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Abstract

Despite the growing number of binary black hole coalescences confidently observed through gravitational waves
so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers
of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited
availability of gravitational waveforms that include the effects of eccentricity. Here, we present observational
results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third
observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond
those that have already been identified with searches focusing on quasi-circular binaries. We determine the
sensitivity of our search to high-mass (total source-frame mass M> 70 Me) binaries covering eccentricities up to
0.3 at 15 Hz emitted gravitational-wave frequency, and use this to compare model predictions to search results.
Assuming all detections are indeed quasi-circular, for our fiducial population model, we place a conservative upper
limit for the merger rate density of high-mass binaries with eccentricities 0< e� 0.3 at 16.9 Gpc−3 yr−1 at the
90% confidence level.

Unified Astronomy Thesaurus concepts: Gravitational wave astronomy (675); Eccentricity (441); Astrophysical
black holes (98)

1. Introduction

The LIGO (Aasi et al. 2015) and Virgo (Acernese et al.
2015) gravitational-wave observatories have completed three
observing runs thus far. During these runs, 90 compact binary
merger candidates were identified that had a probability of
astrophysical origin of pastro> 0.5 (Abbott et al. 2023a, 2024).
These discoveries opened previously inaccessible avenues to
study the Universe, including the first direct information on
binary black holes (Abbott et al. 2016a, 2016b), the multi-
messenger observation of a binary neutron star coalescence
(Abbott et al. 2017a, 2017; Margutti & Chornock 2021), a new
type of constraint on cosmic expansion (Abbott et al.

2017b, 2023), and novel tests of general relativity (Abbott
et al. 2016c, 2017c, 2021b).
Despite the growing number of candidates and the insight

they have provided, the astrophysical sites and processes that
produce the observed merging binaries remain uncertain.
Multiple viable scenarios exist. The binary black holes could
have formed from an isolated stellar binary (e.g., Bethe &
Brown 1998; Dominik et al. 2015; de Mink & Mandel 2016;
Marchant et al. 2016; Inayoshi et al. 2017; Gallegos-Garcia
et al. 2021), via dynamical interactions in dense stellar clusters
(e.g., Portegies Zwart & McMillan 2000; Banerjee et al. 2010;
Ziosi et al. 2014; Morscher et al. 2015; Rodriguez et al. 2016a;
Mapelli 2016; Askar et al. 2017), or triple systems (e.g.,
Antonini et al. 2017; Martinez et al. 2020; Vigna-Gómez et al.
2021), or via gas-driven capture in the disks of active galactic
nuclei (AGN; e.g., McKernan et al. 2012; Bartos et al. 2017;
Fragione et al. 2019; Tagawa et al. 2020). Furthermore, in
addition to merging binary black holes formed from stars,
there may also be merging binaries of primordial black holes

304 Deceased, November 2022.
305 Deceased, March 2022.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.
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(e.g., Bird et al. 2016; Sasaki et al. 2016; Clesse & García-
Bellido 2017).

Gravitational waves carry information about the masses and
spins of the merging black holes, which can be used to probe
the binaries’ origin (Abbott et al. 2016b; Mapelli 2021; Zevin
et al. 2021a). Different formation channels have diverse
predictions for the most common component masses, mass
ratios, spin magnitudes, and spin orientations (Belczynski et al.
2002; Dominik et al. 2013; Vitale et al. 2017). For example,
isolated stellar binaries are typically expected to produce black
holes with spins mostly aligned with the binary’s orbital axis
with possible misalignments that could stem from recoil
velocities imparted during supernova explosion (e.g., Rodri-
guez et al. 2016b; Gerosa et al. 2018; Wysocki et al. 2019).
Dynamically formed binaries, on the other hand, generally have
an isotropic spin distribution (e.g., Rodriguez et al. 2016b;
Fishbach et al. 2017; Baibhav et al. 2020). However, while
masses and spins provide crucial information about the
binaries’ origin, there is often overlap between their distribu-
tions for various formation channels. A catalog of binary black
holes must therefore be considered to make statistical
inferences about their origins using these properties alone.

Orbital eccentricity e is a unique signature that disfavors
isolated binaries and favors triple systems, stellar clusters, or
AGN-assisted mergers as the possible formation scenario of the
binary. While isolated black hole binaries can be born with an
initial eccentricity, gravitational-wave emission will circularize
their orbit by the time their orbital frequency reaches the
sensitive band of ground-based gravitational-wave observa-
tories (Peters 1964). Dynamical encounters can form binaries
closer to merger, leaving insufficient time for orbital circular-
ization. In AGN disks, eccentricity can be enhanced for a
significant fraction of mergers, e.g., via binary–single interac-
tions (Tagawa et al. 2021; Samsing et al. 2022). Eccentricity
can also be enhanced for field binaries by a nearby third object
via the Kozai–Lidov mechanism (Kozai 1962; Lidov 1962;
Naoz 2016; Antonini et al. 2017; Randall & Xianyu 2018;
Bartos et al. 2023).

Despite the advantages that come with estimating the
binary’s orbital eccentricity, it has been difficult to probe this
parameter through gravitational-wave observations for several
reasons. (i) Eccentric orbits have a wider dynamical range than
quasi-circular, or e= 0 orbits, making them more challenging
to model semi-analytically (Huerta et al. 2014; Tanay et al.
2016). (ii) Eccentricity increases the dimension of the binary
parameter space, requiring more gravitational waveform
templates and substantially increasing the computational cost
of both waveform computation (Cornish & Shapiro Key 2010)
and running template-based searches (Lenon et al. 2021). (iii)
Given these challenges and the lack of expected eccentricity in
field binaries, the development of eccentric waveform models
began with significant delay compared to circular waveform
models (Junker & Schaefer 1992). Nonetheless, eccentric
waveform development has been an active area recently, with
several promising waveform models that could be useful in the
future (e.g., Cao & Han 2017; Hinderer & Babak 2017;
Albanesi et al. 2021; Islam et al. 2021; Khalil et al. 2021;
Nagar et al. 2021; Setyawati & Ohme 2021; Liu et al. 2022;
Ramos-Buades et al. 2022a; Wang et al. 2023).

While no comprehensive eccentric gravitational-wave tem-
plate bank is currently available, indications of eccentricity
may already exist within the catalog of detected gravitational

waves. The basis of such results is that standard gravitational-
wave search algorithms developed to target circular binaries
also have some sensitivity to eccentric binaries. For low
masses, 10Me, circular template-based searches show
undiminished sensitivity for small residual eccentricities
(e 0.05 at 40 Hz). Here and throughout this work, we refer
to eccentricity in the source frame. To detect signals with
eccentricities beyond e 0.1, we would however require
template banks that include eccentric waveforms (Brown &
Zimmerman 2010). In contrast, for higher masses and
eccentricities, it has been shown that eccentricities can be
found without significant loss of signal-to-noise ratio (SNR)

using model-agnostic searches (Abbott et al. 2019a).
To identify detected binaries as eccentric, two approaches

have been carried out so far that circumvent the need for
comprehensive template banks:

1. One approach is to employ Bayesian analyses using
existing eccentric waveform models. An eccentric wave-
form model limited to eccentricities e< 0.2 was used to
show that the binary merger that produced the signal
GW190521 as well as two others are consistent with
originating from eccentric binary black holes (eBBHs)
and are poorly explained by the zero-eccentricity
hypothesis (Romero-Shaw et al. 2020, 2021). Using a
different waveform model that includes the full eccen-
tricity range, Gamba et al. (2023) found strong support
for the binary coalescence that produced GW190521
being highly eccentric. Both models were limited to
waveforms with black hole spins aligned with the binary
orbit. Orbital eccentricity and misaligned spins that
induce precession of the orbital plane produce similar
imprints in the gravitational-wave signal, and both of
these effects should preferably be accounted for in order
to accurately analyze the event (Calderón Bustillo et al.
2021; Romero-Shaw et al. 2023).

2. A different approach relies on numerical relativity
simulations of eBBHs. Due to the computational cost,
only a limited number of simulations can be carried out,
which can only sparsely cover the parameter space.
Gayathri et al. (2022) used such numerical relativity
waveforms that discretely cover the full eccentricity space
and include waveforms with both aligned and misaligned
spin with the binary orbit. Interpolation methods and
consistency checks were applied to recover the eccen-
tricity and other parameters of the binary. They found that
the signal GW190521 is most consistent with being
produced by a highly eccentric (e∼ 0.7) binary.

The above approaches are similar as they rely on different
approximations to accurate (numerical relativity) waveforms:
in the first, waveform models are used to approximate
numerical relativity waveforms, while in the second, the
analysis results are interpolated. In this paper, we carry out a
search focusing on eccentric black hole coalescences over the
third observing run (O3) of the LIGO-Virgo network. We use a
minimally modeled search algorithm (Klimenko et al. 2005;
Tiwari et al. 2016; Salemi et al. 2019) that we optimize for
sensitivity for a set of high-mass (total mass M� 70Me),
eccentric gravitational waveforms (Hinder et al. 2018; Boyle
et al. 2019). As methods to estimate the eccentricity of
individual events are under development, we instead focus on
potential detections that have not already been discovered by
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other searches, and characterize the sensitivity of our search to
eccentric binaries, relying on methods with well-understood
performance.

This paper is organized as follows. In Section 2, we
introduce our search algorithm and demonstrate its sensitivity
to eccentric waveforms. In Section 3, we present our search
results. In Section 4, we discuss constraints on astrophysical
populations based on our search results. We conclude in
Section 5.

Gravitational-wave strain data (Abbott et al. 2021c) and
posterior samples (Abbott et al. 2021d) for all events from
GWTC-3 are available from the Zenodo platform or the
Gravitational Wave Open Science Center (Abbott et al.
2021e, 2023b).

2. Search Algorithm and Sensitivity

2.1. Characterization of Eccentricity

Due to the emission of gravitational waves, binary orbits
have a gradually decreasing orbital separation. Eccentric binary
orbits also circularize over time due to the emission of
gravitational waves (Peters 1964). This makes the definition of
eccentricity challenging. Determining eccentricity is particu-
larly difficult at the late stages of the binary evolution when less
than a full orbit separates the black holes from merger.

There have been various efforts to define eccentricity for
binary compact object systems. These eccentricity definitions
involve Keplerian orbit assumptions (Peters & Mathews 1963;
Loutrel et al. 2018), angular frequencies at apocenter and
pericenter (Mora & Will 2004), calculations using instanta-
neous radial acceleration (Healy et al. 2018), and using
coordinate separations (Buonanno et al. 2011). A detailed list
of the different eccentricity definitions that have been
developed so far can be found in Loutrel et al. (2018).

For our analysis, we adopt the eccentricity definition
following Ramos-Buades et al. (2022b), based on a calculation
first developed by Mora & Will (2004) and later used by Lewis
et al. (2017), Ramos-Buades et al. (2020a), and Shaikh et al.
(2023). To compute eccentricity for each orbit, we used the
gravitational-wave frequencies at apocenter (ωa) and the
consecutive pericenter (ωp). With these, eccentricity for the
given orbit is

( ) ( ) ( )e cos 3 3 sin 3 1

with
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We used the orbital frequency of the ℓ= 2, m= 2 multipole
moments of the gravitational-wave signal.

In order to characterize the eccentricity as a function of time,
we associate this eccentricity with a frequency that is an
average of the pericenter and apocenter frequencies. This
method of computing eccentricity using the waveform itself is
advantageous because (i) it enables us to compute the evolution
of eccentricity as a function of time (and frequency); (ii) it is
gauge independent; and (iii) this definition can be uniformly

applied to all waveform models and can be computed during
postprocessing.
Ultimately, we want to describe a waveform with a single

eccentricity value. For this description, we choose 15 Hz
gravitational-wave emission frequency. This selection is
motivated by the typical eccentricity definition found in the
literature (usually defined at a gravitational-wave emission
frequency of ∼10–15 Hz; e.g., Fragione & Bromberg 2019;
Zevin et al. 2021b).

2.2. Eccentric Waveforms

There are multiple ongoing efforts to develop a comprehen-
sive set of eccentric binary coalescence waveforms. Multiple
waveform families have been generated using the semi-
analytical effective-one-body formalism, which is currently
restricted to nonprecessing spins (Nagar et al. 2021; Ramos-
Buades et al. 2022a). A suite of numerical relativity simulations
has also been carried out that cover virtually the full eccentric
and spin parameter space (Gayathri et al. 2022; Healy &
Lousto 2022).
For our analysis, we adopted 12 state-of-the-art numerical

relativity waveforms from the Simulating eXtreme Spacetimes
(SXS) Collaboration (Hinder et al. 2018; Boyle et al. 2019),
which were the only high-fidelity waveforms available to us at
the time of this study. These waveforms cover the eccentricity
space up to 0.3 defined at 15 Hz gravitational-wave frequency
assuming a source total mass of 90Me, and include a range of
mass ratios: q≡m2/m1= {1, 0.5, 0.33}, where m2 and m1 are
the lighter and heavier masses, respectively. We list the
properties of the waveforms in Table 1. In Figure 1, we show
the corresponding eccentricity of these waveforms, assuming
different source total masses.
As the numerical relativity simulations were carried out for

the late stage of the binary coalescence, they cover the
gravitational waveform for the full frequency band of the
ground-based detectors only for total binary source masses
70Me. Above this mass limit, any binary mass can be
obtained by a simple scaling of the simulated waveforms due to
the scale invariance of general relativity (Tiglio & Villa-
nueva 2021). The selected waveforms are nonspinning, which
has a limited effect on the sensitivity estimates we compute
below. When reconstructing the properties of detected gravita-
tional-wave signals, it is important to include spins, as
eccentricity and spin precession can mimic each other
(Calderón Bustillo et al. 2021; Romero-Shaw et al. 2023).
Since we do not use these waveforms to reconstruct the
properties of signals in this analysis, this problem is not
relevant here. Figure 2 shows the change in signal morphology
as the orbital eccentricity is changed while keeping other
source parameters fixed.
We used this set of 12 numerical relativity waveforms to

quantify the search sensitivity to high-mass (70Me) eccentric
black hole mergers. However, with this limited set of
waveforms we could not reconstruct the eccentricity of events.

2.3. Search Optimization and Sensitivity Improvement

Current template-based searches (Nitz et al. 2017; Aubin
et al. 2021; Cannon et al. 2021; Chu et al. 2022) do not include
eccentric gravitational waveforms. As a consequence, their
sensitivity is limited for such events, in particular at high
eccentricities and low masses (Brown & Zimmerman 2010),

11

The Astrophysical Journal, 973:132 (27pp), 2024 October 1 Abac et al.



similarly to the effect of neglecting higher-order multipole
moments (Capano et al. 2014). Eccentric searches can also be
carried out using model-agnostic searches such as the coherent
WaveBurst algorithm (cWB; Klimenko et al. 2005; Tiwari
et al. 2016; Salemi et al. 2019), which uses minimal
assumptions about the signal waveform and hence is expected
to be sensitive to eccentric signals. The sensitivity of cWB and
template-based searches are comparable for high-mass black
hole mergers up to low eccentricities (Chandra et al. 2020;
Ramos-Buades et al. 2020b; Abbott et al. 2023a). As the
sensitivity of template-based searches drops with eccentricity
(Zevin et al. 2021b), we rely on cWB for our search.

The cWB algorithm uses the Wilson–Daubechies–Meyer
filter to transform time domain detector data to time-frequency
representations (Necula et al. 2012). Excess power regions in
the time-frequency representation of strain data that are
obtained from the network of detectors are then identified by
cWB using clustering algorithms. Selected clusters with excess
energy above the expected detector noise are identified as
events. The signal waveform, sky coordinates, and waveform

polarization of the source are then reconstructed for these
events using maximum-likelihood analysis (Klimenko et al.
2016).
Once the search pipeline is run, thresholds are placed by

cWB on the coherent statistics that it derives for each candidate
event. These are used to better differentiate between astro-
physical signals and noise artifacts (Gayathri et al. 2019). We
will refer to these thresholds on cWB statistics as vetoes.
Vetoes define a part of the parameter space over the coherent
statistics that should be excluded from the analysis due to the
high rate of non-Gaussian noise artifacts there. To maximize
the sensitivity of cWB to eccentric binaries, we carried out an
optimization of these vetoes applied by cWB to each event. The
first two sets of vetoes that are common to the standard cWB
pipeline and the eccentric search pipeline are summarized in
the Appendix.
Transient non-Gaussian noise artifacts, also known as

glitches, can limit the detector’s sensitivity to gravitational-
wave signals. Targeted vetoes are placed by the standard cWB
pipeline to mitigate this problem. These glitch-focused vetoes
are derived using cWB summary statistics Qa and TF. The
waveform shape parameter derived by cWB is denoted by Qa,
and is a function of another cWB parameter Qveto
(Q Qvetoa ). This parameter quantifies how well the total
energy of the signal is distributed across time (Vedovato 2018;
Gayathri et al. 2019; Mishra et al. 2021). The threshold
Qa> 0.3 is placed to better distinguish between gravitational
waves and a class of low-frequency transient noise artifacts
called blip glitches (Cabero et al. 2019; Davis et al. 2021).
Signals due to blip glitches, which have most of their energy
localized to a small time segment, have low Qa values as
opposed to signals from binary coalescence, which have higher
Qa values as a consequence of signal energy being distributed
over a longer duration. The TF parameter is a function of the
signal bandwidth, duration, and power, which are additional
statistics that cWB estimates for candidate events. A threshold
on this parameter is placed to ensure that short-duration
glitches that mimic gravitational-wave signals from intermedi-
ate-mass binary black hole systems are removed.
We injected simulated gravitational-wave signals from

equal-mass, almost head-on systems (Healy & Lousto 2022)
into real detector data to find the set of vetoes that do not
remove highly eccentric signals while still rejecting most noise
artifacts. To perform this optimization, the cWB algorithm was
used to detect these injected signals and derive their properties.
Vetoes were selected such that they maximized the number of
detections at fixed false alarm rates.
We observed that Qa and TF vetoes were prone to removing

a significant fraction of highly eccentric simulated signals. We
found that we could mitigate this problem if we removed these
two thresholds, and instead introduced a new Qa–Qp veto to
better distinguish between signals from highly eccentric
binaries and short-duration glitches. This veto removes events
identified by cWB that do not satisfy the condition
Qa(Qp− 0.8)> 0.07. The summary statistic Qp quantifies the
number of cycles in the reconstructed signal. The Qa–Qp veto
along with the first two sets of vetoes from the standard search,
which are summarized in the Appendix were selected as the set
of post-production vetoes for the eBBH search. We will refer to
this version of cWB that is optimized for eccentric mergers as
cWB-eBBH. While the vetoes were optimized using equal-
mass waveforms, we confirmed that the optimized search

Table 1

Parameters of the 12 Numerical Relativity Simulations Adopted from the SXS
Binary Black Hole Simulations Catalog (Boyle et al. 2019)

q e Waveform ID

0.33 0.08 SXS:BBH:1371
0.33 0.12 SXS:BBH:1372
0.33 0.28 SXS:BBH:1374
0.5 0.09 SXS:BBH:1365
0.5 0.14 SXS:BBH:1366
0.5 0.29 SXS:BBH:1369
0.5 0.30 SXS:BBH:1370
1.0 0.06 SXS:BBH:1355
1.0 0.14 SXS:BBH:1357
1.0 0.22 SXS:BBH:1361
1.0 0.29 SXS:BBH:1362
1.0 0.30 SXS:BBH:1363

Note. Columns show the binary’s mass ratio q, and eccentricity e at a reference
source-frame frequency of 15 Hz (Section 2.1) for a binary source total mass of
90 Me. Spin amplitudes χ1 and χ2 are zero for all considered models.

Figure 1. Variation in eccentricity at a fixed source-frame frequency of 15 Hz
as a function of total mass for the 12 numerical relativity waveforms analyzed
in this study. The identification numbers (IDs) in the legend correspond to the
SXS:BBH:ID of each waveform.

12

The Astrophysical Journal, 973:132 (27pp), 2024 October 1 Abac et al.



improved eccentric event recovery for unequal mass injections
as well.

Figure 3 shows an example of the standard cWB Qa veto and
the new cWB-eBBH Qa–Qp veto for quasi-circular and highly
eccentric systems. We also look at this veto’s performance with
background events. To generate background events, data from
one detector is time shifted relative to the other detector’s data
by an amount greater than the maximum time for a
gravitational-wave signal to travel between the detectors
(Abbott et al. 2016d). The standard veto does well in removing
background events and recovering the majority of quasi-
circular simulation events. However, the distribution of
simulation signals in the Qa−Qp space changes for highly
eccentric systems, and as a consequence, the standard cWB
veto removes a significant fraction of simulation events.

We characterize the sensitivity improvement due to the
optimization procedure by computing the number of injected
gravitational waves detected by cWB-eBBH but not by
standard cWB, divided by the total number of detections by
standard cWB. Here, we consider a signal detected if it
corresponds to an inverse false alarm rate (IFAR) of �1 yr.
This IFAR threshold of �1 yr was only used to assess the
improvement in sensitivity from the introduction of the cWB-
eBBH veto, and not as a general detection threshold.

The fraction of events recovered with IFAR �1 yr by cWB-
eBBH that are removed by the standard pipeline with respect to
the total number of events recovered by the standard pipeline is
∼28% for head-on collision (highly eccentric) equal-mass
systems with a source total mass of 150Me. Additionally, we
see that this fraction is higher (∼34%) for systems with more
unequal mass. Therefore, our optimization is the most
significant for highly eccentric binaries with unequal masses.
The performance of cWB-eBBH for low-eccentricity signals
remains comparable (within 5%) to the standard pipeline. We
conclude that the cWB-eBBH veto does significantly better
than the standard veto to improve sensitivity for highly
eccentric systems without degrading sensitivity to less eccentric
systems.

3. Results

3.1. Search Sensitivity

We carried out a search for simulated gravitational-wave
signals to quantify the sensitivity of the cWB-eBBH search

algorithm. We performed injections in offline (high-latency)
recalibrated O3 strain data with category 0, 1, 2, and 4 data
quality vetoes (Davis et al. 2021; Abbott et al. 2023a).
Category 0 vetoes are applied to ensure that the segments of
data used in this analysis were collected when the detectors
were in observing mode. Category 1 vetoes are used to discard
data from periods in which the detectors were running in an
improper configuration, data dropout, or on-site maintenance
occurred at either detector, or when there are major problems
with the operation of an instrument at the detectors. Category 2
vetoes flag data segments that likely contain non-Gaussian
noise artifacts. Category 4 vetoes flag data segments that
contain hardware injections.
The injected waveforms have source total mass M ä [70Me,

200Me]. We used six choices of total source mass. Waveforms
with different masses were obtained by scaling the 12
numerical relativity waveforms listed in Table 1. The simulated
signals for each waveform and choice of total mass were
uniformly distributed in sky location (θ, f) and inclination ι.
They were also distributed uniformly in comoving volume up
to a maximum redshift zmax.
Since each simulated waveform has a fixed initial eccen-

tricity, our six choices of total mass will correspond to different
eccentricities at an emitted gravitational-wave frequency of
15 Hz, as this frequency is reached at different points in the
waveform. We computed the corresponding eccentricity values
at 15 Hz in the source frame for each total mass and each
waveform, as explained in Section 2.1. Below, we characterize
the sensitive distance as a function of total source mass and
eccentricity at 15 Hz.
For each waveform, we separately calculated zmax up to

which they must be injected so that we do not make
unnecessary injections that the search cannot detect. This was
calculated with an optimal two-detector-network (Livingston-
Hanford) SNR threshold of 5.0. We set the source to be directly
overhead with a face-on configuration while calculating the
optimal SNR. Since we observe signals with redshifted mass
(Krolak & Schutz 1987), it is in principle possible to inject
simulations with total source mass <70 Me if we populate
them at higher redshifts. This was however not performed in
the presented analysis. Injections are spaced uniformly in time,
approximately every 100 s in the O3 data set.
We used the fraction of detected and injected waveforms to

compute the sensitive distance of the search for the given

Figure 2. Examples of time domain waveforms with two different eccentricities (indicated in the legend) for equal-mass binary systems with a total source mass of
90 Me at a distance of 100 Mpc. The simulations start at an orbital separation that translates to an orbital frequency flow = 15 Hz. The eccentricity values indicated in
the legend are defined at the same flow.
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waveform. Sensitive distance (Abbott et al. 2019b) is defined
such that a detector that detects every event within the sensitive
distance and no event beyond, it would have the same detection
rate as our detector network.

A similar analysis was carried out with data from the first
two observing runs of LIGO-Virgo using approximate
eccentric waveform models (Abbott et al. 2019a). This analysis
spanned the binary mass parameter space from 10Me to
100Me while the analysis described in this paper covers binary
mass of 70Me to 200Me. The sensitivities reported in this
paper are higher than that analysis due to increased sensitivity

of the detector during the third observing run, and due to the
higher masses considered here. There have also been studies to
characterize the effect of eccentricity in the sensitivity of long-
duration signals with unmodeled search pipelines using hybrid
inspiral–merger–ringdown waveform models (Abbott et al.
2021f). However, these studies were targeted toward low-mass
binary black holes and binary neutron stars as opposed to our
search, which is targeted toward high-mass eccentric binaries.
Therefore, the search sensitivities reported in Abbott et al.
(2021f) are lower than what we obtain in this paper.
The obtained sensitive distance is shown in Figure 4, for

different source total masses and mass ratios, as a function of
binary eccentricity. The statistical error bars for the obtained
sensitive distance range between 0.21 and 5.63Mpc. The
sensitivity at the considered high masses is mostly independent
of the eccentricity up to our highest eccentricity of 0.3. We
observe a sensitivity increase with total mass up to 175Me
followed by a decline at 200Me. This is because as the total
mass of the source increases, the signal shifts toward lower
frequencies where the detectors’ sensitivity decreases. Addi-
tionally, the in-band signals also become shorter in duration as
the mass increases, making them more prone to being removed
by the glitch-based vetoes. We also see, as expected, that
sensitivity is highest for equal-mass binaries, and gradually
drops as the difference between the two black hole masses
increases.

3.2. Search and Loudest Event

We carried out the cWB-eBBH search over the O3 run of the
LIGO and Virgo detectors. For most of the observing run, we
used data from only the two LIGO detectors, as search
sensitivity was not appreciably affected by the addition of
Virgo data. For the 2020 January 4–22 period, we also
incorporated Virgo in the search to analyze the candidate
200114_020818, which was found by the intermediate-mass
black hole binary search (Abbott et al. 2022) in the three
detector network configuration comprising the LIGO and Virgo
detectors. Follow-up studies for this event (Abbott et al. 2022,

Figure 3. Distribution of Qa and Qp for simulated signals (shown as a two-
dimensional histogram with a color bar denoting the number of events in each
two-dimensional bin) and loud simulated background events (shown as black
dots). The cWB statistics Qa and Qp describe the morphology of a signal. The
yellow line represents the standard cWB Qa veto and the red-dashed line
denotes the eBBH Qa–Qp veto. The white dots correspond to loud background
events that remain after all standard cWB vetoes (Lopez et al. 2022) are
applied. Top: simulated signals correspond to equal mass, source total mass,
M = 150 Me, quasi-circular orbit systems. Bottom: simulated signals corre-
spond to equal mass, M = 150Me, almost head-on (highly eccentric) systems.

Figure 4. Sensitive distance as a function of orbital eccentricity for different
binary total masses and mass ratios. Different marker shapes represent systems
with different mass ratios and the different colors represent the various total
masses considered here. We used an IFAR threshold of 1.32 yr, which was the
loudest new candidate’s IFAR. The horizontal axis denotes the eccentricity of
the binary at an orbital separation that corresponds to a source-frame frequency
of 15 Hz. A given numerical relativity waveform corresponds to different
eccentricities for the different total masses as it will reach 15 Hz at different
points of its orbital evolution. The statistical error bars on the obtained sensitive
distance are smaller than can be presented in this plot.
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Appendix B) showed inconsistent results under a quasi-circular
binary black hole hypothesis. We investigated if this candidate
had higher significance under the eccentric hypothesis.
However, this candidate was removed by the cWB-eBBH
vetoes. The search and sensitivity results presented below were
obtained using data from only the two LIGO detectors.

Our search recovered 28 gravitational-wave candidates with
IFAR>1 yr. By choosing this IFAR threshold, we eliminate
low-significance candidates that could have been due to noise
artifacts in the detector. All but one of these events have been
identified previously by other searches as well (Abbott et al.
2022, 2023a).

The results of our search are summarized in Figure 5. The
search results excluding previously found candidates are
consistent with background noise.

We identified one event candidate with an IFAR>1 yr that
was not previously reported. This most significant new
candidate, hereafter referred to as 190706_004633, was
observed on 2019 July 6. It was recovered with an IFAR of
1.32 yr. It has an SNR of 12.2 and a central frequency of 74 Hz.
Figure 6 shows the time–frequency map of this event
candidate.

In order to better understand whether 190706_004633 is of
astrophysical origin, we carried out a detailed study of the
detector's performance and characteristics at the time of the
event. This study aims to uncover signs of instrumental or
environmental artifacts that could have altered the gravita-
tional-wave data and hence produced the candidate (Davis et al.
2021, Section 3.2.4). No such artifacts were found. However,
the Gravity Spy machine learning classifier (Zevin et al. 2017;
Soni et al. 2021) classified the excess power in LIGO-
Livingston as a Tomte glitch. Tomtes are a common glitch
class that are similar in morphology to high-mass binary
coalescence signals (Ashton et al. 2022). No glitch or signal
was identified in the LIGO-Hanford data by the same classifier.
However, as the Gravity Spy machine learning model is not
designed to search for astrophysical signals (Glanzer et al.
2023) or to differentiate eBBH merger signals from glitches,
we cannot rule out an astrophysical origin.

To further investigate this event we carried out a standard
parameter estimation analysis of the data using LALInference

(Veitch et al. 2015) with nested sampling assuming a quasi-
circular waveform. We investigated the properties of this event
using data from the two LIGO detectors as well as the Virgo
detector. For this analysis, in lieu of an eccentric waveform that
fully covers the necessary parameter space, we adopted the
quasi-circular binary approximant IMRPhenomXPHM (Pratten
et al. 2021). This estimation found that the estimated source
total mass of 190706_004633 is M∼ 320Me, and its estimated
redshift is z∼ 0.3. Studies have shown that the chirp mass of a
binary with low to moderate eccentricity can be reconstructed
with a bias of up to 4% using parameter estimation with quasi-
circular waveforms (O’Shea & Kumar 2023). However, the
reconstructed parameters would be considerably more inaccu-
rate if the signal originated from a highly eccentric binary.
Therefore, these results indicate that the signal, if astrophysical,
would correspond to a high-mass binary, but should not be
used to give precise indications of source properties.
The SNR obtained from the parameter estimation analysis is

14.9, which is higher than the SNR obtained by the search
pipeline. We examined the Livingston and Hanford detector
responses for the maximum-likelihood sky location that was
obtained from parameter estimation. Livingston’s detector
response was approximately 1.5 times greater than Hanford’s.
This may explain the observed discrepancy in SNRs, which is
highlighed in the caption of Figure 6. The parameter estimation
study also yielded a Bayesian coherence ratio (BCR; Veitch &
Vecchio 2010), with a corresponding value of ( )ln BCR
3.3 for the candidate. This ratio characterizes the evidence for

a coherent signal origin versus a random coincidence; the
obtained value supports an incoherent noise origin over a
circular binary origin.
Through these investigations, we were unable to conclu-

sively determine if the event was in accordance with an
astrophysical origin or an incoherent noise origin. This event
was consistent with the expected background for O3 with a
confidence level within 50% (Figure 5). In the following
section, we therefore compute upper limits to merger rates
assuming nondetection of any eccentric event.

4. Eccentric Binary Population Models

In order to understand the astrophysical implications of our
results, we computed the expected number of detections for a
fiducial source model. For this, we adopt the joint total mass
and mass ratio probability density p(M, q) that was inferred
using LIGO-Virgo’s observations listed in the GWTC-3
(Abbott et al. 2023a, 2023c), assuming the power-law + peak
model described in Abbott et al. (2021a). While this population
model also incorporated the distribution of black hole spins, we
did not include this in the presented analysis. As we have
waveforms and simulations that are sparsely sampled in mass
and mass ratio, we linearly interpolated the sensitivity of the
existing waveforms to points in between the available points in
order to obtain a sensitive distance for any source total mass
and mass ratio within 70Me�M� 200Me and 0.33< q
< 1.0. For a more general distribution, we considered a power-
law black hole mass distribution of M−2.3

(assuming a Salpeter
initial mass function; Perna et al. 2019) and a uniform
distribution in mass ratio. We further adopted an eccentricity
distribution in which the probability density of the binaries’
eccentricity is p(e)∝ 2(1− e). This distribution is chosen to
characterize a population that has a larger fraction of low
eccentric binaries.

Figure 5. Cumulative number of events as a function of IFAR recovered by the
cWB-eBBH search. The solid line represents the expected background for the
O3 search, and the gray regions correspond to the 50% and 90% Poisson
uncertainty regions. Green-filled squares denote previously reported gravita-
tional-wave candidates (Abbott et al. 2022, 2023a) recovered by our search,
and red-filled triangles show events that were not previously reported by other
searches.
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Having defined the probability density of our fiducial
population with respect to the binary parameters, using the
sensitive distance obtained over the considered parameter space
(see Section 3.1), we computed the total volume–time (VT;
Abbott et al. 2019b, the Appendix) covered by our search
during O3, assuming an IFAR threshold of 1.32 yr, which is the
IFAR of our search’s loudest new event. For our fiducial
model, we obtained VT= 6.88 Gpc3 yr for eccentric binaries
with 0< e< 0.3. Adopting a Jeffrey’s prior on the merger rate
and assuming nondetection of any eccentric event, this would
correspond to a constraint of <0.20 Gpc−3 yr−1 on the merger
rate density at 90% confidence level in the 70Me�

M� 200Me and 0.33< q< 1.0 parameter space.
We additionally computed the VTe of events that are detected

by the cWB-eBBH algorithm and are missed by the standard
cWB algorithm. We used the same set of simulated signals that
we used to compute the full search VT. The sensitive VT is
computed using the number of events recovered by the cWB-
eBBH pipeline that the standard pipeline misses. The goal of
finding VTe is to gauge the subpopulation of eccentric events
that would be detectable as eccentric because of being missed
by the standard pipeline, which has lower sensitivity to
eccentric signals (Figure 3). We computed VTe for the various
distributions considered in Table 2. For our fiducial source
population, we obtain VTe= 0.08 Gpc3 yr. Adopting a Jeffrey’s
prior on the merger rate and assuming no eccentric events were
detected by the cWB-eBBH search, this would correspond to a
constraint of <16.9 Gpc−3 yr−1 on the merger rate density at
90% confidence level in the 70Me�M� 200Me and 0.33<
q< 1.0 parameter space.
With the small number of available eccentric waveforms for

this study, we cannot determine if the discovered binaries are
eccentric. Therefore, we cannot discount the possibility that
previously identified gravitational-wave candidates originate
from eccentric binaries. In this case, the number of observed
eccentric binaries is greater than zero, and so the merger rate
could potentially be higher than our upper limits. Conversely,
for some parts of the parameter space, template-based searches
have better sensitivities, although we expect them to lose
sensitivity at higher eccentricities. Hence, including the VT

from these searches (Abbott et al. 2023a, 2024) would tighten
our upper limits. For simplicity, we limit our results to those

from the cWB-eBBH analysis, assuming all previously
identified candidates are from quasi-circular binaries.
Since binary mergers from dynamical formation channels

can follow a mass distribution different from the one obtained
from GWTC-3, we additionally computed VT, assuming other
parameter distributions. We summarize our results in Table 2.
Our focus on high-mass, eccentric events can be particularly
interesting for astrophysical formation channels that favor the
production of both high mass and high eccentricity, such as
gas-driven capture in AGN disks. For this scenario, we adopted
the AGN model of Gayathri et al. (2021) as an illustrative
example. Our search sensitivity for this model is marginally
higher than for the GWTC-3 distribution because this model
favors higher masses that are more likely to fall in the mass
interval that we are most sensitive to in this analysis.
Assuming nondetection of any eccentric event, we place a
constraint of <8.45 Gpc−3 yr−1 on the merger rate density at
90% confidence level for AGN-assisted mergers. Taking an
estimated ∼70% of mergers being eccentric (Samsing et al.
2022) and ∼4% of mergers having M> 70 Me (Gayathri et al.
2021), we project the corresponding upper limit on the merger
rate density to obtain upper limits on the overall AGN-assisted
merger rate density as ∼8.45 Gpc−3 yr−1/(0.7× 0.04)∼ 302
Gpc−3 yr−1. This is consistent with rate estimates in the
literature (e.g., Yang et al. 2019; Gayathri et al. 2021).
As a second illustrative model we used the distribution

expected in dense star clusters (DSC), adopted from Zevin et al.

Figure 6. Time–frequency map (spectrogram) of the most significant new candidate identified by the cWB-eBBH search. We show the spectrogram for the LIGO-
Hanford (left) and LIGO-Livingston (right) detectors. The individual detector SNRs in the LIGO-Hanford and LIGO-Livingston are 5.6 and 10.9, respectively. Since
the energies in the two detectors are very different, we use different scales on the color bar. The Virgo detector was in observing mode during the time of this event.
We used data from all three detectors for follow-up studies and observed that the SNR in the Virgo detector for this event was low (∼2).

Table 2

Total VT Covered by cWB-eBBH Search and VT Probed Exclusively by the
cWB-eBBH Search (VTe) Assuming Various Source Total Mass, Mass Ratio,
and Eccentricity Probability Density Functions for the Different Illustrative

Models Described in Section 4

p(M) p(q) p(e) VT VTe
(Gpc3 yr) (Gpc3 yr)

GWTC-3 GWTC-3 2(1 − e) 6.89 0.08
GWTC-3 GWTC-3 Uniform 6.93 0.08
M−2.3 Uniform 2(1 − e) 8.22 0.14
M−2.3 Uniform Uniform 8.27 0.14
AGN AGN 2(1 − e) 7.86 0.16
AGN AGN Uniform 7.91 0.17
DSC DSC DSC 6.69 0.08
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(2021b). For this population, we are able to place a constraint
of <16.9 Gpc−3 yr−1 on the merger rate density at 90%
confidence level assuming nondetection of any eccentric event.
Taking an estimated ∼10% being eccentric and ∼18% of
mergers having M> 70 Me, we project the corresponding
upper limit on the merger rate density to obtain upper limits on
the overall DSC-assisted merger rate density as ∼16.9
Gpc−3 yr−1/(0.1× 0.18)∼ 939 Gpc−3 yr−1. This is consistent
with rate estimates in the literature (Kremer et al. 2020; Zevin
et al. 2021b).

5. Conclusion

We carried out a search that does not rely on template banks,
and optimized it to be sensitive to high-mass (M> 70 Me)

eBBH coalescences. We characterized the sensitivity of this
search to understand our findings’ implications for possible
eccentric astrophysical populations. Our conclusions are:

1. We did not identify any high-significance candidates that
had not already been detected by other searches. Our
loudest and most significant new event has an IFAR of
1.32 yr. We performed detailed follow-up for this event,
and concluded that astrophysical origin could not be ruled
out. However, our search results are consistent with the
expected background for O3.

2. For our fiducial model, we adopted a mass distribution
that assumes a power-law + peak model that was inferred
using GWTC-3 observations (Abbott et al. 2023c). We
also chose an eccentricity distribution (defined in
Section 4) that favors quasi-circular binaries. For this
assumed population, our “differential” search sensitivity
(that is beyond the sensitivity of the standard cWB
search) is such that assuming nondetection of eccentric
events, we can place a constraint of <16.9 Gpc−3 yr−1 on
the merger rate density at 90% confidence level. The
obtained overall constraint is significantly above that of
other searches for circular black hole mergers in a similar
mass range (cf. inferred rate of 0.08 0.07

0.19 Gpc−3 yr−1 of
mergers similar to GW190521; Abbott et al. 2022).

3. As an illustrative example, we found that nondetection of
any eccentric event corresponds to a constraint of <302
Gpc−3 yr−1 on the AGN-assisted merger rate density,
consistent with rate estimates in the literature (e.g., Yang
et al. 2019; Gayathri et al. 2021).

4. As a second illustrative model, we computed our search
sensitivity to mergers in dense star clusters, considering
the model of Zevin et al. (2021b). The results are similar
to the AGN channel and our expected sensitivity for a
generic eccentric model. For this model, we found that
nondetection of eccentric events corresponds to a
constraint of <939 Gpc−3 yr−1 on the merger rate
density, consistent with rate estimates in the literature
(Kremer et al. 2020; Zevin et al. 2021b).

The constraints we place on the rate of eccentric binary
coalescences in this work are significantly improved over those
computed with data obtained from the first and second
observing runs (Abbott et al. 2019a). This improvement can
be attributed to increased sensitivity of the detectors, progress
in the development of highly accurate eccentric waveforms in
the high-mass domain, and an optimized eccentric search. In
view of the expected sensitivity of the fourth observing run by
LIGO-Virgo-KAGRA (Abbott et al. 2018), we anticipate

seeing a significant rise in the number of binary black hole
detections. This increases our prospects of detecting gravita-
tional-wave signals from eccentric binary coalescences.
Regardless, a nondetection would enable us to further constrain
the binary black hole merger rates in astrophysical models
favoring eccentric orbits.
Future works will need to expand the study to eccentricities

greater than 0.3, and to include masses below 70Me as well as
black hole spins.
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Appendix
Post-production Vetoes

In this appendix, we will describe in detail the post-
production vetoes that are applied by the standard cWB
pipeline (Gayathri et al. 2019; Lopez et al. 2022) to distinguish
between true gravitational-wave signals and non-Gaussian
noise artifacts that can mimic gravitational-wave signals.

The first set of vetoes is based on the morphology of the
reconstructed signals. These vetoes are applied to the following
cWB summary statistics: the energy-weighted central frequency
of the signal f0; the reconstructed chirp mass parameter,
*, which is obtained by fitting the signal with the

characteristic time-frequency evolution for a quasi-circular

binary ( ( )f t tc
3 8), and Qa, the waveform shape para-

meter introduced in Section 2.3. The parameter Qa is a function
of the cWB parameter Qveto (Vedovato 2018; Gayathri et al.
2019; Mishra et al. 2021), which quantifies how well the total
energy of the signal is distributed across time. The first set of
vetoes removes events that do not satisfy 24Hz <f0< 100 Hz,
∣ ∣M 10* , ∣( ) ∣M Q 15a

2
* , M 100* .

The next set of vetoes is based on cWB reconstruction, and
the correlation of the event across the network of detectors. The
cWB summary statistics involved in this set are norm, defined
as the ratio between the total energy over all wavelet resolution
levels used for the analysis and the reconstructed energy of the
event; χ2, a parameter that quantifies the quality of signal
reconstruction by computing the residual noise energy that
remains once the reconstructed signal is subtracted from data
(Gayathri et al. 2019), and finally the cc[0] and cc[2] parameters
that describe the correlation of the signal across the network of
detectors in time domain and frequency domain, respectively
(Tiwari et al. 2016). The second set of vetoes removes
candidate events that do not satisfy norm> 4, ( )log 0.410

2 ,
cc[0]> 0.8, cc[2]> 0.7.
The two sets of vetoes described above were optimized with

gravitational waveforms for quasi-circular binary black hole
coalescences for the standard cWB pipeline. We found that
they performed optimally in recovering eBBH signals as well.
Therefore, these vetoes along with the new eBBH veto
introduced in Section 2.3 were chosen as the final set of
vetoes for the cWB-eBBH search pipeline.
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