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E C O L O G Y

Carbon-phosphorus cycle models overestimate CO2 
enrichment response in a mature Eucalyptus forest
Mingkai Jiang1,2*, Belinda E. Medlyn2, David Wårlind3, Jürgen Knauer2,4, Katrin Fleischer5,  
Daniel S. Goll6, Stefan Olin3, Xiaojuan Yang7, Lin Yu5,8, Sönke Zaehle5, Haicheng Zhang9, He Lv1, 
Kristine Y. Crous2, Yolima Carrillo2, Catriona Macdonald2, Ian Anderson2, Matthias M. Boer2,  
Mark Farrell10, Andrew Gherlenda2, Laura Castañeda-Gómez11, Shun Hasegawa2,12,  
Klaus Jarosch13,14,15, Paul Milham2, Raúl Ochoa-Hueso16,17, Varsha Pathare2,18,  
Johanna Pihlblad2,19,20, Juan Piñeiro Nevado2,21, Jeff Powell2, Sally A. Power2, Peter Reich2,22,23, 
Markus Riegler2, David S. Ellsworth2, Benjamin Smith2,3

The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle 
implementation in land surface models, but their CO2 effects predictions have not been evaluated against mea-
surements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled 
models were confronted with observations from a long-term free-air CO2 enrichment experiment in a mature, P-
limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO2 effect 
on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and 
growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C 
allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of eco-
system C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights 
into the performance and functionality of P-enabled models and adds to the existing evidence that the global 
CO2-driven carbon sink is overestimated by models.

INTRODUCTION
Land surface models and their predictions have a key role in pro-
viding the evidence to guide climate and emissions policy (1, 2). 
The capacity of these models to realistically resolve biogeochemical 
processes and make accurate predictions of ecosystem responses to changing 
environmental conditions thus underpins our actions to mitigate cli-
mate change (3, 4). Phosphorus (P), an element essential for plant 

growth and metabolism (5), is increasingly recognized as having 
globally substantial effects on biogeochemistry via its role in regulat-
ing terrestrial ecosystem productivity (6, 7) and its response to rising 
atmospheric CO2 concentrations (3, 4). As a result, P-cycle processes 
are now being implemented in land surface models (8–13), and these 
models generally predicted reduced global land C sink relative to 
those without P-cycle representations (14, 15). This stands in broad 
agreement with findings of P fertilization experiments that demon-
strate that P limitation is globally widespread (6). However, whether 
P-enabled models can make accurate predictions on correct mecha-
nistic grounds of the effects of rising atmospheric CO2 on plant 
growth and ecosystem C sequestration remains untested. This criti-
cal knowledge gap leads to uncertainty in estimating the land C sink 
and the C-climate feedback under climate change (16).

Multimodel intercomparisons show that P-enabled models di-
verge in their predictions of the CO2 fertilization effect, reflecting, 
in part, different model assumptions on plant P-use and acquisition 
strategies (17, 18). In one such intercomparison performed for a P-
limited Eucalyptus forest (17), the two P-enabled models predicted 
lower CO2 effects on growth than models lacking P-cycle processes, 
but no observations were available to evaluate the model predictions. 
Nevertheless, this study highlighted the need to develop an increased 
understanding of the processes related to plant P uptake, plant stoi-
chiometry, and their interactions with soil microbial communities 
(17) and sparked the increased interests in developing P-enabled 
models (10–13, 19, 20). A more recent model intercomparison using 
a larger suite of P-enabled models tested predictions of the CO2 re-
sponses of a tropical rainforest growing on low-P soils (18). The lim-
iting role of P was again demonstrated, but predictions of the CO2 
effect still varied widely among models with no data to constrain the 
prediction uncertainties. Specifically, while some models predicted 
no additional growth under elevated CO2 (eCO2), others predicted 
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larger responses, facilitated by (i) plasticity in plant stoichiometry 
and allocation, (ii) additional fine root production, (iii) greater P 
mobilization via P desorption, and/or (iv) extra biochemical miner-
alization of soil organic P (18). Given the large spread of predictions 
among P-enabled models, an evaluation against data is now urgently 
needed to constrain alternative model assumptions.

The Eucalyptus forest free-air CO2 enrichment experiment 
(EucFACE) provides a unique opportunity to evaluate model simu-
lations with data. EucFACE is an ecosystem-scale field experiment 
where three plots (490 m2 each) are subjected to ambient and eCO2 
treatments (+150 μmol mol−1) in a natural, mature Eucalyptus for-
est on soils of low fertility. This work uses data collected over the 
first 7 years of the experiment (2012 to 2018). A P fertilization ex-
periment in the adjacent forest stand has demonstrated that soil P 
availability limits tree productivity at the site (21, 22). In the Euc-
FACE experiment, multiple independent data streams show that net 
ecosystem production (NEP) did not increase under eCO2 (23). 
More specifically, eCO2 led to an enhanced photosynthetic uptake 
by trees (21, 24), but they did not grow extra biomass under eCO2 
over the first 4 years of the CO2 enrichment (23). Instead, it appears 
likely that the extra C was deployed by the trees to facilitate P acqui-
sition through possible increased belowground labile C allocation 
(23). This mechanism (known as priming) has been widely suggest-
ed to assist soil microbial and mycorrhizal communities to release 
nutrients that would otherwise be unavailable to plants (25). At 
EucFACE, it was associated with enhanced heterotrophic respira-
tion (Rhet) under eCO2 (23, 26). These results suggest that capturing 
the full spectrum of plant-soil interactions involving C-P feedback 
is important for models to predict the extra potential for C seques-
tration with CO2 fertilization and provide a unique opportunity to 
evaluate the recent developments in P-enabled models.

Here, we confront the predictions of eight widely used models 
that explicitly simulate P-cycle processes using data collected from 
EucFACE. The set of models is diverse, ranging from stand-scale eco-
system models (27, 28) to global land surface models with the ca
pacity to simulate C-, nitrogen (N)-, and P-cycle processes (Table 1, 
Supplementary Information section 1, and tables S1 to S6) (10–13, 
19, 20, 29, 30). Our analysis takes an assumption-based approach 
(31), meaning that we focus on the key underlying assumptions lead-
ing to the prediction rather than the prediction accuracy alone. We 
address the following four process-centered questions (Fig.  1 and 
fig. S1): (i) How do leaf physiology and leaf area jointly affect tree 
gross primary production (GPP) response to eCO2? (ii) how does 
eCO2 affect plant C allocation? (iii) how does eCO2 affect plant P 
demand (Pdem) and use? and (iv) how does eCO2 affect plant P up-
take (Pupt) and soil P supply? We evaluate model predictions by as-
sessing their prediction accuracy against measurements (Fig. 2) and 
the underlying mechanisms leading to the prediction (Figs. 3 to 6). 
Our work represents a crucial observation-based evaluation of eco-
system C-P interactions and their responses to eCO2 in an ensemble 
of P-enabled models, a necessary step to further constrain the uncer-
tainty in the CO2 fertilization effect on forests globally.

RESULTS
No single model could predict all observed eCO2 responses
Phosphorus-enabled models varied in their skills in reproducing 
the observed C- and P-cycle dynamics under ambient CO2 treat-
ment, and they differed in their ability to match the observed sign 

and magnitude of eCO2 responses at EucFACE (Fig. 2). The data-
model intercomparison under ambient CO2 treatment provides a 
baseline understanding of model performance, whereas the com-
parisons of the sign and magnitude of the eCO2 predictions evalu-
ate the direction and accuracy of the predicted CO2 responses. In 
general, no single model performed consistently well against the 
observed CO2 effects for all simulated variables (Fig. 2).

Most models were capable of predicting the sign and magnitude 
of the CO2 effect on NEP within the uncertainty bound of the obser-
vations (Fig. 2A). However, the predicted CO2 effects on NEP varied 
considerably among models (−4 to 245 g C m−2 year−1), and overall, 
they tended to estimate a positive CO2 effect (multimodel mean and 
SD of 129 ± 83 g C m−2 year−1). In comparison, none of the three 
independent observation-based datasets of NEP (23) indicated a 
significant CO2 effect. Moreover, although model predictions were 
within the uncertainty bounds of the correct CO2 effect on NEP—an 
aggregate variable that reflects the combined responses of plant C 
assimilation and a range of return fluxes of C to the atmosphere—
they performed less well against observations on the individual com-
ponent fluxes or on other variables related to the processes controlling 
these fluxes (Fig. 2, B to E). In sum, although NEP predictions are 
not inconsistent with data, the underlying process representations 
leading to the NEP predictions are unlikely to be supported in full 
for any of the models.

The inclusion of P-cycle processes improved model realism, in 
that the P-enabled models predicted lower biomass sequestration 
and CO2 responses when compared to their corresponding CN ver-
sions (fig. S2). The simulated down-regulation effect of P on growth 
was in line with P fertilization responses observed in the same forest 
ecosystem that demonstrates that P availability limits tree growth 
(22). Additions of P-cycle processes also allowed a more explicit 
and process-oriented approach to simulate the complex ecosystem 
feedback and interaction (tables S2 to S4). Nonetheless, the multi-
model mean and spread of the P-enabled models were not greatly 
different from the multimodel predictions made in advance of the 
experiment where most models lacked a P-cycle representation 
(fig. S3) (17). Thus, although addition of P-enabled processes re-
sulted in more comprehensive and mechanistic representations of 
ecosystem biogeochemistry, it did not reduce overall uncertainty in 
model predictions in terms of the multimodel spread.

The predicted plant C uptake was overly sensitive to eCO2
Mechanistically, the diverging effects of CO2 on NEP across models 
reflect different embedded assumptions on plant C uptake (Fig. 3), 
allocation (Fig.  4), and their interaction with P-cycle processes 
(Figs. 5 and 6). Model estimates of GPP response to eCO2 ranged 
from 5 to 30%, with a multimodel mean of 20%, suggesting a strong 
CO2 fertilization effect on C uptake by trees (Fig. 3, A and C, and 
fig. S4). The modeled GPP response reflects both leaf physiological 
(Fig. 3C) and leaf area responses to eCO2 (Fig. 3, B and D). Most 
models (except GDAYP and LPJGP) predicted a lack of response in 
leaf area index (LAI) to eCO2 (Fig. 3, B and D), in line with data (23, 
24, 32). However, only QUJSM predicted the correct magnitude of 
both GPP and LAI responses to eCO2, whereas the other models 
(except GDAYP) generally overestimated these responses (Fig. 3E). 
Hence, the multimodel mean response of GPP (~20%) is substan-
tially larger than the responses independently estimated based on 
site data [i.e., OBSfield and OBSinst; 6 and 11%, with and without 
accounting for variation in LAI among treatment plots (24); Fig. 3C].
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Table 1. Overview of the mechanistic models included in this study and their key phosphorus-related model representation assumptions. 

Model CABLE-POP ELM GDAY-CNP LPJ-GUESS-
CNP

ORCHIDEE-
CNP (v1.2)

QUINCY ORCHIDEE-
CNP (v1.3)

QUINCY-JSM

Abbreviation CABLP ELMV1 GDAYP LPJGP OCHDP QUINC OCHDX QUJSM

Model type Land surface 
model with 

a woody 
demography 

module

Land surface 
model

Stand-scale 
model

Global 
dynamic 

vegetation 
model

Land surface 
model

Land surface 
model

Land 
surface 

model with 
a MIMICS-

type 
microbial 

submodule

Land surface 
model coupled 
to the Jena Soil 

Model

P effect on key C-cycle processes

Photosynthesis Down-
regulation of 

Vcmax and Jmax 
via leaf N:P (8)

Photosynthetic 
capacity func-
tion of leaf N 
content (70)

Down-
regulation of 

Vcmax and Jmax 
via leaf N and 

P (67)

Down-
regulation of 

Vcmax and Jmax 
via leaf N and 

P (53)

Down-
regulation of 

Vcmax and Jmax 
via leaf N and 

P (53)

Down-
regulation of 

Vcmax and Jmax 
via leaf N:P (65)

Same as 
OCHDP

Same as QUINC

Growth Reduction 
of growth 

efficiency and 
direct down-
regulation of 
NPP (excess 
C is lost via 
autotrophic 
respiration)

Direct down-
regulation of 
NPP (excess C 
enters storage 
pool and lost 
via its turn-

over)

Direct down-
regulation of 

NPP

Direct down-
regulation of 

NPP

Direct down-
regulation of 
growth using 

the min of 
plant labile C, 
N, and P (ex-

cess elements 
are stored)

Sink limitation 
of plant labile 
pool (66, 71)

Same as 
OCHDP

Same as QUINC

C allocation Fixed fractions 
to leaf, wood, 
and fine root

Dynamic 
allocation

Functional allometric relationship based on the pipe model and resource dependency

Soil 
decomposition

Decompo-
sition con-

strained by soil 
labile P pool

Decompo-
sition con-

strained by soil 
solution P

None Decom-
position 

constrained by 
inorganic soil 

P pool

Decom-
position 

constrained 
by dissolved 
labile P pool

None Soil mineral 
P affects mi-
crobial C use 

efficiency

Soil mineral P 
affects microbial 
C use efficiency, 

microbial en-
zyme allocation, 
and competition 

for soluble P

P-cycle processes

P weathering Prescribed 
parameter 
(soil-type 
specific)

Function of 
soil primary 

mineral P pool 
and soil order

Prescribed Depend on 
soil layer min-
eral to organic 

fraction, T, 
moisture, and 
root density

Set to zero for 
this site

Function of 
soil prima-
ry P pool, 

temperature, 
moisture, and 
root density

Same as 
OCHDP

Similar as 
QUINC, with 

additional con-
trol of microbial 

biomass

P leaching Function of in-
organic labile 

P pool

Function of 
solution P 

pool, drainage, 
and runoff

Function of 
soil inorganic 
labile P pool

Mineral 
leaching is 
a function 

of PO4 pool, 
drainage, and 

runoff. Organic 
leaching also 

depends 
on soil sand 

fraction

Function of 
solution P 

pool, drainage, 
and runoff

Function of 
solution P 

pool, drainage, 
and runoff

Same as 
OCHDP

Similar as 
QUINC, with 
additional P 

leaching from 
DOM

Soil P pools 
specific to P 
cycle

Three pools 
(labile, sorbed, 
and strongly 

sorbed)

Five pools 
(solution, 

labile, second-
ary mineral, 
occluded, 

and primary 
mineral)

Five pools 
(parent, labile, 
sorbed, strong-
ly sorbed, and 

occluded)

Four pools 
(PO4, labile, 
sorbed, oc-

cluded)

Two pools (la-
bile dissolved 

and labile 
sorbed)

Five pools 
(soluble, 

adsorbed, 
absorbed, 

occluded, and 
primary)

Same as 
OCHDP

Same as QUINC

(Continued)
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This overestimation of GPP response is unlikely to be related 
to nutrient cycling assumptions. Most models allowed leaf nutri-
ent  concentrations to vary within bounds, resulting in a dilution 
effect of eCO2 on leaf P and N concentrations, which was mostly 
within the range of data-based uncertainty (fig.  S5). Although 
models incorporated different empirical relationships to represent 
the leaf nutrient effect on photosynthesis and its response to eCO2 
(Table  1), the dilution effect of eCO2 was small in most models 
(<5%), consistent with data.

Model assumptions regarding leaf-to-canopy scaling played a 
larger role in data-model divergence. The predicted strong CO2 re-
sponse is comparable to the 19% light-saturated leaf-level response 
estimated for the site (21). This result suggests that models may 
have unrealistic representations of the leaf-to-canopy scaling of 

photosynthesis, especially the relative limitation role of Rubisco 
(Ac) and electron transport (Aj) on canopy photosynthesis (Fig. 3C). 
In particular, Ac limitation appears to dominate the simulated GPP 
response to eCO2 in most models, whereas the site estimates indi-
cate a much lower sensitivity of GPP response to eCO2 (i.e., 11% 
at the canopy scale, with pretreatment differences in leaf area tak-
en  into account), and this lower sensitivity is predominately ex-
plained by the prevalence of Aj-limited leaf photosynthesis within 
the canopy (24).

The CO2 effects on plant growth and ecosystem C 
sequestration were overestimated
Models differed in allocating the extra photosynthates assimilated 
under eCO2, leading to different predictions of plant growth and 

 (Continued)

Model CABLE-POP ELM GDAY-CNP LPJ-GUESS-
CNP

ORCHIDEE-
CNP (v1.2)

QUINCY ORCHIDEE-
CNP (v1.3)

QUINCY-JSM

Plant P 
retranslocation

Constant coef-
ficients for leaf, 
wood, and fine 

root pools

Constant 
coefficient for 

leaf only

Constant 
coefficient for 

leaf only

Max coeffi-
cients for leaf, 
sapwood, and 

root. Actual 
depend on 
plant P limi-

tation

Constant 
coefficient for 
leaf and root

Constant coef-
ficients for leaf, 
wood, and fine 

root pools

Same as 
OCHDP

Same as QUINC

Plant P uptake Function of 
plant P de-

mand and soil 
labile P

Function of 
plant P de-

mand and soil 
solution P

Function of 
plant P de-

mand, root C, 
and inorganic 
labile P pool

Function of 
plant P de-

mand and sta-
tus, root C, soil 
mineral P pool, 
and T. Cohort 
partitioning 

based on fine 
root surface

Function 
of plant P 

demand, root 
C, root uptake 
capacity, dis-

solved labile P 
pool, and soil 

diffusivity

Function 
of plant P 

demand scalar, 
root C, root up-
take capacity, 

soluble P pool, 
regulated 

by soil T and 
moisture

Same as 
OCHDP

Similar as 
QUINC, further 

regulated by 
competition 
between soil 
microbes and 

mineral surface

Plant P 
demand

Function of 
growth rates 

and tissue C:P 
ratios

Function of 
growth rate 
of tissue C:P 

ratios

Function of 
growth and tis-
sue C:P ratios

Function to 
optimization 

Vcmax in leaves 
(optimal C:P 

ratio)

Function of 
growth rates 
and tissue CP 

ratios

Function of 
growth rates 

and target 
growth NP 

ratio, which is 
dependent on 
the plant labile 

N&P pool

Same as 
OCHDP

Same as QUINC

Soil P 
biochemical 
mineralization

Dynamic 
function of 

soil organic P 
turnover rate 
(slow, passive 

pool)

Function of 
soil organic P, 

the extent of N 
limitation and 

P limitation

Function of 
soil organic 
P turnover 

rate (slow and 
passive pool)

Function 
of soil layer 
organic P 
pool (slow 
pool), PO4, 

temperature, 
moisture, and 
root density

Dynamic 
function of leaf 
N:P imbalance 
and substrate 

availability

Function 
of soil layer 

organic P pool 
(slow pool), 

temperature, 
and moisture

Same as 
OCHDP

Function of P in 
soil layer organic 
pool (microbial 

residue, mineral-
associated 

OC), microbial 
phosphatase 

abundance, soil 
organic pool 

C:P ratio, T, and 
moisture

P desorption of 
secondary P

None Fixed desorp-
tion rate

Function of 
soil pH

Function of 
soil layer tem-

perature

None Function of 
soil temper-

ature and 
moisture

Same as 
OCHDP

Same as QUINC

P occlusion Fixed fraction 
of strongly 

sorbed P pool

Fixed occlu-
sion rate

Fixed fraction 
of strongly 

sorbed P pool

Fixed fraction 
of sorbed P 

pool

Fixed fraction 
of labile 
sorbed P

Fixed fraction 
of strongly 

sorbed P pool

Same as 
OCHDP

Same as QUINC
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NEP responses to eCO2 (Fig. 4 and fig. S6). GDAYP, ELMV1, LPJGP, 
QUINC, and QUJSM predicted increases in net primary production 
(NPP) with eCO2 (Fig. 4A). This prediction is generally in line with 
data, but these models differed with regard to the fate of the extra C 
along the plant-soil continuum (Fig. 4B). LPJGP predicted that most 
of this extra C led to a larger annual increment in plant biomass 
(ΔCveg), possibly because of its highly flexible plant stoichiometry 
(fig. S7). By comparison, ELMV1, QUINC, and QUJSM predicted 
extra C accumulation in the plant storage pool (fig. S6). Consequent-
ly, these models predicted strong CO2 fertilization effects on ΔCveg 
and NEP (Fig. 4, C and D), inconsistent with the observations (21, 
23). CABLP, OCHDP, and OCHDX simulated a large eCO2-induced 
increase in plant autotrophic respiration (Fig. 4A), apparently as 
an algorithmic workaround avoiding unrealistic C accumulation in 
plant biomass. The data show no evidence for an increase in autotro-
phic respiration (23), demonstrating that this assumption is incor-
rect. Instead, data from the site point to an increased belowground C 
allocation into fast turnover pools, possibly via root exudates or my-
corrhizal associations, and an enhanced soil Rhet under eCO2 (Fig. 4B 
and fig. S6) (23, 33–35). A similar response has also been observed in 
other eCO2 experiments (36, 37). However, among the models, this 
response only occurred in GDAYP, and this model was modified de-
liberately to correctly emulate this site-based observation (28). Thus, 
introducing an assumption of greater belowground allocation flux to 
stimulate soil microbial activity could improve model capacity to 
capture plant growth response to eCO2 when soil nutrient is limiting.

Plant P demand and uptake responses to eCO2 
were underestimated
Despite model estimates of the CO2 effect on ΔCveg being gener-
ally greater than the observations, all models underestimated the 
CO2 effect on Pdem and the annual incremental changes in plant P 
pool (ΔPveg; Fig. 5 and fig. S7). Plant P demand is driven by the 
annual biomass production (BP) fluxes of the different plant tissue 
compartments (Fig. 5A), modulated by flexibility in tissue C:P ra-
tios (Fig. 5C). Observations suggest a small increase in Pdem, large-
ly driven by a small decrease in fine root C:P ratio (38, 39). Two 
models were clearly inconsistent with this observation: GDAYP 
and LPJGP exhibited large eCO2-induced reductions in Pdem, like-
ly due to their highly flexible leaf and fine root C:P ratios (Fig. 5, D 
and G). In three models (CABLP, QUJSM, and ELMV1), the mag-
nitude of the Pdem response to eCO2 was near zero, smaller than 
but not statistically distinguishable from observations (Fig. 5B). In 
these models, there was little change in either plant C:P ratio 
(Fig.  5D) or tissue production (Fig.  4D). The three remaining 
models (OCHDP, OCHDX, and QUINC) showed reasonable 
agreement with data on the magnitude of the eCO2-induced in-
crease in Pdem (Fig. 5E) but not via the correct mechanism: They 
predicted increased ΔCveg, rather than changes in stoichiometry 
(Fig. 5D).

Plant P demand is met by the combination of plant internal P 
recycling (e.g., leaf P resorption) and uptake fluxes (Pres and Pupt, 
respectively; fig. S7A). All models assumed fixed plant P resorption 

A B

C

D

Fig. 1. Schematic diagrams of the key ecosystem components and processes evaluated in this data-model intercomparison. (A) Plant carbon (C) uptake processes, 
including leaf physiological (carbon assimilation rate per leaf area; Aleaf) and structural controls (LAI) on GPP. The physiological control can be further related to how leaf 
phosphorus content (Pleaf) affects Aleaf. (B) Plant C allocation processes. GPP is partitioned into autotrophic respiration (Rauto) and NPP, with the latter further partitioned 
into BP and nonstructural carbohydrate (NSC) fluxes. Plant C allocation is resource-dependent, controlled by model assumptions on plant tissue stoichiometry and the 
corresponding growth demand. BP leads to C storage in vegetation (Cveg), and NSC flux leads to either C accumulation in plant labile C pool (Clab) or plant root exudation 
flux (Cexud). Cexud can be considered as plant C cost for nutrient acquisition. (C) Plant P demand and use processes. Plant P demand (Pdem) is driven by BP and modulated 
by plant C:P ratios to build the vegetation P pool (Pveg). Pdem can be met by plant P resorption (Pres) and uptake (Pupt) fluxes. The dashed box is a surrogate of the BP flux as 
seen in the allocation subpanel. (D) Soil P supply and microbial processes. Plant-sourced C enters soil via litterfall and Cexud fluxes, and the microbial turnover of these 
organic matter releases C via Rhet. Organic P is mineralized (Pnet) via both biological and biochemical processes, which then enters soil labile P pool (Plab) to meet plant P 
uptake (Pupt). Psim and Psec represent P pools of soil inorganic matter and secondary inorganic matter, respectively.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of M

innesota Tw
in C

ities on M
ay 06, 2025



Jiang et al., Sci. Adv. 10, eadl5822 (2024)     3 July 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

6 of 15

coefficients regardless of the CO2 treatment (Table 1), and this lack 
of CO2 effect on Pres is in line with the empirical evidence from Euc-
FACE (40). Thus, model predictions of Pupt response to eCO2 were 
similar to those of the Pdem responses, in that the eCO2-driven in-
crease in Pupt was clearly underestimated by two models and possibly 
underestimated by three more (Fig. 5F and fig. S7).

Representations of soil C-P responses to eCO2 remain a 
major uncertainty
In all models, Pupt is functionally related to both plant P demand 
and the size of the most readily available soil P pool (Table 1). Soil P 
supply depends on soil net P mineralization flux (Pnet), which is 
the net balance between gross P mineralization (biological and 

Fig. 2. Data-model intercomparisons for the CO2 responses of key groups of ecosystem carbon (C) and phosphorus (P) variables. (A) NEP, indicating the overall 
ecosystem carbon sequestration potential; (B to E) plant C uptake, plant C allocation, plant P demand and use, and soil P process variables, respectively. The three colors 
in the pie chart show different assessment categories: green indicates that the model prediction is within the range of observational uncertainty (expressed as the SD of 
the data) under ambient CO2 (aCO2) treatment; blue and yellow indicate that the model prediction is consistent with observation in terms of the sign and the magnitude 
of the CO2 effect, respectively. The former indicator provides a baseline understanding of the model performance under aCO2 treatment, and the latter two indicators 
assess the correctness of the model prediction in terms of the direction and accuracy of the CO2 response, respectively. The gray color in the pie chart indicates data-model 
inconsistency, and the white space indicates no model output for the particular variable. M-M represents multimodel means. Variable abbreviations are: GPP, NPP, annual 
incremental change in plant C pool (∆Cveg), LAI, and Rhet; NPP, C pools, P pools, and C:P ratios of different plant and ecosystem compartments, with froot, leaflit, lab, mic, 
som, and sim indicating fine root, leaflitter, soil labile P, soil microbes, soil organic matter, and soil inorganic matter, respectively; plant P-use efficiency to support GPP and 
NPP (PUEGPP and PUENPP, respectively); plant P demand and uptake fluxes (Pdem and Pupt, respectively); incremental changes in plant P pool (∆Pveg); plant P demand fluxes 
driven by leaf, wood, and fine root production (PGleaf, PGwood, and PGfroot, respectively); and soil net P mineralization and P leaching fluxes (Pnet and Pleach, respectively).
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biochemical) and microbial immobilization (Fig. 6 and figs. S8 and 
S9). EucFACE data indicate a tendency for an eCO2-induced increase 
in Pnet, but the effect size is dwarfed by the large range of uncertainty, 
giving a relatively poor constraint on model predictions and highlight-
ing the need for increased efforts to quantify this flux. Nonetheless, 
ELMV1, OCHDP, and QUINC predicted the correct sign of CO2 ef-
fect on Pnet on average, whereas the other models made the opposite 

predictions, in that Pnet reduced with eCO2 (Fig. 6A). In LPJGP and 
GDAYP, plant C:P ratio increased with eCO2, resulting in poorer lit-
ter quality (Fig. 5D), which increased microbial P immobilization. In 
GDAYP, the eCO2-induced increase in root exudation also led to a 
higher soil P immobilization rather than greater mineralization due 
to the stoichiometrically driven demand for additional P in the active 
soil pool to match the additional C entering this pool (28). While 
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the increased belowground allocation is supported experimentally, a 
new model formulation is required to ensure that it does not drive in-
creased P immobilization in GDAYP.

It has been proposed that more realistic representations of soil 
microbial activity may be important to capture the P-cycle feed-
back in models, and this avenue seems promising given the impor-
tance of soil microbial competition for P at the site (39). However, 
the two models with more advanced microbial representations 
(OCHDX and QUJSM) simulated an eCO2-induced decrease in 
Pnet, in the opposite direction of their default models (OCHDP and 
QUINC) and disagree with the data (Fig. 6B). Both models simu-
lated slightly larger microbial C and P pools under eCO2 (Cmic and 
Pmic; fig. S9), in contrast to the data. The increases in Cmic and Pmic 

mean that, in both models, the gross P mineralization (and micro-
bial P uptake) increases under eCO2 but Pnet decreases. This indi-
cates that both models underestimate microbial P limitation in the 
system. Increasing root exudation would potentially alleviate mi-
crobial P stress, likely decreasing Pnet further. Hence, the missing 
process may be the role of root exudation in directly stimulating P 
mineralization, for example, via the release of labile C and acid 
phosphatase (41). Alternatively, the belowground allocation may 
support mycorrhizal symbiosis to facilitate extra nutrient acquisi-
tion and mineralization (25, 41), which was not explicitly consid-
ered in any of the models tested here. Therefore, none of the models 
were capable of reproducing the eCO2-induced increase in soil Rhet 
(Fig. 6, C and D).
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DISCUSSION
To improve the capability of models to realistically capture ecosys-
tem processes and accurately simulate ecosystem dynamics has been 
one of the central goals driving development of ecosystem and land 
surface models (42–44). The inclusion of P-cycle processes has led 
to more complex model structures and more comprehensive repre-
sentations of ecosystem biogeochemistry (45–47). These are impor-
tant steps toward adequately accounting for C-P interactions, but to 
what degree they have so far led to more robust predictions of the 
global land C sink under future climate change remains unclear 
(18). By testing the ability of a suite of models to simulate the ob-
served CO2 responses for a P-limited forest subject to long-term 
CO2 enrichment, this data-model intercomparison provides a novel 
and comprehensive assessment of the predictive capacity of the cur-
rent generation P-enabled models. Our results show substantial dis-
agreement among models and inconsistency between models and 
data. By taking an assumption-based approach (31), here we identi-
fied a number of key sets of assumptions where EucFACE data can 
guide future model improvement, namely, leaf-to-canopy scaling 
of photosynthesis, plant C allocation for nutrient acquisition, plant 

stoichiometric flexibility, and the belowground processes governing 
soil nutrient mineralization. The importance and deficiencies of 
these nutrient-dependent processes in models have been repeatedly 
demonstrated in previous model-based assessments (17, 18, 48–
51), although the main focus has been on N rather than P to reflect 
the model development history. Our work builds further on these 
findings, providing concrete recommendations to reduce model 
uncertainty with a particular focus on C-P interactions.

One key recommendation to modelers is a renewed focus on 
leaf-to-canopy scaling. Although this topic has been extensively 
explored in previous research (52), it nonetheless remains a major 
source of uncertainty in the eCO2 predictions, both in this study and 
in previous model-based intercomparisons (51). Here, most models 
predicted a GPP response consistent with a large proportion of pho-
tosynthesis limited by Rubisco activity, in contrast to the site-based 
inference that the electron transport limitation dominates (24). This 
discrepancy likely relates to model assumption regarding the leaf-
level ratio of maximum electron transport rate to maximum Rubisco 
activity (Jmax:Vcmax). Empirical evidence indicates that this ratio 
is reduced in plants growing in low-P soils (53). This empirical 
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relationship was incorporated into some of the models we tested 
(e.g., OCHDP), but these models still predicted strong CO2 effects 
on GPP at EucFACE (Fig. 3). Empirical data also suggest a small in-
crease in this ratio with eCO2, possibly linked to a dilution effect of 
leaf P or a reallocation of N away from Rubisco, but the evidence 
from EucFACE suggests that this reduction has only a small effect at 
the canopy scale (24). The critical assumption may therefore be the 
way in which leaf-level limitations to photosynthesis are scaled to the 
canopy (52), and our study indicates the need for this assumption to 
be reexamined.

A second area for model improvement is plant stoichiometric 
flexibility, which has been repeatedly identified as a key mechanism 
to enable a positive CO2 effect on productivity under nutrient limi-
tation (18, 47, 54). In general, growth in models is constrained by 
empirical C:N:P ratios, with higher flexibility leading to a larger 
growth response to eCO2. Analogous with previous studies (31, 51), 
our work identified discrepancy in the stoichiometric flexibility of 
eCO2 responses between observations and model simulations. 
Here, we show that the two models with the highest stoichiometric 
flexibility (GDAYP and LPJGP) predicted an increase in plant C:P 
ratio, beyond the range of uncertainty in the experimental evi-
dence. It is possible that plants subject to long-term adaptation to 
P-deprived soils may have limited capacity to further increase their 
C:P ratios in response to eCO2. However, this does not mean that it 
would be logical to assume a fixed stoichiometry in models; in-
stead, our results suggest a more stringent upper bound for the C:P 
ratio of plant tissues, especially for the aboveground component. It 
is observed that the largest change in C:P ratio was in the fine root, 
but none of the models reproduced this eCO2-induced decrease in 
fine root C:P ratio. Thus, as previously suggested (31), this data-
model discrepancy indicates the need to include a more appropriate 

representation of the functional trade-off governing nutrient allo-
cation in plant tissues, which relies on more concrete experimental 
evidence.

Our results also indicated the need to incorporate an increased 
belowground allocation pathway to short turnover pools of soil or-
ganic matter under eCO2 (Fig. 4). Most models assumed one of the 
three major pathways to “expend” the additional photosynthetic C 
uptake (i.e., autotrophic respiration, growth, or storage). All of these 
potential responses are ruled out by observational data at the site 
(23). Instead, the major pathway for additional C was increased be-
lowground allocation in the possible form of flux to mycorrhiza, as-
sociated with higher Rhet (23, 33). Observations from other FACE 
experiments also support such a belowground allocation pathway 
(priming effect) (36, 37). In comparison, some models do simulate 
increased belowground BP under eCO2 (18), but they typically do 
not simulate root exudates. While both pathways could result in in-
creased plant nutrient acquisition under eCO2, they would lead to 
different consequences for microbial C-use efficiency, soil organic 
matter stability, and nutrient acquisition efficiency, with different 
resulting effects on NEP and ecosystem C storage (25, 41, 47, 55).

Consequences of the increased belowground C flux under eCO2 
should form a key focus for further model development and experi-
mental research. The belowground allocation pathway better con-
nects the C-nutrient feedback between plants and microbes (28, 56). 
This flux may be part of an active plant strategy under eCO2, which 
has been observed or inferred from eCO2 experiments in both N-
limited (36) and P-limited ecosystems (23). Such a process may be 
particularly adaptive in P-limited ecosystems, where a large fraction 
of soil P exists in the less available forms (e.g., organic P) and could 
potentially be remobilized via this process (e.g., inorganic P desorp-
tion or organic P mineralization) (57). Recent studies using the 
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Fig. 6. Data-model intercomparisons of key soil phosphorus-cycle variables under ambient CO2 treatment and their responses to eCO2. (A) Net soil P mineralization 
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Fixation and Uptake of Nitrogen (FUN) model have demonstrated 
that this C-cost effect could provide an effective pathway for plant 
nutrient acquisition (58, 59). However, most models tested here are 
not adequate in representing this process (Fig. 6, B and D). Thus, a 
suggested avenue for model improvement is to include direct effects 
of C flux on P availability and uptake to plants via phosphatases 
mineralizing organic P or via mycorrhizal symbiosis (41). Addi-
tional empirical data are critically needed to understand the extent 
to which this C flux would affect soil nutrient availability in the 
presence of microbial competition and how it, in turn, would affect 
ecosystem C sequestration. Microbially explicit models may be 
considered helpful in this regard, but more generalizable evidence 
on the C-nutrient feedback between plant and microbes is needed 
to better characterize their functional dependence and possible 
responses to eCO2.

Last, our results highlight the benefits of an integrated data-
model intercomparison approach as part and parcel of a long-term 
ecosystem experiment. The a priori predictions made using a suite 
of models at the outset of the experiment (17) enabled more targeted 
data collections, providing critical information to constrain models 
in the subsequent data-model intercomparison. A further stage of 
the experiment is now underway, in which experimental plots are 
being fertilized with additional P, and models have once again been 
used to predict the outcome, guiding the focus and scope of obser-
vations needed to evaluate the predictions. Previous data-model 
(48–51, 60) or multimodel intercomparisons (17, 18) have been 
hampered by the lack of integration between models and experi-
mentation. We strongly advocate an iterative data-model intercom-
parison framework, in which data-model intercomparison works in 
tandem with data collection. This activity could be considered as 
part of the global efforts that use a suite of best available in situ, re-
mote sensing and reanalysis datasets to evaluate model performance, 
essentially allowing models to carry different weight toward the 
multimodel mean based on their capacity to reproduce the observa-
tions [e.g., ILAMB (61)]. Such an integrated framework is an invalu-
able approach to advance the predictive capacity of process-based 
models when addressing future scenarios of climate change.

In conclusion, this data-model intercomparison provides an im-
portant test to understand the predictions of the land C sink under 
rising CO2 made by the P-enabled models. The P limitation of forest 
productivity at EucFACE can be considered broadly representative 
of forests growing on P-poor soils globally (39), including extensive 
parts of the moist tropics and low-latitude drylands (7). As such, the 
model deficiencies identified here highlight crucial model-based 
uncertainties regarding the C sequestration potential of low-P for-
ests under rising CO2. In particular, we find that the models are gen-
erally overly sensitive to eCO2 in their C uptake and sequestration 
predictions. It is thus possible that model estimates of the CO2 fer-
tilization driver of the future land C sink may be overestimated, al-
though P limitation has already reduced the magnitude of the CO2 
effect when compared to simulations without P cycle processes (4, 
15, 16). Hence, climate change mitigation strategies that rely on a 
strong CO2 fertilization effect as a major future driver of increased 
land C sink should be considered with caution. Nonetheless, it is 
necessary for future model development and experimentation to re-
solve the process-based discrepancies identified in this study. Our 
work represents a solid step forward and will contribute to a more 
concrete prediction of the land C sink in the context of the global C 
balance under climate change.

MATERIALS AND METHODS
Site and experimental data description
The EucFACE experiment is located in a mature evergreen Eucalyptus 
forest on phosphorus-deprived alluvial spodosol soils near Sydney, 
Australia (33°36′S, 150°44′E). The site is characterized by a humid 
temperate–subtropical transitional climate with a mean annual tem-
perature of 17.5°C and a mean annual precipitation of 800 mm. The 
site has remained unmanaged for at least over 90 years and is domi-
nated by Eucalyptus tereticornis Sm. in the overstorey. The understo-
rey is dominated by the C3 perennial grass Microlaena stipoides. Six 
circular plots of 490 m2 each were established for the FACE experi-
ment, with three subject to CO2 enrichment of +150 parts per mil-
lion (ppm) starting from 6 February 2013 during daylight hours on 
all days of the year (i.e., n = 3) (33).

EucFACE provides long-term, in  situ and ecosystem-scale ex-
perimental data of ecosystem dynamics under both ambient and 
eCO2 treatment. We compiled a site-specific, high-frequency (half-
hourly and daily), time-series meteorological dataset over the peri-
od of 2012 to 2018 to drive the model simulation. We synthesized 
comprehensive C (23) and P budgets (39) covering major plant and 
soil pools and fluxes over the period of 2012 to 2018 to parameterize 
and evaluate the model performance (details in Modeling protocol 
and Analysis and Supplementary Information sections 2, 3, and 4). 
Detailed interpretations to these observations have been provided 
elsewhere [e.g., (21, 23, 32–35, 39, 40)], and therefore in this study, 
we only focus on reporting the data-model comparisons.

Model descriptions
Overview
This data-model intercomparison includes six state-of-the-art, P-
enabled terrestrial ecosystem models, two of which have the addi-
tional capacity to simulate microbial processes by coupling to their 
corresponding microbial submodules (Supplementary Information 
section 1, tables S1 to S6, and figs. S10 to S17). The selection of this 
list of models takes into consideration the P-enabled models avail-
able at the time this work started, the knowledge gathered from the 
previous multimodel intercomparison works (17, 18), and the prin-
ciple to include a variety of model-based assumptions to compare 
with data. The models are a stand-scale ecosystem model GDAY 
[Generic Decomposition And Yield model (27, 28); abbreviated 
in  this study as GDAYP], five land surface models CABLE-POP 
[Community Atmosphere Biosphere Land Emulator coupled with the 
Populations-Order-Physiology module simulating woody demogra-
phy but with POP switched off in this study (10); abbreviated as 
CABLP], ELM [Energy Exascale Earth System Model land model v1 (20); 
abbreviated as ELMV1], LPJ-GUESS [Lund-Potsdam-Jena General 
Ecosystem Simulator (29); abbreviated as LPJGP], ORCHIDEE-
CNP [ORganizing Carbon and Hydrology in Dynamic Ecosys-
tems, version 1.2 (11,30); abbreviated as ORCHD], and QUINCY 
[QUantifying the effects of INteracting nutrient CYcles on terrestrial 
biosphere dynamics and their climate feedbacks (13); abbreviated 
as QUINC for the P-enabled model]. The microbial-coupled models 
are ORCHIDEE-CNP coupled with a Microbial-Mineral Carbon Sta-
bilization (MIMICS) model-type (30, 62) microbial module (abbre-
viated as OCHDX) and QUINCY coupled with the Jena Soil 
Model (19) (abbreviated as QUJSM). All eight models include C-, 
N-, and water-cycle processes, and all eight models include a 
prognostic P cycle but with different degrees of detail and mecha-
nistic assumptions on plant and soil processes (Supplementary 
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Information section 1). To quantify the effect of the P cycle alone, 
we ran a subset of the models, GDAY and LPJ-GUESS, without the 
P cycle turned on (abbreviated as GDAYN and LPJGN) and made 
model-specific comparisons (fig.  S2). This approach is different 
from the previous modeling work (18) where the ensemble means 
of CN and CNP models were compared. We suggest that our 
model-specific comparison may be more useful because it isolates 
the effect of the P cycle for these models rather than structural dif-
ferences among different models.
Model structure
Models included in this study share common representation of veg-
etation and soil structure (Supplementary Information section 1 and 
tables S2 to S6). In short, all models have fast turnover leaf and fine 
root pools and at least one slow turnover plant tissue pool to repre-
sent the woody component. In addition, models generally imple-
ment at least one nonstructural carbohydrate pool as a way to store 
that excess C that is not immediately used for plant growth (e.g., 
CABLP, ELMV1, ORCHD, and QUINC). For the representation of 
soil organic matter, all default models assume a multipool structure, 
with turnover rates varying across the pools and controlled by soil 
physical factors such as temperature, moisture, and/or clay content. 
The microbial-explicit models have additional complexities that are 
described in the section Microbial dynamics. Some models have ver-
tically resolved soil profile, including biogeochemistry (e.g., QUINC 
and LPJGP).
Plant physiology, allocation, and growth
Models differ in their representation of plant photosynthesis (Sup-
plementary Information section  1). Most models adopted the 
Farquhar formulation for photosynthesis (e.g., CABLP, ELMV1, 
GDAYP, OCHDP, and OCHDX) (63), but there are additional vari-
ations of this form. For example, CABLP additionally implemented 
a coordination theory where canopy-level photosynthesis is colim-
ited by Vcmax and Jmax (10), and LPJGP implemented the Collatz 
formulation (64), while QUINC implemented the Kull and Kruijt 
relationship (65). Nutrient limitation on photosynthesis is realized 
via leaf tissue nutrient effect on photosynthetic capacity, but the ex-
act forms of this relationship vary among models (Table 1). Some 
assumed no direct effect of leaf P [e.g., QUINC (65, 66)], while oth-
ers assumed direct regulation of Vcmax (maximum rate for carbox-
ylation) and/or Jmax (maximum rate for electron transport) via the 
dynamics of leaf N and P, but the exact form of this relationship 
varies (8, 53, 67).

For plant C allocation, models generally adopt functional allo-
metric relationships, which subsequently depend on nutrient avail-
ability (Supplementary Information section 1 and Table 1). CABLP 
assumed fixed allocation fractions to leaf, wood, and root. Extra C 
acquired by plants under eCO2 not used for additional growth could 
be lost via autotrophic respiration (CABLP, QUINC, and QUJSM), 
stored in plants as nonstructural carbohydrates or is respired (OCHDP 
and OCHDX), or allocated into soil as root exudates [GDAYP (28)]. 
Plant growth is determined by the relative limitation of N and P in 
most models (i.e., the Liebig’s law of minimum approach). Because 
most models consider nonstructural carbohydrates as part of plant 
biomass, NPP equals BP.
Phosphorus cycling
Because this work focuses on the P cycle, here we only describe the 
P cycle not the N cycle. An overview of the major model-based as-
sumptions for the N cycle is available in Supplementary Information 
section 1 (especially table S4).

Soil P is represented in the models as pools of different bio-
availability, e.g., inferred based on the soil Hedley fractionation 
method (68), with the number of pools varying among models 
(Table 1). In general, plants take up P from the most labile soil P 
pool (e.g., solution P pool as in ELMV1 and labile P pool as in 
GDAYP), and this pool is in dynamic equilibrium with a sorbed P 
pool (8). A large proportion of inorganic P is locked up in less 
available forms, e.g., occluded P pool, and most models assume 
that this pool does not release P back to the more available pools. 
Soil P mineralization occurs in two forms: biochemical and bio-
logical P mineralization, with biological P mineralization typically 
follow the same assumption as N mineralization (i.e., the net bal-
ance between gross mineralization and immobilization as driven 
by microbial activities), whereas biochemical P mineralization 
typically relates to phosphatase production and, in some models, 
the N costs of P uptake (8).

Plant P uptake is generally represented in models as a function of 
plant nutrient demand, root size, and soil nutrient availability, but 
there are more advanced model forms, such as those additional driv-
en by the competition between soil microbes and mineral surface 
(i.e., QUJSM), and soil P diffusion (OCHDP and OCHDX). Plant P 
demand is driven by plant production and the tissue-specific CP ra-
tios, which vary among models. All models represent plant P resorp-
tion using a predetermined fixed rate that varies among models 
(Table 1). LPJGP further assumes that the actual rates of resorption 
depend on plant P stress. Most models consider plant nutrient re-
sorption for the leaf, wood, and root pools, but some only consider 
leaf (e.g., GDAYP).
Microbial dynamics
Microbial processes are explicitly represented by OCHDX and 
QUJSM, with different assumptions (Supplementary Information 
section 1). OCHDX implemented a MIMICS-type microbial scheme 
(62) that splits soil microbes into two different strategy groups that 
compete for resources with varying carbon use efficiency dynamics. 
In comparison, QUJSM incorporates representation of enzyme allo-
cation to different depolymerization sources based on the microbial 
adaptation approach as well as that of nutrient acquisition competi-
tion based on the equilibrium chemistry approximation approach 
(19). Both models assume nonlinear decomposition rates of organic 
matter, which are regulated by the microbial biomass. The microbial 
growth is limited by the availability of C, N, and P. Microbes can 
adjust their carbon use efficiency (CUE) in response to changes of 
available C or nutrients. In the P-deprived soil, QUJSM can increase 
the production of phosphatase to mobilize P from more stable SOM, 
which also benefits plant P acquisitions.

Modeling protocol
All models followed the same modeling protocol. Model spin-up 
was based on the randomized, repeated meteorological forcing 
data collected from the site over the period of 2013 to 2018, under 
a preindustrial atmospheric CO2 concentration of 280 ppm. We ran 
models over the period of 1750 to 2012 to build up the vegetation 
and soil pools with the same randomized, repeated meteorological 
forcing under transient historic CO2 and N and P deposition (69). 
Because the site is a mature forest that remained unmanaged for, at 
least, the past 90 years, we did not impose any land use change sce-
narios in the modeling. We then forced the models with site-specific, 
time sequence meteorological data under both ambient and eCO2 
concentrations over the experimental period of 2013 to 2018. The 
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details of the modeling protocol are available in Supplementary 
Information section 2 (especially table S7).

A set of site-based observational dataset under ambient CO2 treat-
ment was provided to modelers (Supplementary Information sec-
tion 3 and tables S8 to S17) so that models can parameterize their 
respective plant functional type that is most appropriate to represent 
the dominant tree species at EucFACE (i.e., broadleaf evergreen tree 
E. tereticornis). This set of observational dataset covers all major 
ecosystem variables, and therefore models were relatively well con-
strained in terms of measurable parameters under the ambient CO2 
treatment. Each model was calibrated separately, based on the mod-
el’s specific calibration procedure, but partner models (i.e., GDAYN 
and GDAYP, LPJGN and LPJGP, QUINC and QUJSM, and OCHDP 
and OCHDX) shared commonality in parameters. For example, 
QUINC and QUJSM used the same parameters except the soil com-
ponent, where they were based on different submodules. Hence, al-
though models were provided with the same benchmarking dataset, 
they may still differ in tunable parameters that are not directly mea-
surable, especially for those that are specific to each model. However, 
given that this study focuses on evaluating model assumptions re-
garding the underpinning ecological processes, we did not perform a 
systematic sensitivity test on model parameters and acknowledge that 
this lacking represents a potential caveat of this study. Model output 
protocols are available in Supplementary Information section 4 (es-
pecially tables S18 and S19). We then checked the mass balance of all 
essential C, N, P, and water fluxes and pools, and all models passed 
these quality controls and therefore were included in this study.

Analysis
We evaluated predictions made by these P-enabled models against 
data, with a particular focus on their ability to accurately predict the 
CO2 responses as observed at EucFACE. We acknowledged the pos-
sibility that models could yield quantitatively good predictions based 
on incorrect underlying mechanisms (42). We therefore adopted an 
assumption-centric approach (31) to investigate if the underlying 
mechanisms leading to the prediction are in broad agreement with 
those revealed by the data (Fig. 1). We focused our evaluations on 
individual models over multimodel means because the latter typi-
cally do not reveal process-based uncertainties that are specific to 
each model, but we still calculated the multimodel means and their 
associated uncertainties (i.e., SD of the multimodel prediction, 
n = 8). We reported the observational means and uncertainties at 
the treatment level, i.e., calculating the means and SDs based on data 
collected from the three ambient and eCO2 plots (n = 3).

Moreover, a set of model simulations was made available in ad-
vance of the EucFACE experiment (17). This a priori prediction pro-
vided some likely trajectories of the ecosystem responses to planned 
CO2 enrichment at the site based on plausible model-based assump-
tions and hypothetical meteorological forcing data (i.e., wet-year 
fixed climate with daily variation). These model simulations includ-
ed 6 CN coupled models and 2 CNP models. Our work differed to 
that of (17) in that this work included more P-enabled models to 
reflect the recent community efforts in incorporating P-cycle pro-
cesses into models and that models in this work were provided with 
site-specific datasets under ambient CO2 treatment for parameter-
ization purpose. Here, we briefly compared the two simulations to 
understand if the inclusion of P-cycle processes into more models 
can reduce the multimodel uncertainty as reflected by the spread of 
the multimodel predictions (fig. S3).

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S17
Tables S1 to S19
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