

1 **CpgD is a phosphoglycerate cytidylyltransferase required for ceramide diphosphoglycerate**
2 **synthesis**

3 Tanisha Dhakephalkar¹, Ziqiang Guan², and Eric A. Klein^{1,3,4,*}

4

5 **Affiliations:**

6 ¹Biology Department, Rutgers University-Camden, Camden, NJ 08102, USA.

7 ²Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA

8 ³Rutgers Center for Lipid Research, New Jersey Institute for Food Nutrition and Health, Rutgers
9 University, New Brunswick, NJ 08901, USA

10 ⁴Center for Computational and Integrative Biology, Rutgers University-Camden, Camden, NJ
11 08102, USA

12 *Correspondence to: eric.a.klein@rutgers.edu

13

14 **Running title:** CpgD is a phosphoglycerate cytidylyltransferase

15

16 **Keywords:** sphingolipid, ceramide, nucleotidyltransferase, cytidylyltransferase, lipid
17 metabolism, microbiology, enzyme kinetics

18

19 **Abstract**

20 Lipopolysaccharide (LPS) is essential in most Gram-negative bacteria, but mutants of
21 several species have been isolated that can survive in its absence. *Caulobacter crescentus*
22 viability in the absence of LPS is partially dependent on the anionic sphingolipid ceramide
23 diphosphoglycerate (CPG2). Genetic analyses showed that *ccna_01210*, which encodes a
24 nucleotidyltransferase, is required for CPG2 production. Using purified recombinant protein, we
25 determined that CCNA_01210 (CpgD) is a phosphoglycerate cytidylyltransferase which uses
26 CTP and 3-phosphoglycerate to produce CDP-glycerate, which we hypothesize is the
27 phosphoglycerate donor for CPG2 synthesis. CpgD had optimum activity at pH 7.5-8 in the
28 presence of magnesium. CpgD exhibited Michaelis-Menten kinetics with respect to 3-
29 phosphoglycerate ($K_m,app = 10.9 \pm 0.7 \text{ mM}$; $V_{max,app} = 0.72 \pm 0.02 \text{ } \mu\text{mol/min/mg enzyme}$)
30 and CTP ($K_m,app = 4.8 \pm 0.9 \text{ mM}$; $V_{max,app} = 0.44 \pm 0.03 \text{ } \mu\text{mol/min/mg enzyme}$). The
31 characterization of this enzyme uncovers another piece of the pathway towards CPG2 synthesis.

32

33 **Introduction**

34 The outer leaflet of the outer membrane of the cell envelope of Gram-negative bacteria is
35 primarily composed of lipopolysaccharide (LPS) (1) which provides the first line of defense
36 against environmental stress and hydrophobic antimicrobial drugs (2). LPS is essential in most
37 Gram-negative species, but LPS-deficient mutants have been isolated from *Acinetobacter*
38 *baumannii*, *Neisseria menengitidis*, *Moraxella catarrhalis*, and *Caulobacter crescentus* (3-6).
39 While the mechanisms underlying survival in the absence of LPS appear to be species-specific,
40 we previously showed that *C. crescentus* produces the anionic sphingolipid (SL) ceramide
41 polyphosphoglycerate (CPG2) which is critical for viability upon LPS depletion (6).

42 SLs are built upon a ceramide backbone which consists of a sphingoid base and an N-
43 linked fatty acid. Among the characterized bacterial SLs, these lipids can differ in acyl chain
44 length, saturation, and branching, and contain a variety of headgroups. SLs play diverse roles in
45 bacterial physiology including host-microbe interactions (7-9), defense against bacteriophages
46 (10), and sporulation (11). The headgroup of CPG2, which supports survival in the absence of
47 LPS, consists of a diphosphoglycerate moiety. Our previous genetic studies have identified at
48 least four genes that are involved in the synthesis of CPG2 (6, 12), but their specific enzymatic
49 activities remain largely unknown. Analysis of deletion mutants shows that *ccna_01218* (*cpgB*)
50 and *ccna_01219* (*cpgC*) are required for adding the first phosphoglycerate to make ceramide
51 phosphoglycerate (CPG), whereas *ccna_01217* (*cpgA*) and *ccna_01210* are involved in the
52 addition of the second phosphoglycerate to produce CPG2.

53 In a previous report, we demonstrated that CpgB is a ceramide kinase which
54 phosphorylates ceramide to produce ceramide 1-phosphate (C1P) (13). In the current study, we
55 investigated the function of CCNA_01210 in producing CPG2. CCNA_01210 is annotated as a

56 nucleotidyltransferase protein and it shares predicted structural homology with
57 cytidylyltransferases which use CTP and sugar-phosphate substrates to produce CDP-sugars. The
58 *Bacillus subtilis* cytidylyltransferase protein TagD is involved in wall teichoic acid (WTA)
59 synthesis where it catalyzes the transfer of glycerol-3-phosphate to CTP, forming CDP-glycerol
60 (14). TagF then uses CDP-glycerol as a substrate to transfer phosphoglycerol to its teichoic acid
61 membrane acceptor (15). This modification of WTA has strong similarity to CPG2 leading to our
62 hypothesis that CCNA_01210 uses CTP and 3-phosphoglycerate to form CDP-glycerate, which
63 would later be used as a substrate to add a phosphoglycerate onto CPG to form CPG2. In this
64 study, we used purified recombinant CCNA_01210 to characterize its enzymatic activity and
65 confirmed its function as a CDP-glycerate producing cytidylyltransferase.

66

67 **Results**

68 *CCNA_01210 is required for CPG2 production*

69 *C. crescentus* synthesizes two novel anionic sphingolipids, CPG and CPG2 (6). Previous
70 genetic studies identified CpgA-C and CCNA_01210 as key enzymes for CPG2 synthesis (6,
71 12). Deletion of *ccna_01210* resulted in the specific loss of CPG2 while retaining CPG (Fig. 1A)
72 (12), suggesting that CCNA_01210 was involved in the conversion of CPG to CPG2.
73 Complementation of the *ccna_01210* deletion restored CPG2 production (Fig. 1A) (12); we
74 therefore refer to CCNA_01210 as CpgD for the remainder of this study. CpgD is annotated as a
75 nucleotidyltransferase family protein. A structural homology search using the AlphaFold
76 predicted structure of CpgD (16) identified *Thermotoga maritima* inositol-1-phosphate
77 cytidylyltransferase (IMPCT; PDB 4JD0) (17) as the top hit (Fig. 1B). Sequence alignment
78 showed 24% identity and 40% similarity between IMPCT and CpgD, and three critical active site

79 residues (R16, K26, and D112) were conserved in CpgD (Fig. 1C) (17). IMPCT uses CTP and
80 inositol-1-phosphate to produce CDP-inositol, an intermediate in di-myo-inositol-1,1'-phosphate
81 (DIP) synthesis. Other members of this cytidylyltransferase family use phosphocholine (18) and
82 phosphoglutamine (19) as substrates; we therefore hypothesized that CpgD may use
83 phosphoglycerate to form CDP-glycerate.

84

85 *Purification and initial characterization of CpgD*

86 We overexpressed and purified an N-terminal 6xHis-tagged CpgD from *E. coli* for
87 biochemical analysis (Fig. 2A). To identify potential nucleotide substrates, we performed thermal
88 shift assays in the presence of various nucleoside triphosphates; an increase in the melting
89 temperature of the protein was only observed upon addition of CTP suggesting that CTP is the
90 correct substrate (Fig. 2B). We incubated CpgD with CTP and 3-phosphoglycerate in the
91 presence of Mg²⁺ and separated the nucleotide species by high-performance anion-exchange
92 chromatography (HPAEC). When comparing the reaction chromatogram to those of CTP and
93 CDP standards, we observed a new peak with a retention time of 2.7 minutes (Fig. 2C). This
94 peak was absent in a control reaction containing no enzyme, suggesting that this was the product
95 of CpgD. Mass spectrometry analysis of this peak was consistent with CDP-glycerate (whose
96 [M-H]⁻ molecular ion is observed at *m/z* 490.027), and tandem MS/MS analysis confirmed the
97 expected ion fragmentation (Fig. 2D).

98

99 *Effect of pH and divalent cations on CpgD activity*

100 To characterize the optimum conditions for CpgD activity, we quantified CDP-glycerate
101 production over a pH range of 4.5-10; highest activity was seen between pH 7.5-8 (Fig. 3A). We

102 next tested CpgD activity in the presence of various divalent cations (Fig. 3B). Highest activity
103 was seen in the presence of magnesium with significant activity also observed in the presence of
104 copper or cobalt. Lower activity was measured with zinc or manganese, and we did not observe
105 any activity with calcium or in the absence of cations.

106

107 *Determination of CpgD kinetic parameters*

108 Under the optimal conditions of pH 8 in the presence of Mg^{2+} , we measured CDP-
109 glycerate production over a period of 4 hours to determine the linear range of activity (Fig. 4A).
110 Unless otherwise specified, all kinetic studies described below were performed for 3.5 hours in
111 the presence of Mg^{2+} at pH 8. CpgD-catalyzed production of CDP-glycerate exhibited typical
112 Michaelis–Menten kinetics with respect to 3-phosphoglycerate ($K_m,app = 10.9 \pm 0.7 \text{ mM}$;
113 $V_{max,app} = 0.72 \pm 0.02 \text{ } \mu\text{mol/min/mg enzyme}$) and CTP ($K_m,app = 4.8 \pm 0.9 \text{ mM}$; $V_{max,app} =$
114 $0.44 \pm 0.03 \text{ } \mu\text{mol/min/mg enzyme}$) (Fig. 4C-D). These K_m values are consistent with the
115 measured intracellular concentrations of CTP (2.7 mM) and 3-phosphoglycerate (1.5 mM) in *E.*
116 *coli* (20).

117

118 **Discussion**

119 Bacteria produce sphingolipids with diverse headgroups including sugars (10),
120 phosphoglycerol (21), phosphoglycerate (6), and phosphoethanolamine (7). The CPG and CPG2
121 lipids help enable *C. crescentus* survival in the absence of LPS (6). Of the genes identified to
122 play a role in CPG2 synthesis (6, 12), the only one with an ascribed function is the ceramide
123 kinase, CpgB (13). Here, we show that CCNA_01210 (CpgD) is a cytidylyltransferase which
124 produces CDP-glycerate, a required metabolite for CPG2 synthesis.

125 The wall teichoic acid (WTA) synthesis pathway in Gram-positive bacteria uses a similar
126 metabolite, CDP-glycerol. These organisms use the COG0615-domain cytidylyltransferases (22)
127 TagD or TarD to produce CDP-glycerol from CTP and phosphoglycerol (23, 24). Interestingly,
128 despite having similar substrates and products, TagD/TarD and CpgD have no homology.
129 Instead, CpgD has sequence and predicted structural homology to cytidylyltransferases
130 containing the COG1213 conserved domain (22) (Fig. 1B-C). COG1213-domain
131 cytidylyltransferases have been reported to use phosphosugars, phosphocholine, and
132 phosphoglutamine as substrates (16, 18, 19). Although we are not aware of any COG1213
133 enzymes that use phosphoglycerate as a substrate *in vivo*, the phosphoglutamine
134 cytidylyltransferase from *Campylobacter jejuni* (Cj1416) exhibits high substrate promiscuity and
135 can use phosphoglycerate *in vitro* when incubated with manganese rather than magnesium (19).
136 Further structural characterization of CpgD will provide insight into the mechanism of substrate
137 specificity among these enzymes.

138 Our characterization of CpgD solves one more piece of the puzzle to the enzymatic
139 pathway responsible for CPG2 synthesis (Fig. 5). Future work will be required to determine the
140 activities of CpgA/C as well as any other, yet unidentified, enzymes.

141

142 **Experimental Procedures**

143 *C. crescentus* growth conditions

144 *C. crescentus* wild-type strain NA1000, and its derivatives were grown at 30 °C in
145 peptone-yeast-extract (PYE) medium (25) for routine culturing. When necessary, antibiotics
146 were added at the following concentrations: kanamycin 5 µg/ml in broth and 25 µg/ml in agar

147 (abbreviated 5:25); spectinomycin 25:100. Gene expression was induced in *C. crescentus* with
148 0.5 mM vanillate.

149

150 *Deletion and complementation of ccna_01210 (cpgD)*

151 The primers used for cloning are listed in Table 1. $\Delta cpgD$ was cloned by PCR amplifying
152 the upstream (EK1698/1699) and downstream (EK1700/1701) homology fragments from
153 NA1000 genomic DNA. The fragments were stitched together by overlap PCR. The final
154 purified PCR product was ligated into the EcoRI/HindIII site of pNPTS138 (M.R.K. Alley,
155 unpublished). The assembled plasmid was electroporated into NA1000 followed by selection on
156 PYE-kanamycin plates. An individual colony was grown overnight in PYE and streaked onto
157 PYE-3% sucrose plates for *sacB* selection. Colonies were screened for the *cpgD* deletion by PCR
158 (EK S355/S356; wild-type 1.8 kb; deletion 1.4 kb). Flag-tagged *cpgD* was amplified from
159 NA1000 genomic DNA (EK1740/1741). The PCR product was ligated into the NdeI/NheI site of
160 pVCFPC-1 (26). The resulting plasmid was electroporated into the $\Delta cpgD$ strain.

161

162 *Lipidomic profiling and confirmation of ceramide-phosphate production by LC/MS/MS*

163 Lipids were extracted from *C. crescentus* cells using the method of Bligh and Dyer with
164 minor modifications (27). The lipid extracts were analyzed by normal phase LC/MS/MS in the
165 negative ion mode as previously described (28, 29).

166

167 *Purification of His-tagged CpgD*

168 *cpgD* was amplified (EK1708/1709) and ligated into the NdeI/HindIII site of pET-28a
169 (EMD Millipore) to yield an N-terminal fusion protein. The resulting plasmid was transformed

170 into *E. coli* strain ER2566 (New England Biolabs) for expression and purification. A 1 L culture
171 of *E. coli* ER2566 cells carrying the pET28a-*cpgD* plasmid was grown in LB broth with 30
172 µg/ml kanamycin at 37 °C with shaking until reaching an A_{600} of 0.3. IPTG was added to a final
173 concentration of 0.25 mM, followed by induction at 30 °C for 3 h. Cells were harvested by
174 centrifugation at 10,000 x g. The pellet was resuspended in 25 ml of lysis buffer (50 mM
175 NaH₂PO₄, 300 mM NaCl, 10 mM imidazole) before lysing via 2 to 3 passages through a French
176 press (11,000 psi). The lysate was centrifuged at 8000 x g for 10 min to remove unbroken cells
177 and the supernatant was passed through a 0.22 mm syringe filter. The His-tagged CpgD was
178 purified using an ÄKTA start FPLC system and a 1 ml HisTrap HP column (Cytiva). Once the
179 sample was loaded it was washed with lysis buffer to remove the unbound material. Elution was
180 carried out via a linear gradient of 10-1000 mM imidazole. 1 ml fractions were collected, and the
181 protein elution was monitored by A_{280} . Fractions which contained the purified protein were
182 identified by SDS-PAGE and Coomassie blue staining. Fractions containing the protein were
183 pooled and dialyzed into a buffer containing 10 mM Tris pH 8.0, 0.1 M NaCl, 2 mM EDTA and
184 1 mM DTT over 36 h at 4 °C using a Slide-A-Lyzer Dialysis Cassette with a 20,000 MW cutoff
185 (Thermo Scientific). The protein concentration was determined using the BCA Protein Assay Kit
186 (Pierce).

187

188 *Thermal shift protein stability assay of CpgD*

189 A 20 ml reaction was set up containing 1X GloMelt dye (Biotium), 1.2 mg/ml CpgD, 50
190 mM Tris pH 8.0, 50 mM MgCl₂, 40 nM ROX, and 10 mM nucleotide. Samples without
191 nucleotide were used as a negative control. Reactions were carried out in triplicate and the melt
192 curve profile was assayed on an ABI QuantStudio 6 Flex (Thermo Fisher Scientific). Initial hold

193 was at 25 °C for 30 s and the melt curve was measured between 25-99 °C with a ramp rate of
194 0.05 °C/s. Data were plotted using first derivative (slope) of the fluorescence curve against
195 temperature to calculate the Tm for each sample.

196

197 *CpgD activity assay*

198 Enzyme activity assays for CpgD were carried out in a total volume of 20 µl containing
199 50 mM Tris pH 8.0, 50 mM MgCl₂, 10 mM CTP, and 10 mM 3-phosphoglycerate. The reaction
200 was initiated with the addition of 0.24 mg/ml CpgD and proceeded at 35 °C for 3.5 h. Reactions
201 were stopped by heating at 90 °C for 5 minutes and stored at -20 °C until analysis.

202

203 *Detection of products using High Performance Anion-Exchange Chromatography (HPAEC)*

204 The chromatography apparatus included an Agilent Technologies 1200 series HPLC
205 equipped with a quaternary pump (G5611A), Infinity Bio-Inert HPLC Autosampler (G5667A),
206 MWD Detector (G1365C), and OpenLAB Control Panel Software (version A.01.05). Samples
207 were resolved on a Dionex CarboPac PA200 column (3 mm×250 mm) with the corresponding
208 guard column (3 mm×50 mm) (Thermo Fisher). The column was equilibrated with 60% Buffer A
209 (1 mM NaOH) and 40% Buffer B (1 M sodium acetate in 1 mM NaOH), and the column
210 temperature was maintained at 30 °C. Samples were diluted 1:100 in Milli-Q water and 25 µl
211 was injected for HPAEC. The HPAEC run consisted of a 10 min linear gradient from 60:40 to
212 20:80 Buffer A: Buffer B, 2 min hold at 100% Buffer B, and 5 min of 60:40 of Buffer A: Buffer
213 B, to re-equilibrate the column. The entire run was carried out at a flow rate of 0.4 ml/min. CTP
214 and CDP-glycerate were monitored by their absorbance at 260 nm. Product formation was

215 measured by calculating peak area using OpenLAB (version A.01.05). A standard curve of CTP
216 was used to quantify product formation.

217

218 *Identification of CpgD product*

219 A reaction containing 50 mM Tris pH 8.0, 50 mM MgCl₂, 10 mM CTP, 10 mM 3-
220 phosphoglycerate, and 0.24 mg/ml CpgD was incubated at 35 °C for 3.5 h. The reactions were
221 stopped by the addition of methanol (4x reaction volume), and samples were centrifuged at
222 10,000 rpm at room temperature for 2 min. Subsequently, the supernatant was collected and used
223 for LC/MS/MS analysis.

224

225 *LC/MS/MS*

226 Reverse-phase liquid chromatography-electrospray ionization/tandem mass spectrometry
227 (LC-ESI/MS/MS) was performed using a Shimadzu LC system (comprising a solvent degasser,
228 two LC-10A pumps and a SCL-10A system controller) coupled to a high-resolution
229 TripleTOF5600 mass spectrometer (AB Sciex, Framingham, MA). LC was operated at a flow
230 rate of 200 µl/min with a linear gradient as follows: 100% of mobile phase A was held
231 isocratically for 2 min and then linearly increased to 100% mobile phase B over 5 min and held
232 at 100% B for 2 min. Mobile phase A was a mixture of water/acetonitrile (98/2, v/v) containing
233 0.1% acetic acid. Mobile phase B was a mixture of water/acetonitrile (10/90, v/v) containing
234 0.1% acetic acid. A Zorbax SB-C8 reversed-phase column (5 µm, 2.1 x 50 mm) was obtained
235 from Agilent (Palo Alto, CA). The LC eluent was introduced into the ESI source of mass
236 spectrometer. Instrument settings for negative ion ESI/MS and MS/MS analysis of lipid species
237 were as follows: Ion spray voltage (IS) = -4500 V; Curtain gas (CUR) = 20 psi; Ion source gas 1

238 (GS1) = 20 psi; De-clustering potential (DP) = -55 V; Focusing potential (FP) = -150 V. Data
239 acquisition and analysis were performed using the Analyst TF1.5 software (AB Sciex,
240 Framingham, MA).

241

242 *Determining the optimum pH conditions for CpgD activity*

243 Enzyme activity assays were performed as above with the pH adjusted to 4.5, 5.5, 6, 6.5,
244 7, 7.5, 8, 9, or 10. The pH was adjusted using the following buffers: acetate (pH 4.5 – 5.5),
245 HEPES (pH 6.5 – 8), Tris-HCl (pH 9), and borate (pH 10). Enzyme activities were normalized to
246 the activity at pH 8.0.

247

248 *Characterization of the divalent cation requirement for CpgD activity*

249 Activity assays were performed as above using 50 mM of the following: magnesium
250 chloride, manganese sulfate, calcium chloride, zinc sulfate, copper sulfate, or cobalt nitrate. A
251 control reaction was set up with no metal ions. Activities were normalized to that observed with
252 MgCl₂.

253

254 *CpgD kinetic analyses*

255 For kinetic analyses, reactions were performed as mentioned above while varying the
256 substrate concentrations. To determine the K_{m,app} for 3-phosphoglycerate, CTP concentration was
257 held constant (10 mM) while 3-phosphoglycerate concentration ranged from 0.125 to 40 mM.
258 The K_{m,app} for CTP was determined by holding the 3-phosphoglycerate constant at 10 mM while
259 varying the CTP concentration from 1.25 to 40 mM. The enzyme activity was fit to the
260 Michaelis–Menten equation using OriginPro (OriginLab).

261

262

263

264 **Table 1: Primers used in this study**

EK1698	tactgaattcGGACCTGATCGACAAGGAGA
EK1699	gatctcggtACCAGATCGCTGCGGAAG
EK1700	cgatctggAACGAGATCGCCCAGAAC
EK1701	tactaagcttCAAGCAGCCCTGGAAGAT
EK1708	tactcatATGCAGCCGGTTAAGACCC
EK1709	tactaagcttCTAGACCGCCTCGGCCTC
EK1740	tactcatATGCAGCCGGTTAAGACCC
EK1741	tactgttagcTTAactgtcatgtcatccctgttagtcGACCGCCTCGGCCTCCTG
EK S355	CGACCGATTGACCGTTCT
EK S356	GCGCACCTATCTGAAGTTCC

265

266 **Data availability**

267 All of the data for this work is contained within the manuscript.

268

269 **Funding**

270 Funding was provided by National Science Foundation grant MCB-2224195 (E.A.K.) and
271 National Institutes of Health grants AI178692 and AI148366 (Z.G.). The content is solely the
272 responsibility of the authors and does not necessarily represent the official views of the National
273 Institutes of Health.

274

275 **Conflict of interest**

276 The authors declare that they have no conflicts of interest with the contents of this article.

277

278 **Author CrediT statement**

279

280 **Tanisha Dhakephalkar:** Conceptualization, Methodology, Investigation, Writing- Original
281 Draft, Visualization. **Ziqiang Guan:** Conceptualization, Investigation, Writing- Review &
282 Editing. **Eric Klein:** Conceptualization, Methodology, Writing- Original Draft, Visualization,
283 Supervision.

284

285 **References**

286

287 1. Silhavy, T. J., Kahne, D., and Walker, S. (2010) The bacterial cell envelope *Cold Spring*
288 *Harb Perspect Biol* **2**, a000414

289 2. Nikaido, H. (2003) Molecular basis of bacterial outer membrane permeability revisited
290 *Microbiol Mol Biol Rev* **67**, 593-656

291 3. Boll, J. M., Crofts, A. A., Peters, K., Cattoir, V., Vollmer, W., Davies, B. W. *et al.* (2016)
292 A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-
293 deficient *Acinetobacter baumannii* *Proc Natl Acad Sci U S A* **113**, E6228-E6237

294 4. Peng, D., Hong, W., Choudhury, B. P., Carlson, R. W., and Gu, X. X. (2005) *Moraxella*
295 *catarrhalis* bacterium without endotoxin, a potential vaccine candidate *Infect Immun* **73**,
296 7569-7577

297 5. Steeghs, L., den Hartog, R., den Boer, A., Zomer, B., Roholl, P., and van der Ley, P.
298 (1998) Meningitis bacterium is viable without endotoxin *Nature* **392**, 449-450

299 6. Zik, J. J., Yoon, S. H., Guan, Z., Stankeviciute Skidmore, G., Gudoor, R. R., Davies, K.
300 M. *et al.* (2022) *Caulobacter* lipid A is conditionally dispensable in the absence of fur and
301 in the presence of anionic sphingolipids *Cell Rep* **39**, 110888

302 7. Brown, E. M., Ke, X., Hitchcock, D., Jeanfavre, S., Avila-Pacheco, J., Nakata, T. *et al.*
303 (2019) Bacteroides-derived sphingolipids are critical for maintaining intestinal
304 homeostasis and symbiosis *Cell Host Microbe* **25**, 668-680 e667

305 8. Johnson, E. L., Heaver, S. L., Waters, J. L., Kim, B. I., Bretin, A., Goodman, A. L. *et al.*
306 (2020) Sphingolipids produced by gut bacteria enter host metabolic pathways impacting
307 ceramide levels *Nat Commun* **11**, 2471

308 9. Moye, Z. D., Valiuskyte, K., Dewhirst, F. E., Nichols, F. C., and Davey, M. E. (2016)
309 Synthesis of sphingolipids impacts survival of *Porphyromonas gingivalis* and the
310 presentation of surface polysaccharides *Front Microbiol* **7**, 1919

311 10. Stankeviciute, G., Guan, Z., Goldfine, H., and Klein, E. A. (2019) *Caulobacter*
312 *crescentus* adapts to phosphate starvation by synthesizing anionic glycerolipids and
313 a novel glycosphingolipid *mBio* **10**, e00107-00119

314 11. Ahrendt, T., Wolff, H., and Bode, H. B. (2015) Neutral and phospholipids of the
315 *Myxococcus xanthus* lipodome during fruiting body formation and germination *Appl*
316 *Environ Microbiol* **81**, 6538-6547

317 12. Olea-Ozuna, R. J., Poggio, S., Bergstrom, E., Osorio, A., Elufisan, T. O., Padilla-Gomez,
318 J. *et al.* (2024) Genes required for phosphosphingolipid formation in *Caulobacter*
319 *crescentus* contribute to bacterial virulence *PLoS Pathog* **20**, e1012401

320 13. Dhakephalkar, T., Stukey, G. J., Guan, Z., Carman, G. M., and Klein, E. A. (2023)
321 Characterization of an evolutionarily distinct bacterial ceramide kinase from *Caulobacter*
322 *crescentus* *J Biol Chem* **299**, 104894

323 14. Fong, D. H., Yim, V. C., D'Elia, M. A., Brown, E. D., and Berghuis, A. M. (2006) Crystal
324 structure of CTP:glycerol-3-phosphate cytidylyltransferase from *Staphylococcus aureus*:
325 examination of structural basis for kinetic mechanism *Biochim Biophys Acta* **1764**, 63-69

326 15. Schertzer, J. W., and Brown, E. D. (2003) Purified, recombinant TagF protein from
327 *Bacillus subtilis* 168 catalyzes the polymerization of glycerol phosphate onto a membrane
328 acceptor in vitro *J Biol Chem* **278**, 18002-18007

329 16. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O. *et al.* (2021)
330 Highly accurate protein structure prediction with AlphaFold *Nature* **596**, 583-589

331 17. Kurnasov, O. V., Luk, H. J., Roberts, M. F., and Stec, B. (2013) Structure of the inositol-
332 1-phosphate cytidylyltransferase from *Thermotoga maritima* *Acta Crystallogr D Biol*
333 *Crystallogr* **69**, 1808-1817

334 18. Campbell, H. A., and Kent, C. (2001) The CTP:phosphocholine cytidylyltransferase
335 encoded by the *licC* gene of *Streptococcus pneumoniae*: cloning, expression, purification,
336 and characterization *Biochim Biophys Acta* **1534**, 85-95

337 19. Taylor, Z. W., and Raushel, F. M. (2019) Manganese-induced substrate promiscuity in the
338 reaction catalyzed by phosphoglutamine cytidylyltransferase from *Campylobacter jejuni*
339 *Biochemistry* **58**, 2144-2151

340 20. Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., and Rabinowitz,
341 J. D. (2009) Absolute metabolite concentrations and implied enzyme active site
342 occupancy in *Escherichia coli* *Nat Chem Biol* **5**, 593-599

343 21. Kanzaki, H., Movila, A., Kayal, R., Napimoga, M. H., Egashira, K., Dewhirst, F. *et al.*
344 (2017) Phosphoglycerol dihydroceramide, a distinctive ceramide produced by
345 *Porphyromonas gingivalis*, promotes RANKL-induced osteoclastogenesis by acting on
346 non-muscle myosin II-A (Myh9), an osteoclast cell fusion regulatory factor *Biochim
347 Biophys Acta Mol Cell Biol Lipids* **1862**, 452-462

348 22. Wang, J., Chitsaz, F., Derbyshire, M. K., Gonzales, N. R., Gwadz, M., Lu, S. *et al.* (2023)
349 The conserved domain database in 2023 *Nucleic Acids Res* **51**, D384-D388

350 23. D'Elia, M. A., Pereira, M. P., Chung, Y. S., Zhao, W., Chau, A., Kenney, T. J. *et al.* (2006)
351 Lesions in teichoic acid biosynthesis in *Staphylococcus aureus* lead to a lethal gain of
352 function in the otherwise dispensable pathway *J Bacteriol* **188**, 4183-4189

353 24. Park, Y. S., Sweitzer, T. D., Dixon, J. E., and Kent, C. (1993) Expression, purification,
354 and characterization of CTP:glycerol-3-phosphate cytidylyltransferase from *Bacillus
355 subtilis* *J Biol Chem* **268**, 16648-16654

356 25. Poindexter, J. S. (1964) Biological properties and classification of the *Caulobacter* group
357 *Bacteriol Rev* **28**, 231-295

358 26. Thanbichler, M., Iniesta, A. A., and Shapiro, L. (2007) A comprehensive set of plasmids
359 for vanillate- and xylose-inducible gene expression in *Caulobacter crescentus* *Nucleic
360 Acids Res* **35**, e137

361 27. Bligh, E. G., and Dyer, W. J. (1959) A rapid method of total lipid extraction and
362 purification *Can J Biochem Physiol* **37**, 911-917

363 28. Goldfine, H., and Guan, Z. (2015) Lipidomic Analysis of Bacteria by Thin-Layer
364 Chromatography and Liquid Chromatography/Mass Spectrometry In *Hydrocarbon and
365 Lipid Microbiology Protocols*, McGenity TJ, ed. Humana Press, Berlin 1-15

366 29. Guan, Z., Katzianer, D., Zhu, J., and Goldfine, H. (2014) *Clostridium difficile* contains
367 plasmalogen species of phospholipids and glycolipids *Biochim Biophys Acta* **1842**, 1353-
368 1359

369 30. van Kempen, M., Kim, S. S., Tumescheit, C., Mirdita, M., Lee, J., Gilchrist, C. L. M. *et*
370 *al.* (2024) Fast and accurate protein structure search with Foldseek *Nat Biotechnol* **42**,
371 243-246

372

373 **Figure Legends**

374

375 **Figure 1: Identification of CpgD as a putative cytidylyltransferase.** (A) Extracted-ion
376 chromatograms demonstrate that the deletion of *ccna_01210* (*cpgD*) results in the complete loss
377 of CPG2. CPG2 production is restored upon complementation of *cpgD*. Peaks are offset
378 horizontally to enhance visibility. The CPG2 peak in the complementation strain is magnified
379 10x. (B) Foldseek (30) was used to generate an alignment of the Alphafold-predicted structure of
380 CpgD (blue) with IMPCT (gold; PDB Accession 4JD0) (17). The proteins had an RMSD of 2.73
381 Å. (C) The sequence alignment of CpgD and IMPCT shows conservation of three active site
382 residues highlighted in yellow.

383

384 **Figure 2: Initial characterization of CpgD activity.** (A) His-tagged CpgD was purified from *E.*
385 *coli*, resolved by SDS-PAGE, and visualized by Coomassie blue staining. (B) Thermal shift
386 assays with the indicated nucleotides show an increase in Tm upon the addition of CTP. (C)
387 HPAEC analysis of a CTP standard (left) or a reaction containing CpgD with CTP and 3-
388 phosphoglycerate (right) shows the appearance of a peak in the reaction mixture with a retention

389 time of 2.7 min. (D) The reaction mixture was analyzed by LC/ESI-MS/MS in the negative ion
390 mode to determine the identity of the reaction product. The MS/MS fragmentation products are
391 consistent with CDP-glycerate.

392

393 **Figure 3: Characterization of CpgD pH and divalent cation requirements.** (A) CpgD activity
394 was determined over a range of pH's using the following buffers: acetate (pH 4.5-5.5), HEPES
395 (pH 6.5 – 8), Tris-HCl (pH 9), and borate (pH 10). Activity was quantified by HPAEC (n=3,
396 error bars are the SD). (B) The activity of CpgD was determined in the presence of 50 mM of the
397 indicated divalent cations. Activities were normalized to magnesium (n=3; error bars are the SD).

398

399 **Figure 4: CpgD enzyme kinetics.** The kinetic parameters of CpgD were measured by HPAEC.
400 (A) CpgD activity was measured as a function of time to ensure reactions were assayed within
401 the linear range of velocity. (B-C) Michaelis-Menten kinetic parameters were determined for
402 CpgD (n=3, error bars are SD). (B) To determine the $K_{m,app}$ for CTP, 3-phosphoglycerate
403 concentration was held constant (10 mM) while CTP concentration varied. (C) The $K_{m,app}$ for 3-
404 phosphoglycerate was determined by holding the CTP constant at 10 mM while varying the 3-
405 phosphoglycerate concentration. $K_{m,app}$ values were 4.8 ± 0.9 mM and 10.9 ± 0.7 mM for CTP
406 and 3-phosphoglycerate, respectively. $V_{max,app}$ values were 0.44 ± 0.03 $\mu\text{mol}/\text{min}/\text{mg}$ enzyme and
407 0.72 ± 0.02 $\mu\text{mol}/\text{min}/\text{mg}$ enzyme for CTP and 3-phosphoglycerate, respectively.

408

409 **Figure 5: Proposed synthetic mechanism for CPG2.** Based on previous genetic (6, 12) and
410 biochemical (13) studies, we propose the following pathway for CPG2 synthesis. CpgB is a
411 ceramide kinase that uses ATP and ceramide to produce ceramide 1-phosphate (C1P). CgpC,

412 through a yet unidentified mechanism, converts C1P to CPG. CpgD uses CTP and 3-
413 phosphoglycerate to produce CDP-glycerate, which is then a substrate for CpgA to convert CPG
414 to CPG2. Steps with biochemical evidence are highlighted in magenta and those with genetic
415 evidence are highlighted in green.

Figure 1

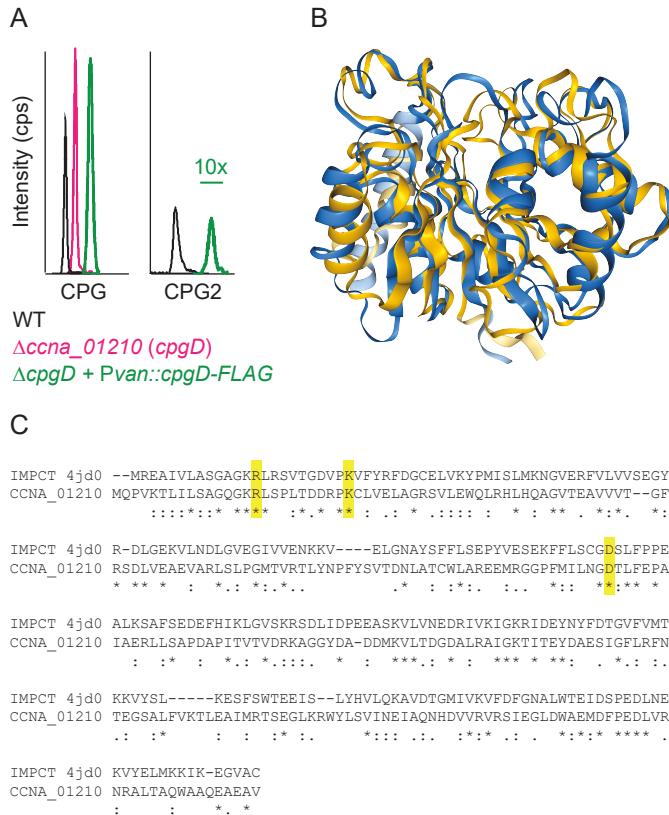


Figure 2

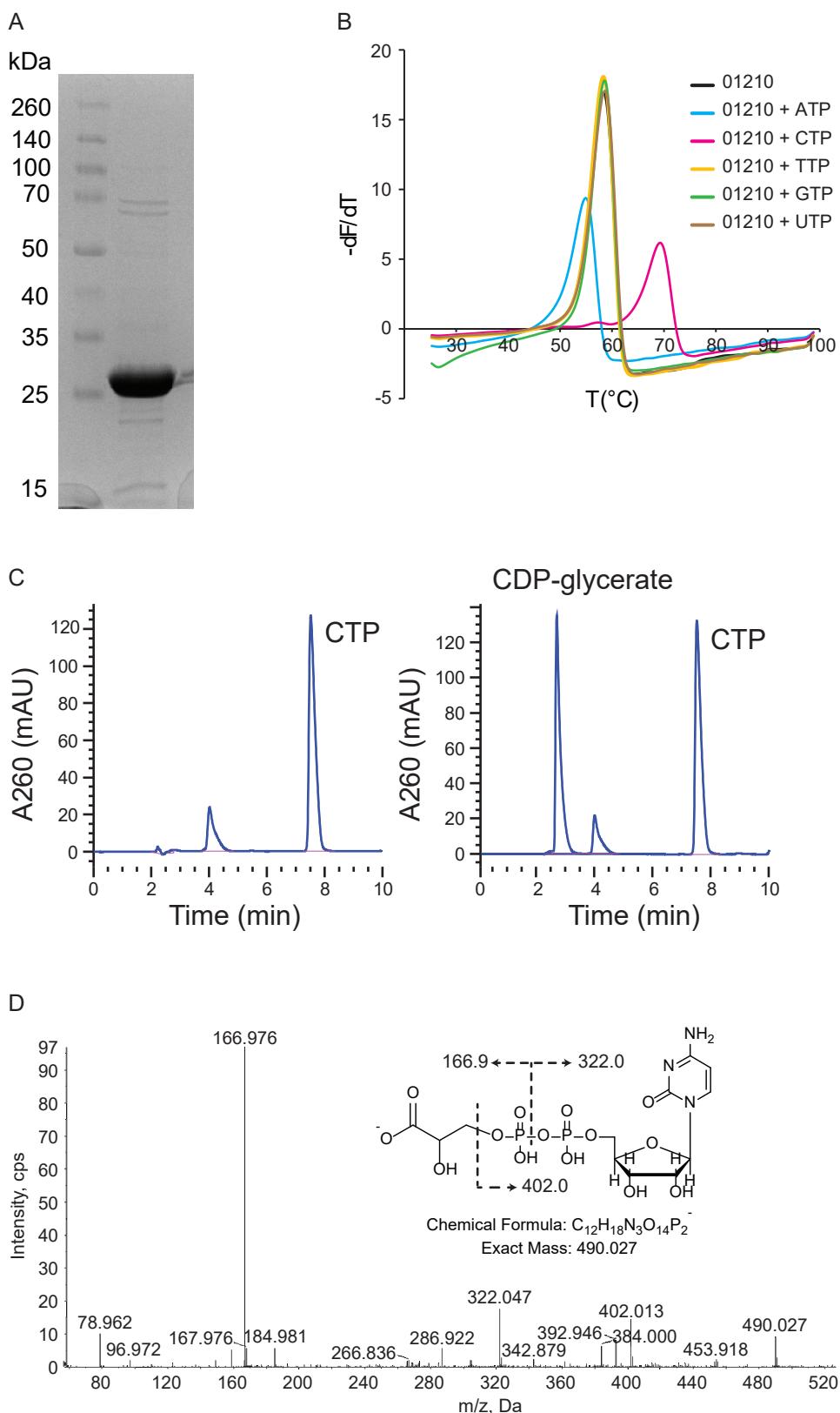


Figure 3

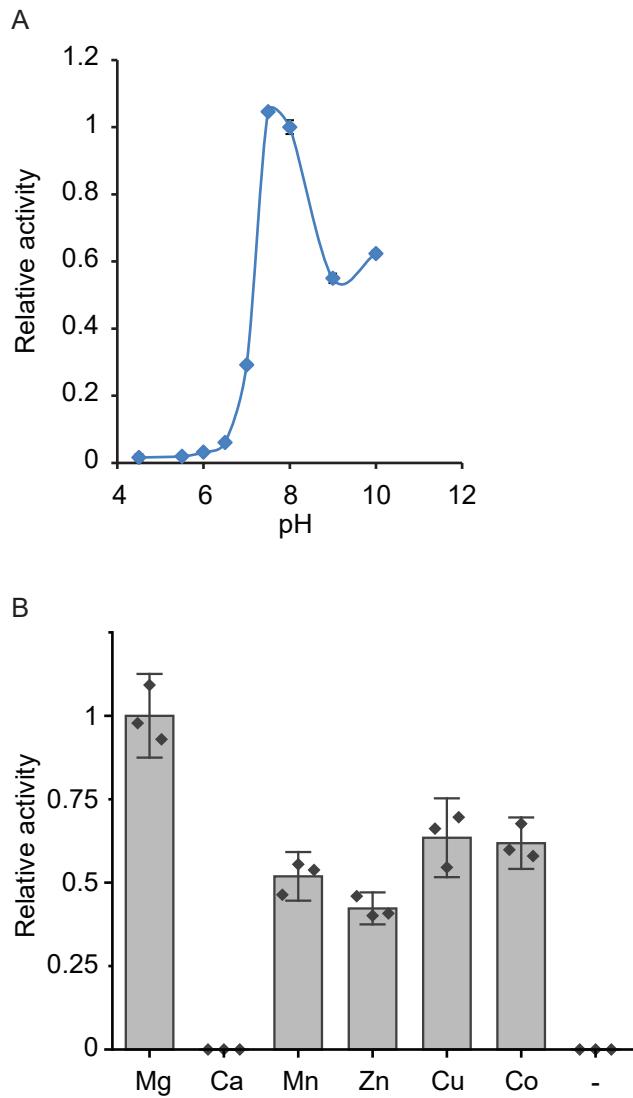


Figure 4

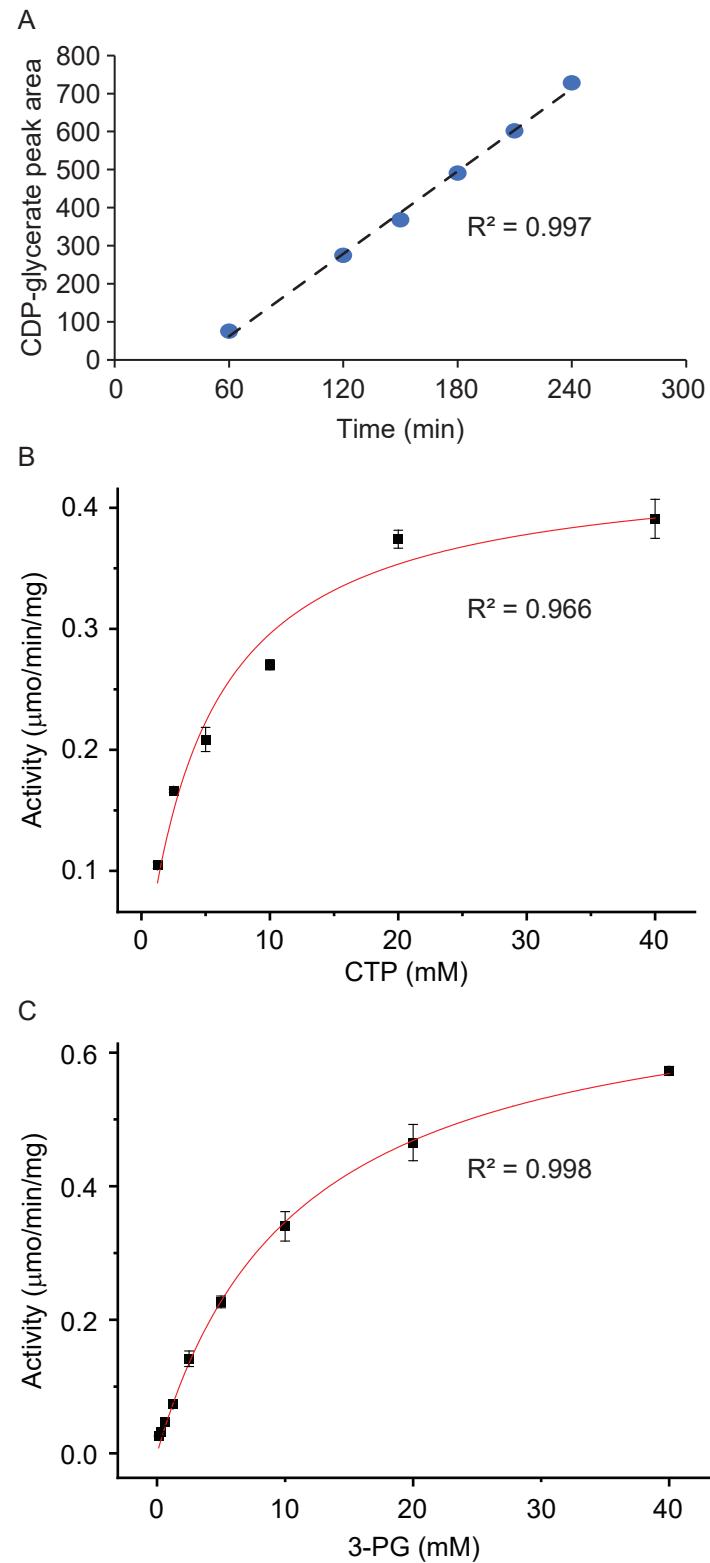
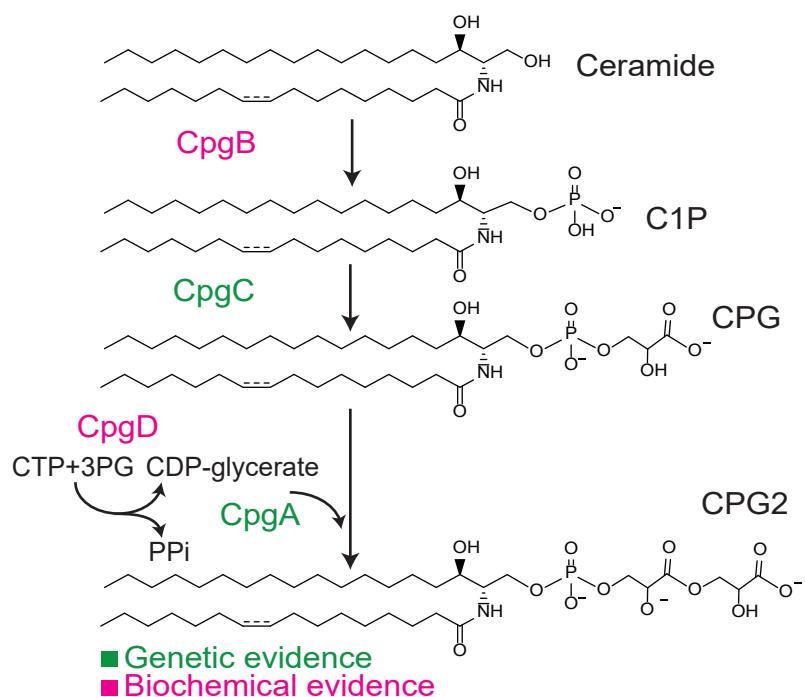



Figure 5

