapview v
2.11.2 (Appelhans et al., 2023). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

communities, human-associated species had a less obvious pattern of
diversity across the landscape (Fig. 4), and had a more severe case of the
complications which make evenness, and by extension Hill family in-
dexes like Shannon diversity, less informative: Maximum detection rates
ranged across three orders of magnitude (Fig. 2, Table 1) and were
significantly impacted by how easily each species was detectable by

camera traps. These same complications were present among the com-
munity of human-sensitive species, but to a lesser extent.

We modeled Shannon diversity, Fractional Richness, and Species
richness of human-sensitive species, human-associated species, and the
overall species community, under the assumption that a diversity index
that more accurately reflects true ecological patterns should be able to
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be modeled more parsimoniously. Fractional Richness could accurately
be modeled for the highly uneven community of human-associated
species, while Shannon diversity could not.

4.1. When imbalance is minor, traditional indexes work well

The community of human-sensitive species exhibited very clear dif-
ferences in diversity across the landscape (Fig. 4). Many species were
entirely absent from the southern reaches of the state, which allowed
geospatial patterns to be modeled quite well with simple species rich-
ness, even before considering the abundance components of Shannon
diversity (evenness) and Fractional Richness (NFPD). Because the rich-
ness component of the indices played a prominent role in this context,
the differences between indices were less evident. All three indexes
showed a north-south pattern which was clear even in the raw point
data before modeling. All three indexes, including Shannon, could be
modeled parsimoniously (Fig. 5), reflecting that the signal-to-noise ratio
was comparatively high. The stochasticity introduced by idiosyncrasies
of the diversity metric or other factors was small compared to the overall
trend in diversity across the landscape. Shannon’s index is one of the
most popular diversity indexes implemented in ecology and has suc-
cessfully produced informative results across countless studies for de-
cades. Other Hill family diversity indexes, including Simpson’s index
and the Berger-Parker index, are similarly valuable (Keylock, 2005).
Shannon diversity assumes that sampling is not biased towards any
species and that all species have the same maximum population density.
When these assumptions are violated, as they often are in wildlife and
camera trapping studies, it may be more appropriate to use an alterna-
tive index.

4.2. When imbalance is severe, evenness can be detrimental

For our more imbalanced community (human-associated species),
the pattern of diversity across the landscape was more nuanced, with a
lower signal-to-noise ratio, making it more difficult to accurately model
diversity. In this more-difficult-to-model community the differences
between indices can be seen more clearly. Shannon diversity performed
significantly worse than both simple species richness (t-test, p = 2.6e-7)
and Fractional Richness (t-test, p = 1.8e-5, Fig. 5), suggesting that the
evenness component of the index, rather than contributing useful in-
formation, may have instead introduced an element of stochasticity.
Shannon diversity can behave counterintuitively when species are
highly uneven (Fig. 2), or when evenness is biased by detectability.

4.3. When imbalance is severe, Fractional Richness provides an effective
measure of diversity

Fractional Richness performed significantly better than both richness
and Shannon diversity for our highly imbalanced community (human-
associated species), suggesting that Fractional Richness is indeed robust
to many of the complications in the dataset which make evenness less
informative (Fig. 5), and is able to take species detection rates into ac-
count in an ecologically informative way even when detectability and
maximum population density vary by species.

4.4. Human-associated species and human-sensitive species had opposite
patterns of diversity

The predicted diversity maps of human-sensitive and human-
associated species were nearly inverse of each other (Fig. 6), with sen-
sitive species most diverse in northern WI and associated species most
diverse in southern WI. Most likely, this inverse pattern was the reason
model accuracy of the overall species community was low across all
index types (Fig. 5).
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4.5. Comparison with other diversity indexes

There are other biodiversity indexes which account for species
abundances without using evenness, similar to Fractional Richness. The
Biodiversity Intactness Index (BII, Scholes & Biggs, 2005), the Natural
Capital Index (NCI, Ten Brink, 2003), the IUCN Red List Index (Baillie
et al., 2008, Butchart et al., 2004,2007), the Living Planet Index (Loh
et al., 2005), and the Wild Bird Index (Gregory et al., 2003,2005,2008)
all measure current abundances as a ratio against some baseline, such as
pre-industrial population density, to estimate the degree of population
decline. However, unlike Fractional Richness, these indexes require
external data or expert opinion to estimate what the detection rate of a
robust population should be, and cannot be calculated from raw camera
trap data. Using historical population densities as a baseline can be
useful in the context of some conservation-oriented studies, and while
Fractional Richness does not require this kind of external data, the
estimated detection rate at historic densities can be used in place of djqx
to show how population has declined over time.

There are also existing biodiversity indexes designed for use with
camera trap data, most notably the Wildlife Picture Index (WPI, O’Brien
et al., 2010). WPI is the average increase or decrease in detection rates
across species compared to the detection rate during the first year of data
collection. Neither WPI nor Fractional Richness uses evenness, avoiding
the issue of variable detectability between species. However, Fractional
Richness has a number of features that WPI lacks. WPI focuses on
changes in population density and poorly handles differences in rich-
ness. WPI depends on arbitrary near-zero placeholder values to produce
valid results when zeros occur in a dataset (O’Brien et al., 2010) — zeros
occur any time a species is present at some sites but not others, or when a
species goes extinct or is introduced partway through the time series.
The other major differences between these indexes may be due to their
slightly different intended uses: WPI was designed for time series data,
to track changes in a single site over time, while Fractional Richness is
designed to effectively compare many sites. Only Fractional Richness
normalizes the poisson distribution typical of camera trap data, but this
correction is less necessary when analyzing data from a single site.

4.6. Assumptions of the index

Fractional Richness assumes that there are robust populations of
each species somewhere within the network of study sites, but if habitat
is degraded throughout the network of sites, or if the network contains
only marginal habitat for some species, then the measured d;;q, may not
reflect true maximum population density. This sometimes-flawed
assumption generally only becomes problematic when comparing
Fractional Richness values calculated separately using different values
of dqy for the same species. It is better to recalculate Fractional Richness
if additional sites are added to the network, especially if population
densities are higher at the new sites. For example, if one study measured
Fractional Richness for a camera trap network in Yellowstone National
Park, WY, and another measured Fractional Richness in Wisconsin, these
studies might have different dp,q, values for wolves, and comparing wolf
NFPD values without using a shared d,q, could give the false impression
that wolf populations in Yellowstone and Wisconsin are the same. The
best practice approach would be to treat all sites as if they belonged to
the same network and recalculate dp,y for each species.

Fractional Richness also assumes that all cameras have equal
detection capabilities. Factors like field of view, proximity to game
trails, and trigger sensitivity can introduce stochasticity when they differ
between cameras. In situations where, for example, some cameras are
deployed in grasslands with a very large field of view, and other cameras
are deployed in dense forest with a very small field of view, Fractional
Richness estimates may be biased towards grassland habitat if field of
view is not accounted for. In our camera trap network, all cameras were
deployed in forest and had fields of view that were similar, but not
identical. All cameras were of the same model, using the same settings,
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and were deployed using a uniform protocol. Nevertheless, camera trap
placement inevitably influenced the detection rate at individual cameras
to some extent and may account for some of the stochasticity in the data
which could not be predicted by any model.

It is also assumed that detection rate is a function of population
density. However, behavior and activity also influence camera trap
detection rates. When calculating Fractional Richness care should be
taken to ensure that the periods of data collection are comparable across
sites in regard to diel and seasonal cycles. For example, camera traps
that were active only during the summer would be expected to have
higher detection rates of bears than camera traps which were active only
during the winter.

4.7. Conceptual issues

Fractional Richness measures the effective richness of a community,
and defines a healthy biodiverse ecosystem as one which can support the
most species at the highest densities. It does not account for situations
where species presence or high density is undesirable. The presence of
an invasive species can cause Fractional Richness to increase, so long as
that invasive species does not cause population declines or extirpation of
any other species. Species that tend towards overpopulation will
contribute most to the Fractional Richness value at sites where their
population is highest, and again can cause Fractional Richness to in-
crease so long as the overpopulation of that species does not cause
decline in any other species.

Fractional Richness also values all species equally. This is generally
seen as a strength of the index, but from a conservation perspective
certain species may be valued more than others. In the context of con-
servation work, it may be appropriate to selectively exclude species
which are associated with human disturbance, as they frequently have
distributions distinct from species of higher conservation priority (Fig. 6,
Dobson et al., 1997). In Wisconsin, most species of conservation priority,
such as grey wolves and fishers, were most abundant in the less
disturbed northern reaches of the state. While species of low conserva-
tion concern like raccoons and Virginia opossums had a nearly opposite
pattern of abundance. Attempting to measure the diversity of the overall
species community failed to reveal any spatial pattern of high-diversity
habitat across the state (Fig. 4) because the northern and southern
communities effectively balance each other. In order to use Fractional
Richness in an ecologically informative way, it is still necessary to have a
knowledge of factors such as ecotones which influence the ecosystem
being analyzed.

Fractional Richness uses the average detection rate of a species to
adjust the skewness of the distribution. This is something to keep in
mind if using time-series data, especially for species in decline, because
the historic average population density of a species is often different
from the overall average population density of a species. Consider, for
example, a reintroduction effort in a park where fishers were nearly
extirpated 20 years ago. The average detection rate of fishers over the
last 20 years would be significantly lower than the average rate more
than 20 years ago. Managers might prefer to use only the historical
average detection rate from more than 20 years ago when judging the
effectiveness of their reintroduction efforts. When a species is at a low
population density for a long time, the average detection rate tends to
decrease, which can lead the index to treat intermediate values more
favorably.

5. Conclusions

Fractional Richness is a novel biodiversity metric intended for use
with large camera trap networks. It uses normalized fractional popula-
tion density (NFPD) rather than evenness to account for species detec-
tion rates. Fractional Richness is highest when a large number of species
are at their maximum population densities, and increases linearly with
species richness. It normalizes the Poisson distribution typical of camera
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trap data rather than assuming population density will be directly pro-
portional to detection rate. Fractional Richness provides robust,
ecologically relevant biodiversity estimates even when detectability
varies by species, or when maximum population density varies by orders
of magnitude between species. To the best of our knowledge, this is the
only diversity index to do so without depending on large amounts of
external data or expert opinion.

6. Statement on Inclusion

Our study includes authors based in the country where the study was
carried out.
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