
Ecological Indicators 166 (2024) 112266

Available online 27 June 2024
1470-160X/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Original Articles 

Fractional Richness: An index for camera trap networks 

Laura Marie Berman a,b,1,*, Fabian D Schneider b,2, Ryan P. Pavlick b,3, Jennifer Stenglein c,4, 
Ryan Bemowski c,5, Morgan Dean b,d,6, Philip A Townsend a,7 

a University of Wisconsin–Madison, Madison, WI, USA 
b Jet Propulsion Laboratory, California Institute of Technology, CA, USA 
c Wisconsin Department of Natural Resources, WI, USA 
d University of California, Los Angeles, Los Angeles, CA, USA   

A R T I C L E  I N F O   

Keywords: 
Fractional Richness 
Detectability 
Camera trapping 

A B S T R A C T   

Camera trapping networks have the potential to monitor wildlife diversity at large scales. However, their efficacy 
in detecting different species varies, leading to considerable disparities in population density estimates. 
Furthermore, species of different trophic levels and body sizes naturally occur at different densities, challenging 
the evenness assumptions inherent in conventional diversity indices. Here we present a novel index: Fractional 
Richness, which is specifically designed for application in extensive camera trap networks. The index addresses 
situations where evenness is uninformative, for example in communities characterized by multiple trophic levels, 
diverse body sizes, variable population densities, or other complications. To determine the effectiveness of our 
Fractional Richness index, we modeled spatial patterns of Shannon diversity, species richness, and Fractional 
Richness for two wildlife communities in Wisconsin USA to quantitatively measure which index best reflected 
ecologically relevant landscape patterns. One community was much more uneven than the other, with detection 
rates ranging across three orders of magnitude. The more even community could be modeled accurately with 
both Shannon diversity and Fractional Richness, but the highly uneven community could only be modeled 
accurately with Fractional Richness. Maximum population density varies by species, and most wildlife survey 
methods are not equally capable of detecting all species. In communities with both high and low-density species, 
or when detectability varies, evenness may not be the most informative measure. In these situations, Fractional 
Richness may be a more suitable index.   

1. Introduction 

Understanding where species diversity is highest, and what factors 
facilitate high diversity in an ecosystem, is a high priority question in the 
field of conservation ecology. Measuring global declines in species di
versity, shifts in community abundances, and successfully assessing 
progress towards conservation and restoration goals all depend on 
reliable and intuitive indexes of diversity. However, typical indexes 
neglect a key aspect of ecosystem health: population density and 

decline. Species across plant and animal taxa are suffering from popu
lation declines on a global scale, and the field of ecology would benefit 
from an index which measures the robustness of populations in a com
munity, in addition to traditional measures like Shannon diversity and 
species richness. Typical diversity indexes which incorporate measures 
of evenness also struggle to intuitively predict wildlife diversity when 
not all species are equally easily detected, or when maximum population 
density varies between species. Using megafauna in the state of Wis
consin, USA, as a case study, we present a novel index which is sensitive 
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to population declines and can be used effectively when evenness proves 
uninformative. 

1.1. Modeling diversity in large camera trap networks 

The use of camera traps has increased exponentially in recent de
cades (Burton et al., 2015) with camera trapping networks established 
across the globe (e.g. Ahumada et al., 2011, McShea et al., 2016) and 
ongoing efforts to coordinate existing camera trapping efforts into still 
larger networks (Steenweg et al., 2017, Cove et al., 2021). This study 
uses data from Snapshot Wisconsin, a network of camera traps deployed 
throughout WI, USA, and maintained by community scientists in an 
effort to promote wildlife monitoring, research, community involve
ment and education (Townsend et al., 2021). Camera trap networks 
have the potential to monitor wildlife species diversity on large scales, so 
long as their limitations and biases are accounted for in diversity in
dexes. Most camera trap studies implicitly assume that all species are 
equally detectable (Burton et al., 2015), but detection rates are affected 
by a number of factors, including body size (Rowcliffe & Carbone, 2008, 
Tobler et al., 2008), range size (Popescu et al., 2014), heat signature 
(Welbourne et al., 2016), movement characteristics (Rowcliffe & Car
bone, 2008), behavioral response to trail cameras (Hofmeester et al., 
2019), and the amount of time spent on the ground for semi-arborial, 
scansorial, and fossorial species. Camera trap placement (Sollmann 
et al., 2013) can also favor particular species. Detection rate is affected 
by detectability and may not be directly related to population density. 
All these factors bias indices like Shannon diversity. 

Furthermore, maximum population density varies greatly by species, 
sometimes by orders of magnitude. A healthy ecosystem with robust 
populations would be expected to have higher densities of mice than 
deer, and higher densities of deer than wolves. Species with larger body 
mass and at higher trophic levels typically occur at lower densities. 
Typical diversity indexes, including Shannon (1948), Simpson (1949), 
and other Hill family indexes (Jost, 2006, Hill, 1973), define an ideal 
diverse community as one where all species occur at equal densities, and 
implicitly assume that the maximum population density of all species is 
the same. In the context of many wildlife studies, but in camera trap 
networks in particular, the assumptions of equal detectability and equal 
maximum population density are often violated. In these contexts, using 
evenness as a component in diversity metrics can produce counterin
tuitive results. 

1.2. A novel index 

Here, we present a novel index: Fractional Richness. Fractional 
Richness goes a step beyond simple species richness in that it accounts 
for abundances, but unlike typical biodiversity indices which measure 
the evenness of species, Fractional Richness uses normalized fractional 
population density (NFPD) to measure how robust or scarce a popula
tion is at a particular site in relation to its own maximum population 
density across sites. Our index weighs all species equally, regardless of 
population density or detectability, and is intended to replace Hill- 
family indexes like Shannon diversity in contexts where evenness is 
uninformative. We use Wisconsin, USA as a case study to compare our 
index with both Shannon diversity and species richness in their ability to 
quantify two wildlife communities with different levels of evenness. 

1.3. Wisconsin’s north–south ecoclimatic and land-use tension zone 

Wisconsin has a well-described ecotone between the forested 
northeast and prairie/savannah southwest (Curtis, 1959), often called a 
“tension zone” (Livingston, 1903), resulting in distinct plant and animal 
assemblages in each ecoregion (Temple and Temple, 1986). However, 
anthropogenic influences also exert a significant impact on species dis
tributions and abundances (Boivin et al., 2016), and recent land use 
history plays an important role in current mammal distributions in the 

study region. During pre-colonial times, wolves, black bears, fishers, 
bobcats, and porcupines occurred throughout Wisconsin (Jackson and 
Lepage, 1961), but intensive logging and agricultural conversion 
deforested the majority of the state (Allosso, 2019, Conzen, 2014, Kurta, 
1995), causing these forest-dependent species to constrict their ranges 
northwards. The extensive agricultural conversion of southern Wiscon
sin caused white-tailed deer and coyotes to become more abundant, led 
species including eastern cottontails to expand their northern range 
boundaries, and allowed species like virginia opossums, which had 
previously never occurred in the state, to flourish (Jackson and Lepage, 
1961, Kurta, 1995). Today, Wisconsin is divided more or less north to 
south, with the north containing intact forest and the south having been 
converted mostly into settlements and farmland. In addition to the 
north–south divide in land use, the vegetative ecotone between northern 
mixed coniferous forests and southern dry prairie-hardwood (Curtis & 
McIntosh, 1951) coincides with the southern range boundary of mam
mals like Snowshoe Hares. These southern range boundaries have been 
creeping northwards through a combination of habitat loss and climate 
change (Sultaire et al., 2016). This divide creates two semi-distinct 
wildlife communities within the state, with human-sensitive species 
being much more abundant in the northern forests, and human- 
associated species (Gallo et al., 2017) much more abundant in the 
south. As will be illustrated in the results, attempting to map the di
versity of Wisconsin without acknowledging the high turnover in species 
abundances across this ecotone proves uninformative. For that reason, 
in this study species were categorized into one of two communities: 
human-sensitive species in the north, and human-associated species in 
the south. 

1.4. BioCube geospatial layers 

Landscape context is central to any analysis of biodiversity indices. A 
biodiversity index whose assumptions have been violated will not al
ways produce ecologically intuitive values, and as a consequence may 
not exhibit consistent correlations with ecologically relevant variables 
across the landscape. If Shannon diversity’s assumptions are violated in 
camera trapping datasets, and if our novel Fractional Richness index is a 
more effective measurement in the context of camera trap data, then we 
would expect the predictability of Fractional Richness to be higher than 
Shannon diversity when modeling that data. To effectively compare 
diversity across landscapes, it is necessary to account for as many 
ecologically relevant variables as possible. BioCube (Pavlick et al., 
2022) is a geospatially explicit data cube on a common global 1 km grid 
(WGS-84) that comprises a large collection of ecologically relevant data 
layers assembled to help predict and understand the distribution and 
change of various aspects of biodiversity at broad spatial scales. Layers 
in BioCube have been selected with the prerequisite that they can be 
produced, or are available, at national to global scales, and that they are 
related to aspects of biodiversity such as animal species diversity, plant 
species and functional diversity and patterns of rare and endemic spe
cies. BioCube includes several categories of variables that are typically 
used for biodiversity modeling, such as climate, soil and geology, 
topography, phenology and anthropogeny. BioCube layers were used to 
validate the ecological relevance of Fractional Richness as compared to 
other indices. 

1.5. Objectives 

In this study we use a network of 2,218 camera traps deployed 
throughout Wisconsin from 2017–2022 alongside the BioCube, a 
collection of geospatial data layers assembled to help predict different 
aspects of biodiversity on a common 1 km grid, to map the diversity of 
megafauna in Wisconsin, USA. We compare three metrics: Shannon di
versity, species richness, and our novel metric Fractional Richness, in 
their ability to parsimoniously model two semi-distinct wildlife com
munities with inherently imbalanced species densities. Our key 
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assumption is that an index that more closely reflects true ecological 
patterns can be modeled more parsimoniously. Species were subset into 
those which occur more often in undisturbed habitat (human-sensitive 
species) and those which occur more often in modified habitat (human- 
associated species) and the diversity of each of these categories were 
mapped separately. We hypothesized that Fractional Richness could be 
modeled more parsimoniously than Shannon diversity, and that the 
difference would be most evident among human-associated species 
because that community had a wider range of detection rates. 

2. Methods 

2.1. Fractional Richness 

Our novel index, Fractional Richness, replaces the evenness 
component typical of most diversity indexes with a measure of 
normalized fractional population density (NFPD). Where Shannon or 
Simpson diversity indices define an ideal diverse community as one 
where many species are equally abundant, Fractional Richness defines 
an ideal diverse community as one where many species are at high 
relative population densities. What is considered to be a “high” relative 
population density differs for each species, based on the average and 
maximum detection rates of that species across all sites. For example, if 
bobcats are never detected more often than once per week across all 
sites, then a site which detects bobcats once a week has a very high 
relative density of bobcats, but a site that only detects white-tailed deer 
once per week would have a low relative density of deer if some sites see 
20 deer per day. Detection rate for each species at a site (dsite) is calcu
lated as the total number of events with the classified species, divided by 
the total number of days a camera was active at that site. To get the 
fractional population density for a species, the detection rate at a site is 
divided by the maximum detection rate for that species across all sites, 
which means that the density of each species is calculated relative to 
itself rather than other more- or less-detectable species. Fractional 
population density for each species is then normalized so that the mean 
is 0.5, the maximum is 1 and the minimum is zero (Fig. 1). Normalizing 
the distributions accounts for the right-skewed Poisson distribution 
typical of camera trap data, while simultaneously ensuring that all 
species influence the index equally and reducing the impact of high 

outliers. The mean fractional population density 
(

dsite,i
dmax,i

)

is the mean at 

sites where the species occurs, excluding sites where di = 0; this ensures 
that sites outside the species’ range or habitat do not skew the mean. The 

normalized fractional population densities for each species are summed 
to produce the Fractional Richness for each site (Equation 1). R code for 
calculating Fractional Richness can be found in the Supplementary 
Materials and on GitHub (https://github.com/EnSpec/Fractional-Rich 
ness). Fractional Richness can be calculated from raw camera trap 
detection rates with a simple R function; no external data is needed. 

FractionalRichnesssite =
∑n

i=1

(
dsite,i

dmax,i

)

log0.5

log

(
dsite,i
dmax,i

)

FractionalRichnesssite = Fractional Richness at the site 
i = species 
n = total number of species 
dsite,i = detection rate of species i at a site 
dmax,i = maximum detection rate of species i across sites 
(

dsite,i
dmax,i

)

= mean fractional population density of species i across sites 

where species i occurs 
Fractional Richness behaves differently than Shannon diversity in 

several key ways:  

1. All species are valued equally. With Shannon Diversity, low- 
density or rare species have less impact on the overall diversity 
score. With Fractional Richness, all species contribute equally to the 
diversity score (Fig. 2, rows C, D, E).  

2. Fractional Richness increases linearly with species richness. 
Shannon Diversity has a plateauing curvilinear distribution, so that 
the resolution is reduced at higher species richness. Fractional 
Richness has a linear relationship with species richness and performs 
equally well at high and low species richness. When all species are at 
their average population densities, Fractional Richness is equal to ½ 
species richness. When all species are at their maximum population 
densities, Fractional Richness is equal to species richness (Fig. 2, 
rows A, B). 

3. An increase in richness or abundance always results in an in
crease in Fractional Richness. With Shannon diversity, if the 
abundances of species are very uneven, then a decrease in population 
or a complete loss of the most common species can counterintuitively 
result in a higher measured diversity (Fig. 2, row C). This is never the 
case with Fractional Richness.  

4. Population decline results in a loss of Fractional Richness. If all 
species become scarce but evenness remains the same, Fractional 

Fig. 1. Visualization of how species detection distributions are normalized. A) Histogram of deer detection rates across sites. The maximum detection rate is 23.51 
deer per day, but on average detection rates skew low. B) Fractional population density of deer across sites. Dividing the detection rate at each site by the maximum 
detection rate fixes the range between 0 and 1. C) Normalized fractional population density (NFPD) of deer across sites. The exponent adjusts the skewness of the 
distribution, setting the mean fractional population density at 0.5. 
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Richness decreases while Shannon diversity remains constant (Fig. 2, 
rows A, F).  

5. Species detectability does not bias the index. Practically 
speaking, the measured abundance of a species, or its detection rate, 
is never exactly the same as the true abundance. Some species are 
more easily detectable than others. Because Fractional Richness 
values all species equally, and dsite,i and dmax,i are affected by the 
same set of biases, species detectability bias is effectively canceled 
out and does not affect the index, so long as a species that is present is 
detected.  

6. Multiple sites are required. The main drawback of Fractional 
Richness when compared to Shannon diversity is that it requires 
more information. Shannon diversity can be calculated for a single 
site, while Fractional Richness requires either multiple sites or 
multiple time points in order to calculate dmax and mean fractional 
population density. 

2.2. Camera trap deployment 

A total of 2,218 camera trapping sites (Bushnell TrophyCam models 
119,636, 119,836 and 119,837) were established as part of the Snapshot 
Wisconsin program (Townsend et al., 2021). Cameras were located on 
both private and public lands throughout the state of Wisconsin, USA, 
and were deployed and maintained by community scientists. Cameras 
were affixed to trees 0.75–1 m above the ground, parallel to the ground, 
facing north when possible, and 10–15 m from a trail. On average, there 
was one camera for every 30 mi2 (76 km2), and cameras were on average 
about 5 miles (9 km) apart. When motion activated, cameras recorded 3 
images in quick succession, each 3-image burst was considered a single 
event. Wildlife within the images were identified by community scien
tists maintaining trail cameras, on Zooniverse by community scientists, 
and more difficult species to identify (e.g., canids, mustelids) were 
verified by experts. Cameras were not baited. Deployment date and 

duration varied by camera site. The data collection period ranged from 
January 1st 2017 until December 31st 2022, a total of 6 years. Each 
camera site was active for a minimum of one year and had a minimum 
coverage of 95 %. Coverage (Chao and Jost, 2012, Roswell et al., 2021) 
is the estimated percentage of species occurring at the site which have 
been detected, based on the number of singleton detections, and is a 
measure of whether enough data has been collected to accurately 
measure richness at a site. Average camera deployment duration was 
978 days. Species detection rates (dsite) were calculated as the total 
number of events with the classified species divided by the total number 
of days a camera was active at that site. dmax for each species was the 
maximum detection rate for that species across all 2,218 camera sites. 

2.3. Defining human-sensitive and human-associated species 

Species were categorized as human-sensitive or human-associated 
based on their relationship with Global Human Modification of Terres
trial Ecosystems (GHM, NASA SEDAC v1; Fig. 3). Linear models were 
made in R to find the relationship between GHM and species detection 
rate using the formula lm(species ~ GHM), where a negative coefficient 
estimate indicates a negative relationship with GHM. Coefficient esti
mates and p-values for each species are available in the Supplementary 
Materials. Communities included both mammals and large birds, since 
both were detected frequently in the dataset. This semi-arbitrary com
munity definition was selected primarily as a quantitative way of 
dividing detected species into two distinct categories. Human-sensitive 
species were significantly more likely to be detected in less modified 
habitat and included black bears Ursus americanus, beavers Castor can
adensis, bobcats Lynx rufus, fishers Pekania pennanti, grey foxes Urocyon 
cinereoargenteus, ruffed grouse Bonasa umbellus, North American por
cupines Erethizon dorsatum, and grey wolves Canis lupus. Human- 
associated species were significantly more likely to be detected in 
more modified habitat and included eastern cottontail rabbits Sylvilagus 

Fig. 2. Case examples of how Shannon Diversity and Fractional Richness behave differently. A) When all species are at their maximum population densities, 
Fractional Richness is equal to species richness. B) When all species are at their average population densities, Fractional Richness is equal to ½ species richness. C) 
When population densities are highly uneven and the most common species is lost, Shannon diversity counterintuitively increases. D, E) The loss of a low-density 
species affects Shannon diversity much less than the loss of a higher-density species. A,F) If all species become scarce but evenness remains the same, Fractional 
Richness decreases while Shannon diversity remains the same. Values within triangles are the actual maximum detection rates and average detection rates of bobcats, 
black bears, cottontail rabbits, and white-tailed deer in the Snapshot Wisconsin database. 
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floridanus, coyotes Canis latrans, American mink Neovison vison, Virginia 
opossums Didelphis viginiana, raccoons Procyon lotor, red foxes Vulpes 
vulpes, sandhill cranes Antigone canadensis, squirrels Sciuridae, and 
woodchucks Marmota monax. Due to the inherent ambiguity of camera 
trap images in regard to small mammals, squirrels were not identified to 
species level. Some species, including white-tailed deer Odocoileus vir
ginianus and turkeys Meleagris gallopavo, did not show a clearly positive 
or negative correlation with Global Human Modification and were not 
included in either human-sensitive or human-associated species cate
gories. Overall diversity indices include all species listed here; human- 
sensitive species, human-associated species, as well as white-tailed 
deer and turkeys. 

2.4. Geospatial predictor variables 

Predictor variables used to model biodiversity maps were obtained 
from BioCube, an open-source data cube framework integrating many 
geospatial data layers on a shared 1 km raster grid, specifically devel
oped for modeling and understanding biodiversity patterns (Pavlick 
et al., 2022). Geospatial layer values at camera locations were consid
ered to be the weighted average of pixel values within a 500 m radius of 
each camera, where weighting was determined by how much of the pixel 
fell within the 500 m radius. We used a total of 177 geospatial data 
layers during model selection, see details in the Supplementary Mate
rials. This large contingent of predictor variables was used to ensure that 
the final models were of the highest possible quality, in order to validate 
the usefulness of the Fractional Richness index. 

We used 71 soil variables from SoilGrids 250 m v2 describing cation 
exchange capacity, soil nitrogen content, organic carbon density, soil 
pH, organic carbon density, organic carbon stocks, and proportion of 
clay, silt, sand, and coarse fragments at depths from 0 cm to 200 cm 
(SoilGrids, Poggio et al., 2021). We reprojected and regridded the 250 m 
SoilGrids layers to the 1 km WGS-84 BioCube grid using bilinear 
resampling. We used 10 topographical variables describing aspect 
northness, elevation, curvature, roughness, slope and TPI (EarthEnv, 
Amatulli et al., 2018). 

We used 49 bioclimatic variables describing air temperature, sea
sonality, isothermality, precipitation, growing degree days, snow cover 
and frost change frequency (CHELSA BioClim v2.1, Karger et al., 2017), 
potential evapotranspiration, aridity, continentality, emberger’s plu
viothermic quotient, and thermicity index (ENVIREM, Title and 

Bemmels, 2018), cloud cover (EarthEnv, Wilson and Jetz, 2016), and 
MODIS winter habitat indices snow season length, snow cover vari
ability, and percent frozen ground without snow (SILVIS, Zhu et al., 
2017, Gudex-Cross et al., 2021) at 1 km, matching the BioCube grid. We 
used 25 phenological variables describing cumulative, minimum and 
seasonality of normalized difference vegetation index, enhanced vege
tation index, fraction of absorbed photosynthetically active radiation, 
leaf area index, and gross primary productivity at 1 km (SILVIS, Hobi 
et al., 2017, Radeloff et al., 2019). As well as the start, end, duration, and 
amplitude of photosynthetic activity in the canopy at 250 m (USGS 
EROS 2018, https://doi.org/10.5066/F7PC30G1). We regridded the 
250 m USGS phenology layers to the 1 km BioCube grid. 

We used 22 anthropogenic variables describing human population 
count and population density (GPW,CIESIN, 2018), nighttime lights (Li 
et al., 2020), contextual intactness (Mokany et al., 2020), on-road CO2 
emissions (Gately et al. 2019), global human modification of terrestrial 
systems (Kennedy et al., 2019,2020), biodiversity intactness (Newbold 
et al., 2016), existing and impacting sound (Mennitt et al., 2014), access 
to cities (Weiss et al., 2018) and land use proportions categorized into 
cropland, pasture, primary land cover, secondary land cover, and urban 
areas (Hoskins et al., 2015,2016), agriculture, built-up, energy pro
duction, human intrusions, and transportation (Theobald et al., 2020). 

2.5. Model selection 

Of the 2,218 camera locations, a random 70 % were sampled without 
replacement to be used as training data and the remaining 30 % were set 
aside as test data. Nine models were made: Shannon diversity, species 
richness, and Fractional Richness, of human-sensitive species, human- 
associated species, and all species. Due to the computational 
complexity of performing best subset selection on 177 predictors, the 
best performing model was chosen from a hybrid stepwise selection. For 
each diversity metric, geospatial variables were prioritized by making 
single-variable linear models for each variable and sorting by r-squared, 
highest r-squared values being first. To make the full model, starting 
with the variable having the highest r-squared value, variables were 
added one at a time. After each addition, variables were checked for 
statistical significance and collinearity, and the updated model was 
judged based on AIC and accuracy against the test dataset: If the addi
tion of a new variable caused any variable to become insignificant (p >
0.05), the least significant variable was removed. If any two spatial 

Fig. 3. Relationship between species’ detection rates and human landscape modification. Human-sensitive species: species with a significant negative relationship 
with landscape modification. Human-associated species: species with a significant positive relationship with landscape modification. Intermediate species: species 
which are most abundant at intermediate levels of landscape modification. The y-axis is on a logarithmic scale to make the lower-density species more visible. 
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variables in the model were more than 80 % similar, the least significant 
of the two was removed. If the addition of the new variable did not 
improve the AIC score, the variable was removed. Predicted values 
based on training data were compared with measured values from the 
test dataset, and if correlation between the two did not increase, the 
newest variable was removed. Variables were added in this manner until 
all 177 spatial variables had the opportunity to be incorporated into the 
model. The entire model selection process was executed through a loop 
code in R using a set seed for randomization of test and training data to 
ensure the process was reproducible. Most final models had 10 or fewer 
coefficients. The model selection code is available in the Supplementary 
Materials. 

2.6. Comparison of diversity indexes 

It was assumed that a more valid and informative index which re
flects true ecological dynamics in the landscape would contain less 
stochasticity and follow ecologically relevant landscape variables more 
closely, and therefore could be modeled more parsimoniously. To 
determine whether one index was significantly and consistently more 
accurate than another, 10 iterations of each model were made. Training 
and test data were re-randomized and model selection repeated 10 times 
to create 10 iterations of each model, for a total of 90 models (3 indices x 
3 species communities x 10 iterations). Iterations were used to deter
mine the average model accuracy of each model type. Model accuracy 
was measured as the correlation between predicted values based on 
training data and measured values from test data, where higher values 
indicated higher model accuracy. 

3. Results 

3.1. Community evenness 

The community of human-associated species had highly uneven 
detection rates between species. The average community evenness 
across sites was 0.65 (SD = 0.17) and the maximum detection rates 
ranged across three orders of magnitude. In contrast, the community of 
human-sensitive species was more even. Average evenness across sites 
was 0.72 (SD = 0.20) and maximum detection rates stayed primarily 
within the same order of magnitude (Table 1). 

3.2. Model accuracy 

Species communities and diversity indices differed in how easily they 
could be modeled by geospatial variables (Fig. 4). All three diversity 
indexes could be modeled fairly accurately for Human-sensitive species, 
but differed significantly in their accuracy for Human-associated species 
(Fig. 5). Fractional Richness performed significantly better than species 
richness (t-test, p = 1.8e-5) for Human-associated species, while Shan
non performed significantly worse than both Fractional Richness (t-test, 
p = 1.8e-5) and Richness (t-test, p = 2.6e-7) (Fig. 5). None of the di
versity indexes were able to make accurate models of the overall species 
community: correlation between test data and model predictions was 
less than 25 % for all models of this type. Best models used 11 or fewer 
predictor variables. Model summary statistics can be found in the Sup
plementary Materials. 

3.3. Partial dependence of geospatial variables 

Human-associated species and Human-sensitive species diversity 
models showed nearly opposite patterns of diversity (Fig. 6) and were 
correlated with different geospatial variables. In models using a single 
variable to predict diversity, climate variables tended to have the 
highest r-squared values. Overall, the variables which were most 
frequently incorporated into best models included minimum enhanced 
vegetative index with quality assessment (EVIQA_2, 30/90 models), 
mean monthly potential evapotranspiration of the coldest quarter 
(PETColdQuart, 25/90 models), and seasonality of normalized differ
ence vegetative index (NDVIQA_3, 24/90 models). When modeling 
human-associated species, the most frequently incorporated variables 
were NDVIQA_3 (20/30 models), and PETColdQuart (18/30 models), as 
well as global human modification (18/30 models). For human-sensitive 
species, the best variables were EVIQA_2 (26/30 models), contextual 
intactness (15/30 models) and mean daily air temperature of the coldest 
quarter (15/30 models). Details on specific models and variables are 
available in the Supplementary Materials. 

4. Discussion 

Our novel Fractional Richness index is similar to diversity indices in 
that it incorporates both abundance and species richness information 

Table 1 
Maximum detection rates and mean fractional population density of each species. Smaller mean fractional population density values indicate a distribution skewed 
further towards zero. Deer and Turkey are commonly detected species, but were not placed in either the human-associated or human-sensitive species categories 
because these two species did not have a significant linear relationship with Human Landscape Modification.   

Species dmax,i 
(

dsite,i

dmax,i

) Community Evenness   

Maximum detections per day Mean Fractional Population Density  

Human-sensitive Bear  0.35  0.06 Mean = 0.72 
Beaver  0.41  0.07 (SD = 0.20) 
Bobcat  0.11  0.08  
Fisher  0.24  0.03  
Grey Fox  0.53  0.02  
Grouse  0.09  0.07  
Porcupine  0.17  0.05  
Wolf  0.64  0.02   

Human-associated Cottontail  2.36  0.03 Mean = 0.65 
Coyote  0.91  0.07 (SD = 0.17) 
Mink  0.26  0.03  
Opossum  1.01  0.04  
Raccoon  6.37  0.03  
Red Fox  1.23  0.01  
Sandhill Crane  0.93  0.03  
Squirrel  3.71  0.06  
Woodchuck  0.06  0.07   
Deer  23.51  0.08   
Turkey  3.35  0.04   
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but differs from true diversity indices because it does not measure the 
entropy of the system (Jost, 2006). All true diversity indices essentially 
address the question: when selecting an individual at random from the 
community, how accurately can one predict the species? Entropy is a 
useful measure when studying a system like, for example, trees in a 
forest, where the presence of one species in one location necessarily 
precludes the presence of another, but wildlife does not saturate the 
landscape in the same way flora does. Our index fills a similar function 
to diversity indices, but is mathematically distinct and has properties 

better attuned to the dynamics of wildlife. Fractional Richness is 
designed to handle datasets with highly uneven detection rates among 
species, inherently different population densities due to the presence of 
multiple trophic levels or a wide range of body sizes, and communities 
where not all species are equally easily detected. Fractional Richness is 
also sensitive to population decline. 

To assess the ability of our index to handle these sorts of datasets, we 
looked at two semi-distinct wildlife communities in Wisconsin, USA: 
human-sensitive species and human-associated species. Of these two 

Fig. 4. Raw point maps of A) Shannon diversity of all species, B) Fractional Richness of all species, C) Species richness of all species, D) Shannon diversity of human- 
sensitive species, E) Fractional Richness of human-sensitive species, F) Species richness of human-sensitive species, G) Shannon diversity of human-associated species, 
H) Fractional Richness of human-associated species, I) Species richness of human-associated species. Shannon = Shannon diversity. FRichness = Fractional Richness. 
Richness = species richness. Human-sensitive species include black bear, beaver, bobcat, fisher, grey fox, grouse, porcupine, and grey wolf. Human associated species 
include cottontail rabbit, coyote, mink, opossum, raccoon, red fox, sandhill crane, squirrel, and woodchuck. ‘All species’ includes all members of both the human- 
associated and human-sensitive species communities, plus white-tailed deer and turkey. Each point represents one of the 2,218 camera trap locations. Generated 
using Mapview v 2.11.2 (Appelhans et al., 2023). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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communities, human-associated species had a less obvious pattern of 
diversity across the landscape (Fig. 4), and had a more severe case of the 
complications which make evenness, and by extension Hill family in
dexes like Shannon diversity, less informative: Maximum detection rates 
ranged across three orders of magnitude (Fig. 2, Table 1) and were 
significantly impacted by how easily each species was detectable by 

camera traps. These same complications were present among the com
munity of human-sensitive species, but to a lesser extent. 

We modeled Shannon diversity, Fractional Richness, and Species 
richness of human-sensitive species, human-associated species, and the 
overall species community, under the assumption that a diversity index 
that more accurately reflects true ecological patterns should be able to 

Fig. 5. Accuracy of best models for each diversity index and species cohort. Box plots show accuracy across 10 iterations of each model type. Accuracy is the 
correlation between measured test data and model predictions. 

Fig. 6. Predicted Fractional Richness maps of A) Human-sensitive species and B) Human-associated species. Values for each pixel are averaged across 10 model 
iterations. Human-sensitive species include black bears, beavers, bobcats, fishers, grey foxes, grouse, porcupines, and wolves. Human-associated species include 
cottontail rabbits, coyotes, minks, opossums, raccoons, red foxes, sandhill cranes, squirrels, and woodchucks. Fractional Richness is equal to ½ species richness when 
all species are at average population density. Pixels from built-up urban areas and water bodies were excluded from the prediction. Cor = average Pearson’s cor
relation between predicted values and measured test data of the 10 model iterations. R2 = average r-squared of the 10 model iterations. Generated using Mapview v 
2.11.2 (Appelhans et al., 2023). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

L.M. Berman et al.                                                                                                                                                                                                                              



Ecological Indicators 166 (2024) 112266

9

be modeled more parsimoniously. Fractional Richness could accurately 
be modeled for the highly uneven community of human-associated 
species, while Shannon diversity could not. 

4.1. When imbalance is minor, traditional indexes work well 

The community of human-sensitive species exhibited very clear dif
ferences in diversity across the landscape (Fig. 4). Many species were 
entirely absent from the southern reaches of the state, which allowed 
geospatial patterns to be modeled quite well with simple species rich
ness, even before considering the abundance components of Shannon 
diversity (evenness) and Fractional Richness (NFPD). Because the rich
ness component of the indices played a prominent role in this context, 
the differences between indices were less evident. All three indexes 
showed a north–south pattern which was clear even in the raw point 
data before modeling. All three indexes, including Shannon, could be 
modeled parsimoniously (Fig. 5), reflecting that the signal-to-noise ratio 
was comparatively high. The stochasticity introduced by idiosyncrasies 
of the diversity metric or other factors was small compared to the overall 
trend in diversity across the landscape. Shannon’s index is one of the 
most popular diversity indexes implemented in ecology and has suc
cessfully produced informative results across countless studies for de
cades. Other Hill family diversity indexes, including Simpson’s index 
and the Berger-Parker index, are similarly valuable (Keylock, 2005). 
Shannon diversity assumes that sampling is not biased towards any 
species and that all species have the same maximum population density. 
When these assumptions are violated, as they often are in wildlife and 
camera trapping studies, it may be more appropriate to use an alterna
tive index. 

4.2. When imbalance is severe, evenness can be detrimental 

For our more imbalanced community (human-associated species), 
the pattern of diversity across the landscape was more nuanced, with a 
lower signal-to-noise ratio, making it more difficult to accurately model 
diversity. In this more-difficult-to-model community the differences 
between indices can be seen more clearly. Shannon diversity performed 
significantly worse than both simple species richness (t-test, p = 2.6e-7) 
and Fractional Richness (t-test, p = 1.8e-5, Fig. 5), suggesting that the 
evenness component of the index, rather than contributing useful in
formation, may have instead introduced an element of stochasticity. 
Shannon diversity can behave counterintuitively when species are 
highly uneven (Fig. 2), or when evenness is biased by detectability. 

4.3. When imbalance is severe, Fractional Richness provides an effective 
measure of diversity 

Fractional Richness performed significantly better than both richness 
and Shannon diversity for our highly imbalanced community (human- 
associated species), suggesting that Fractional Richness is indeed robust 
to many of the complications in the dataset which make evenness less 
informative (Fig. 5), and is able to take species detection rates into ac
count in an ecologically informative way even when detectability and 
maximum population density vary by species. 

4.4. Human-associated species and human-sensitive species had opposite 
patterns of diversity 

The predicted diversity maps of human-sensitive and human- 
associated species were nearly inverse of each other (Fig. 6), with sen
sitive species most diverse in northern WI and associated species most 
diverse in southern WI. Most likely, this inverse pattern was the reason 
model accuracy of the overall species community was low across all 
index types (Fig. 5). 

4.5. Comparison with other diversity indexes 

There are other biodiversity indexes which account for species 
abundances without using evenness, similar to Fractional Richness. The 
Biodiversity Intactness Index (BII, Scholes & Biggs, 2005), the Natural 
Capital Index (NCI, Ten Brink, 2003), the IUCN Red List Index (Baillie 
et al., 2008, Butchart et al., 2004,2007), the Living Planet Index (Loh 
et al., 2005), and the Wild Bird Index (Gregory et al., 2003,2005,2008) 
all measure current abundances as a ratio against some baseline, such as 
pre-industrial population density, to estimate the degree of population 
decline. However, unlike Fractional Richness, these indexes require 
external data or expert opinion to estimate what the detection rate of a 
robust population should be, and cannot be calculated from raw camera 
trap data. Using historical population densities as a baseline can be 
useful in the context of some conservation-oriented studies, and while 
Fractional Richness does not require this kind of external data, the 
estimated detection rate at historic densities can be used in place of dmax 
to show how population has declined over time. 

There are also existing biodiversity indexes designed for use with 
camera trap data, most notably the Wildlife Picture Index (WPI, O’Brien 
et al., 2010). WPI is the average increase or decrease in detection rates 
across species compared to the detection rate during the first year of data 
collection. Neither WPI nor Fractional Richness uses evenness, avoiding 
the issue of variable detectability between species. However, Fractional 
Richness has a number of features that WPI lacks. WPI focuses on 
changes in population density and poorly handles differences in rich
ness. WPI depends on arbitrary near-zero placeholder values to produce 
valid results when zeros occur in a dataset (O’Brien et al., 2010) − zeros 
occur any time a species is present at some sites but not others, or when a 
species goes extinct or is introduced partway through the time series. 
The other major differences between these indexes may be due to their 
slightly different intended uses: WPI was designed for time series data, 
to track changes in a single site over time, while Fractional Richness is 
designed to effectively compare many sites. Only Fractional Richness 
normalizes the poisson distribution typical of camera trap data, but this 
correction is less necessary when analyzing data from a single site. 

4.6. Assumptions of the index 

Fractional Richness assumes that there are robust populations of 
each species somewhere within the network of study sites, but if habitat 
is degraded throughout the network of sites, or if the network contains 
only marginal habitat for some species, then the measured dmax may not 
reflect true maximum population density. This sometimes-flawed 
assumption generally only becomes problematic when comparing 
Fractional Richness values calculated separately using different values 
of dmax for the same species. It is better to recalculate Fractional Richness 
if additional sites are added to the network, especially if population 
densities are higher at the new sites. For example, if one study measured 
Fractional Richness for a camera trap network in Yellowstone National 
Park, WY, and another measured Fractional Richness in Wisconsin, these 
studies might have different dmax values for wolves, and comparing wolf 
NFPD values without using a shared dmax could give the false impression 
that wolf populations in Yellowstone and Wisconsin are the same. The 
best practice approach would be to treat all sites as if they belonged to 
the same network and recalculate dmax for each species. 

Fractional Richness also assumes that all cameras have equal 
detection capabilities. Factors like field of view, proximity to game 
trails, and trigger sensitivity can introduce stochasticity when they differ 
between cameras. In situations where, for example, some cameras are 
deployed in grasslands with a very large field of view, and other cameras 
are deployed in dense forest with a very small field of view, Fractional 
Richness estimates may be biased towards grassland habitat if field of 
view is not accounted for. In our camera trap network, all cameras were 
deployed in forest and had fields of view that were similar, but not 
identical. All cameras were of the same model, using the same settings, 
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and were deployed using a uniform protocol. Nevertheless, camera trap 
placement inevitably influenced the detection rate at individual cameras 
to some extent and may account for some of the stochasticity in the data 
which could not be predicted by any model. 

It is also assumed that detection rate is a function of population 
density. However, behavior and activity also influence camera trap 
detection rates. When calculating Fractional Richness care should be 
taken to ensure that the periods of data collection are comparable across 
sites in regard to diel and seasonal cycles. For example, camera traps 
that were active only during the summer would be expected to have 
higher detection rates of bears than camera traps which were active only 
during the winter. 

4.7. Conceptual issues 

Fractional Richness measures the effective richness of a community, 
and defines a healthy biodiverse ecosystem as one which can support the 
most species at the highest densities. It does not account for situations 
where species presence or high density is undesirable. The presence of 
an invasive species can cause Fractional Richness to increase, so long as 
that invasive species does not cause population declines or extirpation of 
any other species. Species that tend towards overpopulation will 
contribute most to the Fractional Richness value at sites where their 
population is highest, and again can cause Fractional Richness to in
crease so long as the overpopulation of that species does not cause 
decline in any other species. 

Fractional Richness also values all species equally. This is generally 
seen as a strength of the index, but from a conservation perspective 
certain species may be valued more than others. In the context of con
servation work, it may be appropriate to selectively exclude species 
which are associated with human disturbance, as they frequently have 
distributions distinct from species of higher conservation priority (Fig. 6, 
Dobson et al., 1997). In Wisconsin, most species of conservation priority, 
such as grey wolves and fishers, were most abundant in the less 
disturbed northern reaches of the state. While species of low conserva
tion concern like raccoons and Virginia opossums had a nearly opposite 
pattern of abundance. Attempting to measure the diversity of the overall 
species community failed to reveal any spatial pattern of high-diversity 
habitat across the state (Fig. 4) because the northern and southern 
communities effectively balance each other. In order to use Fractional 
Richness in an ecologically informative way, it is still necessary to have a 
knowledge of factors such as ecotones which influence the ecosystem 
being analyzed. 

Fractional Richness uses the average detection rate of a species to 
adjust the skewness of the distribution. This is something to keep in 
mind if using time-series data, especially for species in decline, because 
the historic average population density of a species is often different 
from the overall average population density of a species. Consider, for 
example, a reintroduction effort in a park where fishers were nearly 
extirpated 20 years ago. The average detection rate of fishers over the 
last 20 years would be significantly lower than the average rate more 
than 20 years ago. Managers might prefer to use only the historical 
average detection rate from more than 20 years ago when judging the 
effectiveness of their reintroduction efforts. When a species is at a low 
population density for a long time, the average detection rate tends to 
decrease, which can lead the index to treat intermediate values more 
favorably. 

5. Conclusions 

Fractional Richness is a novel biodiversity metric intended for use 
with large camera trap networks. It uses normalized fractional popula
tion density (NFPD) rather than evenness to account for species detec
tion rates. Fractional Richness is highest when a large number of species 
are at their maximum population densities, and increases linearly with 
species richness. It normalizes the Poisson distribution typical of camera 

trap data rather than assuming population density will be directly pro
portional to detection rate. Fractional Richness provides robust, 
ecologically relevant biodiversity estimates even when detectability 
varies by species, or when maximum population density varies by orders 
of magnitude between species. To the best of our knowledge, this is the 
only diversity index to do so without depending on large amounts of 
external data or expert opinion. 
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carried out. 
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