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Optimal Sensor Decision Rules for
Quantized-but-Uncoded Distributed Detection

Lei Cao

Abstract—In conventional codeword-based distributed detection
(CDD), sensors quantize their observations and report codewords
to the fusion center (FC) where a final decision is made regard-
ing the truthfulness of the hypotheses. Recently, quantized-but-
uncoded DD (QDD) has been proposed, where sensors, after quan-
tization, transmit summarized values instead of codewords to the
FC. QDD can adapt well to the power constraint and offers better
detection performance than CDD. However, the added degree of
freedom in parameter selection in QDD comes with high complexity
in optimal system design. The contribution of this letter is a proof
showing that in QDD, the optimal sensor decision rules for binary
decisions are likelihood-ratio-quantizers (LRQ), regardless of the
reporting channel conditions, provided that the sensor observations
are conditionally independent given the hypotheses. This property
largely simplifies the design of QDD. Performance comparison is
presented for CDD, QDD, and a benchmark system that reports
original sensor observations, when both sensing and reporting
channel noise exist.

Index Terms—Codewords, distributed detection, likelihood-
ratio-quantizer.

1. INTRODUCTION

ISTRIBUTED detection has broad applications in sensor
D networks and radar systems [1], [2], where a number of
sensors gather information in a region of interest and report to
a fusion center (FC) that makes a final decision regarding the
presence of one of two possible signals. Fig. 1 shows a typical
task to determine between two hypotheses, with signal strength
s = —p under Hy and s = p under Hj, respectively, via a
parallel sensing structure with /N sensors. The prior probabilities
of the hypotheses are my and 71, where my + m; = 1. We assume
that observations at different sensors, i.e., X, k=1,..., N,
are conditionally independent given either hypothesis, i.e.,
(X1, ..., Xn|H;) = [To—, p(Xx|H;), 5 =0, 1. When sens-
ing involves additive white Gaussian noise (AWGN), we have
X ~N(—p,0?) under Hy and Xy ~ N (p1,02) under Hi,
where 02 is the noise variance. Each sensor either sends its
observation Xy, or sends Y;, = 7, (X} ), as a summarized repre-
sentation, to the FC. ~; (X}) is typically termed as the decision
rule at sensor k. {Y7, ..., Yy} are reported and arrive at the FC
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Fig. 1.

Sensor networks with parallel topology.

as {Z1,..., Zy } through channels represented by a conditional
probability distribution p(Z1, ..., Zp|Y1, ..., Yn). In general,
M needs notbe equal to N. If sensors use independent reporting
channels, we have M = N and p(Z1,...,Zp|Y1,...,YN) =
ITiez 1 P(Zk[Y2)-

Based on the received information, the FC makes a final
decision in favor of either Hy or H;. It is well known that the
optimal FC decision rule is the likelihood ratio test (LRT). De-
note ZM £ {Z1,..., Zy},andlet f(2M|H;) be the probability
density of 207 under H;, j = 0, 1. The LRT is,

M H H
f(Z%uf' 1) 21 ", )
f(=1"[Ho) Hy
where 77 = 2. Denote region Rz = {21/ € RM|A(z{") > n}.
Then, the false alarm probability and detection probability
are Pp = Ir, f(z{”|H0)dz{”.and Pp = [, f([Hy)d=",
respectively. The Bayes’ error is

A(z") =

P, =m +myPr — 1 Pp. 2)

A key research challenge in distributed detection is determining
the sensor decision rules based on either the Bayesian criterion
(i.e., minimizing P.) or the Neyman-Pearson criterion (i.e.,
maximizing Pp, subject to a maximum value for Pr). The most
popularly investigated DD framework is CDD where sensors
quantize their observations and report codewords to the FC.
Thatis, Y, = v,(X;) =d,d € {0,...,D — 1} where D is the
number of distinct binary bit sequences. The codeword of d
indicates a specific partition region in the observation space
where the actual observation is observed. This framework was
proposed in the 1980s by Tenney and Sandell [3] and quickly
attracted significant attention.

While CDD has seen tremendous successes [4], [5], [6],
[7], [8], some limitations exist. First, the digital modulation
constellation may have to be adjusted, given the power constraint
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and the result of quantization. Second, when channel errors
exist [7], [8], [9], [10], [11], [12], [13], the mapping between the
codewords and symbols in the modulation constellation needs
to be optimized to maximize the detection performance.

In [14], a concept of quantized-but-uncoded DD (QDD) has
been proposed, where after quantization, sensors report sum-
marized values, instead of codewords, to the FC using ana-
log modulation. In other words, Y, = 75 (X%) = mra € R,d €
{0,...,D — 1}, where myy are transmission values. Using
analog communications, QDD bypasses the codeword mapping
and adapts well to the power constraint. CDD can be viewed as a
special choice within QDD, hence QDD offers better detection
performance. However, the added degree of freedom in selecting
myq values comes with high complexity in system design. The
contributions of this paper is a theoretical proof of a key property
of QDD. That is, the necessary condition for the optimality of
sensor decision rules is a likelihood-ratio-quantizer (LRQ) for
binary decisions. In other words, for D = 2, the optimal sensor
decision is a binary quantizer that compares the likelihood ratio
of sensor observation against a single threshold. This property
can significantly reduce the design complexity of a QDD system.

The rest of this letter is organized as follows. Section II briefly
describes the difference between CDD and QDD. Section III
proves the optimality of using the LRQ as sensor decision rules
in QDD. The property is then used in a simple process to search
for the optimal parameters. Section IV provides some simulation
results. Finally, Section V concludes the letter.

II. PROPERTIES OF CDD AND QDD

In CDD, Y, = ’Yk(Xk) =de {0, o, D= 1}. In QDD,
Yi = v(Xk) = mrq € R, d € {0,...,D — 1}. For the com-
parison purpose, we also consider another system where sensors
report their original observations directly, i.e., Yy = v (Xy) =
X This system is termed as un-quantized distributed detection
(UDD) in the sequel.

We assume that the transmission of either a codeword or an
actual value is via one channel use, and hence consumes the
same channel bandwidth as in [15]. We also assume that each
sensor uses the same transmission power in all systems, which
leads to the same symbol energy per channel use.

In UDD, for sensor k,k = 1,..., N, we have

Bk = BIX}]. 3)
In QDD, we have
D-1 D-1
Egk =Y MpaDmy = Y Miq(Gokamo + qixam) — (4)
d=0 d=0

where py,, , is the transmission probability of 114.4. goxa (O 1%4)
is the probability mass of the dth partition region under Hy (or
H,) for sensor k. That is, gjxq = fRd f(zg|Hj)dxy, j=0,1,
where Ry is the partition region such that when the obser-
vation falls within it, myq is reported. To maintain the same
transmission power, we have E,, ;, = E 1.

In CDD, a codeword with log, D bits is transmitted as a sym-
bol via a digital modulation, such as M-ary QAM or M-ary PSK
as shown in Fig. 2. Since each modulation constellation symbol

o [e] [e] [e]
o,
VEq A
o [¢] o——0
o [¢] [e] [e]
‘“o\ o
[e] [¢] [e] [e] (I)
Fig.2. Modulation types: 16-QAM and 8-PSK.

corresponds to one partition region in the observation space, the
probability of using the dth constellation symbol is determined
by the probability mass of the dth partition region. Consequently,
different constellation symbols may have different probabilities
of transmission. These probabilities vary as the partitions change
in quantization. Therefore, to meet the power constraint (i.e., the
average symbol energy per channel use), the constellation may
need to be dynamically adjusted during the search for the optimal
quantizer that maximizes detection performance. For example,
in Fig. 2, \/E, in the M-ary QAM constellation changes for
different quantizers, whereas the constellation of M-PSK does
not change because all symbols in M-PSK have the same energy
for any quantization result. In addition, the mapping between
the codewords and the symbols in the constellation also plays
a crucial role because it determines how often one partition
region (or codeword) is mistaken as another partition region (or
codeword) at the FC. This is due to the occurrences of bit-flips in
the codewords resulting from channel errors. In [11], the natural
binary coding was used. In [13], the codeword mapping was
formulated as a part of the optimization objective, and the result
disapproved the use of Gray coding [12].

On the contrary, by adjusting the actual transmission values
in (4), QDD can meet well the constraint of transmission power.
In addition, by directly transmitting values via analog commu-
nications, there is no need to consider the mapping between the
codewords and constellation points as in CDD. However, the
difficulty in QDD system design is the selection of the transmis-
sion values. It can be noted that even for a given quantization,
ie., {Pmyy,d=0,...,D — 1} probability values having been
determined, the selection of m4 satisfying a transmission power
constraint is not unique. Therefore, determining the optimal
sensor decision rules, i.e., vx(Xy), in QDD could be highly
complex. In the following, we prove through a person-by-person
process that for QDD with D = 2, LRQ is a necessary condition
for the optimality of sensor decision rules.

III. OPTIMAL SENSOR DECISION RULES OF QDD
A. Main Result

Theorem 1: For a QDD system where two possible values
are used to report observations in each sensor, when Xy, k =
0,...,N — 1, are conditionally independent given the hypothe-
ses, a necessary condition for the optimal decision rule of each
sensor is an LRQ. This resultis irrelevant to the reporting channel
model, and the optimality holds under both the Neyman-Pearson
(NP) and Bayesian criteria.
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Proof: See Appendix A. (]

The essence of this result is that the optimal sensor decision
only involves a single threshold along the axis of the likelihood
ratio of the sensor observations, eliminating the possibility that
multiple disjointed intervals along the likelihood ratio lead to
the same sensor decision. Therefore, the design of QDD is
significantly simplified.

B. Optimization for QDD Design

Assume that X ~ N(—p,05,) under Hy and Xj ~
N(p,0s,) under Hy, k = 1,..., N, are conditionally indepen-
dent given either hypothesis. Let D = 2. The detection error P,
follows (2). Based on Theorem 1, the design of the QDD system
becomes an optimization problem that considers only the set
of LRQ sensor decision rules. That is, for sensor k, only one
threshold ¢, and two transmission values myq, my1 are to be
found.

P min P,

ty M0, M1
k=1,...,.N

FE
<mgo < whk
Pmyo

Eu,k

Pmio

S.t. — 4

2 2
PrmgoMio T Pmgs Mig1 = Bk

tr + ty —
Dy :W0Q< /L> +7T1Q< /L>
O, O,

1- Py

Pmpo =

The constraints include the range of transmission value of my
and the power constraint. Q(z) = f;x «%e# dv is the tail
function of the standard Normal distribution. As g, Mo, Mk1
are linked by the power constraint, there are only two indepen-
dent variables for each sensor. In a person-by-person process
focusing on two independent unknowns each time, this opti-
mization problem can be readily solved using many popular
optimization solvers, such as those in the optimization toolbox of
MatLab. It should be noted that the above optimization problem
P, is formulated with the AWGN assumption in the sensor
observations. It needs to be adjusted when other types of sensing

noise are considered.

IV. COMPARISON AND NUMERICAL RESULTS

We compare the detection performance of UDD, CDD, and
QDD in terms of Bayes’ error when both sensing and reporting
channel noise exist. We assume the channel noise is zero mean
additive Gaussian with variance of o2. Although reporting chan-
nels often involve fading, we assume that in practical systems,
the multiplicative fading factors can often be reliably estimated.
We set p = 1,m = 0.75, 0, = 1.2, and change o.. For QDD,
the optimal sensor decision rules are obtained by solving the
optimization problem P;. For CDD, sensor k always transmits
either \/E, ; or —\/E,  using BPSK, but with the optimal
LRQ value. This is equivalent to solving the optimization prob-

lem P by fixing myo = —/Fy k and my = /E, i, for k =
1,...,N. Asaresult, QDD can be viewed as the generalization
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Fig. 3.

2

Bayes error P.. 11 = 0.75,u = 1,0, = 1.2.

® —eo—t1,t2 - QDD
—4—mg,my - QDD
ma1,mo - QDD

M |——t,t- CDD

Fig. 4. Optimal sensor rules. m; = 0.75, u = 1,05 = 1.2.

of CDD, in which the amplitude of the symbols can be optimally
selected based on the power constraint and the noise level in
sensing and transmission. At the FC, the LRT rule is used, and
the Bayes’ errors of different systems are calculated.

Fig. 3 shows the comparison of the detection errors for a
2-sensors case. It can be observed that UDD always performs
better than CDD in this scenario. While QDD performs worse
than UDD and very similarly to CDD when o, < 0.75, it consis-
tently performs better than UDD and CDD as o, increases. Be
noted that when o, reduces, UDD approaches the centralized
detection. When o, — 0, the FC using UDD has complete
information observed at sensors and hence can make the most
accurate detection. Fig. 4 shows the optimal sensor decision
parameters for both CDD and QDD. The obtained optimal
sensor decisions are the same for the two sensors, in both CDD
and QDD.

It needs to be noted that problem P is generally nonconvex.
The complexity of solving it depends on the solver used. Using
the global search algorithm in MatLab typically takes a few min-
utes to obtain a solution for QDD. In practice, these parameters
can be computed offline and preset at sensors.

V. CONCLUSION

In this letter, we have proved the optimality of using LRQs as
the sensor decision rules in QDD for D = 2, when the sensor
observations are conditionally independent given the hypothe-
ses. Therefore, with performance improvement over CDD, QDD
may also retain low complexity in system design in certain cases.
This work considers D = 2 only, the optimal sensor decision
rules for D > 2 deserve more research efforts in the future.

Authorized licensed use limited to: UNIVERSITY OF MISSISSIPPI. Downloaded on January 29,2025 at 15:53:48 UTC from IEEE Xplore. Restrictions apply.



CAO AND VISWANATHAN: OPTIMAL SENSOR DECISION RULES FOR QUANTIZED-BUT-UNCODED DISTRIBUTED DETECTION 289

APPENDIX A
PROOF OF THEOREM 1

Considering a specific sensor while the decision rules of other
sensors and the fusion rule are fixed, our approach is to show that
for the sensor under consideration, the LRQ rule can perform at
leastas well as any non-LRQ rule, with less or equal power thatis
used by the non-LRQ rule. Consider two possible decision rules
to be used in the sensor: one is a non-LRQ rule, in which the
sensor reports either mg or m; to the FC, where mg, m; satisfy
the power constraint (4), and the other is an LRQ rule. Suppose
that this LRQ rule also uses the same mg and m; as the non-
LRQ rule used for reporting. Denote Py = P(mi|Hy), Py =
P(mq|H) as the false alarm and detection probabilities at the
sensor for the non-LRQ rule, and PJﬁ, Pj as the false alarm and
detection probabilities for the LRQ rule. Based on Neyman-
Pearson’s Lemma, for any non-LRQ rule, we can always find
an LRQ rule such that P; > Py if Pf* = Py, or P} < Py if
Py =Py

When Hj is true, the average symbol energy of the systems
using non-LRQ and LRQ rules are as follows:

ET = (1 — Pf)mg + mei

E; = (1 — Pj)m + Pim3. (5)
When H; is true, we have

Er = (1 — Pd)mg + Pdmf,

E;p = (1— Pjymg + Pim3. (6)
If m2 < m?, suppose that P; = P, then we have Er = E’ un-
der Hy but E7. < Ep under Hy. If mg > m%, suppose P}‘ = Py,
we have Er = E7, under Hy but 7, < Er under H;. In other
words, for any non-LRQ rule, we can always find an LRQ rule
that uses the same mg, m; but with less or equal transmission
power compared to the non-LRQ rule. It must be noted that
mo, m1 sent in the LRQ rule might not be the optimal values
that lead to the best performance.

Next, we follow the approach used in [10] to show the opti-
mality of LRQ at sensors under both NP and Bayesian criteria
at the FC. Let Uy = 7o(ZM) be the final decision at the FC, and
Uy = j decides H;, j = 0,1. Let Pr and Pp be the false alarm

and detection probabilities after the FC has made a final decision,
respectively. When the non-LRQ rule is used for sensor £,

Pr = P(Uy = 1|Hy) = P(Uy = 1, Yy = mo|Ho)
+ P(Uy = 1, Y}, = my|H)

= P(Uy = 1Yy, = mg, Hy) + apP(Yy = m1|Hy)

= P(Uy = 1Yy, = mo, Ho) + ar Py @)
where

ay =
P(Uy = 1|Yy, = m1, Hy) — P(Uy = 1|Yx = mo, Hp). (8)

Similarly,

Pp = P(Uy = 1{H1) = P(Up = 1, Yy = mo|H1)

+P(U0 = 1,Yk = m1|H1)
= P(UO = 1|Yk = mo,Hl) +ka(Y]€ = m1|H1)
= P(Uo = 1Y}, = mo, H1) + bp Py (©)

where

=
B
|

P(Uo = 1Yy, = mq, H1) — P(Ug = 1]Y}, = mo, Hy). (10)

In the above, only Py and Py are related to the decision rule
used in sensor k. Other terms, including ay, b, P(Uy = 1|Y), =
mo, Hy), P(Up = 1Yy = my, Hy), are only related to the chan-
nel features and the fusion decision. It is left to show that we
can always find an LRQ rule for sensor & that improves the final
performance at the FC, i.e., (P, P;,), over that of the non-LRQ
rule.
1) When a; > 0,b, > 0, an LRQ rule can be found so that
PJ’? < Py and P; > P;. Based on (7) and (9), we have
Pr < Prand P;, > Pp.

2) When a; > 0, b, < 0, we can select an LRQ rule with a
threshold of oo, i.e., the sensor always sends mg. Then
P; =0 and P]f = 0. Returning to (7) and (9), it gives a
performance of (Pj., Pj,) that is better than or equal to
(Pp, Pp).

3) When a; < 0,b; > 0, we can select an LRQ rule with
a threshold of 0, i.e., the sensor always send m;. Then
P;=1and P]f = 1. Returning to (7) and (9), it gives a
performance of (Pj., Pj,) that is better than or equal to
(Pp, Pp).

4) When aj < 0,b; < 0, we may use the LRQ in “1.” but

switch the decision of Uy from ‘0’ to ‘1’ and from ‘1’ to
‘0’, which is equivalent to minimizing (maximizing) the
sensor detection probability (false alarm probability). Re-
turning to (7) and (9), it gives a performance of (P}, Pf)
that is better than or equal to (P, Pp).

As aresult, considering sensor k while other sensor decisions
and fusion rules are fixed, for any non-LRQ decision rule, we
can always find an LRQ rule that uses the same mg, m; as
the non-LRQ rule uses but gives the same or better detection
performance with at most the same transmission power used
by the non-LRQ rule. In addition, an LRQ rule with optimized
mo, m1 under the power constraint cannot perform worse than
the one simply adopting the mq, m; values used by the non-LRQ
rule. Therefore, the optimality of LRQ sensor rules has been
established under Neyman-Pearson’s criterion.

Under the Bayesian criterion, the detection error probability
P. = mgPr + 7 (1 — Pp). Using (7) and (9), we obtain

P, :ck+ak7ron — bpm1 Py (11)
where ¢ = moP(Up = 1|Y;, = mo, Ho) + mi(1 — P(Up =
1|Yx = mo, Hy)) is a value irrelevant to the sensor decision
rule. As a result, following the four cases of a; and by, and the
proof for the NP criterion, it shows directly for any non-LRQ
rule, we can always find an LRQ rule with the detection error
probability P} < P,. (]
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