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Abstract Realistic simulation of leaf photosynthetic and respiratory processes is needed for accurate
prediction of the global carbon cycle. These two processes systematically acclimate to long‐term environmental
changes by adjusting photosynthetic and respiratory traits (e.g., the maximum photosynthetic capacity at 25°C
(Vcmax,25) and the leaf respiration rate at 25°C (R25)) following increasingly well‐understood principles. While
some land surface models (LSMs) now account for thermal acclimation, they do so by assigning empirical
parameterizations for individual plant functional types (PFTs). Here, we have implemented an Eco‐
Evolutionary Optimality (EEO)‐based scheme to represent the universal acclimation of photosynthesis and leaf
respiration to multiple environmental effects, and that therefore requires no PFT‐specific parameterizations, in a
standard version of the widely used LSM, Noah MP. We evaluated model performance with plant trait data from
a 5‐year experiment and extensive global field measurements, and carbon flux measurements from
FLUXNET2015. We show that observed R25 and Vcmax,25 vary substantially both temporally and spatially
within the same PFT (C.V. >20%). Our EEO‐based scheme captures 62% of the temporal and 70% of the spatial
variations in Vcmax,25 (73% and 54% of the variations in R25). The standard scheme underestimates gross primary
production by 10% versus 2% for the EEO‐based scheme and generates a larger spread in r (correlation
coefficient) across flux sites (0.79 ± 0.16 vs. 0.84 ± 0.1, mean ± S.D.). The standard scheme greatly
overestimates canopy respiration (bias: ∼200% vs. 8% for the EEO scheme), resulting in less CO2 uptake by
terrestrial ecosystems. Our approach thus simulates climate‐carbon coupling more realistically, with fewer
parameters.

Plain Language Summary Understanding how leaves absorb and release carbon dioxide (CO2) is
important to predict the dynamics of CO2 in the atmosphere. In the face of environmental changes, plants adjust
their basal photosynthetic and respiratory characteristics (traits). Most land surface models assume these
characteristics are constant for a given plant type, or use empirical relationships to characterize their variations.
To address this issue, we incorporated a new scheme that accounts for the adjustments of these characteristics to
various environmental factors in a land surface model and tested it with global plant trait data and carbon flux
measurements. The new scheme captures most of the variation of photosynthetic and respiratory traits across
different locations and over time. It also reliably predicts the amount of carbon absorbed and released by leaves
at different time scales. Compared to observations, the standard model underestimates the amount of carbon
absorbed by plants and overestimates the amount released. The new scheme has fewer parameters than the
standard one and is simple to implement. Its incorporation in other land surface models should also provide
realistic predictions of land CO2 uptake in a changing world.

1. Introduction
The terrestrial biosphere acts as a carbon sink, currently removing approximately one‐third of total anthropogenic
emissions and thereby slowing the rate of climate change (Arneth et al., 2010; Arora & Montenegro, 2011;
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Bonan, 2008; Piao et al., 2009). Carbon enters terrestrial ecosystems through photosynthesis, which is responsible
for a global uptake of approximately 120–150 Pg C yr−1 (i.e., gross primary production, GPP) (Anav et al., 2015;
Beer et al., 2010; Jiang & Ryu, 2016; Stocker et al., 2020). About half of the CO2 emission by plants to the
atmosphere is released by respiration from canopy leaves (Rcanopy) (Atkin et al., 2014; Reich et al., 1998), and
small fractional changes in Rcanopy can thus have large impacts on ecosystem functioning (Piao et al., 2010). Leaf
respiration breaks down photosynthetic products and provides energy to support the protein turnover required to
maintain photosynthetic capacity (Reich et al., 2021; Ren et al., 2023; Wang et al., 2020). The residual between
GPP and Rcanopy determines the amount of carbon allocated to the ecosystem and dominates terrestrial ecosystem
exchange, showing large year‐to‐year variability in response to environmental changes (Keenan & Wil-
liams, 2018; Wang et al., 2023). Accurate modeling of GPP and Rcanopy is therefore important for reliable pre-
dictions of the magnitude of the potential land carbon sink (Bonan et al., 2003; Campbell et al., 2017; Rogers
et al., 2017; Ruehr et al., 2023).

Land Surface Models (LSMs) are commonly used to simulate the carbon, water, and energy exchanges between
the biosphere and the atmosphere, with a typical half‐hour timestep (Fisher & Koven, 2020; Lawrence
et al., 2019). In most LSMs, the algorithms for photosynthesis and leaf respiration are derived from equations
designed to replicate the instantaneous responses recorded in laboratory or field measurements (Collatz
et al., 1991; Farquhar et al., 1980; von Caemmerer & Farquhar, 1981). The maximum photosynthetic capacity
(i.e., the catalytic activity of Rubisco for CO2, Vcmax), for example, is treated such that it has a near‐exponential
response relationship to its value at 25°C (Vcmax,25), which is invariant (i.e., does not change with environmental
conditions). This relationship reflects the initial response of enzymatic activity to environmental conditions
(Bernacchi et al., 2003). The key physiological traits, such as Vcmax,25 and R25 (the basal leaf respiration rate at
25°C), are generally prescribed as constant parameters which differ between plant functional types (PFTs). Using
historical observations as a baseline, each LSM calibrates a set of PFT‐specific parameter values for Vcmax,25 and
R25. This allows different models to achieve a reasonable accuracy for the instantaneous response at the site scale
(Bonan et al., 2003; Clark et al., 2011), but the calibration of multiple parameters together with model structures
results in disagreement among LSMs in projections of the carbon cycle at regional or global scales, including
disagreements even about the sign of the effect of global warming on primary production (Bonan & Doney, 2018;
Fung et al., 2005). These differences between models have persisted for more than two decades (Arora
et al., 2020; Friedlingstein et al., 2006; Li et al., 2015; VEMAP, 1995), and were identified as an urgent concern in
the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (Canadell et al., 2021).

A compelling body of evidence shows that these instantaneous responses of Vcmax and Rcanopy are modified by the
prevailing growth environment due to plant acclimation (Atkin & Tjoelker, 2003; Crous et al., 2022; Liang et al.,
2013; Peng et al., 2019; Reich et al., 2016; Scafaro et al., 2017; Slot & Kitajima, 2015). Vcmax,25, for example, has
been observed to acclimate to changes in temperature, consistently showing lower values under prolonged
warming both in experiments and across spatial environmental gradients (Atkin et al., 2015; Crous et al., 2018;
Kattge & Knorr, 2007; Kumarathunge et al., 2019; Scafaro et al., 2017; Smith & Dukes, 2017; Xu et al., 2021),
and responding in a similar way to seasonal variations (i.e., lower values in the hotter season) (Crous et al., 2018;
Jiang et al., 2020; Togashi et al., 2018). Down‐regulation of Vcmax,25 would result in lower leaf respiratory ATP
demand to maintain Rubisco turnover (Farquhar et al., 1980; Wang et al., 2020). Leaf respiration thus also shows
thermal acclimation by down‐regulation of R25 in response to increasing growth temperature spatially and
temporally (Lee et al., 2005; Reich et al., 2016; Wang et al., 2020; Zhu et al., 2021). Compared to the authors'
previous simulations using constant R25, down‐regulation of R25 coupled to Vcmax,25, in response to warming and
increasing CO2, halved the increase of Rcanopy emission to the atmosphere during the past two decades (Ren
et al., 2023).

Some studies have incorporated the acclimation of photosynthesis (Haverd et al., 2018; Oliver et al., 2022;
Vuichard et al., 2019; Zhu et al., 2019) or leaf respiration (Butler et al., 2021; Huntingford et al., 2017), or both
(Lombardozzi et al., 2015) into LSMs via various approaches. For example, a seasonal variation of Vcmax,25 is
implemented into ORCHIDEE constrained by the leaf age effect (Krinner et al., 2005). An approach widely used
in most well‐known LSMs (e.g., JULES, CABLE, ELM, ORCHIDEE) is that Vcmax,25 (and/or R25) acclimates to
the daily average temperature during the past few days (Tdaily), declining linearly with increasing Tdaily according
to an empirical function (Butler et al., 2021; Haverd et al., 2018; Huntingford et al., 2017; Vuichard et al., 2019).
These LSMs then assign empirical, PFT‐specific parameter values for the thermal acclimation rate. The use of
Tdaily to express R acclimation (Atkin et al., 2008; Huntingford et al., 2017) is not sufficient to capture the full
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impact of growth temperature on leaf respiration, given different respiratory demands during night (for starch
degradation and sucrose export) and day (for the regeneration of Rubisco) (Stitt & Schulze, 1994; Turnbull
et al., 2002). Furthermore, the acclimation rate is affected by environmental effects other than temperature (Reich
et al., 2021; Smith & Dukes, 2017; Wang et al., 2020), including atmospheric CO2 concentration (Bagley
et al., 2015; Sage et al., 1989; Tissue et al., 1993), radiation (Atkin et al., 1998; Ghannoum et al., 1997; Liu
et al., 2024), and vapor pressure deficit (VPD) (Li et al., 2018; Middleby et al., 2024).

Recent studies have shown that eco‐evolutionary optimality (EEO) theories are able to predict observed general
patterns of trait variation with limited universal parameters, and can therefore provide parsimonious models of
plant behavior (Franklin et al., 2020; Harrison et al., 2021). EEO theories incorporate the complex environmental
effects with the assumption that plants acclimate to multiple environmental changes, whereby long‐term average
traits tend toward their optimum, allowing plants to maximize the carbon benefit (Harrison et al., 2021). EEO
theories, for example, successfully predict global patterns in Vcmax,25 (Dong et al., 2022; Smith et al., 2019), and
its seasonal variation (Jiang et al., 2020), and altitudinal trends in multiple traits related to photosynthesis (Peng
et al., 2020; Xu et al., 2021). A universal productivity model (P model: Wang et al., 2017; Stocker et al., 2020)
which incorporates two EEO hypotheses, specifically the coordination hypothesis (Maire et al., 2012) and the
least cost hypothesis (Prentice et al., 2014), reproduces observed variations in GPP derived from flux towers
globally when applied offline at the weekly to monthly time steps that approximate the time scale of acclimation
with only two PFT‐independent parameters (see details in Section 2.1.2) (Stocker et al., 2020). The P model has
been shown to work also at a half‐hourly time step by treating the instantaneous and acclimated timescales
separately (Mengoli et al., 2022). A very recent study (Smith et al., 2024) has integrated the EEO‐based treatment
of photosynthetic acclimation into the land surface component of the Energy Exascale Earth System Model, to
examine the effect of optimal photosynthetic acclimation on future ecosystem carbon storage. A second EEO‐
based hypothesis, that R25 acclimates to night‐time temperature, in such a way as to support Vcmax,25 at a level
which, in turn, acclimates to midday meteorological conditions following the coordination hypothesis, also
predicts both the spatial and temporal patterns of variations in R25 with only one tunable parameter (Ren
et al., 2023). Although these two increasingly well‐understood principles provide a simple and robust way to
incorporate photosynthesis and Rcanopy acclimation, they have not been implemented together in a modeling
framework.

In this study, we have implemented EEO‐based schemes representing the acclimation of photosynthesis and leaf
respiration in the Noah MP LSM (Niu et al., 2011; Yang et al., 2011), based on three EEO hypotheses: two key
hypotheses incorporated in the P model (the coordination hypothesis, Maire et al. (2012) and the least cost hy-
pothesis, Prentice et al. (2014)), and the Vcmax‐Rcanopy coupling hypothesis (Ren et al., 2023). We first compared
the variations in Vcmax,25 and R25 between field measurements and simulations from the standard Noah MP
scheme and the EEO‐based scheme. We then compared the simulated GPP and Rcanopy on half‐hourly, monthly
and annual time scales between the standard and EEO‐based schemes. Finally, we investigated the responses of
GPP and Rcanopy to warming and CO2 enhancement in both versions of the model.

2. Materials and Methods
We ran two sets of model experiments to simulate GPP and Rcanopy: one with the standard Noah MP scheme and
the other with the new EEO‐based scheme. In Section 2.1, we summarize the general approach used in the
standard Noah MP and introduce the EEO‐based scheme. We then describe the experimental design (Section 2.2),
the forcing and benchmark data (Section 2.3), the model evaluation (Section 2.4) and the sensitivity analyses
(Section 2.5).

2.1. Model Description

2.1.1. Standard Noah MP Scheme

The standard version of Noah MP simulates the instantaneous photosynthetic rate for a single leaf (PSN) as the
lesser of carboxylation‐limiting rate rate (AC, determined by Vcmax) and light‐limiting rate (AJ, determined by
light), that is: PSN = min(AC, AJ), where AC and AJ are given as follows (Collatz et al., 1998; Farquhar
et al., 1980):
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AC =

⎧⎪⎨

⎪⎩

Vcmax ·
ci − Γ∗

ci + K
, C3 plant

Vcmax, C4 plant
(1)

AJ =

⎧⎪⎪⎨

⎪⎪⎩

J
4

·
ci − Γ∗

ci + 2Γ∗ , C3 plant

J
4

, C4 plant
(2)

where Vcmax is the catalytic activity of Rubisco for carboxylation, ci is the leaf‐internal CO2 partial pressure, Γ* is
the photorespiratory compensation point, K is the effective Michaelis–Menten coefficient of Rubisco, and J is the
electron transport rate. Detailed information and equations of Γ* and K are given in Tables S1 and S2 in Sup-
porting Information S1.

The standard version of Noah MP simulates the instantaneous Vcmax from its basal value at leaf level (Vcmax,25)
adjusted to account for foliage nitrogen content, soil moisture and temperature, derived from Collatz et al. (1991):

Vcmax = Vcmax,25 · Ne · β · fv(T) (3)

where Vcmax,25 is a constant value for each PFT provided in a look‐up table (see Table S3 in Supporting Infor-
mation S1), Ne (unitless) denotes the foliage nitrogen limitation factor from Vcmax,25 to Vcmax, given part of foliage
nitrogen is invested in Rubisco (Peng et al., 2021; Walker et al., 2014). Ne is parameterized to be constant with a
value of 2/3. β is the soil moisture limitation factor, and fv(T) represents the instantaneous temperature response
(Table S2 in Supporting Information S1). There are three possible options (Noah type, CLM type and SSiB type)
for quantifying the β factor in Noah MP (Niu et al., 2011), but here we use the Noah type following the
recommendation from HRLDAS (https://github.com/NCAR/hrldas). β is parameterized by the Noah type as

θ − θwp
θ f c − θwp

, where θ (m3/m3) is the soil moisture simulated from the “SOILWATER” module, and θwp (m3/m3) and

θ f c (m3/m3) represent respectively the soil moisture at wilting point and field capacity and are specified from soil
texture (Niu et al., 2011).

In the standard scheme, ci is obtained by numerical iteration based on the Ball‐Berry model, which reflects the
carbon‐water coupling controlled by stomatal behavior (Ball et al., 1987). Most variables involved in Equations 1
and 2 are calculated for each iteration until ci converges; following Niu et al. (2011) we use the default value of
three iterations for convergence.

The absorbed photosynthetically active radiation (aPAR) and the intrinsic quantum efficiency of photosynthesis
at 25°C (φ25) jointly determine the rate of electron transport (J in Equation 2) with a conversion of
4.6 μmol J−1(Meek et al., 1984; Niu et al., 2011) such that:

J = 4.6 · aPAR · φ25 (4)

where φ25 is assumed to be 0.06 μmol CO2/μmol photon for each PFT. The standard Noah MP is a two‐leaf
model, with separate calculations of aPAR for sunlit (aPARsun) and shaded (aPARsha) leaves. The average
aPARsun and average aPARsha per leaf area are obtained from the “RADIATION” module based on the solar
radiation input and two‐stream radiative transfer equations (Niu et al., 2011). The average sunlit and shaded
photosynthetic rates per leaf area (PSNsun, PSNsha) are calculated based on the average aPARsun and aPARsha,
respectively.

The canopy photosynthesis rate (i.e., GPP) is then given as the sum of the sunlit and shaded rates (Sellers
et al., 1992):

GPP = PSNsha · LAIsha + PSNsun · LAIsun (5)
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where LAIsha and LAIsun are the shaded and sunlit leaf area index (LAI) and vary over the diurnal cycle of solar
zenith angle, obtained from the “RADIATION” module based on the LAI input. Although the standard Noah MP
is usually run using prescribed LAI from a look‐up table or using LAI as simulated by the dynamic vegetation
module, it can also be run using LAI from other sources. To reduce the uncertainty due to the calculation of LAI,
here we use satellite‐derived LAI as input (Section 2.3).

The standard Noah MP scheme simulates Rcanopy from its basal value at leaf level (R25) modified by Ne, β, the
effects of temperature ( fr(T )) and LAI (Niu et al., 2011) as:

Rcanopy = R25 · Ne · β · fr(T) · LAI (6)

where leaf‐level R25 is constant for each PFT and given in a look‐up table (see Table S3 in Supporting Infor-
mation S1). fr(T ) is originally adopted as the Q10 equation in the standard scheme; here we use a peaked
temperature‐dependent equation from Heskel et al. (2016) (Table S2 in Supporting Information S1) to reflect the
non‐linearity of the response of natural log transformed Rcanopy to temperature. In addition to Vcmax,25 and R25,
there are up to 10 parameters related to each PFT used in the calculations of GPP and Rcanopy (Table S4 in
Supporting Information S1).

2.1.2. EEO‐Based Scheme With Acclimation Processes

The EEO‐based scheme adopts the same model as the standard Noah MP scheme (i.e., Equations 1 and 2) to
simulate photosynthetic rate and uses Beer's law to account for the light exposure within the canopy. However,
this new scheme follows the big‐leaf paradigm and incorporates the acclimated traits (Vcmax,25, maximum J at
25°C (Jmax,25), ci and R25) based on three EEO hypotheses: the coordination hypothesis (Maire et al., 2012), the
least cost hypothesis (Prentice et al., 2014) and the Vcmax‐Rcanopy coupling hypothesis (Ren et al., 2023). Traits are
updated at the daily timestep, acclimating to the average environmental conditions over the prior 15 days, which is
plausible and consistent with the expected life‐cycle of Rubisco (Mäkelä et al., 2008) and multi‐site analysis
(Mengoli et al., 2022).

The EEO‐based scheme represents the light absorbed by the whole‐canopy leaves (Iabs) as the product of the
fraction of absorbed photosynthetically active radiation ( fPAR) and incident solar radiation (W m−2) with a
conversion factor of 2.04 μmol J−1 (Meek et al., 1984). This scheme assumes that J tends to a maximum value
(Jmax), limited by the regeneration of RuBP at high light levels (Stocker et al., 2020; Wang et al., 2017):

J = 4φ0Iabs/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + (
4φ0Iabs

Jmax
)

2
√

(7)

where φ0 is the intrinsic quantum efficiency of photosynthesis derived from an empirical temperature‐dependent
function (Bernacchi et al., 2003) (Table S2 in Supporting Information S1). Using whole‐canopy J, Jmax and Vcmax,
the EEO‐based scheme simulates half‐hourly GPP as the minimum of two rates following Equations 1 and 2.

The canopy Vcmax and Jmax at the instantaneous temperature (Tins) are adjusted from the optimal Vcmax,25 and
Jmax,25 following the Arrhenius equations ( fv and fj, see Table S2 in Supporting Information S1), respectively:

Vcmax = Vcmax,25 × fv (Tins) (8a)

Jmax = Jmax,25 × fj (Tins) (8b)

Optimal Vcmax,25 and Jmax,25 are derived from the values at the acclimated temperature (Taccl) by inverting the
Arrhenius equations:

Vcmax,25 = Vcmax,opt × fv−1 (Taccl) (9a)

Jmax,25 = Jmax,opt × fj−1 (Taccl) (9b)
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here Vcmax,opt and Jmax,opt represent the optimal Vcmax and Jmax acclimated to the average midday (11:30–12:30
solar time) environmental conditions (to make full use of light) during the prior 15 days (Mengoli et al., 2022).
Taccl is the average midday temperature over the past 15 days.

The canopy Vcmax,opt and Jmax,opt are then predicted by the coordination hypothesis, which posits that Vcmax and
Jmax tend toward their optimal values such that AJ ≈ AC, allowing plants to make use of all the available light
(Chen et al., 1993; Haxeltine & Prentice, 1996; Maire et al., 2012; Yamori et al., 2006). Using Equations 1, 2 and
7, if AJ = AC then:

Vcmax,opt = φ0Iabs [(ci + K)/(ci + 2Γ∗)] β

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

{1 − [c∗ (ci + 2Γ∗)

(ci − Γ∗)
]

2 /

3

}

√
√
√
√ (10a)

Jmax,opt = 4φ0Iabsβ/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1/{1 − [c∗ (ci + 2Γ∗)

(ci − Γ∗)
]

2 /

3

} − 1

√
√
√
√ (10b)

where c* is a cost factor for electron transport capacity and has been estimated as 0.41 ± 0.112 from the observed
Jmax:Vmax ratios (Wang et al., 2017). For C4 plants, Vcmax,opt and Jmax,opt are predicted by assuming that both
(ci + K)/(ci + 2Γ*) and (ci + 2Γ*)/(ci − Γ*) are close to unity (Scott & Smith, 2022), with φ0 estimated following
Cai and Prentice (2020) (Table S2 in Supporting Information S1). The least cost hypothesis predicts that the
optimal ci responses to the ambient CO2 partial pressure (ca), vapor pressure deficit (VPD), temperature and
atmospheric pressure, allowing plants to minimize the required costs of carboxylation and transpiration to
maintain the given assimilation rate (Prentice et al., 2014). Thus, ci as a function of environment is written:

ci =
ξca + Γ∗

̅̅̅̅̅̅̅̅̅̅
VPD

√

ξ +
̅̅̅̅̅̅̅̅̅̅
VPD

√ (11)

ξ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
γ(K + Γ∗)

1.6η∗

√

(12)

where ξ represents the sensitivity of the ci: ca ratio to VPD; the variation in this ratio as shown by leaf δ13C
measurements globally has been shown to be reliably predicted by the EEO formulation. γ denotes the ratio of
carboxylation to transpiration cost factors at 25°C and has been estimated as 146 ± 2.7 based on the leaf δ13C
(Stocker et al., 2020). η∗ is the viscosity of water relative to its value at 25°C; its detailed equation is shown in
Table S2 in Supporting Information S1. All climatic variables used in Equations 11 and 12 to predict Vcmax,opt and
Jmax,opt are calculated as their midday averages over the past 15 days except for the instantaneous VPD and β (in
order to account for the fast response of stomata to moisture changes) (Mengoli et al., 2022).

After predicting the canopy Vcmax,opt, the optimal canopy R25 is integrated into Noah MP based on the EEO
hypothesis that leaf respiration evaluated at night‐time temperature (Tnight) is proportional to the acclimated Vcmax

(Ren et al., 2023), thus optimal R25 is predicted as:

R25 = b
Vcmax,opt

fr(Tnight)

(13)

where b is estimated as 0.018 ± 0.0004 (mean ± S.D.) based on global measurements of Rleaf and Vcmax including
a 5‐year warming experiment, and an extensive field‐measurement data set at ambient temperature (see details in
Section 2.3.3). Tnight is the average temperature during night‐time (when the sun elevation was <0°, i.e. below the
horizon) over the past 15 days, and fr is a peaked temperature‐dependent equation from Heskel et al. (2016) (Table
S2 in Supporting Information S1). This scheme links R25 and Vcmax and therefore predicts the environmental
impacts on R25 via Vcmax.

The EEO‐based scheme therefore simulates half‐hourly Rcanopy from the canopy R25 following the temperature‐
dependent equation:
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Rcanopy = b
Vcmax,opt

fr(Tnight)

× fr (Tins) (14)

To avoid storing the antecedent forcing data, we apply the exponential moving average approach with the moving
window of 15 days (Mengoli et al., 2022) to predict the optimal Vcmax,25, Jmax,25 and R25 at the daily time step. The
instantaneous Vcmax, Jmax and Rcanopy are then adjusted by the instantaneous temperature to simulate the half‐
hourly carbon flux.

Figure 1. Flowchart of the trait‐acclimation scheme incorporated in Noah MP. The inputs (shown in pink circle boxes) are air
temperature (T ), air pressure (Pres.), atmospheric CO2 concentration (CO2), vapor pressure deficit (VPD), solar radiation
(Srad), the fraction of absorbed photosynthetically active radiation ( fPAR), and the soil moisture limitation factor (β). Tmidday
and Tnight are the average midday and night‐time (when the sun elevation was <0°) temperature over the prior 15 days,
respectively. β is calculated using the same approach as in the standard scheme. The outputs (shown in the rectangle boxes)
are 30‐min GPP and Rcanopy. Three EEO hypotheses are used to predict the optimal traits: the least cost hypothesis (ci), the
coordination hypothesis (Vcmax,25, Jmax,25) and the Vcmax‐Rcanopy coupling hypothesis (R25). The three tunable parameters
(c* = 0.41 ± 0.112, γ = 146 ± 2.7 and b = 0.018 ± 0.0004) are shown in yellow font. This flowchart gives the equations for
C3 plant for illustrative purposes. The equations for C4 plants are given in Methods. All parameters are described in Table S1
in Supporting Information S1 and their equations are given in Table S2 in Supporting Information S1.
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Thus, the EEO‐based scheme (Figure 1) incorporates the photosynthetic and leaf respiratory acclimation driven
by temperature, radiation, VPD, atmospheric CO2 concentration, soil moisture and atmospheric pressure (Figures
S1 and S2 in Supporting Information S1), but only involves three tunable parameters (c*, γ and b) (Table S4 in
Supporting Information S1), whose values have been estimated from data independent of the observations used
for model evaluation.

2.2. Experimental Design

Both the standard and EEO‐based experiments adopted the same physical parameterizations for other modules
following the GLDAS options recommended by HRLDAS (see details in Table S5 in Supporting Information S1).
To reduce the uncertainties derived from the initial conditions and equilibrate soil moisture and soil temperature,
the two experiments were spun up for one loop according to the available site‐years period at each site (ranging
from 1 to 22 years, Tables S6 and S7 in Supporting Information S1), and then run at half‐hourly time steps.
Simulations at flux tower sites were driven by forcing from the FLUXNET2015 data set (Pastorello et al., 2020).
Simulations at field trait‐measurement sites were driven by forcing extracted from a global gridded data set
(Section 2.3) during the appropriate period, and the simulated Vcmax,25 and R25 was obtained for the days when
measurements were taken.

2.3. Data

2.3.1. Forcing Data

Both experiments were run using the same forcing. At individual flux sites, we used the half‐hourly climate
forcings from FLUXNET2015 (Pastorello et al., 2020, February 2020 updated version). The forcings are wind
speed (u, m/s), air temperature (T, °C), relative humidity (RH, %), air pressure (pres., Pa), shortwave radiation
(Srad, W/m2), longwave radiation (Lrad, W/m2), precipitation (prec., mm/30 min). For other sites where traits
were measured, we extracted these climate forcings from the WATCH Forcing Data Methodology applied to
ERA5 (WFDE5) global data set with a spatial resolution of 0.5°, hourly from 1979 to 2019 (Cucchi et al., 2022).
We used the reprocessed MODIS LAI product, which has eliminated the effect of clouds (Yuan et al., 2011). This
data set has a resolution of 0.04° and 8 days from 2001 to 2020. We extracted the LAI value for each flux and trait
site and derived daily LAI by linear interpolation. The atmospheric CO2 concentration was updated annually
using its global annual average from the National Oceanic and Atmospheric Administration (NOAA; Lan
et al., 2024).

2.3.2. Initialization Data

The initial state variables, specifically soil moisture, soil temperature, canopy water, snow water equivalent and
snow depth, were obtained from the Global Land Data Assimilation System (GLDAS; Rodell et al., 2004).
Location‐related information including elevation, soil category, PFT (used in the standard scheme), and fraction
of vegetation cover (FVC), were also prescribed. The elevation and vegetation type for each site were taken from
FLUXNET2015. Soil type information was derived from the global soil data set for Earth system modeling
(GSDE; Shangguan et al., 2014). FVC was taken from the global land surface satellite (GLASS) product (Jia
et al., 2015).

2.3.3. Benchmark Data

We combined three existing data sets (Figure 2 and Table S6 in Supporting Information S1) to evaluate how well
the models captured the spatial and temporal variations in Vcmax,25 and R25: the Boreal Forest Warming at an
Ecotone in Danger experiment (B4WarmED: Reich et al., 2021), the Leaf Carbon Exchange data set (LCE: Smith
& Dukes, 2017), and the Global Leaf Respiration Database (GlobResp: Atkin et al., 2015). B4WarmED provided
data on the seasonal variation in Vcmax,25 (994 samples) and R25 (1,600 samples) during growing seasons from
2009 to 2013, measured at ambient temperature and at 3.4°C above ambient temperature. The spatial variability in
Vcmax,25 and R25 was evaluated using measurements at ambient temperature from the LCE and GlobResp data
sets. All three data sets followed a similar measurement protocol: fully expanded leaves were taken in the morning
and were measured in a darkened chamber after at least 10 min' dark adjustment. GlobResp provides R25 directly;
LCE and B4WarmED provided measured leaf temperature, so instantaneous R (Rins) at the measured temperature
(Tins) could be adjusted to the standard 25°C according to Rins = R25 · fr (Tins) (Heskel et al., 2016).
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After excluding samples with no specific measurement date, the data set compiled from B4WarmED, GlobResp
and LCE provided a total of more than 3,000 paired measurements of Vcmax,25 and R25 covering 53 sites globally.
Parameter b estimated from the B4WarmED warming samples was 0.019 ± 0.0003 (the yellow violin chart in
Figure S3 in Supporting Information S1), which was very close to the value derived from the ambient samples (the
purple violin charts in Figure S3 in Supporting Information S1). Thus, we used all samples from this combined
data set to derive the factor b in Eqn 14 (0.018) as the mean ratio of measured R and Vcmax.

The EEO‐based scheme predicted canopy level R25 under the big‐leaf framework. This was then downscaled by
LAI to derive the average leaf R25 (i.e., average leaf R25 = (whole‐canopy) R25/LAI) for comparison with the field
measurements, since the field sampling likely reflects leaves developed at a range of irradiances at different levels
in the canopy following Keenan and Niinemets (2016) and Dong et al. (2022). The leaf‐level Vcmax,25 and R25 used
in the standard Noah MP was also compared with these field measurements.We could not evaluate the accli-
mation of Jmax in the EEO‐based scheme, because of the limited number of field measurements available.

GPP estimated by the daytime partitionning method (GPP_DT_CUT_REF; Lasslop et al., 2010) from FLUX-
NET2015 was used to evaluate the simulated photosynthetic rate. We selected the FLUXNET2015 sites that
provided the required variables and where the consistency in timeseries of gridded LAI and in‐situ GPP (indicated
by a correlation coefficient between the two time series >0.6, following Schober et al., 2018) showed that spatial
representativeness of the satellite data and flux data are basically matched. The final data set consisted of 168
FLUXNET sites (Figure 2; Table S7 in Supporting Information S1) with over 1,200 site‐years observations and
covering 12 PFTs: croplands (CRO, 19 sites), closed shrublands (CSH, 3 sites), deciduous broadleaf forest (DBF,
25 sites), deciduous needleleaf forest (DNF, 1 site), evergreen broadleaf forest (EBF, 15 sites), evergreen nee-
dleleaf forest (ENF, 40 sites), grasslands (GRA, 25 sites), mixed forests (MF, 9 sites), open shrublands (OSH, 4
sites), savannas (SAV, 7 sites), wetlands (WET, 15 sites) and woody savannas (WSA, 5 sites). Since few field
measurements separated Rcanopy from total plant (or ecosystem) respiration, the benchmark of Rcanopy was
upscaled from single leaf measurement of R25 to canopy level: Rcanopy = LAI · R25 · fr(T ) with T representing 24‐
hr average temperature of the trait‐measurement day. This estimation is acceptable because it derived a reasonable
ratio of Rcanopy to GPP (0.26, Figure S4 in Supporting Information S1), which was consistent with the previous
studies (Reich et al., 2021; Wang et al., 2020). Twelve of the FLUXNET2015 sites also measured Vcmax,25,
providing a benchmark to evaluate model performance in predicting traits and GPP.

2.4. Model Evaluation

We evaluated two aspects of model performance: the ability to capture (a) temporal and spatial variations in
Vcmax,25 and R25 and (b) variations in GPP and Rcanopy, using the metrics of r (correlation coefficient), R2 (pre-
dictive ability), RMSE (root mean square error) and NSE (Nash‐Sutcliffe Efficiency coefficient). We evaluated

Figure 2. Locations of the 53 trait‐measurement sites and the 168 selected FLUXNET sites. The red dots indicate the site
locations where Vcmax,25 and R25 are measured derived from the combined data sets (B4WarmED, LCE and GlobResp). The
gray dots indicate the FLUXNET site locations. The blue triangles show the 12 FLUXNET sites that have the measurements
of Vcmax,25 and R25.
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the multi‐year seasonal and spatial variations in Vcmax,25 and R25 for the two PFTs (DBF and ENF), that had the
most measurements in the combined trait data set. We also compared the simulations to the half‐hourly GPP and
community averaged Vcmax,25 at the 12 FLUXNET sites from which these trait measurements were available. We
then evaluated the simulated GPP across all the FLUXNET2015 sites on half‐hourly, monthly, and annual scales.
At the 53 trait‐measurement sites, we also evaluated Rcanopy from their temporal and spatial variations.

2.5. Parameter Uncertainty and Model Sensitivity Analysis

We conducted the uncertainty analysis of the three parameters involved in the EEO‐predicted GPP and Rcanopy

using the standard error propagation formula. We analyzed the sensitivity of the simulated responses of GPP and
Rcanopy to warming and increasing CO2 concentration in both model schemes, by changing temperature inputs by
1°C increments from 5°C to 35°C and atmospheric CO2 concentration by 10 ppm increments from 380 ppm to
760 ppm. All other inputs were kept unchanged: LAI = 3, β = 0.8, u = 2 m/s, RH = 70%, pres. = 101.325 KPa,
Srad = 200 W/m2, Lrad = 400 W/m2 and prec. = 0.5 mm/30 min.

3. Results
3.1. Simulation of Trait Variations

Observed Vcmax,25 and R25 displayed substantial variability across seasons and latitudinal gradients within each
vegetation type. The seasonal variability cannot be simulated in the standard Noah MP scheme because the values
of Vcmax,25 and R25, are specified by PFT (Figure 3) but both seasonal and latitudinal variations were reasonably
well captured by the new EEO‐based scheme (Figures 3 and 4). Specifically, multi‐year weekly mean obser-
vations in R25 for DBF and ENF had clear seasonal patterns with highest R25 especially at the beginning and, to
some degree, at the end of the growing season (C.V. ≈ 26%) (Figures 3a and 3b). Compared to R25, the seasonal
variation in Vcmax,25 derived from B4WarmED was less pronounced with a C.V. of 11% for DBF (Figure 3c). The
EEO‐based scheme reproduced the weekly average measurements, with R2 of 0.73 for R25 and 0.62 for Vcmax,25,
respectively. In addition to capturing the pattern of seasonal variation in Vcmax,25 and R25, the EEO‐based scheme

Figure 3. Temporal variations in R25 and Vcmax,25 for the specific PFT at B4WarmED site. The boxplots indicate the measured
(gray box) and simulated by the EEO‐based scheme (yellow box) trait values weekly averaged for 2009–2013 (25th
percentile, 75th percentile and median; maximum and minimum for the whiskers). The black and yellow curves show the
temporal variations in mean trait values for measurements and EEO‐based simulations, respectively. The purple dotted line is
the PFT parameter used in the standard version of Noah MP. R2 and RMSE are calculated using the mean trait values. C.V. is
the coefficient of variation of measured mean trait values. DBF: deciduous broadleaf forest; ENF: evergreen needleleaf
forest. The seasonal variation of measured Vcmax,25 for ENF was not analyzed here due to the limited samplings.
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also approximated the magnitude of those variables, whereas the standard scheme generally overpredicted both
traits.

Observed R25 and Vcmax,25 showed strong variability within the same vegetation type across latitudinal bins
(Figure 4), with higher values of both R25 and Vcmax,25 for communities growing in colder regions than those
growing in warmer regions, with the spatial C.V. ranging from 20% to 31%. The measured R25 and Vcmax,25 for
DBF at high latitudes (>60°N) were respectively 2.6 and 1.9 times larger than the values near the equator (5°N to
5°S) (Figures 4a and 4c). The standard scheme captured the observed Vcmax,25 of DBF (Figure 4c) reasonably
well, but either overestimated (Figures 4a and 4b) or underestimated (Figure 4d) the observed range for the other
cases. The standard scheme with constant parameter values cannot be expected to reproduce the observed sea-
sonal variability. The EEO‐based scheme underestimated R25 and Vcmax,25 for the equatorial bands, but predicted
the magnitudes and the spatial variability in observed Vcmax,25 and R25 with R2 of 0.7 and 0.54, respectively.

At all the FLUXNET2015 sites, EEO‐simulated R25 and Vcmax,25 displayed strong variability across the seasonal
climate range of any one biome (Figure 5). With the highest site‐averaged latitude, the OSH sites had the strongest
seasonal variability in traits among these biomes, with median C.V. of 51% for R25 and 53% for Vcmax,25. The
WET, ENF, CRO, MF, GRA and DBF sites, which are concentrated between 40°N and 50°N and 40°S to 50°S of
latitude, also had relatively strong seasonal variations with median C.V. ranging from 24% to 37%. EBF is the
forest type with the least variability reflecting the relatively stable growing environment of tropical and sub-
tropical EBF.

3.2. Evaluation of Carbon Flux Variations

The EEO‐based scheme successfully reproduced the variations in half‐hourly GPP at the 12 FLUXNET sites that
provide field trait measurements (Figure 6). The EEO‐based scheme improved the predictability of half‐hourly
GPP compared with the standard scheme during the period when the traits were measured, with the median R2

for the 12 sites increasing from 0.86 (standard scheme) to 0.94 (EEO‐based scheme) and median RMSE

Figure 4. Spatial variations in R25 and Vcmax,25 for the GlobResp and LCE sites. The boxplots indicate the measured (gray
box) and EEO simulated (yellow box) trait values for the 5° latitudinal bands (25th percentile, 75th percentile and median;
maximum and minimum for the whiskers). The black and yellow curves show the spatial variations in mean trait values. The
purple dotted line is the PFT parameter used in the standard scheme of Noah‐MP. R2 and RMSE are calculated for the mean
trait values. C.V. is the coefficient of variation of measured mean trait values. This biome comparison is made by selecting
the samples of deciduous broadleaf tree (figures a and c) or evergreen needleleaf tree (figures b and d) because the deciduous
broadleaf forest (DBF) biome and the evergreen needleleaf forest (ENF) biome in the given latitudinal bands can include
some other tree types.
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decreasing from 3.6 (standard scheme) to 2.4 (EEO‐based scheme) μmol CO2 m−2 s−1 (Table S8 in Supporting
Information S1). Improved performance was most noticeable at ENF (US‐NR1), GRA (US‐IB2), SAV (AU‐Cpr,
AU‐GWW), and WSA (AU‐Gin) sites. The standard scheme used a smaller Vcmax,25 than the in situ observations
at US‐NR1 site and this led to a 55% underestimation of GPP (RMSE = 5.3 μmol CO2 m−2 s−1); the EEO‐based
scheme underestimates GPP by only 4% (RMSE = 1.4 μmol CO2 m−2 s−1). The discrepancies between the
observed and simulated GPP at the SAV and WSA sites were also smaller in the simulation using the EEO‐based
scheme, with the average RMSE decreasing from 2.1 (standard scheme) to 0.5 (EEO‐based scheme) μmol CO2

m−2 s−1. Both schemes provided good representations of the sub‐daily variations in GPP at the five boreal sites,
although the EEO‐based scheme was slightly better (site‐averaged RMSE from 3.1 to 2 μmol CO2 m−2 s−1). The
tower‐derived GPP in 2014 at the CA‐Gro site was much lower than the simulations and, indeed, the multi‐year
tower average (Figure S5 in Supporting Information S1). However, the satellite‐derived LAI in 2014 at this site
was not lower than the multi‐year average. Consistent with the satellite LAI, the ground measured gcc (green
chromatic coordinate) from Seyednasrollah et al. (2019) also did not show low values for the years with
anomalously low GPP (i.e., 2014) (Figure S6 in Supporting Information S1). The discrepancy between flux‐tower
and simulated GPP could also reflect the impact of the extreme cold anomaly experienced at the site during the
2013/14 winter (Anderson & Gough, 2017), which inhibited the photosynthetic capacity of leaves. Indeed, the
discrepancies between the simulated and tower‐derived GPP in 2013 were smaller than that of 2014 (RMSE = 4.4
vs. 12.1 μmol CO2 m−2 s−1) (Figure S7 in Supporting Information S1). The tower‐derived GPP at the RU‐SkP
site, which has the smallest average precipitation (no more than 1 mm day−1, Figure S8 in Supporting Infor-
mation S1) of the 12 sites, decreased significantly after 10 a.m. (Figure 6). We suspect the decrease in GPP is a
result of stomatal closure in response to rising VPD during the midday period; this can be exacerbated in arid
regions where low soil moisture may increase the sensitivity of stomata to VPD. This phenomenon was not
captured by either scheme due to the empirical soil moisture limitation factor (β in Section 2.1) used in both.

The EEO‐based scheme performed better than the standard scheme in predicting GPP variations at the half‐
hourly, monthly, and annual scales across all the FLUXNET2015 sites (Figure 7). The standard scheme gener-
ated a large spread in r across sites (0.79 ± 0.16, mean ± S.D.) for the half‐hourly GPP (Figures 7a and 7b),
whereas the EEO‐based scheme had a more constrained distribution with an r of 0.84 ± 0.1. The standard scheme
underestimated the monthly GPP by 10% especially for the high values with the fitted slope of 0.71 (Figure 7c),
which was improved to 0.88 using the EEO‐based scheme (Figure 7d). The EEO‐predicted GPP was in good
agreement with the observations in terms of the variation in the multi‐year average GPP (Figures 7e and 7f) with a
fitted slope of 0.95, with an increased R2 (0.57 to 0.66) and NSE (0.54 to 0.62) compared to the standard scheme,
and a decreased RMSE (173.75 to 145.35 μmol CO2 m−2 s−1).

The standard scheme overestimated measured Rcanopy by more than twice, but the EEO‐based scheme captured
both the overall magnitude and the variability in Rcanopy (Figure 8). Because of the overestimation of R25

(Figures 3a and 3b), the standard scheme produced an excessive CO2 release from leaf respiration—generally
twice that observed and nearly three times higher in ENF. The standard scheme showed stronger seasonal and

Figure 5. Coefficient of variation (C.V.) for the multi‐year monthly average R25 and Vcmax,25 simulated by the EEO‐based
scheme at the FLUXNET sites. The boxplots indicate the C.V. for the sites within the same PFTs (25th percentile, 75th
percentile and median; maximum and minimum for the whiskers). We only show the 10 PFTs for which there are data from at
least three sites. The PFTs are ordered by the average site latitude of sites for that PFT.
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spatial fluctuations in Rcanopy than the observations (with R2 = 0.25 for ENF, Figure 8b) due to the use of constant
R25 across seasons and latitudinal gradients. The EEO‐based scheme produced a more accurate Rcanopy, with a
maximum bias of 10%. The averaged RMSE for the EEO‐based scheme was only 0.4 μmol CO2 m−2 s−1, less than
one‐fifth of RMSE of the standard scheme (2.2 μmol CO2 m−2 s−1). Overall, the EEO‐based scheme captured the
seasonal and spatial fluctuations in Rcanopy (R2 = 0.77 and 0.92, respectively) based on its acclimated R25.

3.3. Responses of GPP and Rcanopy to Warming and Increasing CO2

The EEO‐based scheme accounting for acclimation showed more moderate responses than the standard scheme to
warming and atmospheric CO2 enhancement (Figures 9a and 9c). With the temperature increasing from 5°C to the

Figure 6. Half‐hourly GPP at 12 FLUXNET sites at which field traits were measured. The left panel shows the mean Vcmax,25
during the field‐measurement periods. The right panel shows the half‐hourly GPP for the week covering the field‐
measurement periods. The gray shaded area in the right panel represents the uncertainty in tower‐derived GPP calculated by
the daytime partitioning method in the FLUXNET2015 data set. RMSE of GPP derived from the EEO simulation and
standard simulation of each panel are shown as yellow and purple numbers, respectively.
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temperature at which the peaked GPP occurred (Topt), the EEO‐based scheme showed a shallow rise of 17% in
GPP (at the given 380 ppm) (Figure 9a and Figure S9a in Supporting Information S1). A much stronger response
to warming was simulated by the standard scheme, with a larger GPP increase of 42% from 5°C to its Topt

(Figure 9b and Figure S9a in Supporting Information S1). The EEO‐based scheme predicted a 10% increase in
GPP (at the T = 5°C condition) under doubled CO2 whereas the standard scheme produced a slightly larger
increase of 12% (Figures 9a and 9b and Figure S9a in Supporting Information S1). The EEO‐based Topt increased
from 16 to 19°C with a doubling of CO2 concentration with a sensitivity of 0.14°C/10 ppm; the sensitivity of the
standard scheme was 0.11°C/10 ppm but with a higher Topt under the same CO2 concentration level (Figures 9a
and 9b).

The EEO‐based scheme also showed a more moderate response of Rcanopy to warming than the standard scheme
(Figures 9c and 9d). The standard scheme predicted an increase in Rcanopy five times greater than the EEO‐based
scheme with an increase of T from 5°C to 35°C (Figures 9c and 9d). Due to the reduction in predicted R25 with
elevated CO2 concentration (Figure S2 in Supporting Information S1), the EEO‐based simulated Rcanopy declined

Figure 7. Evaluations of GPP for all FLUXNET sites at half‐hourly, monthly, and annual scales. (a–b) r and RMSE of half‐
hourly tower‐based and simulated GPP at 168 sites. The boxplot indicates the 25th percentile, 75th percentile and median
among 168 sites, with maximum and minimum for the whiskers. (c–f) Scatter plots of monthly and annual GPP. The dashed
and solid lines indicate the 1:1 ratio line and fitted line, respectively. NSE is the Nash‐Sutcliffe efficiency coefficient.
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with the sensitivity of −4%/10 ppm, whereas the standard scheme predicted a stable Rcanopy under changing CO2

concentration (Figure 9d and Figure S9b in Supporting Information S1).

4. Discussion
4.1. Improved Performance of the EEO‐Based Scheme for GPP and Rcanopy

The standard Noah MP scheme cannot produce the responses of Vcmax25 and R25 to environmental changes
whereas the EEO‐based scheme allows for environmentally determined responses (Figures S1 and S2 in Sup-
porting Information S1). Coupled with the optimal Vcmax,25, EEO‐based R25 showed a negative response to
increasing temperature (Figure S2a in Supporting Information S1) with a sensitivity of −4.2% °C−1, close to the
value (−4.4% °C−1) derived from measurements across more than 100 sites (Wang et al., 2020). Increasing VPD
is expected to have a positive impact on R25, due to higher Vcmax,25 accompanying higher VPD (Smith
et al., 2019). As predicted by the least‐cost hypothesis, under higher VPD, plants tend to increase investment in
Rubisco to compensate for the lower CO2 supply induced by stomatal closure (Prentice et al., 2014). Relatively
few studies have analyzed the effect of VPD; and results have been inconsistent. Zhu et al. (2021) observed
increasing R25 under higher VPD, consistent with our results, but Reich et al. (2021) showed that R25 decreased
with increased VPD probably because the respiratory substrate is reduced due to the decrease in net photosyn-
thetic rate under higher VPD. Different water‐use strategies (i.e., isohydric/anisohydric) (Zhao et al., 2023) could
also impact the responses of photosynthesis and respiration. This could be taken into account in future by
modifying the cost term used in the EEO formulations. R25 and Vcmax,25 increased in response to the lower air
pressure at higher elevation (Figures S1f and S2f in Supporting Information S1) to compensate for the lower CO2

supply, a finding that is consistent with observations along elevation transects (Bahar et al., 2017; Peng
et al., 2020; Xu et al., 2021).

The EEO‐based scheme, without any PFT‐specific parameters, captured 62% of the temporal and 70% of the
spatial variations in field measured Vcmax,25 (73% and 54% for R25) (Figures 3 and 4). All leaf‐level samples at a

Figure 8. Evaluations of Rcanopy at the trait‐measurement sites. The solid curves show the variations in mean Rcanopy with
shaded area showing the mean ± S.D. The different colors indicate the Rcanopy simulated by R25 using field observations
(black), EEO simulations (yellow), and standard PFT parameters (purple), respectively. The mean Rcanopy is the average of
all species on the same day for 2009 and 2013 (a–b) or at the same latitude (c–d). R2 and RMSE are based on the mean values
with yellow and purple label for EEO and standard simulations, respectively.
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given site were averaged to the community level, but there may still be some differences in how well these
community averages represent predicted traits using site‐averaged forcings because they do not necessarily
include samples from all the plants at the site. This might cause some uncertainty in the evaluation results.
However, our EEO‐predicted Vcmax,25 was also consistent with the Vcmax,25 inversions derived from the
FLUXNET2015 data set (Wang et al., 2022), which suggested strong temporal variability in Vcmax,25 cross sites
with averaged C.V. exceeding 20%.

The standard version of Noah MP underestimated the observed magnitude of Vcmax,25 for the latitudinal bands
>20°S or >35°N (Figure 4c), where more than 80% of the sites used for evaluation are located, resulting in a 10%
underestimation of GPP compared to the monthly observations (Figure 7c). A similar underestimation of GPP has
been found in most of the process‐based biophysical models used in the TRENDY project (Sitch et al., 2015). The
performance of the EEO‐based model in explaining the observed monthly GPP (R2 = 0.68, Figure 7d) is as good
as or better than complex process‐based, PFT‐dependent models (R2 ranging from 0.55 to 0.71: Zheng
et al., 2020).

Consistent with the life‐cycle of Rubisco and the acclimation time scale from physiological expectations (Mäkelä
et al., 2008), empirical analyses over time and experimental manipulation (Reich et al., 2016, 2021), and multi‐
sites analysis (Mengoli et al., 2022), optimal traits are predicted by the EEO scheme using 15 days as their
acclimation time scale in this study. Adjusting to the annual averaged environment conditions, GPP and Rcanopy

predicted by the EEO scheme (Figures S10 and S11 in Supporting Information S1) were still closer to the ob-
servations than the values predicted by the standard scheme (Figures 7 and 8), but not as good as the EEO
predictions using optimal 15‐day averaged traits (Figures 7 and 8). The EEO scheme adjusted to annual condi-
tions overestimated Rcanopy for ENF with RMSE of 1.06 μmol CO2 m−2 s−1, which was much larger than that
adjusted to the prior 15‐day averages (Figure S11d in Supporting Information S1). These results suggest that
intra‐annual trait variations are important for accurate prediction of GPP and Rcanopy. It would also be worth

Figure 9. Responses of GPP and Rcanopy to warming and increasing CO2 simulated by the EEO‐based (left panel) and
standard (right panel) schemes. The unit of GPP and Rcanopy is μmol CO2 m−2 s−1. Topt indicated by the gray points (Figure a
and b) is the corresponding temperature at the peaked GPP under a given CO2 level. The standard‐scheme simulations (Sstan)
are re‐scaled using the difference between EEO‐scheme simulation (SEEO_0) and standard‐scheme simulation (Sstan_0) at 5°C
and 380 ppm: re‐scaled Sstan = Sstan + SEEO_0 − Sstan_0. This rescaling ensures that, the difference in response between the
EEO and standard schemes is only affected by whether acclimation is considered or not, rather than model structure (i.e., big‐
leaf or two‐leaf model).
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exploring whether the acclimation time scale is different for different environmental factors, if sufficient data
were available from manipulation experiment.

4.2. Implications of Acclimation for the Global Carbon Cycle

Previous model studies have shown a positive carbon‐climate feedback because the instantaneous temperature
response of respiration is steeper than that of photosynthesis (Bonan & Levis, 2010; He et al., 2018; Krinner
et al., 2005; Niu et al., 2011). Our findings imply that thermal acclimation of photosynthesis and leaf respiration
leads to more CO2 uptake (Figure 9), and thus reduces the positive carbon‐climate feedback. This is consistent
with field measurements that indicate plants assimilate more CO2 with warming, as they can achieve the same
function with fewer enzymes at higher temperature, thus reducing the respiratory loss incurred in maintaining
catalytic capacity (Collalti et al., 2020; Luo et al., 2009; Wang et al., 2019). In our experiments, the increase of our
acclimated Rcanopy with warming was 12% lower than the non‐acclimated response (Figure 9). Nevertheless, there
are observations that indicate decreased plant carbon uptake under higher temperature, where warming‐induced
drought reduced ecosystem productivity (Ciais et al., 2005; Das et al., 2023; Wang et al., 2016; Zhao &
Running, 2010), or increased wildfires increased carbon release (Mack et al., 2011; Mekonnen et al., 2019;
Virkkala et al., 2024; Wang et al., 2021). Thus, the impact of warming is likely to be modulated by other
environmental changes.

Our results also show increased atmospheric CO2 concentration leads to an additional reduction of R25 (Figure
S2d in Supporting Information S1), such that a doubling of the CO2 concentration caused a 24% reduction in
Rcanopy (Figure 9c and Figure S8b in Supporting Information S1). This reflects the lower R25 and Vcmax,25 (Figures
S1d and S2d in Supporting Information S1) due to the decreasing investment in Rubisco under higher CO2 supply
(Prentice et al., 2014; Smith et al., 2019). This effect has been diagnosed as the main driver of the temporal
variation in global Rcanopy over the past two decades (Ren et al., 2023).

4.3. Uncertainties and Limitations of This Study

Our results show the value of adopting a scheme that accounts for both R25 and Vcmax,25 acclimation under
persistent warming and increasing CO2 in terms of correctly predicting the carbon‐climate feedback. However,
there are two sources of uncertainty in the EEO predictions: the input data (LAI) and the model (model pa-
rameters). The MODIS LAI used here likely underestimates LAI, particularly in tropical regions, due to
reflectance saturation at high leaf area (Gao et al., 2023). Comparisons with measured LAI at two tropical forest
sites (BR‐Sa1, GH‐Ank) show that MODIS LAI is respectively 20% and 50% lower (Figure S12 in Supporting
Information S1), measurements from Doughty & Goulden, 2008; Zhang‐Zheng et al., 2024. EEO scheme pre-
dicted GPP at BR‐Sa1 is 12.44 μmol CO2 m−2 s−1, which is 87% of the observed GPP; the EEO‐predicted GPP at
GH‐Ank is about 60% of the flux tower observation, broadly consistent with the impact of saturation on the
forcing data. LAI products inverted from lidar measurements (Ma et al., 2022) are expected to provide more
accurate LAI inputs by addressing reflectance saturation at high leaf area, but currently only have limited
availability. The difficulties and costs of LAI measurement on the ground, means that accurate prognostic LAI
predictions would be useful for global carbon cycle modeling (Zhu et al., 2023), especially for past and future
periods when there are no LAI observations. Our analysis of the impact of uncertainties in the estimates of pa-
rameters c*, b and γ (Figure S13 in Supporting Information S1) showed that b and γ had negligible effects on the
simulated GPP and Rcanopy. However, the uncertainties associated with c* are larger (∼20%), consistent with
findings of Qiao et al. (2020). This suggests that more attention is needed to constrain this parameter in the future
to improve EEO predictions.

Limited by our understanding, three issues are not considered here. First, we used a fixed sensitivity of the
intrinsic quantum efficiency (φ0) to temperature, although this is known to vary with environmental conditions
(Marečková et al., 2019; Sandoval et al., 2023; Zhang et al., 2024). A recent work (Huo et al., 2024) implemented
the varying sensitivity of φ0 to temperature in CLM model based on in situ observations collected at a site
(71.28°N, 156.65°W). But a more complete understanding is required at global scale and a further understanding
of the relationship with soil moisture limitation is also necessary to avoid parameterizing the uncertainty of one to
the other (Sandoval et al., 2023). Second, we used Beer's law and assumed a similar decrease in Vcmax,25 and R25

with light exposure through the canopy. A limited number of field measurements suggest that the ratio between
R25 and Vcmax,25 is lower near the ground than at the top of the canopy (Lamour et al., 2023; Weerasinghe
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et al., 2014). More field measurements would be helpful to characterize this within‐canopy gradient in future
work. More importantly, we have not considered fine roots and stem respiration, or heterotrophic respiration,
which could also impact ecosystem respiration (Chen et al., 2023). It would be worth exploring the full range of
respiration processes in the future work to provide a more comprehensive basis for the assessment of feedbacks in
the global carbon cycle.

5. Conclusions
We have tested an EEO‐based scheme to represent the acclimation of photosynthesis and leaf respiration in the
Noah MP LSM. We have shown that this scheme produces more realistic simulations of GPP and Rcanopy, which
are underestimated and overestimated respectively in the standard scheme. The EEO‐based scheme also predicts
the spatial and temporal variations in these two traits at different time scales across a range of different biomes
more reliably than the standard scheme. Yet the new scheme has only three PFT‐independent parameters, rep-
resenting a considerable reduction in the number of parameters that must be specified (for each PFT) in the
standard scheme. The new scheme is also less computationally demanding as it avoid the need for iterative
solutions.

Data Availability Statement
The WFDE5 climate data set can be obtained from Cucchi et al., 2022 via 10.24381/cds.20d54e34. The atmo-
spheric CO2 concentration is available from Lan et al., 2024 via https://doi.org/10.15138/9N0H‐ZH07. The
GLDAS data set to initialize model is downloaded from Beaudoing & Rodell, 2020 via 10.5067/SXAVCZ-
FAQLNO. The GSDE data set to obtain the soil texture is available from Shangguan et al., 2014 via 10.11888/
Soil.tpdc.270578. The GlobResp data set can be obtained from the Plant Trait Database (TRY) (https://www.try‐
db.org/TryWeb/Data.php). The LCE data set is available in the Supporting Information of Smith and
Dukes (2017). The B4WarmED data set is from Reich et al. (2021). FLUXNET2015 can be downloaded from
https://fluxnet.org/data/fluxnet2015‐dataset. The code of the NoahMP‐EEO model are publicly available from
YanghangRen (2025) via zenodo (https://doi.org/10.5281/zenodo.14674455).
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