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Two silicified fossil woods from the Huitrera Formation at Laguna del Hunco, Chubut 

Province, Argentina, are identified as a new species of Laurinoxylon. The supporting 

characters include the absence of growth ring boundaries, vessels solitary or in short 

radial multiples, simple and scalariform perforation plates, alternate intervessel pitting, 

scalariform vessel-ray pits, scarce axial parenchyma, septate fibres, rays usually one to 

four cells wide, and idioblasts commonly associated with rays and rarely with the axial 

parenchyma. The fossil woods resemble members of the Perseae-Cinnamomeae-Laureae 

clade but do not closely match any extant genus; therefore, they probably represent an 

extinct lineage. Although lauraceous woods are known from other Paleocene and Eocene 

floras of Patagonia, the presence of the family at Laguna del Hunco was previously based 

only on leaf compressions without preserved cuticular details. The new record confirms the 

occurrence of Lauraceae in the diverse Laguna del Hunco flora, which contains many 

genera that associate with the family in extant rainforests. 
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THE DIVERSITY, composition, and geological context of the flora of the Tufolitas Laguna 

del Hunco in the Huitrera Formation, northwestern Patagonia, indicate an everwet, mid-

latitude late-Gondwanan rainforest surrounded a caldera lake during the early Eocene 

Climate Optimum (Wilf et al. 2005, 2013, Barreda et al. 2020, Rossetto-Harris et al. 2020, 

Gosses et al. 2021, Andruchow-Colombo et al. 2023). Previous work, based primarily on 

quantitative counts of compression fossils (Wilf et al. 2005), showed that the angiosperms 

largely dominated the canopy, but conifers belonging to Podocarpaceae (Wilf 2012, 2020, 

Wilf et al. 2017, Andruchow-Colombo et al. 2019, Pujana et al. 2020), Cupressaceae (Wilf 

et al. 2009) and Araucariaceae (Wilf et al. 2014, Barreda et al. 2020, Rossetto-Harris et al. 

2020), were also common. Overall, the fossil flora has a well-established Gondwanan 

signal based on the presence of numerous genera that are extant in Australasian and 

Southeast Asian rainforests (e.g., Wilf et al. 2009, 2014, 2017, 2019, 2023, Wilf 2012, 

Rossetto-Harris et al. 2020, Zamaloa et al. 2020). 

In addition to adpressions of leaves (Berry 1925, Wilf et al. 2005, Knight & Wilf 

2013), reproductive structures (Hermsen & Gandolfo 2016, Jud et al. 2018, Deanna et al. 

2020, Zamaloa et al. 2020, Matel et al. 2022, Wilf et al. 2023) and pollen (Barreda et al. 

2020) indicating extreme floral diversity, silicified woods are abundant at Laguna del 

Hunco (Petersen 1946). Descriptions of fossil woods and other silicified materials 
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contribute to a more complete understanding of floral diversity and composition (Bomfleur 

& Escapa 2019, Pujana et al. 2020, Brea et al. 2021). 

Lauraceous woods are readily identified by the combination of vessels that are 

solitary and in short radial multiples with alternate intervessel pits, vasicentric axial 

parenchyma, narrow heterocellular rays, and idioblasts (Tupper 1927, Record & Hess 

1942, Stern 1954, Richter 1981). Fossil Lauraceae woods are abundant worldwide, and 

many fossil-genera comprising hundreds of fossil-species have been described from 

deposits ranging in age from the Cretaceous to the Pliocene (Süss 1958, InsideWood 

2004-onwards, Dupéron-Laudoueneix & Dupéron 2005, Gregory et al. 2008). In 

Patagonia, there are a few records of the family from Paleocene to Miocene deposits 

(Nishida et al. 1990, Pujana 2022). 

Lauraceous pollen is notorious for poor preservation (Kubitzki 1981, Truswell et al. 

1987) and is absent at Laguna del Hunco (Barreda et al. 2020). In contrast, leaves with 

lauraceous affinity are abundant, suggesting that the family was an important component 

of the forest canopy and understory (Wilf et al. 2005, 2019). However, because the leaves 

lack cuticular preservation necessary to confidently diagnose lauraceous foliage (e.g., 

Carpenter et al. 2018), uncertainty remains regarding the presence of the family. Their 

preservation in association with abundant leaves of castaneoid Fagaceae and rare 

Castanopsis (D. Don) Spach infructescences (later corroborated with castaneoid pollen 

grains, Barreda et al. 2020) led Wilf et al. (2019) to suggest the presence of an ancient 

oak-laurel forest comparable to those found at lower montane elevations over large areas 

of Southeast Asia. Also, Knight and Wilf (2013) described leaves of the closely related 

lauralean families Atherospermataceae and Monimiaceae in the flora. 

Among a large wood assemblage collected in December 2016 from the well-studied 

Laguna del Hunco exposures (Fig. 1), two specimens preserved lauraceous 
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characteristics. Here, we describe the anatomy of these fossil woods and discuss their 

palaeoecological and biogeographic importance. 

 

Materials and methods 

The Tufolitas Laguna del Hunco are tuffaceous caldera-lake sediments that belong to the 

volcaniclastic-pyroclastic complex of the middle Chubut River (Aragón & Mazzoni 1997). 

Their age at the Laguna del Hunco site is well constrained to the early Eocene (Ypresian) 

by a 52.22 ± 0.22 Ma 40Ar-39Ar age analysed from sanidines from the middle of the 

fossiliferous 170 m section and additional 40Ar-39Ar ages from the lake beds and 

associated units, including the underlying Barda Colorada Ignimbrite (Wilf et al. 2003, 

2005, Wilf 2012, Gosses et al. 2021). 

Fossil woods at Laguna del Hunco, like the specimens described previously by 

Brea et al. (2021) and Pujana et al. (2020), were found ex situ on exposed strata 

throughout the local Tufolitas section of Wilf et al. (2003; Fig. 1), including the upper third 

of the section that contains few compression fossils and up to the uppermost lake beds 

below the hill-capping Andesitas Huancache (per Aragón & Mazzoni 1997). They consist 

of decorticated permineralized secondary xylem and were found exposed on slopes, clean 

of attached sediment, and with abraded surfaces, indicating that they were reworked 

downslope to an unknown extent from various possible source levels within the Tufolitas, 

including the uppermost strata as indicated by Petersen (1946). The two studied 

specimens were found at wood site LU20 (42° 27' 49.90" S, 70° 2' 23.90" W) as part of a 

larger collection of 87 wood specimens (Pujana et al. 2020). The specimens are housed in 

the Paleobotanical Collection of the Museo Paleontólogico Egidio Feruglio, Trelew, Chubut 

Province, Argentina, under accession numbers MPEF-Pb 10759 (a–e) and 10760 (a–f). 

The thin sections of each specimen bear the specimen number followed by a lowercase 

series letter. 
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Thin sections (transverse, TS; tangential longitudinal, TLS; radial longitudinal, RLS) 

were prepared following standard techniques (Haas & Rowe 1999) and studied using light 

microscopy. Small fragments were gold-coated and observed using a scanning electron 

microscope (Zeiss Gemini SEM 360) located in the Museo Argentino de Ciencias 

Naturales, Buenos Aires City, Argentina. Transmitted light micrographs were taken with a 

Leica (https://www.leica-microsystems.com) DM750 microscope with a RisingCam (Chloe 

Rising Tech Limited, China) C3CMOS camera. Images were taken with RisingView (Chloe 

Rising Tech Limited, China) 20230723 and processed using GIMP (https://www.gimp.org) 

2.10.34 free software. Measurements were acquired from the images using ImageJ 

(https://imagej.net/ij) 1.53 free software. 

When possible, at least 25 measurements or observations of every character were 

made for each specimen. The measurements are reported as the weighted mean of the 

values of the two specimens, followed by the range and mean standard deviation (SD) in 

parentheses. We followed the IAWA Committee (1989) recommendations for angiosperm 

wood anatomy descriptions, with the following modifications. The vessel lumen diameter 

was replaced by the vessel diameter including the vessel wall, to simplify comparisons 

with older wood anatomy descriptions (e.g., Poole & Gottwald 2001, Wheeler & 

Manchester 2014, Pujana et al. 2018). We calculated the number of vessels per group, 

herein abbreviated as Ci (Carlquist’s index), following Carlquist (1984), who considered a 

group to be present when vessels are in contact, not merely close. We consulted diverse 

sources for systematic character information, including InsideWood (2004-onwards 

[accessed during 2023–2024]), “Fossil Dicot Wood Names” (Gregory et al. 2009), and 

extensive literature searches. For suprageneric classification, we followed APG IV (2016). 

Authorities for extant taxa were taken from the IPNI (2024) database. 

 

Systematic paleontology 
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Order LAURALES Juss. ex Bercht. & J.Presl 

Family LAURACEAE Juss. nom. cons. 

 

Laurinoxylon Felix emend. Dupéron et al., 2008 

 

Type species 

Laurinoxylon diluviale (Unger) Felix emend. Dupéron et al., 2008 

 

Laurinoxylon patagonicum Pujana, Jud, Wilf & Gandolfo sp. nov.  

(Figs 2, 3) 

 

Diagnosis 

Growth ring boundaries absent. Vessels solitary or in short radial multiples. Perforation 

plates scalariform with few bars (more common) or simple. Vessel-ray parenchyma pits 

mostly scalariform. Axial parenchyma scarce. Fibres septate and non-septate. 

Heterocellular rays mostly 2–4 cells wide. Idioblasts common in rays and rare in axial 

parenchyma. 

 

Etymology 

The specific epithet denotes the Patagonian region, where the fossils were found. 

 

Holotype 

MPEF-Pb 10760 (Figs 2C, D, G, I, K–M, 3B, D–F, H, J–L). 

 

Paratype 

MPEF-Pb 10759 (Figs 2A, B, E, F, H, J, 3A, C, G, I). 
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Type locality, unit and age 

LU20 (42º 27’ 49.9’’ S 70º 2’ 23.9’’ W, Fig. 1), Laguna del Hunco, Chubut Province, 

Argentina. Huitrera Formation, early Eocene (Ypresian). 

 

Description 

Growth ring boundaries are absent (Fig. 2A). Wood is diffuse-porous (Fig. 2A–C). Vessels 

are solitary (51%), in tangential pairs (7%), or in short radial multiples of two (32%), three 

or more (9%), or grouped (1%), Ci = 1.66 (Fig. 2A–C). Vessel tangential diameter is 73 

(23–134, SD = 19) µm; vessel wall thickness is ca 1–2 µm; there are 23 (13–35, SD = 4) 

vessels per mm2. Vessel element length is difficult to observe because of the abundant 

tyloses. Perforation plates are simple (difficult to observe) or scalariform and very oblique 

(> 45º to the horizontal plane), with 3.1 (2–6, SD = 1.2) bars per plate and 3.2 (2–4) bars 

per 100 µm; bars are ca 3–6 µm thick (Fig. 2D–G). Scalariform perforation plates are 

apparently more abundant than simple perforation plates. Intervessel pits are alternate, 

circular, 8.3 (6.3–10.2, SD = 0.8) µm in vertical diameter (Fig. 2H, I). Vessel-ray 

parenchyma pits are horizontal (scalariform) to rarely opposite with much-reduced borders, 

ca 12.5 (9.8–16.4) µm in vertical diameter (Fig. 2J–L); Type II of Richter (1981) is the most 

similar. Tyloses are common (Figs 2B, 3C). Axial parenchyma is scarce, diffuse, and 

scanty paratracheal (Figs 2M, 3C, I–K). Fibres are thin-walled, some are septate, 

appearing similar to parenchyma strands, and may be pitted (bordered and ca 6 µm in 

diameter) in radial walls (Fig. 3A–E). Rays are 3.2 (1–6, SD = 0.9) cells wide; 11.9 (4–22, 

SD = 4.3) cells high (Fig. 3C–E), and heterocellular, composed of procumbent cells in the 

body of the ray 29 (13–54, SD = 7) µm high and usually one row of upright cells 66 (50–

99, SD = 12) µm high; in some cases there is a gradual transition between the two types 

(Fig. 3F–K); ratio upright/procumbent cells 2.27:1. Ray frequency is 5.9 (4–9, SD = 1.1) 
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rays per mm. Idioblasts are common, associated with ray parenchyma and rarely with axial 

parenchyma (3E–L). In rays, idioblasts are locally adjacent (Fig. 3H), mostly marginal but 

also mixed through the ray, and were observed in all rays. Idioblasts are slightly larger or 

more inflated than adjacent ray or axial parenchyma cells (Fig. 3G–K). 

 

Remarks 

Some characters could only be observed in a few thin sections because of the variable 

quality of preservation. These include the simple perforation plates in both specimens, the 

vessel-ray pits in the holotype, and the axial parenchyma in the paratype. The differences 

between the holotype and paratype are shown in Table 1. Axial parenchyma and idioblasts 

are more common in the holotype. Although some differences between the specimens can 

be considered significant (i.e., vessel frequency or ray width), they are consistent with 

normal intraspecific variation. Süss (1958) noted that the frequency of vessels varies 

significantly even within single samples of some Laurinoxylon fossil woods, suggesting 

that this heterogeneity is common in the fossil-genus. 

In both specimens, there is no noticeable curvature of the growth rings as observed 

in TS, and the rays are approximately parallel (Fig. 2A). This suggests that the specimens 

are fragments of mature wood derived from large trees.  

To facilitate comparisons of the anatomical diversity within the large fossil-genus 

Laurinoxylon, Mantzouka et al. (2016) distinguished several informal Laurinoxylon types 

based on the distribution of idioblasts in the wood. The distribution of idioblasts associated 

with the rays and axial parenchyma in Laurinoxylon patagonicum matches their Type 2a. 

We note that the Mantzouka et al. (2016) classification does not correspond to 

monophyletic groups. 

 

Comparisons with fossil woods 
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Several fossil-genera have been circumscribed to organise the diversity of lauraceous 

woods in the fossil record, including Laurinoxylon (Table 2). Our comparative survey 

focused on species of Laurinoxylon (Table 3), as emended by Dupéron et al. (2008). This 

includes several fossil-species that were assigned to other fossil-genera, but later 

synonymized by Dupéron-Laudoueneix & Dupéron (2005). Laurinoxylon is characterised 

by having vessels solitary or in short radial multiples, simple and scalariform perforation 

plates with few bars, alternate intervessel pitting, tyloses, scanty paratracheal axial 

parenchyma, heterocellular rays, pitted fibres, and the presence of idioblasts associated 

with ray parenchyma and axial parenchyma (Table 3). It is a large fossil-genus with more 

than one hundred species, many of which do not have detailed published descriptions. 

The validity of many of these poorly known taxa has been discussed for many years (e.g., 

Süss 1958, Mantzouka et al. 2016). For example, Süss (1958) recognized only 15 of 44 

species as properly described and assigned to Laurinoxylon. More recently, Dupéron-

Laudoueneix & Dupéron (2005) revised Laurinoxylon and synonymized some other fossil-

genera. 

To facilitate comparisons when describing new fossil lauraceous woods, the fossil-

genera Cinnamomoxylon Gottwald, 1997 and Mezilaurinoxylon Wheeler & Manchester, 

2002 were segregated from Laurinoxylon with narrower circumscriptions (Gottwald 1997, 

Wheeler & Manchester 2002). The diagnosis of Cinnamomoxylon shares many 

characteristics with that of Laurinoxylon as emended by Dupéron et al. (2008); 

Mezilaurinoxylon, has exclusively simple perforation plates and idioblasts confined to rays 

(Wheeler & Manchester 2002). The specimens from Patagonia do not conform to 

Cinnamomoxylon because they have some scalariform perforation plates and idioblasts 

associated with axial parenchyma, and they do not have vasicentric to confluent axial 

parenchyma. 
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The combination of characteristics that differentiates Laurinoxylon patagonicum 

from other Laurinoxylon species is the absence of growth ring boundaries, the common 

scalariform perforation plates, and the scanty paratracheal axial parenchyma (Table 3). 

Laurinoxylon dabieshanense Yang, 1993 from the Cenozoic of China is very similar to L. 

patagonicum in most of the described characters but differs in its distinct growth ring 

boundaries (Yang et al. 1993). The description of L. dabieshanense is not detailed and 

lacks illustrations; therefore, a more comprehensive comparison cannot be made. 

Laurinoxylon weylandii Berger, 1953 from the Upper Cretaceous of Europe has similar 

anatomy to the Patagonian species, but the distribution and frequency of its idioblasts are 

unclear (Berger 1953). If L. weylandii lacks idioblasts, it should be excluded from 

Laurinoxylon following Dupéron et al. (2008). 

In Patagonia, there are six prior reports of fossil Lauraceae wood: Laurinoxylon 

atlanticum (Romero) Dupéron-Laudouoeneix & Dupéron, 2005 (Romero 1970), 

Laurinoxylon chubutense (Brea) Duperón-Laudoueneix & Duperón, 2005 (Brea 1995), and 

Mezilaurinoxylon oleiferum Ruiz et al., 2020 (Ruiz et al. 2020) from the Paleocene; 

Paraperseoxylon sp. (Brea et al. 2015) from the Oligocene; Laurinoxylon atlanticum Brea 

et al., 2012 (Brea et al. 2012) from the Miocene; and Laurinium beilschmiedioides Nishida 

et al., 1990 from a locality of uncertain age in Chilean Patagonia (Nishida et al. 1990). All 

these taxa have exclusively simple perforation plates differing from L. patagonicum 

(Romero 1970, Brea 1995, Brea et al. 2012, 2015, Ruiz et al. 2020). Laurinoxylon 

atlanticum further differs from L. patagonicum because it has more abundant axial 

parenchyma, and its idioblasts are unclear (Romero 1970). Laurinoxylon chubutense is 

different from L. patagonicum because, in addition to having more abundant axial 

parenchyma, it is characterized by narrower rays, and its idioblasts occur only in rays 

(Brea 1995). Laurinoxylon beilschmiedioides lacks tyloses, and its vessel-ray parenchyma 

pits are highly variable, including circular and oval forms, scalariform to vertically 
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elongated orientations, and alternate or opposite arrangements (Nishida et al. 1990). 

Mezilaurinoxylon oleiferum has larger vessel-ray pits than L. patagonicum and idioblasts 

among fibers (Ruiz et al. 2020). 

In Antarctica, the only lauraceous wood described is Sassafroxylon gottwaldii Poole 

et al., 2000 from the Cretaceous of Seymour Island (Poole et al. 2000). This species is 

distinguished from Laurinoxylon spp. by its ring-porous wood (Table 1). In addition, Gothan 

(1908) described Laurinoxylon uniseriatum Gothan, 1908 and originally hypothesised an 

affinity with the Lauraceae, but Poole (2002) later transferred this species to 

Nothofagoxylon Gothan, 1908. 

 

Similarities to extant woods 

The presence of idioblasts in fossil woods is a useful character when making comparisons 

with modern taxa because it occurs in only a handful of extant families and is usually 

absent from eudicots. Idioblasts are found among Magnoliales (Annonaceae and 

Magnoliacaeae) and Laurales (Lauraceae and in the monotypic family Gomortegaceae). 

We can rule out an affinity for the new fossils with Annonaceae, whose woods are 

characterised by banded axial parenchyma and wide multiseriate rays not present in the 

fossils (Metcalfe & Chalk 1950, InsideWood 2004-onwards). Laurinoxylon patagonicum 

cannot be placed within Magnoliaceae, which have scalariform or opposite intervessel 

pitting (Liang et al. 1993, InsideWood 2004-onwards). Gomortega keule (Molina) Baill., 

1869, the only extant species of Gomortegaceae, has exclusively solitary vessels (Stern 

1954, Rancusi et al. 1987). Although idioblasts have been reported in other families, they 

are very rare, or the families have markedly different anatomical characteristics from 

Lauraceae (e.g., Hernandiaceae Monimiaceae, Winteraceae; Carlquist 2001). In contrast, 

diffuse porosity, vessels solitary or in short radial multiples, alternate intervessel pits, 

common tyloses, paratracheal axial parenchyma, heterocellular rays, and idioblasts, all 
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present in the L. patagonicum fossils, are the wood anatomical characteristics of most 

Lauraceae (Tupper 1927, Record & Hess 1942, Stern 1954, Richter 1981). 

Lauraceae represents a large, predominantly tropical, family comprising about 50 

genera and 2500–3000 species (Rohwer 1993). The tribal and generic divisions and 

phylogenetic relationships within Lauraceae have long been controversial (Tian et al. 

2021). Recent investigations based on plastid genomes have supported the recognition of 

nine monophyletic groups (Song et al. 2020, Liu et al. 2021). Here, we follow the 

classification and nomenclature of Liu et al. (2021), in which the tribe Perseae of Van der 

Werff & Richter (1996) was split into Perseae and Cinnamomeae. Four of the nine groups 

of Lauraceae, Hypodaphnis (Richter 1981), Neocinnamomeae (Richter 1981), 

Caryodaphnopsidae (Richter 1981, Gonzales Casimiro 2008), and the Mezilaurus-group 

(Dechamps 1979, Nardi Berti & Edlmann Abbate 1992, Santini Junior et al. 2021) have 

exclusively simple perforation plates, unlike the fossils. Cryptocaryeae have well-

distinguished wood anatomy, with terminal axial parenchyma and an absence of septate 

fibres (except Dahlgrenodendron J.J.M.Van der Merwe & A.E. Van Wyk, 1988 see Richter 

& Van Wyk 1990) among other characteristics that differ from the fossils (Dechamps 1979, 

Richter 1981, Rancusi et al. 1987, Barros & Callado 1997). Cassytheae are parasites that 

do not develop secondary xylem (Weber 1981). A combination of commonly simple and 

rarely scalariform perforation plates, as expressed in the fossils, is present in some 

species of Perseae, Cinnamomeae and Laureae (the other three groups, e.g., Richter 

1981, Sonsin et al. 2014, León 2017), which together form a monophyletic group 

(hereinafter called the PCL clade). Some species with this combination of perforation 

plates include Aniba ovalifolia Mez, 1889, Cinnamomum oliveri F.M. Bailey, 1892, 

Nectandra angustifolia (Schrad.) Nees & Mart., 1883 and Ocotea pulchella Mart., 1830 

(Dadswell & Eckersley 1940, Tortorelli 1956, León & Espinoza de Pernía 2000, Marchiori 

et al. 2009, Sonsin et al. 2014). The high frequency of scalariform perforation plates in L. 
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patagonicum suggests that it belongs to the PCL clade, although this feature is unusual in 

Lauraceae. 

Although idioblasts are present in most species of Lauraceae, they are absent or 

rare in some extant species (e.g., Caryodaphnopsis fosteri Van der Werff, 1986, 

Nectandra rigida (Kunth) Nees, 1836, Nectandra leucantha Nees, 1848, Nectandra 

puberula Nees, 1836 and Ocotea pulchella; Barros & Callado 1997, Barros et al. 2001, 

Gonzales Casimiro 2008, Sonsin et al. 2014, Heerdt et al. 2016). Among those with 

idioblasts, relatively few species (e.g., Ocotea aciphylla (Nees & Mart.) Mez, 1889, Ocotea 

indecora (Schott) Mez, 1889, C. fosteri and N. puberula) have idioblasts associated with 

both the rays and the axial parenchyma (Barros et al. 2001, Gonzales Casimiro 2008) as 

expressed in the new fossil-species. 

The combination of abundant scalariform perforation plates, the large number of 

idioblasts associated with the ray and axial parenchyma, and the absence of terminal 

parenchyma supports the conclusion that Laurinoxylon patagonicum is related to the PCL 

clade. However, L. patagonicum can be distinguished from extant PCL species, which 

typically have more abundant axial parenchyma, and their frequency of scalariform 

perforation plates is generally lower. 

In Patagonia, the extant species most similar to Laurinoxylon patagonicum is 

Persea lingue (Miers ex Bertero) Nees, 1836 of the Perseae. However, P. lingue was 

described as having simple perforation plates (Wagemann 1947, Rancusi et al. 1987) or 

mostly simple with rare scalariform perforation plates (Nardi Berti & Edlmann Abbate 

1992). It also has distinct growth ring boundaries and helical thickenings (Rancusi et al. 

1987), unlike L. patagonicum. 

Unfortunately, it is difficult to distinguish many genera of Lauraceae based only on 

wood anatomy because of overlapping anatomical variation (Stern 1954, Prakash et al. 

1971, Richter 1981). Some exceptions are Cryptocaryeae, the members of which have 
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terminal parenchyma and other distinctive characteristics (see above), and some other 

genera, such as Sassafras J. Presl, 1825, which has ring-porous wood. For example, in 

some genera (e.g., Ocotea Aubl., 1775) some species have simple perforation plates and 

others both simple and scalariform perforation plates (Dadswelll & Eckersley 1940, Richter 

1981, León 2017). In other genera (e.g., Aniba Aubl., 1775) idioblasts are present in some 

species but not others (León & Espinoza de Pernía 2000). Overall, L. patagonicum shares 

the largest number of characters with the PCL clade. 

 

Discussion 

 

Lauraceae record at Laguna del Hunco 

Patagonia has a considerable record of leaves and woods of Lauraceae, but pollen is not 

usually reported because the thin exine of the pollen preserves poorly (Truswell et al. 

1987). In the Laguna del Hunco flora, based on a badly preserved leaf fragment Berry 

(1925) described “Nectandra” patagonica Berry, 1925, as a Lauraceae fossil, but this 

assignment is doubtful. However, Wilf et al. (2005) reported several abundant, well-

preserved leaf morphotypes with leaf architecture typical of Lauraceae from much larger 

recent collections, but cuticles are not yet reported. Thus, Laurinoxylon patagonicum is the 

first reliable species of fossil wood of Lauraceae and the most definite record of the family 

within the Laguna del Hunco flora. 

 

Comments on Lauraceae 

Lauraceae is a large family distributed primarily throughout tropical and subtropical regions 

of the world (Rohwer 1993, Chanderbali et al. 2001) and its species are common in 

lowland and premontane tropical forests and evergreen oak-laurel forests worldwide 

(Tagawa 1997). Even the PCL clade, the group to which Laurinoxylon patagonicum likely 
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belongs, is pantropical. Because the Laguna del Hunco flora has strong floristic affinities to 

modern Australasian-Southeast Asia forests, we focused our effort on comparisons with 

South American and Australasian Lauraceae. The floras of South America, Australia, New 

Guinea, and adjacent lands include many Lauraceae trees. Most of these taxa belong to 

Cryptocaryeae, but there are also many species of the PCL clade, even though Laureae is 

absent from South America (Le Cussan et al. 2007, Grandtner & Chevrette 2014, Barstow 

et al. 2022). 

The presence of woods in the Eocene of Laguna del Hunco related to the PCL 

clade sensu Liu et al. (2021) strongly suggests that this clade was present in South 

America at least in the early Eocene. According to Chanderbali et al. (2001), the 

lauraceous fossil record suggests a Laurasian origin for the family, but the Cryptocaryeae 

and the Mezilaurus-group are supposed to have a Gondwanan origin.  

Liu et al. (2021) suggested that Perseae (=Perseae group) originated in Laurasia 

during the Eocene, and some members later arrived in South America. Similarly, 

Chanderbali et al. (2001) proposed that the Ocotea complex (which includes most 

Cinnamomeae of Liu et al. 2021) arrived in South America from Laurasia during the 

Eocene. The L. patagonicum fossils, if they belong to either of these two groups, do not 

contradict these hypotheses (Chanderbali et al. 2001, Liu et al. 2021) but also do not 

support them without corroboration from well-dated Laurasian fossils. Finally, Laureae, the 

third PCL tribe that could be related to the new fossils, is widespread in Australia and 

Southeast Asia (Van der Werff 2001, Le Cussan et al. 2007) like many other extant 

relatives of constituents of the floral assemblage, but there is no other evidence of fossils 

or extant species of Laureae in South America. 

As discussed earlier, it is not possible to establish a close affinity of L. patagonicum 

to a particular extant genus or species based on the wood anatomy, but there are many 

similarities to the species of the PCL clade sensu Liu et al. (2021). Considering the 



16 

significant differences in the anatomy with any extant member of the PCL clade from 

South America, including Persea lingue, we hypothesise that L. patagonicum comes from 

a lineage of Lauraceae that became extinct. Nonetheless, we note that wood anatomical 

data is poorly known for many lauraceous species distributed in the areas that contain the 

most survivor genera from Laguna del Hunco, such as Australia (e.g., Dadswell & 

Eckersley 1940). 

 

Conclusions 

Laurinoxylon patagonicum, a new species of fossil wood, with typical characteristics of the 

Lauraceae (common scalariform perforation plates, scarce axial parenchyma and 

abundant idioblasts in rays) is described and represents the first definitive occurrence of 

the family in the highly diverse early Eocene Laguna del Hunco flora. Although this new 

Patagonian species is similar to some genera of the PCL clade sensu Liu et al. (2021), a 

more precise affinity to extant species could not be established. Therefore, the new fossils 

most likely represent an extinct lineage of Lauraceae. This record adds to the substantial 

record of megafossils of Lauraceae from Patagonia. 
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Figure 1. Map and satellite image (Google, CNES / Airbus) showing the sampling location (red star) of the 

fossils described. 
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Figure 2. Wood anatomy of Laurinoxylon patagonicum. MPEF-Pb 10759 (Paratype) & 10760 (Holotype). A–

B, Vessels solitary or in short radial multiples (TS). MPEF-Pb 10759. C, Vessels solitary or in short radial 

multiples (TS). MPEF-Pb 10760. D, Two scalariform perforation plates (RLS). MPEF-Pb 10760. E, Two 

scalariform perforation plates (RLS). MPEF-Pb 10759. F, A scalariform perforation plate and a seemingly 
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simple perforation plate (arrowhead) (RLS). MPEF-Pb 10759. G, A simple perforation plate (RLS). MPEF-Pb 

10760. H, Circular and alternate intervessel pits (RLS). MPEF-Pb 10759. I, Circular and alternate intervessel 

pits (RLS). MPEF-Pb 10760. J, Scalariform vessel-ray pits (RLS). MPEF-Pb 10759. K, Scalariform vessel-

ray pits (RLS). MPEF-Pb 10760. L, Scalariform to transitional vessel-ray pits (RLS). MPEF-Pb 10760. M, 

Paratracheal axial parenchyma (arrowheads) (RLS). MPEF-Pb 10760. Scale bars: A = 2 mm, B = 200 µm, C 

= 500 µm, D, J, L = 50 µm, E, F, G, M = 100 µm, H, I, K = 20 µm. 
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Figure 3. Wood anatomy of Laurinoxylon patagonicum. MPEF-Pb 10759 (Paratype) & 10760 (Holotype). A, 

Septate fibers (RLS). MPEF-Pb 10759. B, Fiber pits seemingly bordered (RLS). MPEF-Pb 10760. C, Uni- to 

biseriate rays (TLS). MPEF-Pb 10759. D, Multiseriate rays and axial parenchyma (arrowhead) (TLS). MPEF-

Pb 10760. E, Rays with idioblasts (arrowheads) (TLS). MPEF-Pb 10760. F, Heterocellular ray (RLS). MPEF-
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Pb 10760. G, Ray with associated idioblasts (arrowheads) (RLS). MPEF-Pb 10759. H, A row (arrowhead) of 

idioblasts associated with rays (RLS). MPEF-Pb 10760. I, Idioblasts associated with rays and with axial 

parenchyma (arrowhead) (RLS). MPEF-Pb 10759. J, Idioblasts associated with axial parenchyma (black 

arrowhead) and a simple perforation plate (green arrowhead) (RLS). MPEF-Pb 10760. K, Idioblasts 

associated with rays (procumbent cell, green arrowhead) and with axial parenchyma (black arrowhead) 

(RLS). MPEF-Pb 10760. L, Idioblasts associated with rays in SEM. MPEF-Pb 10760. Scale bars: A, D, E, H, 

I, K = 100 µm, B = 20 µm, F, G, J = 200 µm, L = 50 µm. 

 

 

 

Table 1. Comparison of the holotype (MPEF-Pb 10760) and paratype (MPEF-Pb 10759) of Laurinoxylon 

patagonicum. Values are given as means. 

 

 

 

Table 2. Comparison of Laurinoxylon with lauraceous fossil-genera. 
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Table 3. Comparison of Laurinoxylon patagonicum with Laurinoxylon spp. that have scalariform perforation 

plates (and Ulminium kokubunii). 

 


