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already experiencing compositional and functional shifts in 
plant communities (Frelich et al. 2021, 2024; Ruckstuhl et 
al. 2008). Rather than responding to a single environmental 
variable, these forests are being simultaneously affected by 
both rising temperatures as well as concurrent declines in 
soil water availability (Gauthier et al. 2015; Liu et al. 2023; 
Sánchez-Pinillos et al. 2022). It has been demonstrated that 
warming alone can stimulate photosynthesis and growth 
of some temperate and boreal tree seedlings (Fisichelli et 
al. 2014b; Nissinen et al. 2020) and saplings (Reich et al. 
2022), but that these positive effects can be negated by con-
current decreases in soil moisture (Fisichelli et al. 2014b; 
Reich et al. 2018; Stinziano and Way 2014). Further, it has 
been shown that while moderate warming (+ 1.6 ºC) can 
increase sapling stem biomass in some species, when com-
bined with reduced rainfall, plot level stem biomass can be 
decreased by as much as 25% (Reich et al. 2022). Taken 
together, these results highlight the importance of studying 
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Abstract
Understanding the responses of ectomycorrhizal (ECM) fungi and their tree hosts to warming and reduced soil water 
availability under realistic future climate scenarios is essential, yet few studies have investigated how combined global 
change stressors impact ECM fungal community richness and composition as well as host performance. In this study, 
we leveraged a long-term factorial warming (ambient, + 1.7 ºC, + 3.2 ºC) and rainfall reduction (ambient, 30% reduced 
rainfall) experiment in northern Minnesota, USA to investigate the responses of two congeneric hosts with varying drought 
tolerances and their associated ECM fungal communities to a gradient of soil moisture induced by a combination of 
warming and rainfall reduction. Soil drying had host-specific effects; the less drought tolerant Pinus strobus had decreased 
stem growth and lower ECM fungal community richness (fewer ECM fungal Operational Taxonomic Units, OTUs), while 
the more drought tolerant Pinus banksiana experienced no decline in stem growth but had an altered ECM fungal com-
munity composition under drier, warmer soils. Taken together, the results of this study suggest that the combined effects 
of warming and decreased precipitation will largely be additive in terms of their impact on host performance and ECM 
fungal community richness, but that drier and warmer soil conditions may also differentially impact specific ECM fungal 
genera independently of host performance.
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multiple climate change stressors concurrently to gain a pre-
dictive understanding of the future forest dynamics at the 
temperate-boreal ecotone.

Despite extensive and growing knowledge of how trees 
respond to stressors such as warming and reduced rain-
fall, how these same environmental stressors simultane-
ously affect their ectomycorrhizal (ECM) fungal symbionts 
remains less well understood (Bennett and Classen 2020; 
Cowden et al. 2019; Mohan et al. 2014). Studies suggest 
that warming results in significant changes to temperate-
boreal forest ECM fungal community composition (Fernan-
dez et al. 2017, 2023; Kwatcho Kengdo et al. 2022; Mucha 
et al. 2018), often due to increases in the relative abundance 
of ascomycete ECM fungi (Allison and Treseder 2008; 
Fernandez et al. 2017, 2023). With respect to ECM fungal 
species richness, evidence is currently mixed, with some 
studies showing no significant effect of warming (+ 3.4 ºC: 
Fernandez et al. 2017; Mucha et al. 2018, + 3.1 ºC: Fernan-
dez et al. 2023, + 4 ºC: Kwatcho Kengdo et al. 2022) and 
others showing positive effects (+ 0.5 ºC, Allison and Tre-
seder 2008). Conversely, models of ECM fungal responses 
to future climate change suggest that warming will reduce 
ECM fungal species richness in coniferous temperate-
boreal forests (Steidinger et al. 2020). Studies of ECM fun-
gal responses to drier soil conditions have shown reduced 
ECM fungal root tip colonization (Gehring et al. 2020; Ken-
nedy and Peay 2007; Swaty et al. 2004) and decreased ECM 
hyphal abundance in soil (Castaño et al. 2023; Querejeta et 
al. 2021), although most of this work is based in season-
ally dry climates. While often studied separately, these find-
ings suggest that ECM fungal communities are susceptible 
to multiple climate stressors and that studying them at the 
same time (i.e. both warming & reduced soil water avail-
ability) is needed to better understand the potential for syn-
ergistic effects (Fernandez et al. 2023; Gehring et al. 2020).

The changes in ECM fungal community richness and 
composition in response to shifting climatic conditions may 
be the result of either direct effects on fungal growth or indi-
rect effects mediated by their plant host (Kennedy and Peay 
2007). While fungi generally have wide temperature toler-
ances, they tend to perform poorly under water limitation 
(Coleman et al. 1989). Support for direct effects of drying 
on fungal performance has been shown in a previous study 
where declining soil moisture led to decreases in ECM fun-
gal respiration (Heinemeyer et al. 2007). Along with direct 
fungal responses to altered climatic conditions, ECM fun-
gal communities may also be influenced by the tolerance of 
their tree hosts for low soil moisture conditions. The ability 
of plants to cope with water scarcity, commonly referred 
to as drought tolerance, manifests through several mecha-
nisms that may act simultaneously (Levitt 1980; Moran et 
al. 2017). Tolerance mechanisms can differ among plant 

species but include hydraulic lift (to redistribute water from 
lower soil layers), altered belowground carbon (C) alloca-
tion to roots (to increase surface area available for water 
absorption), and/or stomatal regulation (to prevent water 
loss), all of which have important implications for resource 
exchange (C and H2O) between tree hosts and mycorrhizal 
fungal partners (Brunner et al. 2015; Horton and Hart 1998; 
Lehto and Zwiazek 2011; McDowell et al. 2008).

Co-occurring temperate-boreal conifers, which are likely 
to change abundances in response to altered climatic condi-
tions (Fisichelli et al. 2012; Fisichelli et al. 2014a; Reich 
et al. 2022), can differ in their ability to withstand warmer, 
drier conditions. For instance, long-term experimental 
warming (+ 3.1 ºC) and reduced rainfall has been shown to 
reduce the survival and growth of temperate Pinus strobus 
saplings, but not boreal Pinus banksiana saplings (Reich et 
al. 2022). Warming (when soil moisture was sufficient) also 
was found to increase photosynthesis rates for P. banksiana, 
and other temperate-boreal species, but not for P. strobus 
(Reich et al. 2022). These varying responses are reflective 
of the higher drought tolerance of P. banksiana compared to 
P. strobus (drought tolerance indices = 4 and 2.29, respec-
tively, on a scale where ‘5’ represents the highest tolerance 
of drought conditions including low soil water potentials, 
low precipitation and high evapotranspiration, while ‘1’ 
represents the lowest drought tolerance, Niinemets and Val-
ladares 2006). Varying responses of temperate-boreal tree 
hosts to gradients of warming and soil drying may have 
significant implications for ECM fungal communities given 
that reduced tree host photosynthesis may indicate less car-
bon available for ECM fungi (Fernandez et al. 2017, 2023; 
Pickles et al. 2012).

Here we leveraged the ‘Boreal Forest Warming at an 
Ecotone in Danger’ (B4WarmED) experiment to investigate 
the responses of ECM fungal communities on two conge-
neric hosts with varying drought tolerances to a gradient 
of soil moisture induced by a combination of warming and 
rainfall reduction.

We hypothesized that ECM fungal richness and commu-
nity composition would respond linearly to declining soil 
moisture, demonstrated by declines in ECM fungal OTU 
(Operational Taxonomic Unit) richness and linear shifts in 
the relative abundances of individual ECM fungal genera in 
response to declining soil moisture. With respect to the role 
of tree host drought tolerance, we further hypothesized that 
ECM fungal communities on the more drought tolerant P. 
banksiana would be less responsive to declining soil mois-
ture than communities on P. strobus.
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Methods

Study site and experimental design

This study was conducted at the southern site of the 
B4WarmED experiment (Rich et al. 2015), which is a 
long-term chamber-free experimental warming and rainfall 
reduction study located at the University of Minnesota Clo-
quet Forestry Center (CFC), Cloquet, MN, USA (46° 40′ 
46′′ N, 92° 31′ 12′′ W, 382 m a.s.l., 4.5 °C mean annual air 
temperature (MAT), 807  mm mean annual precipitation). 
The experimental site was cleared between 2007 and 2008 
and included mixed Populus stands with coarse upland soils 
(Rich et al. 2015). At CFC, there are 3-meter diameter circu-
lar plots located within three ‘block’ replicates with factorial 
above and belowground experimental warming (ambient, 
+ 1.7 ºC, + 3.2 ºC, infrared lamps for aboveground and 
soil heating cables for belowground) and reduced rainfall 
(ambient, 30% reduced rainfall, rain removed using rainout 
shelters, (Reich et al. 2022; Rich et al. 2015; Stefanski et 
al. 2020). The warming treatments were initiated in 2009, 
and the rainout shelters were installed in 2012 at randomly 
selected plots of each temperature treatment type (Reich et 
al. 2022; Rich et al. 2015; Stefanski et al. 2020). Warm-
ing and reduced rainfall treatments are performed yearly 
between early spring and late fall (for further details see: 
Rich et al. 2015; Stefanski et al. 2020). The plots contain a 
mix of randomly assigned ~ 1-4-year-old saplings of mul-
tiple co-occurring native Minnesota tree species (Abies bal-
samea L., Acer rubrum L., A. saccharum Marshall., Betula 
papyrifera, Picea glauca (Moench) Voss., Pinus banksi-
ana Lamb., Pinus strobus L., Populus tremuloides Michx., 
Quercus macrocarpa Michx., Quercus rubra. L.), as well as 
several non-native invasive species (Rhamnus cathartica L., 
Frangula alnus Mill., Lonicera morrowii A. Gray, Lonicera 
tatarica L.). Saplings were planted into randomly assigned 
locations in a grid with 20 by 20 cm spacing (Reich et al. 
2022; Rich et al. 2015).

The Pinus saplings included in this study were planted 
in spring 2017 (~ 2 years old at planting) and harvested in 
April-May 2021.

Sapling growth measurements

At the end of each growing season, we measured the diam-
eter of each Pinus banksiana and P. strobus sapling at 5 cm 
above the ground surface, as well as the total height of the 
saplings following the leader (central stem) in the fall of 
each experimental year (September-October). Stem biomass 
of each sapling was estimated from height and diameter, 
using an allometric equation developed based on a subset of 

saplings that were destructively sampled in 2011 (Reich et 
al. 2015; see Supplementary Information for details).

Soil and climate measurements

Soil volumetric water content (VWC, 0–20  cm depth) in 
each plot was continuously measured (hourly) using a 
Campbell Scientific CS-616 probe inserted into the ground 
at 45° (Rich et al. 2015). Aboveground temperature was 
measured hourly at canopy level height using surface tissue- 
imitating acrylic blocks with embedded thermocouple sen-
sors, and belowground temperature was measured hourly 
using sealed thermocouples at 10 cm soil depth (Rich et al. 
2015; Stefanski et al. 2020). The hourly soil VWC, aboveg-
round temperature, and belowground temperature data were 
trimmed to include only data between April 1st and Octo-
ber 31st, which represents the approximate growing sea-
son period. Additionally, only years when both the rainfall 
and temperature treatments were turned on were included 
(2018–2020). Hourly data was averaged across all growing 
seasons per each individual plot.

Ectomycorrhizal root sampling

In Spring 2021 (April-May), 1–3 saplings per tree species 
were harvested from each of the 18 plots (3 plots per treat-
ment type per block), sampling one experimental block at 
a time (3 blocks total). The number of saplings collected 
depended on the survival rate within each treatment combi-
nation. To keep root systems intact, saplings were excavated 
with trowels, taking care to avoid damaging the fine roots. 
Following excavation, root systems were separated from 
the stem and adhering soil was gently removed by submerg-
ing roots in water and rinsing off any visual soil or organic 
matter. Each root system was then quartered, and one 
quarter was randomly selected for ECM fungal analysis. 
The selected portion was rinsed thoroughly to remove any 
remaining soil. The selected roots from each sapling were 
oven-dried at 38 ºC for 48 h and stored at -20 ºC prior to pro-
cessing. To prepare the sampled roots for DNA extraction, 
we used methods previously implemented by other studies 
in this experimental system (see Fernandez et al. 2017; Fer-
nandez et al. 2023). Dried root systems were gently crushed 
in a clean piece of printer paper to detach the ECM fun-
gal colonized fine roots from the larger higher order roots 
(Kong and Ma 2014). To homogenize the detached fine root 
material, 20 mg was ground to a fine powder using a bead 
beater for 30  s (Mini-Beadbeater-96, BioSpec Products, 
Bartlesville, OK, USA).
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from the dataset (as they were below the 90th percentile of 
~ 2000 ECM fungal reads).

Statistical analyses

All analyses were carried out using R version 4.3.1 (R Core 
Team 2023). Differences in soil VWC amongst the experi-
mental treatment types were assessed with a two-way, type 
III mixed-effects ANOVA using the ‘lme’ function in the 
‘nlme’ package (Pinheiro et al. 2024), and then the ‘Anova’ 
function in the ‘car’ package (Fox et al. 2023). The model 
included treatment as a fixed effect, and experimental block 
as a random effect to account for any variation in soil VWC 
by block. Tukey HSD post hoc tests were performed using 
the ‘emmeans’ function in the ‘emmeans’ package (Lenth et 
al. 2024). To assess tree host growth responses to the exper-
imental treatments, the relative increase in stem biomass 
during the last experimental year for each sapling was calcu-
lated ((final stem biomass in 2020 - stem biomass in 2019)/
initial stem biomass at start of study). Preliminary analyses 
showed this response was similar when earlier experimental 
years were also included, but only the final year was used 
here since it was the time period closest to when the ECM 
fungal communities were characterized. Relative stem 
growth data were square root transformed to achieve nor-
mality before performing statistical tests. The relationships 
between relative stem growth and soil VWC, aboveground 
temperature, and belowground temperature were assessed 
with separate linear mixed effects models using the ‘lme’ 
function in the ‘nlme’ package (Pinheiro et al. 2024). For 
each model, experimental block was included as a random 
effect to account for unexplained block variation. Models 
were run on the full dataset (including tree host species as 
a fixed effect in addition to soil VWC, aboveground tem-
perature, or belowground temperature), as well as for each 
individual tree species. Adjusted R squared values for linear 
mixed effects models were calculated using the ‘rsq.lmm’ 
function in the ‘rsq’ package (Zhang 2023).

Prior to statistical analysis of ECM fungal richness and 
community composition, the ECM fungal OTU table was 
normalized using a relative abundance transformation, 
where the abundance of each OTU per sample was divided 
by the total number of reads for that sample (thus all values 
were between 0 and 1). This approach accounts for potential 
variation in sequencing depth across samples (McKnight et 
al. 2019) and aligns with previous approaches used in this 
study system (Fernandez et al. 2017). ECM fungal OTU 
richness (the number of unique OTUs) was also square root 
transformed to achieve normality before performing statis-
tical tests. To assess the effects of soil VWC, aboveground 
temperature, belowground temperature, and sapling rela-
tive stem growth on ECM fungal OTU richness, separate 

Molecular methods

Total genomic DNA was extracted from all root samples 
using a standard chloroform method (see methods detailed 
in Kennedy et al. 2003). The ITS2 rDNA subunit was PCR 
amplified using a barcoded fungal-specific ITS5.8SFun-
ITS4-Fun primer set, 35 total cycles, and cycling conditions 
detailed in Taylor et al. (2016). Both negative and posi-
tive (Palmer et al. 2018) controls were also included. All 
positively amplified samples were cleaned using the Charm 
Just-A-Plate kit (Charm, San Diego, CA, USA) follow-
ing manufacturer’s instructions. Samples were quantified 
on a Qubit fluorometer (Thermo Scientific, Waltham, MA, 
USA), mixed at approximately equimolar concentration 
into a single library, and sequenced using Illumina MiSeq 
2 × 3000  bp v3 chemistry at the University of Minnesota 
Genomics Center.

Bioinformatic processing

The raw demultiplexed .fastq files were processed using the 
‘amptk’ pipeline (v1.5.4, Palmer et al. 2018). Briefly, prim-
ers were removed, and sequences trimmed to 300 bp. Based 
on initial quality control assessments of the ‘synmock’ com-
munity, it was determined that including both forward and 
reverse reads resulted in both fewer reads per OTU as well 
as greater OTU inflation (likely due to the poorer quality of 
the reverse reads). As such, forward-only sequences were 
denoised using DADA2 algorithm (Callahan et al. 2016) 
and clustered at 97% similarity. Read counts in the OTU 
x sample matrix were adjusted to account for index bleed 
using 1% as the filter percentage. Taxonomy was assigned 
using a hybrid algorithm that integrates results from a USE-
ARCH global alignment against the UNITE database (v8, 
Nilsson et al. 2019) and both UTAX and SINTAX classi-
fiers. After samples were sequenced and processed, func-
tional guilds were assigned using ‘FUNGuild’ (Nguyen et 
al. 2016). Raw sequences and associated metadata were 
deposited in the NCBI Short Read Archive under Biopro-
ject ID #: PRJNA1079312. Prior to statistical analyses, 
we assessed the negative control sample for the presence 
of contamination, and then subtracted any OTU sequence 
reads present in the negative control from all study samples. 
Additionally, sequence reads less than or equal to 31 per 
sample were removed from the OTU table based on OTU 
read counts for the ‘synmock’ (Palmer et al. 2018) positive 
control sample (15 OTUs had reads > 100, and 3 OTUs had 
low read counts of 31 or fewer). This approach is consis-
tent with previous research suggestions for high throughput 
sequencing quality control (Lindahl et al. 2013). The final 
OTU table was then filtered to include only ECM fungal 
taxa, and 6 low-read (< 1000 reads) samples were removed 
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Results

Temperature and soil volumetric water content

Between 2018 and 2020, the B4WarmED experimental 
treatments warmed plots by an average of + 1.7 ºC and 
+ 3.2 ºC for the two warming treatment types (see Supple-
mentary Table S1). Soil VWC from 2018 to 2020 was sig-
nificantly different between the experimental treatments 
and the control treatment (ambient temperature, ambient 
rainfall), with mean soil VWC for each of the five experi-
mental treatments being significantly lower than the con-
trol treatment (p < 0.01, see Supplementary Table S2). Soil 
VWC decreased with increasing warming and/or rainfall 
reduction, from highest in the ambient temperature-ambi-
ent rainfall (control) to lowest in the + 3.2-reduced rainfall 
treatment (which for convenience we call ‘highest stress’, 
see Supplementary Figure S1). There was no significant 
variation in soil VWC by experimental block.

Sapling host growth

Responses of sapling relative stem growth varied by tree 
host species (Fig. 1), and thus we present the results of the 
linear mixed effects models separated by individual tree host. 
For P. strobus, sapling relative stem growth did not respond 
significantly to aboveground temperature and belowground 
temperature (p = 0.15 and p = 0.18) but decreased signifi-
cantly with declining soil VWC (p = 0.04, Adj. R2

(c)  = 0.19 
and Adj. R2

(m)= 0.13, Fig. 1b). In contrast, the relative stem 
growth of P. banksiana saplings did not respond to aboveg-
round temperature, belowground temperature, or soil VWC 
(p = 0.60, 0.56, and 0.81, respectively).

Ectomycorrhizal fungal community richness

2,184,260 fungal sequence reads passed quality control, 
with 909,136 of these reads belonging to ECM fungi. After 
removing the 6 samples with low read sums, the final dataset 
included 907,106 ECM fungal reads, with a mean of 15,640 
reads per sample (range: 2,089–69,960, see Supplementary 
Table S3). Responses of ECM fungal OTU richness varied 
by tree host (Fig. 2); thus, we present the results of the lin-
ear mixed effects models separated by individual tree host. 
For P. banksiana, there were no significant responses of 
ECM fungal OTU richness to soil VWC, aboveground, or 
belowground temperature (p = 0.24, p = 0.62 and p = 0.69, 
respectively). ECM fungal OTU richness of P. strobus 
samples, however, decreased significantly in response to 
declining soil VWC (p < 0.01, Adj. R2

(c)  = 0.35 and Adj. 
R2

(m)= 0.22, Fig.  2b), increasing mean aboveground tem-
perature (p < 0.01, Adj. R2

(c)  = 0.39 and Adj. R2
(m)= 0.23, 

linear mixed effects models were performed using the 
‘nlme’ package (Pinheiro et al. 2024). All models included 
experimental block as a random effect. Similar to relative 
stem growth models, richness models were run on the full 
dataset including both tree host species, as well as for each 
individual tree species, and Adjusted R squared values were 
calculated using the ‘rsq.lmm’ function in the ‘rsq’ package 
(Zhang 2023). For results of all linear mixed effects mod-
els in this study, we report both the conditional Adjusted R 
squared (Adj. R2

(c)) which includes both fixed and random 
effects, as well as the marginal Adjusted R squared values 
(Adj. R2

(m)) which only includes variance from fixed effects.
To assess the effects of tree host species and experi-

mental treatment on ECM fungal community composition, 
a permutational multivariate analysis of variance (PER-
MANOVA) test was run on a Bray-Curtis dissimilarity 
matrix of the transformed OTU table using PRIMER V7 
(with PERMANOVA+) (Clarke and Gorley 2015). The 
model included tree host species and treatment as fixed 
effects, block as a random effect, and their interactions. 
Additionally, PERMANOVA models were run for each indi-
vidual tree host species, and these models included treat-
ment as a fixed effect, block as a random effect, and their 
interaction. All PERMANOVA models were run with 999 
permutations. Beta dispersion tests were run using the ‘beta-
disper’ function in the ‘vegan’ package to assess the effects 
of each predictor variable on ECM fungal community dis-
persion (Oksanen et al. 2022). To assess how much of the 
variability in ECM fungal community composition could be 
explained by tree host species, soil VWC and temperature, 
a distance-based redundancy analysis was performed on 
the same Bray-Curtis dissimilarity matrix using the ‘dbrda’ 
function in the ‘vegan’ package (Oksanen et al. 2022). The 
full model included tree host species, soil VWC, aboveg-
round temperature, and belowground temperature. Forward 
and reverse selection was then used to determine the best 
dbrda model. Distance-based redundancy analyses were 
also performed for each individual tree host species. These 
models included soil VWC, aboveground, and belowground 
temperature. Finally, to assess the effects of warming and 
decreasing soil VWC on the relative abundances of the most 
abundant ECM fungal genera, we calculated mean relative 
abundances across all samples from the same tree host spe-
cies and treatment type. Then the mean relative abundance 
of each genus was assessed with linear regression models 
using soil VWC, aboveground temperature, or belowground 
temperature as separate predictor variables. These models 
were run separately for each of the two tree host species. 
Mean relative abundance data for samples from P. banksi-
ana were square root transformed to achieve normality.
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Fig. 2  Responses of the square root transformed number of unique 
ECM fungal OTUs (ECM fungal OTU richness) to mean plot soil 
volumetric water content (VWC) by tree host species. Point colors 
correspond to combined warming and rainfall treatment type. Point 
shapes correspond to experimental block. The gray trend line going 

through points for P. strobus (b) depicts the fixed effects model of 
sqrt(number of ECM fungal OTUs) ~ mean soil VWC (p < 0.01, 
Adjusted R-squared = 0.22), and does not account for the random 
effect of block

 

Fig. 1  Responses of square root transformed sapling relative stem 
growth (final 2020 stem biomass- stem biomass in 2019)/initial stem 
biomass at start of study) to mean plot soil volumetric water content 
(VWC) by tree host species (Pinus banksiana (a), Pinus strobus (b)). 
Point colors correspond to combined warming and rainfall treatment 

type. Point shapes correspond to experimental block. The gray trend 
line going through points for P. strobus (b) depicts the fixed effects 
model of sqrt(relative stem growth) ~ mean soil VWC (p = 0.03, 
Adjusted R-squared = 0.13), and does not account for the random 
effect of block
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tree host, soil VWC, aboveground temperature, and below-
ground temperature indicated significant effects of tree 
host species (F1,53 = 2.01, p < 0.01), soil VWC (F1,53 = 
2.16, p < 0.01), and aboveground temperature (F1,53 = 2.31, 
p < 0.01) on ECM fungal community composition (Model 
Adj. R2 = 0.06, p < 0.01). Forward and reverse model selec-
tion indicated that the best model included tree species (F1,55 
= 1.96, p < 0.01), and soil VWC (F1,55 = 2.11, p < 0.01), 
explaining 6.88% of the variation in ECM fungal commu-
nity composition (Adj. R2 = 0.03, p < 0.01, Supplementary 
Figure S4). Distance-based redundancy analyses by indi-
vidual tree host species indicated significant effects of soil 
VWC (F1,25 = 2.31, p < 0.01) and aboveground temperature 
(F1,25 = 1.98, p < 0.01) on ECM fungal community compo-
sition of P. banksiana (Adj. R2 = 0.08, p < 0.01, see Fig. 3a). 
Forward and reverse model selection indicated that a model 
with soil VWC alone (F1,27 = 2.23, p < 0.01) was the best 
predictor of P. banksiana ECM fungal community compo-
sition, explaining 7.62% of the variation (Adj. R2 = 0.04, 
p < 0.01). The distance-based redundancy analysis model 
for P. strobus was not significant (Fig. 3b).

Of the 16 ECM fungal families present in the dataset, 
the top 10 (each comprising 1% or greater relative abun-
dance) were: Inocybaceae (21.48%), Russulaceae (15.83%), 
Sebacinaceae (15.71%), Pyronemataceae (12.71%), The-
lephoraceae (10.90%), Gloniaceae (8.84%), Tylosporaceae 
(6.74%), Tuberaceae (4.63%), Hydnangiaceae (1.40%), 

Supplemental Figure S2), and increasing belowground tem-
perature (p < 0.01, Adj. R2

(c)  = 0.39 and Adj. R2
(m)= 0.22, 

Supplemental Figure S3). However, there was no significant 
relationship between relative sapling stem growth and ECM 
fungal OTU richness for either host species.

Ectomycorrhizal fungal community composition

Of the 76 total ECM fungal OTUs, 34 were shared across 
the two hosts, 16 were shared across the three warming 
treatments, 33 OTUs were shared across the two rainfall 
treatments, and 5 OTUs were shared across all 5 combined 
warming/rainfall reduction treatments. ECM fungal com-
munity composition varied significantly by treatment (F5,23 
= 1.37, p = 0.02), block (F2,23 = 2.03, p < 0.01), and a block 
by treatment interaction (F10,23 = 1.54, p < 0.01), but not by 
tree host species (p = 0.08). When the ECM fungal commu-
nity on each host was analyzed separately, a marginally sig-
nificant effect of treatment (F5,12 = 1.39, p = 0.055), but not 
block (p = 0.24) was present for P. banksiana. For P. stro-
bus, there was no significant effect of treatment (p = 0.41), 
but there was a significant effect of block (F2,11 = 1.74, 
p = 0.04) and a significant block by treatment interaction 
(F10,11 = 1.56, p < 0.01) effect on ECM fungal community 
composition. Beta dispersion tests indicated homogeneity 
of dispersion amongst tree species, treatments, and blocks 
(p > 0.05). A distance-based redundancy analysis including 

Fig. 3  Distance based redundancy analysis biplots by tree species based 
on the normalized Bray-Curtis dissimilarity matrix of the ECM fungal 
community data, constrained to mean plot soil volumetric water con-
tent (mean soil VWC), mean aboveground temperature (mean above 
temp.), and mean belowground temperature (mean below temp.). Point 
colors correspond to combined warming and rainfall treatment type. 
Axis titles include the relative contribution of each axis to the total 

constrained proportion, and the relative contribution of each axis to 
the total inertia, respectively. Asterisks indicate axis significance 
(p < 0.05). Black arrows with black text indicate significant variables 
(p < 0.05) while gray arrows with gray text indicate variables that were 
not significant in each model (p > 0.05). The model for P. banksiana 
(a) was statistically significant (p < 0.05) and the model for P. strobus 
(b) was not significant (p > 0.05)
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(3.60%), Laccaria (3.01%), and Wilcoxina (2.72%) for 
P. strobus. Two ECM fungal genera, Inocybe and Tomen-
tella, had significant trends across treatments on P. bank-
siana saplings. The mean relative abundance of Inocybe 
on P. banksiana significantly increased with declining soil 
VWC (p = 0.02, Adj. R2 = 0.71, Fig.  5a), but did not sig-
nificantly respond to aboveground or belowground tem-
perature (p = 0.12 and 0.13, respectively). Conversely, the 
mean relative abundance of Tomentella on P. banksiana 
significantly decreased with declining soil VWC (p < 0.01, 
Adj. R2 = 0.95, Fig. 5b), increasing aboveground tempera-
ture (p = 0.01, Adj. R2 = 0.79, Supplementary Figure S5), 
and increasing belowground temperature (p = 0.02, Adj. 

and Clavulinaceae (1.12%) for P. banksiana, and Suilla-
ceae (26.78%), Thelephoraceae (16.22%), Tylosporaceae 
(14.25%), Russulaceae (10.60%), Sebacinaceae (9.00%), 
Inocybaceae (8.08%), Tuberaceae (4.23%), Hydnangia-
ceae (3.01%), Pyronemataceae (2.73%), and Clavulinaceae 
(2.10%) for P. strobus (see Fig. 4). Of the 22 ECM fungal 
genera present, the top 10 (each comprising 1% or greater 
relative abundance) were: Inocybe (20.96%), Sebacina 
(14.19%), Wilcoxina (12.71%), Tomentella (10.90%), Lac-
tarius (9.29%), Cenococcum (8.84%), Amphinema (6.74%), 
Russula (6.53%), Tuber (4.63%), and Helvellosebacina 
(1.51%) for P. banksiana, and Suillus (26.78%), Tomentella 
(16.22%), Amphinema (14.25%), Sebacina (8.40%), Ino-
cybe (8.03%), Russula (7.00%), Tuber (4.23%), Lactarius 

Fig. 4  Stacked bar plot of the relative abundance of each ECM fungal family pooled by tree host species and treatment type. Colors correspond 
to ECM fungal families
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under increasingly drier and warmer conditions. In contrast 
to our expectation about community composition, however, 
we observed that the ECM fungal community composition 
on the more drought tolerant P. banksiana varied signifi-
cantly in response to decreasing soil VWC.

The observed negative effect of soil drying (due to 
experimental warming and rainfall reduction) on ECM 
fungal richness of the less drought tolerant P. strobus was 
consistent with previous studies documenting declines in 
ECM fungal richness in response to long-term warming in 
Alaskan tundra (Geml et al. 2015) and combined long-term 
warming and drought in the southwestern U.S. (Gehring et 
al. 2020), as well as model predictions of decreasing ECM 
fungal diversity with future warming at the temperate-
boreal ecotone (Steidinger et al. 2020). At the same time, the 
lack of a similar negative response for P. banksiana matches 
other studies that have documented no significant reduction 
in ECM fungal richness due to either warming (Fernandez 
et al. 2017; Mucha et al. 2018), rainfall reduction (Richard 
et al. 2011), or warming and rainfall reduction combined 

R2 = 0.75, Supplementary Figure S6). No significant genus 
level trends were observed for P. strobus.

Discussion

ECM fungal communities in boreal forests are amongst the 
most diverse globally (Tedersoo et al. 2012), yet increas-
ingly exposed to rapidly changing climates (Ruckstuhl et 
al. 2008). Understanding fungal responses to warming and 
reduced soil water availability under realistic future climate 
scenarios is thus essential, yet few studies have investigated 
how combined global change stressors impact ECM fungal 
community richness and composition. Our study demon-
strates that combined warming and soil water deficit can 
significantly affect ECM fungal community structure, but 
that responses vary by tree host. In support of our hypoth-
esis, we observed a positive relationship between ECM fun-
gal richness (number of unique OTUs) and soil VWC for 
the less drought tolerant P. strobus, indicating fewer OTUs 

Fig. 5  Responses of the mean relative abundance of Inocybe (left) 
and Tomentella (right) on P. banksiana and P. strobus to mean soil 
volumetric water content. Point colors correspond to combined warm-
ing and rainfall treatment type. Standard error bars are displayed in 
dark gray. Asterisks indicate significant relationships for Inocybe on 

P. banksiana (a, p = 0.02, Adjusted R-squared = 0.71 for square root 
transformed relative abundance) and Tomentella on P. banksiana (b, 
p < 0.01, Adjusted R-squared = 0.95 for square root transformed rela-
tive abundance)
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genera differently. Specifically, we observed that Inocybe 
relative abundance significantly increased with decreasing 
soil VWC (Fig.  5a) while Tomentella relative abundance 
declined significantly with decreasing soil VWC (Fig. 5b) 
and increasing above and belowground temperature for P. 
banksiana. Previous studies at B4WarmED have observed 
community shifts toward higher relative abundance of Ino-
cybe under + 3.4 ºC warming (Fernandez et al. 2017) as well 
as + 3.1 warming combined with reduced rainfall (Fernan-
dez et al. 2023). Conversely, Mediterranean studies indicate 
a decrease in Inocybe taxa abundance in Pinus pinaster soils 
under drought conditions (Castaño et al. 2023), as well as 
lower abundance of Inocybe hirtella on Quercus Ilex root 
tips under rainfall reduction (Richard et al. 2011). With 
respect to sporocarp production, evidence suggests a posi-
tive relationship between sporocarp abundance of several 
species of Inocybe and accumulated rainfall from August-
November in Mediterranean P. pinaster forests (Gassibe et 
al. 2015). Though observations from these drier/seasonally 
dry ecosystems are opposite from our findings for Inocybe 
on Pinus banksiana, they demonstrate the potential for the 
abundance of this ECM fungal genus to vary with soil mois-
ture. The observed decrease in Tomentella abundance under 
drier soil conditions is consistent with the observed absence 
of Tomentella on P. edulis roots by Gehring et al. (2020) 
under combined warming and drought, compared to the 
control, warming-only, and drought-only treatments in their 
New Mexico, U.S. study.

The absence of similar compositional shifts in the ECM 
fungal communities associated with P. strobus under drier 
conditions was surprising given the strong relationship 
between soil drying and ECM fungal richness on that host. 
We speculate this may be the result of the greater carbon 
limitation under warmer and drier conditions experienced 
by P. strobus (as evidenced by the decline in stem growth), 
which would likely minimize the ability of this host to dif-
ferentially invest in members of its ECM fungal community 
that may provide benefit under drier conditions (Shi et al. 
2002). Closer analysis of the significant treatment by block 
interaction for P. strobus ECM fungal community composi-
tion revealed that blocks D and E appeared to differ in com-
munity composition by treatment, but not block F (though 
treatment sample sizes after data quality control also dif-
fered slightly by block, see Supplementary Figure S7). Fur-
ther investigation would be needed to determine whether 
factors such as neighboring plant community composition 
or differences in edaphic conditions may explain this block 
variation. Given the different responses across hosts in this 
study as well as variation across studies, further research 
is needed to understand how differences in ecosystem type 
(e.g. semi- arid or seasonally dry versus mesic) as well as 
the magnitude of warming and water stress may influence 

(Fernandez et al. 2023). Taken together, these mixed results 
suggest that predicting ECM fungal richness responses to 
shifting climatic conditions will be challenging, and likely 
dependent on both ECM fungal community composition as 
well as host performance.

Interestingly, in the case of P. strobus, the lack of shift 
in ECM fungal community composition with declining soil 
VWC suggests that the decline in ECM fungal richness 
reflects a general loss of ECM fungal species rather than 
a loss from any one specific taxonomic group. While Geh-
ring et al. (2020) observed a positive association between 
shoot growth and ECM fungal Shannon diversity, we did 
not observe a clear link between ECM fungal richness and 
P. strobus host stem growth. This lack of relationship may 
be in part due to a temporal mismatch in the measurements 
(i.e. growth measured in the fall and the ECM fungal com-
munity measured the following spring), but this explanation 
could be impacted by ECM fungal community shifts from 
fall to spring, which we did not measure (see Štursová et al. 
2020; Koide et al. 2007 for differences in soil fungal com-
munities by season). Further, shoot growth is likely more 
indicative of photosynthate availability for ECM fungal 
symbionts than stem growth, as it includes leaf biomass. 
Looking forward, we recommend investigating whether 
tree host drought tolerance metrics such as stomatal con-
ductance or hydraulic safety margin (Anderegg et al. 2016; 
McDowell et al. 2008; Meinzer et al. 2009) are predictive 
of ECM fungal richness to potentially better connect host 
and fungal responses to shifting environmental conditions. 
For example, stricter regulation of stomatal conductance by 
drought-tolerant trees might decrease carbon available for 
their ECM fungal partners, potentially reducing the rela-
tive abundance of ECM fungal taxa that are considered to 
be of higher carbon demand (Fernandez et al. 2017, 2023; 
McDowell et al. 2008; Pickles et al. 2012).

The shift in composition of the ECM fungal communities 
associated with P. banksiana due to soil drying was con-
sistent with previous studies that indicate significant effects 
of warming and rainfall reduction on ECM fungal commu-
nity composition of roots at the B4WarmED experiment 
(Fernandez et al. 2017, 2023; Mucha et al. 2018) as well as 
other locations (Gehring et al. 2020; Kwatcho Kengdo et al. 
2022). Previous studies have shown that ECM ascomycete 
fungi are typically favored under drier conditions (Allison 
and Treseder 2008), including at the B4WarmED experi-
ment (Fernandez et al. 2017, 2023), but here we found no 
significant increase in the abundance of Cenococcum, 
Tuber, or Wilcoxina, which were among the dominant ECM 
fungal genera on P. strobus and P. banksiana. The variation 
in P. banksiana ECM fungal composition was significantly 
explained by mean plot-level soil VWC and aboveg-
round temperature, which affected different ECM fungal 
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