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Encrusting bryozoan attached to terrestrial plant leaves from
brackish deposits of the Lefipan Formation (Patagonia, Argentina),
close to the K/Pg boundary.

Taboada, César Augusto”; Pagani, Maria Alejandra'; Ctineo, Rubén'
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Paleontologico Egidio Feruglio (MEF), Av. Fontana 140, Trelew, Chubut Province, Argentina.
*Corresponding author <ctaboada@mef.org.ar>

Abstract.—Cretaceous bryozoans from South America have received limited attention despite
their sporadic documentation. The K/Pg boundary has been identified in numerous fossil-rich
basins in Patagonia, where bryozoans are frequent components of the faunas. Material recovered
from upper Maastrichtian outcrops of the Lefipdn Formation in the Canadon Asfalto Basin
(Patagonia, Argentina) includes a unique species of cheilostome bryozoan, Conopeum foliorum n.
sp., attached to leaf remains of terrestrial plants and associated with scarce euryhaline bivalves. It
likely thrived in a warm climate, shallow, well-lit brackish environment influenced by tides,
located along the northwest margin of the Paso del Sapo embayment. Conopeum foliorum n. sp.
is currently among the earliest known bryozoans from brackish water environments, and the
second oldest documented instance of a bryozoan encrusting leaves of terrestrial plants,
representing the first of such finding in South America. Based on our findings and available
sedimentological and paleoecological data from previous studies, we interpreted Conopeum
foliorum n. sp. as a fast-growing opportunistic taxon displaying euryhaline habits and prone to
colonize terrestrial plant leaves deposited in a brackish-water nearshore environment.
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Bryozoa
Maastrichtian
Cafiadon Asfalto Basin

South America

1. Introduction

The Cretaceous/Paleogene (K/Pg) boundary represents one of the most significant extinction
events globally, impacting the biota worldwide. In South America, this boundary is well
documented in several highly fossiliferous Patagonian basins in which bryozoans are also found.
Studies of these basins have revealed significant differences in the impact of the extinction event
between the northern and southern hemispheres. For instance, research has shown lower
extinction rates across the boundary followed by a rapid recovery in the Danian period for
palynomorphs, plant-insect associations, and marine benthic molluscs (Barreda et al., 2012;
Aberhan and Kiessling, 2014; Donovan et al., 2016, 2018). Interestingly, bryozoan diversity in
Patagonia exhibits little change across the K/Pg boundary, resembling patterns observed in the
northern hemisphere (i.e., Europe, United States) (Brezina et al., 2021).

Bryozoans are exclusively aquatic, colonial suspension-feeding benthic animals with a
worldwide distribution despite their predominantly sessile mode of life, including some
cosmopolitan genera. Upper Cretaceous (Campanian/Maastrichtian) bryozoans are predominantly
found in mid-latitudes between 30-60° in both hemispheres, associated with warm-temperate

climatic belts (Di Martino and Taylor, 2013); however, they have also been identified in tropical
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settings from the Tethys, without significant taxonomic differentiation from those at higher
latitudes (Di Martino and Taylor, 2013; Taylor, 1995). Cretaceous bryozoans have primarily been
documented in Europe, North America, Central Asia, Madagascar, India, and Australia, while
records from South America are limited (among others Taylor, 2019; Brezina et al., 2021; Taylor
and Roger, 2021; Sonar et al., 2023; Hakansson et al., 2024; and references therein). In
Argentina, Cretaceous bryozoan records are restricted to the Neuquén Basin in northern
Patagonia (Canu, 1911; Taylor et al., 2009; Brezina et al., 2021).

Herein we report new records of Cretaceous bryozoans encrusting leaves of terrestrial plants,
briefly discussed previously by the present authors (Taboada et al., 2018). We provide a detailed
taxonomic analysis of the bryozoans and interpretations of their paleoecological significance.
Finally, we propose a new species of bryozoan, being the first to be formally described from the

Cafiadon Asfalto Basin in central Patagonia.

2. Geological settings

The studied specimens were collected from the Lefipan Formation which overlies
conspicuous outcrops of the Paso del Sapo Formation; these units characterize the final infilling
of the Cafiadon Asfalto Basin, Chubut Province, Patagonia, Argentina (Figure 1A, B). The
Lefipan Formation is a siliciclastic unit with continuous intercalated sandstones and mudstones
with some coquinas and conglomerates (Medina and Olivero, 1994). The age of the Lefipan
Formation is constrained by biostratigraphic proxies to be Maastrichtian/Danian (Barreda et al.,
2012). The Lefipan Formation has been interpreted as grading from estuarine or tide-dominated

deltaic conditions in the Maastrichtian to a more open marine environment in the Danian, as part
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of a shallow embayment (named as Paso del Sapo embayment by Scasso et al., 2012) in the
southern branch of the Kawas Sea (Casamiquela, 1978; Goin et al., 2016). This setting
corresponds approximately to a paleolatitude of 45 to 48°S in a warm-temperate climatic belt
(Olivero and Medina, 1994; Scotese, 2004; Nafiez and Malumidn, 2008; Caneo et al., 2021;
Scasso et al., 2012).

One of the best exposures of the Lefipan Formation corresponds to the San Ramoén
Section (Figures 1C, 2), located 20 km W of Paso del Sapo village and 3 km south of the Chubut
River. This stratigraphic section is approximately 400 m thick, 270 m of which are of
Maastrichtian age (Scasso et al., 2012). The studied bryozoans were collected from a single
fossil-bearing bed indicated as PLE —after Perfil Lefipan East— on the figured section (= LefE as
detailed in Donovan, et al., 2016, 2018; Wilf et al., 2017; Escapa et al., 2018; Stiles et al., 2020)
(Figure 1C). The stratigraphic position of the PLE lies within the terminal Maastrichtian,
presumably a few stratigraphic meters above the monotypic Corbicula assemblage and 21.5 m
below the lower Paleocene (lower Danian) Turritella marker bed as described in Scasso et al.,
(2012) (Figure 1C).

Five facies associations and eight biofacies were recognized from the Lefipan Formation
by Scasso et al. (2012). PLE belongs to lithofacies H2 (weakly bioturbated heterolithics), and
consists of horizontally laminated mud-sand couplets with coaly plant remains in the muddy part.
Sedimentary environments for H2 correspond to tidal flats near vegetated coasts (marsh) along
the margins of tide-dominated delta channels with substantial salinity reduction at the K/Pg
boundary, changing to oxygenated subtidal transitional environments with rapid sedimentation
and frequent changes in salinity in the Danian (Scasso et al., 2012). In this sense, sand deposition

occurred during periods of current activity and mud deposition during tidal slack-water periods
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(Scasso et al., 2012). Further, H2 is often found around the K/Pg boundary within upper levels of
Facies Association III (tidal channel, tidal gully and tidal flat deposits) at the San Ramon Section
(Scasso et al., 2012). The following biofacies have been associated, but not necessarily restricted
to the lithofacies H2: Struthioptera-Panopea association in the Maastrichtian, Corbicula faunal
assemblage at the K/Pg boundary, and Corbicula-Venericardia followed by Meretrix-Ledina
associations in the early Danian (Scasso et al., 2012). The former authors did not record
bryozoans associated with the lithofacies, biofacies mentioned above or with any other fossil-

bearing bed from the Lefipan Formation.

3. Material and methods

3.1. Material preservation and preparation
Bryozoans appear as adjacent and nearly neighbouring colonies encrusting plant leaves.

They are regularly preserved in two ways: attached to plant leaves with exposed frontal surfaces
or as natural moulds produced by sediment infilling. In the first case, morphological
characteristics are poorly preserved. In the second, a silicon rubber cast was prepared for one
sample following Kelly and McLachlan (1980). Similar preservation was described in Dick et al.
(2009). Samples were cleared of sediment with a hand brush, and some were coated with
sublimated magnesium oxide for the first optical microscopy exploration (Jeffords and Miller,

1960).

3.2. Morphological data collection
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Linear measurements were obtained on digital images using Image J software (Schneider
et al., 2012; https://imagej.net). Coated specimens were photographed optically with digital
cameras at the Museo Paleontologico Egidio Feruglio (MEF). Some details were also
photographed from uncoated specimens with a Jeol JSM-6460LYV scanning electron microscope
(SEM) in low vacuum and backscattered electron signal conditions (at ALUAR S.A., Puerto
Madryn, Chubut). Because of the low relief of the colonies they are challenging to photograph.
All morphological measurements are in millimetres, and they are presented as arithmetic mean
(Mean), sample standard deviation (SD), coefficient of variation (CV), minimum and maximum
values (MIN and MAX respectively), and number of measurements made (N). Measurement
abbreviations: autozooid length as seen on colony surface (ZL); autozooid width as seen on

colony surface (ZW).

3.3. Repository and institutional abbreviation
Studied specimens are stored under the prefix MPEF-PI at the MEF's paleo invertebrate

collection in Trelew, Chubut, Argentina.

4. Systematic paleontology

Phylum Bryozoa Ehrenberg, 1831
Classs Gymnolaemata Allman, 1856
Order Cheilostomata Busk, 1852

Suborder Membraniporina Ortmann, 1890
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Superfamily Membraniporoidea Busk, 1852
Family Electridae Stach, 1937
Genus Conopeum Gray, 1848

Type species. Millepora reticulum Linnaeus, 1767, Recent, North Atlantic Ocean.

Occurrence. Worldwide. Upper Cretaceous to Recent.

Remarks. Based on features observed, our specimens are assigned to Conopeum. Key diagnostic
features of Conopeum include the presence of a single, non-twinned ancestrula; development of
normally unilaminar, multiserial encrusting colonies; elongate autozooids with extensive opesia;
gymnocyst absent or poorly developed relative to the cryptocyst; and absence of ovicells and
avicularia (after Hayward and Ryland, 1998; Dick et al., 2014; Gordon et al., 2020; Taylor and
Rogers, 2021). Our specimens align closely with the defining traits of Conopeum.

Conopeum differs from the two Maastrichtian Conopeum-like genera Eokotosokum
Taylor and Cuffey, 1992 and Bullaconopeum Taylor, 1995 in the absence of two large
distolateral spine bases and four prominent gymnocystal tubercles, respectively (see Taylor and
McKinney, 2006). The Albian/Maastrichtian genus Iyarispora Martha, Taylor and Rader, 2019
differs from Conopeum mainly in having some zooids with calcified closure plates containing
pores (Martha et al., 2019; Taylor and Rogers, 2021). The Cenomanian/Maastrichtian genus
Heteroconopeum Voigt, 1983 differs from Conopeum in having erect colonies comprising
narrow, transversally cylindrical branches with distinct endozone and exozone (Voigt, 1983;

Taylor and Rogers, 2021).
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Therefore, based on these comparative morphological characteristics, Conopeum remains

the most suitable genus for the taxonomic assignment of our specimens.

Conopeum foliorum new species
Figures 3-5; Table 1

LSID identifier. urn:lsid:zoobank.org:act:6D236CAS5-2EBE-4630-A800-C24B6FOFFB2A

Derivation of name. In reference to its occurrence attached to leaves of diverse terrestrial plants,

foliorum (Latin) of the leaves.

Material. Holotype: MPEF-PI 7101-1; paratypes: MPEF-PI 7101-2; MPEF-PI 7101-3; MPEF PI
7102-1; MPEF_PI 7102-2; MPEF_PI 7102-3; MPEF _PI 7106 (a-b). Additional material:
MPEF PI 7103 (a-b); MPEF_PI 7104 (a-b); MPEF PI 7105 (a-b); MPEF_PI 7107 (a-b). From
the PLE heterolithic fossil-bearing bed located 20 km west of Paso del Sapo village and 3 km
south of the Chubut River, 21.5 m stratigraphically below the K/Pg boundary at the San Ramoén

section, Lefipan Formation (Canadon Asfalto Basin).

Diagnosis. Colony unilaminar, spot- to sheet-like. Ancestrula budding a distal and two
distolateral zooids. Autozooids medium-sized, elongate rectangular with extensive opesia,
arranged in a brickwall-like alternation pattern between adjacent rows; gymnocyst absent;
cryptocyst narrow forming a thin mural rim, with rarely preserved rounded granules; spine bases

and closure plates not observed, presumably absent. Kenozooids not observed.



179  Description. Colony encrusting, unilaminar and multiserial, with radial growth pattern (Figures
180 3A-B;4A-B; 5A). Early astogeny is commonly preserved. The ancestrula is single, oval in

181  outline; a distal and two distolateral zooids budding directly from the ancestrula, the other three
182  to four periancestrular zooids budding from postancestrular zooids (Figures 3C,E; 4B-C,F; 5B-
183 (). Zooids are monomorphic and of medium average size. In the zone of early astogeny

184  autozooids are oval to polygonal in shape, arranged in irregular quincunx. In the zone of

185  astogenetic repetition, they are larger and longitudinally rectangular, more regular and linearly
186  arranged, in a brickwall-like alternation pattern between adjacent rows (Figures 3D; 4D-E; 5D).
187  In the zone of astogenetic repetition, row bifurcations preceded by a wide zooid and followed by
188  two narrow zooids, one of which is longer than the other (Figures 3D; 4D-E; 5D); occurring

189  approximately after two to six consecutive zooids. Extensive opesia occupy almost the entire
190  frontal surface of autozooids. Gymnocyst presumed absent. Cryptocyst narrow, forming a thin
191  mural rim; normally smooth and worn, with rounded granules rarely preserved (Figure 5D).

192  Spines bases were not observed and presumed absent. A thin fissure marks zooidal boundaries.
193  Closure plates not observed. Septula not observed. Kenozooids not observed, presumed absent.
194

195  Remarks. Conopeum foliorum n. sp. resembles the Holocene to Recent type species Conopeum
196  reticulum (Linnaeus, 1767) (after Lopez-Gappa and Pereyra, 2020), by having longitudinally
197  rectangular zooids, by the lack of closure plates, and by having a comparable autozooidal length
198  (range 0.290 — 0.509, mean 0.392 mm vs range 0.410 — 0.530 mm) and autozooidal width (range
199  0.129-0.271, mean 0.201 vs range 0.210 — 0.320 mm). However, the type species differs by
200 having a vestigial gymnocyst, cryptocyst strongly developed proximally, and often two triangular

201 kenozooids present at the proximolateral corners of each autozooid.
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Conopeum foliorum n. sp. resembles the extant Conopeum seurati (Canu, 1928), as re-
described by Gordon et al. (2020), in having elongated autozooids, often twice as long as wide,
and a narrow cryptocyst ornamented with rounded granules. However, C. seurati differs from C.
foliorum n. sp. by having larger autozooids (range 0.432 — 0.722 mm, mean 0.574 mm vs mean
0.392 mm), longitudinally sub-rectangular to elongated-oval in shape, cryptocyst surrounded by a
narrow furrow, a slight proximal gymnocyst, up to two distolateral spine bases, and adventitious
kenozooids.

Conopeum flumineum Taylor and Roger, 2021 from the Upper Cretaceous (upper
Campanian) of the northwestern United States, is closely related to C. seurati, and also is similar
to C. foliorum n. sp. in having a similar zooid length (range 0.291 — 0.629, mean 0.444 mm vs
mean 0.392), autozooids longitudinally rectangular in outline shape, and in the lack of closure
plates; however, it differs from the new species by its wider autozooids (range 0.291 — 0.629,
mean 0.295 mm vs mean 0.201 mm), with narrow peripheral gymnocyst, cryptocyst surrounded
by a narrow furrow, and the occasionally developed intramural buds. Furthermore, C. foliorum n.
sp. shows autozooids normally arranged in well-defined longitudinal rows, in a brickwall-like
alternation pattern between adjacent rows, unlike C. flumineum.

Conopeum foliorum n. sp. resembles Conopeum okaiana (Canu, 1911), from the lower
Danian of northern Patagonia, in having no gymnocyst and no pustulose, shelf-like cryptocyst.
However, the Danian species differs from C. foliorum n. sp. mainly by its longer (mean 0.476
mm vs mean 0.392 mm) and wider (mean 0.395 mm vs mean 0.201 mm) rounded hexagonal
autozooids with oval or inverted pear-shaped opesia and imperforate closure plates in some

autozooids.

10
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?Conopeum sp., from the Upper Cretaceous (upper Campanian) of New Mexico, United
States (Kues, 1983) differs from C. foliorum n. sp. by its small distal spine bases and longer
autozooids (~0.55 mm vs mean 0.392 mm). In addition, Conopeum sp. from the Upper
Cretaceous (upper Campanian) of southern Utah, United States (Roberts et al., 2008) differs from
C. foliorum n. sp. by its substantially longer autozooids (~0.70 mm vs mean 0.392 mm).
Conopeum foliorum n. sp. also differs from bryozoan specimens identified as
‘membraniporimorph’ cheilostomes encrusting an angiosperm tree-leaf from the Upper
Cretaceous (Coniacian) in Lower Silesia, Poland (Halamski and Taylor, 2022) by its substantially
longer autozooids (~0. 4 mm vs ~0. 3 mm).

Conopeum foliorum n. sp. from the Lefipan Formation differs from other Upper
Cretaceous/Danian Conopeum species by normally having longitudinally rectangular-shaped
autozooids (including the extensive opesia of the same shape), and presumably lacking
gymnocyst, pustulose shelf-like cryptocyst, closure plates, and polymorphs. The authors know of
no other comparable species. Although the available material may lack the reliability needed for
discerning some additional fine diagnostic features, Conopeum foliorum n. sp. is not conspecific
with any of the known Upper Cretaceous/Danian or younger species referred to Conopeum,

supporting the introduction of a new species for this taxon.

5. Paleoecology and paleoenvironment

Previous studies have regarded the Paso del Sapo Embayment as an environmental setting

with warm-temperate to warmer conditions and some degree of seasonality. Palynological
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analyses indicate warm-temperate to subtropical conditions during the deposition of the Lefipan
Formation (Baldoni and Askin, 1993; Nafiez and Malumidn, 2008). Additionally, the presence of
vegetation adapted to warm and humid conditions, including shore-line mangroves, further
suggests a tropical environment (Barreda et al., 2012). Leaf margin analysis (LMA) and leaf area
analysis (LAA) have estimated an inferred continental mean annual air temperature (MAT) of
approximately 18.5 °C, along with a mean annual precipitation of about 1000 mm (Ctneo et al.,
2021). Evidence of seasonality in the lower Lefipan Formation (Maastrichtian) at the Cafiadon
del Loro locality has been inferred from foliar dimorphism of Araucaria lefipanensis
(Anduchow-Colombo et al., 2018). Moreover, quantitative estimations indicate a mean annual
sea surface temperature (SST) of around 27 °C for the upper Maastrichtian of the Lefipan
Formation at the San Ramon section, approximately 15 m below the Turritella marker bed
(Vellekoop et al., 2017).

Conopeum foliorum n. sp. is inferred to be from a shallow, likely brackish, environment
within the Lefipan Formation at the San Ramoén section. It came from the muddy component of a
horizontally laminated heterolithic bed, associated with coaly plant remains and a few specimens
of euryhaline molluscs (i.e., Corbicula, Ledina, ?Nucula). This sedimentary environment
corresponds to tidal flats (lithofacies H2 of Scasso et al., 2012), supported by the presence of
typical euryhaline bivalves, flat-spiral agglutinated foraminiferans and a high abundance of
peridinioid dinocyst suggesting brackish conditions close to the K/Pg boundary (Nafiez and
Malumian, 2008; Vellekoop et al., 2017).

The membraniporiform growth habit of Conopeum foliorum n. sp. represents one of the most
opportunistic among bryozoan morphotypes, allowing rapid-growth and early reproduction and

colonization of surfaces under suitable conditions (Taylor, 2020; Taylor and Rogers, 2021; and
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references therein). This growth pattern is common in shallow shelf environments, ranging from
intertidal to upper tidal settings with moderate to high energy levels, where it encrusts hard to
flexible substrates (Bone and Wass, 1990; Nelson et al., 1988; Smith, 1995).

Many extant membraniporiform bryozoans, including some comparable Conopeum species,
thrive in brackish settings (i.e., lagoons, deltas, estuaries) (Occhipinti Ambrogi, 1985; Poluzzi
and Sabelli, 1985; O’Dea and Okamura, 1999; Taylor, 2020, and references therein). For
example, Conopeum reticulum prefers nearshore environments and has been found in estuarine
and euhaline harbours (Lopez-Gappa and Pereyra, 2020), while Conopeum seurati exhibits
tolerance to mesohaline to euhaline conditions (14 %o to 33 %o) and even oligohaline (< 5 %o)
waters (Occhipinti Ambrogi, 1985; O’Dea and Okamura, 1999), categorized recently as
euryhaline (Taylor and Rogers, 2021). These and other brackish water bryozoans typically form
low-diversity communities dominated by non-mineralized ctenostomes and/or cheilostomes with
weakly calcified skeletons (Taylor, 1987, 2005). In addition, some occurrences of brackish water
cheilostome bryozoans have also been identified in the upper Campanian of the Western Interior
Seaway (WIS) in the United States (Kues, 1983; Roberts et al., 2008; Taylor and Rogers, 2021).

Upper Cretaceous encrusting cheilostomes demonstrated a versatile ability to colonize
various substrates, including organic and inorganic settlements (Taylor, 2020, and references
therein). They are commonly found cemented to biogenic hard substrates such as mollusc shells
(Aguirre-Urreta and Olivero, 1992; Taylor and McKinney, 2006; Taylor, 2020; Brezina et al.,
2021). In rare cases, bryozoans encrusting dinosaur bones were reported from Upper Cretaceous
rocks of the WIS (Kues, 1983; Taylor and Rogers, 2021). Epiphytic bryozoans have been
documented in the Upper Cretaceous (Maastrichtian) of the Netherlands, associated with fossil

sea-grass (Voigt, 1981). Recently, bryozoans encrusting an angiosperm tree-leaf were found in
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Upper Cretaceous (Coniacian) rocks of Poland (Halamski and Taylor, 2022). Conopeum foliorum
n. sp. utilized remains of both angiosperm and gymnosperm leaves from diverse terrestrial plants
as a substrate (e.g., cf. Agathis and several dicot morphotypes).

Bryozoans attach to the substrate/host for life, necessitating favourable environmental
conditions for larval settlement and colony growth, including substrate availability, low
sedimentation rates, and sufficient food supply. Given these requirements, the muddy substrate
found at the PLE fossil horizon likely posed challenges to larval settlement for many suspension
feeders, including encrusting bryozoans. Conversely, high sedimentation rates could potentially
impair the filter apparatus, while limited food supply might restrict colony growth. In this regard,
we presumed the required environmental conditions were sufficiently favourable for the
settlement and growth of Conopeum foliorum n. sp. Based on sedimentological and
paleoecological data, this setting is interpreted as tidal flats close to vegetated coasts (marsh)
along the margins of tide-dominated delta channels, under significant stress caused by salinity
fluctuations (Scasso et al., 2012). Therefore, Conopeum foliorum n. sp. is considered an ancient
opportunistic fast-growing taxon displaying euryhaline habits and preferably colonizing flexible
substrates composed of terrestrial plant leaves deposited in a brackish-water nearshore

environment.

6. Concluding remarks

We present a new finding regarding a Cretaceous cheilostome bryozoan that encrusts terrestrial

plant leaves, along with a comprehensive taxonomic analysis. We describe and illustrate
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Conopeum foliorum n. sp. discovered in the upper Maastrichtian strata of the Lefipan Formation
using contemporary taxonomic methodologies and microscopy techniques. This newly identified
taxon in Patagonia likely thrived in a shallow, well-lit, brackish environment influenced by tides,
situated within a warm climate at the northwest margin of the Paso del Sapo embayment. Our
discoveries also establish Conopeum foliorum n. sp. among the earliest known bryozoans from
brackish water environments and the second oldest documented instance of bryozoan encrusting

terrestrial plant leaves, representing the first such finding in South America.
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Figure captions

Figure 1. Location map and stratigraphic section of the K/Pg boundary at San Ramoén section,
Lefipan Formation. A. Localization of the study area. B. Upper Cretaceous/Paleogene outcrops of
Paso del Sapo/Lefipan Formations, including the study area. C. The partial stratigraphic section
of the study area corresponds to the upper Maastrichtian/Danian beds of the Lefipan Formation in
the San Ramon section. Studied bryozoans were collected from a single fossil-bearing bed
indicated as PLE on the figured section (42°40'12"S, 69°49'60" W). The lower Paleocene (lower

Danian) is indicated by the Turritella bed (Scasso et al., 2012).

Figure 2. The northern face of a high cliff shows outcrops of the Lefipan Formation at the San

Ramon section, south of the Chubut River.

Figure 3. Digital camera photographs and scanning electron micrographs of selected specimens
of Conopeum foliorum n. sp. encrusting a leaf remain of cf. Agathis sp. described in Escapa et
al., (2018). A. General view of leaf specimen MPEF-PB 8171 overgrowth by numerous bryozoan
colonies; (1) MEF-PI 7101-1 (Holotype), (2) MEF-PI 7101-2 (Paratype), (3) MEF-PI 7101-3
(Paratype), scale bar = 10 mm. B. SEM detail of the specimens MPEF-PI 7101-1 (Holotype) and
MPEF-PI 7101-2 (Paratype) in (A); showing encrusting, multiserial colonies with radial growth
pattern, scale bar = 1 mm. C. SEM detail of early astogeny of specimen MPEF-PI 7101-1

(Holotype) in (B); showing ancestrula (*) and periancestrular zooids, scale bar = 0.5 mm. D.
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SEM detail of specimen MPEF-PI 7101-1 (Holotype) in (C); showing elongate rectangular
autozooids arranged in a brick-wall pattern and two bifurcated rows, scale bar = 0.1 mm. E. SEM
detail of early astogeny of specimen MPEF-PI 7101-2 (Paratype) in (B); showing ancestrula (*)

and periancestrular zooids, scale bar = 0.01 mm.

Figure 4. Digital camera photographs and scanning electron micrographs of selected specimens
of Conopeum foliorum n. sp. encrusting a dicot leaf remain. A. General view of leaf specimen
completely overgrowth by numerous bryozoan colonies; (1) MEF-PI 7102-1 (Paratype), (2)
MEF-PI 7102-2 (Paratype), (3) MEF-PI 7102-3 (Paratype), scale bar = 10 mm. B. SEM detail of
the specimen MPEF-PI 7102-1 (Paratype) in (A), scale bar = 0.5 mm. C. Detail view of early
astogeny of specimen MPEF-PI 7102-1 (Paratype) in (B); showing ancestrula (*) and
periancestrular zooids, scale bar = 0.05 mm. D. SEM detail of an autozooid (up left in B), scale
bar = 0.1 mm. E. SEM detail of specimen MPEF-PI 7102-1 (Paratype) (down left in B); showing
elongate rectangular autozooids arranged in a brick-wall pattern and row bifurcation, scale bar =
0.2 mm. F. SEM detail of early astogeny of specimen MPEF-PI 7102-2 (Paratype) in (A);

showing ancestrula (*) and periancestrular zooids, scale bar = 0.01 mm.

Figure 5. Digital camera photographs and scanning electron micrographs of selected specimens
of Conopeum foliorum n. sp. encrusting a dicot leaf remain. A. General view of leaf specimen
MPEF-PI 4795 overgrowth by numerous bryozoan colonies; and showing insect-damage (down
left), scale bar = 20 mm. B. SEM detail of the specimen MPEF-PI 7106 (Paratype); showing
encrusting, multiserial colonies with radial growth pattern, ancestrula (*) and periancestrular

zooids, scale bar = 1 mm. C. Detail view of early astogeny of specimen MPEF-PI 7106
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(Paratype); showing ancestrula (*) and periancestrular zooids, scale bar = 0.2 mm. D. SEM detail

of an autozooid (in B), scale bar = 0.1 mm. E. SEM detail of specimen MPEF-PI 7106 (Paratype)

(up left in C); showing elongate rectangular autozooids arranged in a brick-wall pattern and row

bifurcation; arrows point to rounded granules, scale bar = 0.2 mm.
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Table 1. Measurements of Conopeum foliorum n. sp. taken from the type material (i.e. holotype

and paratypes; n = 7). Values are expressed in mm; CV in %.

Mean SD CvV MIN MAX N

7L 0.392 0.045 11.426 0.290 0.509 175
W 0.201 0.039 19.511 0.129 0.271 175
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