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The temperate-boreal forest ecotone represents a transition zone from temperate to boreal forest where nitrogen
(N) is frequently limiting tree growth. However, the spatial patterns and potential drivers of plant N nutrition
and soil N availability remain poorly understood. To address this, we conducted a field investigation along a
temperate-boreal forest ecotone in northeastern China, characterized by a modest mean annual temperature gra-
dient (~1 °C) within the range of current climate warming. Our goal was to evaluate the spatial variation in foliar
N nutrition and soil N availability, and the potential driving factors for Mongolian oak (Quercus mongolica) and
Dahurian larch (Larix gmelinii), the dominant trees of the local temperate and adjacent boreal forests, respectively.
Our results revealed no significant spatial trend in topsoil N availability across the sampling transect. Foliar N
concentration was significantly higher, but foliar §!N was lower, for Mongolian oak than Dahurian larch. Foliar
N concentration for Mongolian oak increased significantly toward the boreal forest, driven by lower mean annual
temperature and mean annual precipitation, with no significant trend observed for Dahurian larch. Moreover,
foliar A5'5N (foliar 6'>N—soil 6!°N) decreased significantly for Mongolian oak as it approached the boreal forest,
while it increased significantly for Dahurian larch toward the temperate forest. Notably, foliar N concentration,
515N, and AS'°N for Dahurian larch increased significantly with an increasing basal area proportion of Mongo-
lian oak. Our findings demonstrate contrasting patterns of foliar N nutrition between co-occurring temperate and
boreal trees across a temperate-boreal forest ecotone with a modest climatic gradient. These results underscore
the importance of incorporating interspecific interactions to enhance our understanding of future N cycling in
southern boreal forests in the context of climate warming.

Keywords:

Nitrogen availability

Nitrogen isotope
Temperate-boreal forest ecotone
Temperature gradient
Mongolian oak

Dahurian larch

1. Introduction

The temperate-boreal forest ecotone, a transition zone between tem-
perate and boreal forest biomes, is particularly sensitive to climate
change [1-3]. Due to climatic warming, temperate broadleaved trees
have been migrating beyond their current northernmost or uppermost
boundaries [4,5], leading to shifts in species composition across the
temperate-boreal forest ecotone [5,6]. These shifts in the mix of tem-
perate broadleaved trees and boreal coniferous trees can theoretically
alter nutrient cycling, as interspecific differences in nutrient use and lit-
ter chemistry can affect plant nutrition and soil nutrients availability
over time [7,8]. Nitrogen (N), an essential nutrient, significantly limits
tree growth in both temperate and boreal forests [9,10]. The changes in
species composition driven by climate warming, along with their sub-
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sequent effects on soil N availability, have been documented in various
high-altitude and high-latitude ecotones, such as alpine treelines and
boreal forest-tundra ecotones [11-13]. However, the variation in soil
N availability and foliar N nutrition across the temperate-boreal forest
ecotone, and the potential impacts of the increasing dominance of tem-
perate trees on foliar N nutrition for co-occurring boreal trees, remain
less well understood. This knowledge gap hinders our ability to accu-
rately predict future changes in N cycling and vegetation productivity
in southern boreal forests under climate warming.

The availability of soil N in boreal forests is strongly limited by cold
climates due to lowered rates of microbial mineralization and other N
transformation processes (e.g., nitrification) [14,15]. Soil N availabil-
ity is theoretically expected to increase from colder boreal forest to-
ward warmer temperate forest with accelerated mineralization of soil N.
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Additionally, the increasing proportion of temperate broadleaved trees
from boreal forest to temperate forest may further accelerate the miner-
alization of soil N by producing more decomposable litter (e.g., higher
N concentration and lower concentrations of recalcitrant compounds),
and thus enhance the expected increase in N availability across tem-
perature gradients [8], although not all evidence supports these hy-
potheses [16]. The spatial variation in the availability of soil N across
the temperate-boreal forest ecotone can be mediated by other vege-
tational, topographic and soil conditions [17]. For example, N pools
of soil and plant N gradually accumulate with stand age and thus af-
fect soil N availability over time [18,19]. Similarly, differences in lit-
ter productivity (driven by climate, species characteristics, or both) can
influence annual N inputs into soils and hence drive soil N availabil-
ity [20,21]. Spatial variations in the slope and aspect of a forest stand
may also affect soil N availability by modifying the microclimate and
the capacity to retain soil nutrients [22,23]. The hypothesized spatial
gradients of soil N availability and the roles of the aforementioned
drivers, however, have rarely been tested across temperate-boreal forest
ecotones.

The foliar N nutrition for co-occurring temperate and boreal trees
may change across the temperate-boreal forest ecotone in acclimation
to, and perhaps adaptation to, the spatial gradients of the aforemen-
tioned soil N availability and additional abiotic and biotic factors, and
such variation can occur within as little as a 1-2 °C temperature gradient
[24]. A warmer climate in combination with higher water availability
not only improves soil N availability but also increases the demand of N
for tree growth, thus jointly affecting the foliar N balance across the cli-
matic gradients [25-27]. An increasing proportion of broadleaved trees
may increase the availability of soil N for co-occurring conifers, whereas
the broadleaved trees and co-occurring conifers also compete intensively
for N in N-limited ecosystems and potentially decrease N availability
and foliar N nutrition for neighboring conifers [28]. Furthermore, N use
strategies can also contribute to determine the level of foliar N nutrition
for both temperate broadleaved trees and conifers [24]. For example,
mycorrhizal fungal associations can affect plant N nutrition since the
host plants partially depend on mycorrhizal fungi for N acquisition es-
pecially at low N availabilities [14,29,30]. Temperate trees may also
adjust their allocation and use of N toward colder climates from tem-
perate forest to boreal forest, such as allocating more N to foliage to
increase metabolic activity and growth rate [31,32]. In contrast, boreal
trees may show a different trend across the temperate-boreal forest eco-
tone, likely having lower foliar N concentrations in colder regions as
part of the whole-plant strategy of having longer needle longevity in
response to both cold and slower growth rates [33]. The hypothesized
interspecific differences and biogeographical variations in the foliar N
nutrition of temperate and boreal trees are complex and require fur-
ther investigation especially within a temperature gradient similar as
the range of global climate warming (e.g., < 2 °C).

N isotopic signatures (i.e. §1°N) of plants and soil have been widely
used to characterize N cycle in terrestrial ecosystems, and to indi-
cate its response to changing N availability [30,34,35]. The availabil-
ity of soil N for terrestrial plants has been found to strongly corre-
late with 6'°N in soil and foliage [30]. Increasing supply of soil N in
natural ecosystems generally accelerates N cycling (e.g., mineraliza-
tion, nitrification, denitrification and N losses) and enriches the heavier
I5N in the soil substrate and plant foliage due to the fractionation of
N isotopes [29]. Increased dominance of temperate broadleaved trees
with N-rich litters may increase soil 6!°N by accelerating N cycling,
and thereby increase foliar 6'°N for co-occurring boreal trees. More-
over, as soil N availability increases, plants tend to be less dependent
on mycorrhizal fungi, which preferentially transfers 1N-depleted N to
host plants, partly resulting in a decrease in foliar §'°N [36]. Foliar
615N for co-occurring temperate broadleaved trees and boreal conifers
may also have different spatial trends across the temperate-boreal
forest ecotone due to their distinct capacities for N acquisition and
utilization.
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The northern Greater Khingan Mountains in northeastern China
cover the southernmost part of the Eurasian boreal forest [37]. Mongo-
lian oak (Quercus mongolica), a broadleaved tree of the northern temper-
ate forest in this region, is expanding toward the boreal forest, which
is dominated by Dahurian larch (Larix gmelinii), due to rapid climatic
warming [4,38,39]. The gradients of co-occurring Mongolian oak and
Dahurian larch across the temperate-boreal forest ecotone thus provide
a unique research platform to address the aforementioned questions.
Based on a field investigation across a modest temperature gradient
(~1 °C) within the temperate-boreal forest ecotone on the eastern slope
of the Greater Khingan Mountains, we explored the spatial patterns and
their potential driving factors of soil N availability and foliar N nutrition
of temperate Mongolian oak and co-occurring boreal Dahurian larch.
The aims of this work were therefore to characterize the spatial variation
in soil N availability and foliar N nutrition for occurring Mongolian oak
and Dahurian larch across the temperate-boreal forest ecotone, and fur-
ther uncovered the potential driving factors, including climatic, edaphic
and vegetational conditions. Specifically, we tested the following hy-
potheses: (i) the availability of soil N increases from the boreal forest
toward the temperate forest and this pattern is dominated by the tem-
perature gradient across the temperate-boreal forest ecotone; (ii) foliar
N nutrition for co-occurring Mongolian oak and Dahurian larch, surro-
gated by foliar N concentration, 51N and A5!°N (foliar 6'°N—soil §1°N),
have different spatial trends across the temperate-boreal forest ecotone
due to their distinct capacities of N use; and (iii) increased abundance
of Mongolian oak can improve the foliar N nutrition for co-occurring
Dahurian larch by increasing the availability of soil N.

2. Materials and methods
2.1. Study area and sampling transect

This study was conducted across a temperate-boreal forest ecotone
on the eastern slope of northern Greater Khingan Mountains (latitude
50°10’-53°27’N and longitude 119°36’-126°37’E), which represents a
part of the southernmost edge of Eurasian boreal forest (Fig. 1a). The
boreal forest in this region is dominated by Dahurian larch (L. gmelinii)
[40]. Mongolian oak (Q. mongolica), a dominant broadleaved tree in the
adjacent temperate forest, has been migrating rapidly toward the boreal
forest during the last century due to substantial climatic warming [4].
Dahurian larch and Mongolian oak are both associated with ectomycor-
rhizal fungi [41], but Mongolian oak has a more advanced root system
than does Dahurian larch [42].

We established a sampling transect (latitude 50°28-50°40’N and
longitude 122°42-123°59’E) across the temperate-boreal forest ecotone,
almost perpendicular to the isolines of the threshold warmth index re-
quired for the reproduction of Mongolian oak (see Fig. 1a and Table
S1 for more details). The sampling transect was 90 km long (Fig. 1).
Mean annual temperature (MAT) ranged from —1.75 to —0.65 °C and
mean annual precipitation (MAP) ranged from 480 to 550 mm across
the sampling transect (Table S1; Fig. S1). The altitude (above sea level)
increased from 470 m in the east to 650 m in the west. The sizes and
ages of the co-occurring Mongolian oak and Dahurian larch had oppo-
site trends along the sampling transect (Fig. S2). Specifically, Mongolian
oak decreased significantly in age (measured at ~5 cm height above the
ground, decreasing from 85 + 8 yrs in Area 1 to 20 + 2 yrs in Area 4),
and basal area (at a height of 1.3 m, ranging from 0.02 + 0.009 m? to
0.3 + 0.1 m?) toward the southern boreal forest (Fig. S2). In contrast, the
cambial age (measured at breast height) and basal area (at a height of
1.3 m) of the Dahurian larch decreased significantly toward the temper-
ate forest (Fig. S2). The larch forest grows on brown coniferous forest
soil [43], with the depth of the mineral soil layer varying from 20 to
40 cm. Soil pH ranges between 5.0 and 6.5, with no significant spatial
trend along the sampling transect (Fig. S1). The ambient N deposition
is low at ~5 kg ha™! yr‘1 [44].
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Fig. 1. Study area and sampling transect across the temperate-boreal for-
est ecotone in northeastern China (a, b). The sampling transect, vegetation
distribution and the isoline of the threshold warm index (i.e. 35 °C month, cal-
culated as the sum of monthly mean temperatures > 5 °C) for the reproduction
and regeneration of Mongolian oak (see Tang et al. [4] for more details) (a).
The sampling sites and the topography of the study region (b). The isoline of
the threshold warm index has moved toward the boreal forest from the 1920s
(WI;5 1920-1930, blue) to the 2010s (WI;5 2010—-2020, brown) (a), and Mon-
golian oak has rapidly migrated into boreal forest [4]. The size of the red dots in
panel (b) indicates the basal-area proportion (BAP) for Mongolian oak in each
sampling plot. GKM, the Greater Khingan Mountains.

2.2. Field sampling and laboratory measurements

In the summer of 2020, we conducted an investigation across 32 for-
est plots (20 m x 20 m each) in four sampling areas—Jagdagqi, Alihe,
Ganhe, and Keyihe (hereafter referred to as Areas 1 to 4) (Fig. 1; Ta-
ble S1). The sampling transect began in Area 1 at the plot closest to
pure Mongolian oak forests. We selected 5 to 15 representative plots in
each area where Mongolian oak and Dahurian larch co-occurred. The
forest plots in each area were chosen based on the following criteria:
(i) Dahurian larch, the dominant species, co-occurs with Mongolian oak
populations; (ii) the plots are situated on low to moderate slopes (rang-
ing from 0° to 20°); and (iii) the plots are free from recent disturbances
(e.g., fire damage and logging) and are located > 100 m away from the
forest edge. All the selected plots were included in subsequent analy-
ses, differing from a previous study that assessed the migration rate of
Mongolian oak using five sampling forest plots containing the oldest
Mongolian oak trees in each area [4]. For each plot, we recorded ge-
ographical information (latitude, longitude, elevation, and slope) and
the coverage of understory plants (herbaceous plants and shrubs). We
measured the diameter at breast height (DBH) for all individuals taller
than 1.3 m using a diameter tape. In each plot, we collected foliar sam-
ples from the six largest, healthy Mongolian oak and Dahurian larch
trees, sampling from the upper sunward crown using an averruncator.
A total of 384 foliar samples were obtained across the transect—192
for each species. To determine the age of Dahurian larch trees, we sam-
pled tree-ring cores from the eight largest individuals per plot at breast
height using an increment borer. For Mongolian oak, we sampled stem
discs from the three largest and three relatively smaller trees at a height
of 5cm above the ground. Additionally, five topsoil samples (0—10 cm
depth) were randomly collected from each plot using a soil auger. Foliar
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and soil samples were separately mixed to create a composite sample per
plot for subsequent laboratory analysis.

Foliar samples were oven-dried at 65 °C for 48 h to a constant weight,
then milled using a mixer ball mill (20 Hz for 5 min) (MM400; Retsch,
Haan, Germany) and sieved through a 100-mesh sieve. Topsoil samples
were air-dried at room temperature and passed through a 2-mm sieve
to remove root fragments, coarse debris, and gravel. Fine roots were
manually removed, and the topsoil samples were milled using an agate
mortar grinder (RM200; Retsch, Haan, Germany) before being passed
through a 100-mesh sieve. Topsoil pH was measured in aqueous sus-
pensions (water: soil = 2.5:1, volume/weight) of the air-dried samples
using a pH meter (pHS-25; INESA, Shanghai, China). Total carbon (C)
and nitrogen (N) concentrations and abundances of 15N (5!°N) of the
milled foliar and topsoil samples were measured using an elemental an-
alyzer (Elemental Analysis System GmbH; Elementar, Hanau, Germany)
coupled with a stable isotope ratio mass spectrometer (Delta V; Thermo
Fisher, Massachusetts, USA). Topsoil C:N ratios were then calculated
to indicate the topsoil N availability [45,46]. The analytical errors (i.e.
standard deviations) of the isotope measurements were evaluated based
on the values for replicated measurements of reference material. The
analytical errors were 0.25%o for §'°N and 0.13%o for total N concen-
tration, respectively, implying a good consistency and accuracy of mea-
surements. The abundance of 1N (§1°N) was calculated as Eq. 1,

Rsample

615N:[ — 1| x 1000% 1)

standard

where Ry is the N/N ratio in the sample, and Ryyggqrg is the
15N/14N ratio in atmospheric N,.

To control the potentially different background topsoil 6'°N signa-
tures among sampling forest plots [30,47], we calculated the difference
in 615N between foliage and topsoil (i.e. A5°N) according to Eq. 2,

ASISN = 615Nfoliage - 61SI\Isail (@)

where 6'5Ni,jipqe Tepresents >N abundance in foliar samples, and
815N,,; represents >N abundance in topsoil samples.

Tree-ring counts for Dahurian larch and Mongolian oak were mea-
sured using a LINTAB 5.0 system (RINNTECH, Heidelberg, Germany).
The dating of tree-rings was performed and corrected using COFECHA
software [48]. The average tree-ring counts for the eight larch trees in
each plot were used to estimate stand age. All laboratory analyses were
conducted at the Analysis and Test Center, State Key Laboratory of Earth
Surface Processes and Resource Ecology, Beijing Normal University.

2.3. Data on potential drivers

To explore the potential drivers of the varying availability of soil
N and foliar N nutrition for co-occurring Mongolian oak and Dahurian
larch, we compiled data on nine explanatory variables: (i) two climatic
variables, MAT and MAP; (ii) two topographical variables, slope and as-
pect; (iii) one soil variable, pH; and (iv) four vegetational variables, un-
derstory plant coverage (Under_cov), stand age, total basal area of each
plot (Plot BA), and the basal-area proportion (BAP) for Mongolian oak.
Basal-area proportion in each sampling plot was calculated according to
Eq. 3,

BA

BAP = oak

—— X 100% 3)
BAoak + BAlarch

where BA, and BA,,, 4, are the total basal areas for Mongolian oak and
Dahurian larch in each plot, respectively.

Meteorological stations were rare in our sampling areas and there
was only one within Area 1 (i.e. Jagdaqi). Data on MAT and MAP
(1980-2018) for each sampling plot were thus derived from CHELSA
v2.1 at a resolution of 30 arc-seconds [49]. We also derived ob-
served data on MAT and MAP (1980-2018) for Area 1 from the
nearby meteorological station (China Meteorological Data Service Cen-
ter, http://data.cma.cn) and conducted a statistical comparison with the
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Fig. 2. Spatial variations in the topsoil C:N ratio and 5'°N (a, c), relative importance of potential predictors (b, d) and conditional regression plots for
the important drivers (e, f). The shading in (a), (c), (e) and (f) represents the 95% confidence interval of the model fit. See Table S3 for a summary of the models.
Abbreviations: MAT, mean annual temperature; MAP, mean annual precipitation; Plot BA, total basal area of the sampling plot; Under_cov, understory plant coverage;
BAP, the basal-area proportion for Mongolian oak; Aspect, the aspect of a sampling plot, i.e. north-facing, south-facing or flat.

CHELSA dataset. Both MAT and MAP for Area 1 correlated strongly be-
tween these two datasets (MAT: RZ = 0.94, P < 0.001; MAP: RZ = 0.79,
P < 0.001; Fig. S3), implying a reliability for CHELSA dataset in the
study area. Other explanatory variables were measured during the field
sampling.

2.4. Statistical analysis

A Shapiro-Wilk test was conducted to test normality of total N, 61°N
and AN in foliar and soil samples, and all these variables were found
to follow a normal distribution (Table S2). The interspecific differences
in foliar N concentration, 5'°N, and A5'°N between Mongolian oak and
co-occurring Dahurian larch were tested using a paired t-test. Linear re-
gression analyses were conducted to assess the spatial changes in the
availability of topsoil N (i.e. soil C:N ratio and 61°N), tree foliar N nutri-
tion (i.e. foliar N concentration, §'°N, and A5'°N), and their potential
driving factors along the sampling transect (i.e. with the distance from
the starting plot Area 1-1).

We performed a model-selection analysis using Akaike’s information
criteria corrected for small samples to evaluate the importance of po-
tential drivers for the availability of topsoil N (i.e. soil C:N ratio and
51°N) and tree foliar N nutrition (i.e. foliar N concentration, §1°N, and
A815N) [50] . All nine potential drivers were used in the analyses due
to the low collinearity amongst them (absolute Pearson’s r < 0.7; Fig.
S4). The relative importance of each driver was estimated as the sum
of the Akaike weights for models in which the drivers were included,
and a cut-off of 0.8 was used to identify the important drivers [50]. The

variance inflation factor (VIF) was used to indicate the multicollinearity
for the driving factors in the best models (VIF < 3 suggests no statistical
collinearity) [51]. A conditional regression analysis was used to demon-
strate the role of the important drivers while keeping the other drivers
fixed [52]. The contribution of each driving factor was calculated by
averaging the variance over the orderings of the regressors [53]. All
statistical analyses and visualizations were performed using R sofware
(version 4.2.3, R Development Core Team, 2023) with a significance
level of P < 0.05. Data are shown as means + standard deviations unless
otherwise noted.

3. Results
3.1. Variations in the availability of soil N across the sampling transect

The topsoil C:N ratio ranged from 13.8 to 26.4 (19.5 + 3.3; Fig. S5)
but had no significant trend across the sampling transect (P = 0.14;
Fig. 2a). Surprisingly, the spatial variations in the topsoil C:N ratio was
not significantly explained by the nine potential drivers (Fig. 2b; Ta-
ble S3). Topsoil 615N (ranging from 1.6%o to 5.7%o; mean = 3.5%o +
0.8%o; Fig. S5) also had no significant trend across the sampling tran-
sect (P = 0.39; Fig. 2c), and its spatial variation was mainly attributable
to the varied slope and aspect of the sampling plots (explaining 38% of
the total variance) (Fig. 2d; Table S3). Specifically, conditional regres-
sion analyses found that topsoil 51°N decreased significantly with the
slope of the sampling plot (explaining 20% of the variance, P < 0.01;
Fig. 2e). Topsoil 61°N also varied significantly with the aspect of the
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Fig. 3. Frequency distribution and spatial variation of foliar N concentra-
tion (a, b), 6'°N (c, d), and A5'°N (e, f) for Mongolian oak and Dahurian
larch across the temperate-boreal forest ecotone. A paired t-test was used
to determine the interspecific difference. Distance represents the distance from
each sampling plot to the start point of the sampling transect (i.e. Area 1-1, see
Fig. 1). SD, standard deviation.

sampling plot (explaining 24% of the variance, P < 0.05; Fig. 2f), with
the highest values occurring on south-facing aspects.

3.2. Interspecific differences in foliar nitrogen nutrition across the transect

Foliar N concentration of Dahurian larch (17.0 + 2.0 mg g~!) was
significantly lower than the co-occurring Mongolian oak (25.8 + 4.0 mg
g 1) (paired t-test, df = 31, t = —12.57, P < 0.001; Fig. 3a). The foliar
C:N ratio of Dahurian larch (30.8 + 6.4) was accordingly higher than
Mongolian oak (18.4 + 2.2) (df = 31, t = 10.88, P < 0.001; Fig. S6). The
foliar N concentration for Mongolian oak increased significantly toward
the boreal forest (P < 0.05; Fig. 3b), but the foliar N concentration for
Dahurian larch showed no significant trend across the sampling tran-
sect (P = 0.23). Foliar §'°N was significantly higher for Dahurian larch
(1.2%o + 2.9%0) than Mongolian oak (—1.3%o + 0.9%o) (df = 31, t = 4.60,
P < 0.001; Fig. 3c). Foliar §1°N of Dahurian larch increased significantly
toward the temperate forest (P < 0.05) but it had marginally significant
trend for Mongolian oak across the sampling transect (P = 0.07; Fig. 3d).
Moreover, foliar A51°N for Mongolian oak (—4.8%o + 1.1%o) was signif-
icantly lower than for Dahurian larch (—2.3%o + 3.0%0) (df =31, t = 4.
60, P < 0.001; Fig. 3e). Foliar A51°N for Mongolian oak decreased sig-
nificantly toward the boreal forest (P < 0.05; Fig. 3f), and increased
significantly for Dahurian larch toward the temperate forest (P < 0.01;
Fig. 3f).
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3.3. Drivers of variations in foliar N concentration across the transect

The spatial trend in the foliar N concentration for Mongolian oak was
mainly regulated by MAP and MAT (explaining 35% of the total vari-
ance; Fig. 4a), which had weak collinearity (Pearson’s r = 0.09; Fig. S4).
Specifically, the foliar N concentration for Mongolian oak increased sig-
nificantly as MAP decreased (explaining 22% of the variance, P < 0.01;
Fig. 4b) and MAT decreased (explaining 14% of the variance, P < 0.01;
Fig. 4c). In addition to the climatic factors, the spatial variation of the
foliar N concentration for Dahurian larch was also explained by the
basal-area proportion of the co-occurring Mongolian oak and the aspect
of the sampling plot (explaining 57% of the total variance; Fig. 4d). A
conditional regression analysis showed that the foliar N concentration
of Dahurian larch increased significantly with lower MAP (explaining
18% of the variance, P < 0.01; Fig. 4e), lower MAT (explaining 15% of
the variance, P < 0.01; Fig. 4f) and higher basal-area proportion of the
co-occurring Mongolian oak (explaining 16% of the variance, P < 0.01;
Fig. 4g). The foliar N concentration for Dahurian larch also varied sig-
nificantly with the aspect of the sampling plot (explaining 15% of the
variance, P < 0.01), with higher values occurring on north-facing aspects
(Fig. 4h).

3.4. Drivers of variations in foliar §1°N across the transect

The spatial variation of foliar 6!°N for Mongolian oak was mainly
explained by the aspect of the sampling plots (explaining 49 % of the
variance, P < 0.01; Fig. 5a), with the lowest values occurring on north-
facing aspects (Fig. 5b). In contrast, the spatial trend of foliar §1°N
for Dahurian larch was jointly explained by the basal-area proportion
for Mongolian oak, the coverage of understory plants and the aspect
and slope of the sampling plots (explaining 65% of the total variance;
Fig. 6a). Specifically, foliar 615N for Dahurian larch increased signifi-
cantly with higher basal-area proportion of the co-occurring Mongolian
oak (explaining 33% of the variance, P < 0.01; Fig. 6b), lower coverage
of understory plants (explaining 17% of the variance, P < 0.01; Fig. 6¢)
and higher slope (explaining 8% of the variance, P < 0.01; Fig. 6e).
Foliar 61°N for Dahurian larch also varied significantly with aspect (ex-
plaining 12% of the variance, P < 0.01), with higher values occurring
on north-facing aspects (Fig. 6d).

3.5. Drivers of variations in foliar A5'°N across the transect

The spatial trend of foliar A5'>N for Mongolian oak was exclusively
explained by MAT (explaining 17% of the variance; Fig. 7b). Specifi-
cally, foliar A61°N for Mongolian oak increased significantly with higher
MAT (P < 0.05; Fig. 7b). In contrast, the spatial variation in foliar A§'5N
for Dahurian larch was mainly explained by the basal-area proportion of
Mongolian oak and stand aspect (explaining 55% of the total variance;
Fig. 7c). Conditional regression analyses further revealed a significant
increase in foliar A51°N for Dahurian larch with higher basal-area pro-
portion of Mongolian oak (explaining 42% of the variance, P < 0.01;
Fig. 7d). Additionally, foliar A§'>N for Dahurian larch varied signifi-
cantly with stand aspect (explaining 13% of the variance, P < 0.01),
with higher values occurring on north-facing aspects (Fig. 7e).

4. Discussion

4.1. Nonsignificant gradient of topsoil N availability across the
temperate-boreal forest ecotone

In contrast to our first hypothesis, we found that the availability of
N in topsoil, surrogated by the C:N ratio and 6!° N, had no significant
trend across the transect of temperate-boreal forest ecotone. The slopes
and aspects of the sampling plots accounted for a considerable propor-
tion (38%) of the spatial variation in soil 6!°N (Fig. 2), implying an
important role of topographical conditions in determining the spatial
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See the caption for Fig. 2 for abbreviations.

variation in the soil N availability within this ecotone. The nonsignif-
icant gradient of the availability of topsoil N was likely due to three
causes. First, the climatic conditions especially MAT varied within a rel-
atively narrow range across the sampling transect (~1 °C; Fig. S1) and
may not have caused a major pattern of soil N cycling and hence de-
tectable changes in N availability. Second, N is limiting in the study
area, so a minor increase in available N (e.g., inorganic N) under higher
temperature and/or increased abundance of Mongolian oak can be read-
ily assimilated by plants and therefore there was a negligibly detectable
increase in these two surrogates of soil N availability. Third, topograph-
ical conditions exert a strong heterogeneity in the cycling of topsoil N by
regulating microclimates and hydrologic processes [22,54]. Specifically,
lower stand slopes on south-facing aspects, corresponding to higher tem-

peratures and better retention of topsoil N, may be favorable to soil N
mineralization and hence its higher availability to trees [23,55]. Thus,
the effect of spatial variation in topographical conditions may poten-
tially mask the role of modest climatic gradients across the temperate-
boreal forest ecotone.

4.2. Interspecific differences of foliar N concentrations across the
temperate-boreal forest ecotone

Our results indicated that Mongolian oak and co-occurring Dahurian
larch exhibited distinct foliar N-nutrition signatures, represented by
N concentration and 6!°N, across the temperate-boreal forest ecotone
(Fig. 3). These distinct N-nutrition signatures suggest differences in fo-
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liar structure and capacities for N acquisition and utilization between
the broadleaved Mongolian oak and coniferous Dahurian larch [41,42].
These differences may also be attributable to other species-specific
traits. For example, Mongolian oak possesses a more efficient fine-root
system with a higher specific root length and root density compared
to Dahurian larch [56]. Despite similar ectomycorrhizal associations,
Mongolian oak has an advantage over Dahurian larch in acquiring soil
N [56-58]. In addition to interspecific differences in root traits, which
are closely linked to tree N absorption, N allocation strategies also con-
tribute to the variation in foliar N nutrition concentrations [31,59].
Specifically, temperate oaks growing in cold climates likely allocate
more N to foliage to support biochemical processes such as photosyn-
thesis [60].
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We also observed distinct spatial patterns of foliar N concen-
trations for Mongolian oak and co-occurring Dahurian larch across
the temperate-boreal forest ecotone, partially supporting our second
hypothesis. Specifically, the foliar N concentration for Mongolian oak in-
creased significantly toward the boreal forest, whereas Dahurian larch
showed no detectable trend in foliar N concentrations across the eco-
tone. This pattern of increasing foliar N concentration for Mongolian
oak from warmer to colder climates aligns with some previous studies
[60,611, but not all [24]. Generally, plants growing in colder temper-
atures may exhibit higher leaf N concentrations as they allocate more
N-rich compounds to leaves to support metabolic processes (like pho-
tosynthesis and respiration), aiding their acclimation to colder climates
[31,59]. However, colder soils and lower soil N availability in colder
habitats may lead to lower foliar N concentrations [24]. Moreover,
these responses may be non-linear with respect to temperature across
large geographic scales, varying among species and functional groups
[31], indicating that the power of different mechanisms influencing
foliar N status may differ from extreme cold to cool to warm climate
conditions.

In contrast to Mongolian oak, Dahurian larch trees across the eco-
tone are at their southern distributional limit [40]. Their growth in this
region is primarily constrained by water availability rather than by cold
environments [62]. The higher MAP toward the temperate forest may
benefit the growth of Dahurian larch, potentially diluting foliar N nutri-
tion and leading to a lower foliar N concentration [63]. Additionally, a
higher MAT can increase plant transpiration rates, subsequently reduc-
ing the capacity for N absorption and upward transportation, thereby
decreasing the foliar N concentration [64,65]. Our results also indicated
that a higher proportion of Mongolian oak significantly improved foliar
N nutrition for co-occurring Dahurian larch, evidenced by the higher
foliar N concentration (Fig. 4), partially supporting our third hypothe-
sis. This beneficial effect was likely due to the higher litter quality (e.g.,
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lower C:N ratio) of Mongolian oak, which accelerates litter decomposi-
tion and N mineralization [66,67]. These findings also demonstrate the
predominance of the positive effect of Mongolian oak on foliar N nu-
trition of co-occurring Dahurian larch, outweighing its negative impact
due to competition stress with increasing basal area proportion (Fig. 4g).
However, the benefits from Mongolian oak were also likely offset in part
by the impacts of MAP and MAT, as discussed above, resulting in a non-
significant trend in foliar N concentration for Dahurian larch across the
ecotone.

4.3. Interspecific differences of foliar 1°N abundance and A51°N across
the temperate-boreal forest ecotone

Mongolian oak and Dahurian larch had distinct patterns of foliar
615N and A6'°N across the ecotone (Figs. 3d, f), consistent with our
second hypothesis. Specifically, foliar 615N for Mongolian oak did not
have significant trends along the transect, but foliar 6!°N for Dahurian
larch increased toward the temperate forest. The pattern of foliar §'°N
for Mongolian oak is exclusively regulated by the local aspect of the
sampling plot, i.e. the warmer microclimate on flat plots or south-facing
aspects benefits the release of N and hence the higher availability of N
to the trees [23,55]. Furthermore, the foliar A6'5N for Mongolian oak
was found to significantly decrease with the decrease in MAT (Fig. 7b),
which aligns with the previously observed pattern of decreasing foliar
A815N with decreasing MAT [29]. The depletion in foliar 1°N for tem-
perate Mongolian oak may partially be attributable to the stronger as-
sociation with ectomycorrhizal fungi to improve N acquisition toward
the colder boreal forest [14].

The pattern of increasing foliar 61N for Dahurian larch with the
increasing proportion of Mongolian oak clearly suggests a beneficial

effect of Mongolian oak on foliar N nutrition for Dahurian larch, which
partially supports our third hypothesis. This pattern may be due to the
aforementioned mechanism that the increasing abundance of Mongo-
lian oak improves the litter chemistry and hence accelerates the rates of
N mineralization and the losses of topsoil 14N, thereby increasing 5'°N
of the soil and larch foliage. Such positive effects of broadleaved tree
species on foliar N nutrition for resident trees have also been observed
in other ecotones and forest stands of mixed tree species [68-70]. Addi-
tionally, the increase in foliar A§'5N for Dahurian larch, accompanied
by an increasing proportion of neighboring Mongolian oak, provides
evidence for enhanced uptake of 1°N-enriched soil inorganic N sources
for Dahurian larch under more interspecific competition (represented
by basal area proportion) from Mongolian oak, which is in accordance
with previous results focused on grassland communities [34,71]. More-
over, the pattern of increasing foliar A§'5N for Dahurian larch with an
increasing abundance of Mongolian oak may also reveal a less fraction-
ation against 1°N during the N uptake for Dahurian larch (Fig. 7d). The
possible causes likely include a decrease in the reliance of Dahurian
larch on mycorrhizal fungi for N uptake due to the beneficial effects of
the increasing dominance of Mongolian oak on the foliar N nutrition for
Dahurian larch, indicated by positive correlation between foliar N and
815N for Dahurian larch and dominance of Mongolian oak (Figs. 4, 6),
and thereby a more enriched foliar 1°N. Our results also imply a nega-
tive effect of the understory plants and the slope of the sampling plot
on foliar 615N for Dahurian larch across the ecotone (Fig. 6), i.e. the
increasing abundance of understory plants tends to intensify the com-
petition for topsoil N nutrients with larch trees [72,73], and increased
slopes of sampling plots generally causes more erosive losses of top-
soil N [22,23,47], both of which can decrease the N availability for the
Dahurian larch.
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4.4. Implications and outlook for further research

Climate warming not only can directly accelerate soil N mineraliza-
tion by stimulating soil microbial activity [74], but also promotes the
expansion of temperate trees, which improve litter quality [4]. Both fac-
tors can contribute to increased soil N availability and consequently, en-
hanced foliar N nutrition for boreal trees. However, climatic warming
may also exacerbate moisture and temperature stress in southern bo-
real forests [62,75]. A recent tree-ring analysis has revealed widespread
decline in the growth of Dahurian larch in the southern Asian boreal
forest due to moisture stress [76], similar to observed responses else-
where in southern boreal forests [77,78]. Thus, an important question
remains: will the positive effects of temperate Mongolian oak on N nutri-
tion accelerate the growth of Dahurian larch, particularly in the context
of moisture stress at this temperate-boreal forest ecotone? Additionally,
rapid climate warming may reduce foliar N nutrition for temperate trees
by limiting N uptake due to moisture stress-related reductions in N dif-
fusion and flow in soils [79,80], which could lead to decreased N release
from the litter of temperate trees. These findings suggest complex im-
pacts of climate warming, along with associated shifts in species com-
position, on N cycling, foliar N nutrition, and tree growth in southern
boreal forests. Future manipulative experiments, such as the removal or
introduction of Mongolian oak across temperature gradients, are neces-
sary to provide deeper insights into the mechanisms driving changes in
N cycling, foliar N nutrition, and boreal forests growth in response to the
expansion of temperate Mongolian oak under climate warming. From a
forest management perspective, the assisted introduction of oaks under
current climate warming conditions appears plausible as a strategy to
improve N nutrition for boreal larch.

Several additional uncertainties remain in our analysis. For instance,
global gridded climate datasets (e.g., CHELSA) may not accurately cap-
ture the micrometeorological conditions of forest stands [49], poten-
tially obscuring the effects of climatic conditions on the spatial variation
in soil N availability across a modest temperature gradient. Moreover,
we did not measure rooting depths, which could influence N nutrition
for Mongolian oak and Dahurian larch. Rooting depth may impact fo-
liar N isotopic signatures since the §1°N of soil N sources tends to in-
crease along the vertical soil profile [30,81]. The difference in rooting
depth between Mongolian oak and Dahurian larch may therefore par-
tially explain the differences in foliar N isotopic signatures. Additionally,
different forms of N in the soil are generally considered to exhibit dis-
tinct N isotope signatures [71]. Specifically, nitrate typically has higher
61°N compared to ammonia and organic N, due to more fractionation
against 1N during denitrification [82]. Consequently, investigating the
N sources in the soils (e.g., nitrogen, ammonia, and dissolved organic N)
and the N uptake patterns of Mongolian oak and co-occurring Dahurian
larch across the ecotone is necessary to better understand the spatial
trends and driving factors for soil and foliar N isotope signatures.

The potential driving factors considered in our analysis were not
strongly colinear (absolute Pearson’s r < 0.7; Fig. S4), but a modest cor-
relation between the basal-area proportion of Mongolian oak and MAT
(Pearson’s r = 0.53) still suggests the potential effects of temperature
on the dominance of Mongolian oak across this ecotone. Specifically,
Mongolian oak is likely to establish earlier and grow faster in warmer
boreal forest stands, thus having more potential to accelerate N cycling.
Warmer climates inherently directly accelerate litter decomposition and
N mineralization [83,84], leading to an increase in foliar N nutrition for
Dahurian larch. Therefore, further manipulative experiments are neces-
sary to separate the biological effects of migrating Mongolian oak from
the direct effects of climate.

5. Conclusion
Based on a field investigation of a temperate-boreal forest ecotone

in northeastern China, we evaluated the patterns and potential drivers
of soil N availability and foliar N nutrition for Mongolian oak and co-
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occurring boreal Dahurian larch. We found that the availability of top-
soil N had no detectable trend across the ecotone with a modest cli-
matic gradient. Foliar N concentrations were higher but 61N was lower
for Mongolian oak than co-occurring Dahurian larch. The foliar N con-
centration for Mongolian oak increased toward the boreal forest, likely
due to the physiological acclimation of N investment in the cold envi-
ronment [60,61]. In contrast, Dahurian larch did not have a significant
trend in foliar N concentration across the ecotone. Foliar 1°N signatures
for Mongolian oak and Dahurian larch also showed distinct patterns
across the ecotone. We further discovered that the increased dominance
of Mongolian oak had a beneficial effect on the status of foliar N for
Dahurian larch. These findings improve our understanding of the spa-
tial patterns of soil N availability and foliar N nutrition for trees across
the temperate-boreal forest ecotone and highlight the effects of changing
species composition on N nutrition for trees across the temperate-boreal
forest ecotone.
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