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Abstract

Like the black knight in the classic Monty Python movie, grand scientific
challenges such as protein folding are hard to finish off. Notably, AlphaFold
is revolutionizing structural biology by bringing highly accurate structure
prediction to the masses and opening up innumerable new avenues of re-
search. Despite this enormous success, calling structure prediction, much
less protein folding and related problems, “solved” is dangerous, as doing
so could stymie further progress. Imagine what the world would be like if
we had declared flight solved after the first commercial airlines opened and
stopped investing in further research and development. Likewise, there are
still important limitations to structure prediction that we would benefit from
addressing.Moreover, we are limited in our understanding of the enormous
diversity of different structures a single protein can adopt (called a confor-
mational ensemble) and the dynamics by which a protein explores this space.
What is clear is that conformational ensembles are critical to protein func-
tion, and understanding this aspect of protein dynamics will advance our
ability to design new proteins and drugs.
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INTRODUCTION

The protein folding problem is a grand challenge that has long been recognized to have multiple
parts (1). Historically, two major questions have motivated the field. First, how can one predict
the structure of a protein from its amino acid sequence? Second, how does a protein get to this
final structure? Or, put another way, what is the mechanism of protein folding?

Work to understand protein folding mechanisms led to an even broader question: What does
the energy landscape of a protein look like? The core idea is that a protein does not have a single
structure. Rather, a protein stochastically hops between an enormous set of alternative structures,
often called an ensemble. This biased random walk is often referred to as protein dynamics. The
probability that a protein adopts any one structure is related to the energy of that structure, with
proteins spending exponentially more time in lower-energy structures with more energetically
favorable interactions (e.g., hydrogen bonding in an α-helix) than in structures with less favorable
interactions (e.g., strained torsions). A protein’s structural ensemble can then be conceptualized
as a rugged energy landscape, full of low-energy minima separated by ridges and mountains made
up of structures with higher energies (Figure 1). From this perspective, predicting a protein’s
structure is a matter of finding the lowest-energy minima in the energy landscape, whereas the
folding mechanism is the dominant path(s) from the unfolded state to the folded state. The energy

High energy
(low probability)

Low energy
(high probability)

Figure 1

A schematic of an energy landscape representing the conformational ensemble of the enzyme TEM
β-lactamase. The structure at the bottom has the lowest energy (highest probability) and is what one would
expect to see in a crystal structure or AlphaFold prediction. The structures moving toward the top of the
figure have progressively higher energy (lower probability). For example, the next two structures up have
cryptic pockets (highlighted by the orange and magenta residues) that are absent in the lowest-energy
structure but that have been shown to exist experimentally and provide new opportunities for drug design.
The other structures represent partially and fully unfolded structures that are known to be important for the
folding mechanism of this protein. Figure adapted with permission from Knoverek et al. (3).
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landscape also holds a wealth of other information. For example, there is growing recognition that
protein dynamics are often critical for function (2, 3). Protein dynamics also promise new oppor-
tunities for drug discovery. For example, there is growing interest in targeting cryptic pockets that
are absent in experimentally derived structures but open due to protein motion (4). In a recent
study, we found that at least half of a set of 5,000 proteins that were previously thought to lack a
druggable pocket have cryptic pockets that present new opportunities for drug design (5). Results
like these give a sense of the broad relevance of energy landscapes and protein dynamics.

AlphaFold represents a huge advance in the protein folding field, most notably for structure
prediction (6). Briefly, AlphaFold is a deep learning algorithm that takes the primary amino acid
sequence of a protein as input and predicts the structure of the protein as would be observed with
an experimental technique like X-ray crystallography or cryo-electronmicroscopy (cryoEM).The
algorithm was trained on the Protein Data Bank (PDB) (7), which is a publicly available repository
of over 200,000 protein structures that have been accumulated over decades through a require-
ment that structural biologists deposit their structures during peer review of their work. Prior to
AlphaFold, other algorithms had been developed to predict protein structures using a combina-
tion of physics and machine learning based on available structures. For decades, the performance
of these methods was regularly tested through blind predictions via the critical assessment of pro-
tein structure prediction (CASP) competition (8). While the field made great progress over time,
it had hit somewhat of a plateau in recent years. AlphaFold broke this trend, making a substan-
tial improvement in accuracy. Its predictive power is one of the most compelling examples of the
enormous power that computational methods have to offer biomedical research.

This review covers the implications of AlphaFold for understanding protein folding, including
the original questions about structure prediction and folding mechanisms as well as the broader
question about energy landscapes. A major theme is the need to go beyond single structures and
understand energy landscapes, as others have also pointed out (9).

FIELDS ARE GENERALLY ADVANCED, NOT SOLVED

Solved is a dangerous word when it comes to grand scientific challenges. Such problems tend to
evolve rather than to be totally completed. While calling a problem solved can be an appropriate
homage to a tremendous advance, it can also backfire by impeding investment in the next major
advance(s).

AlphaFold is a tremendous advance that has solved the structure prediction problem akin to
the way the first commercial airline flight in 1914 solved the flight problem.That first commercial
flight carried a single passenger from St. Petersburg to Tampa, Florida. While quaint by today’s
standards, that flight marked the beginning of routine flight for the masses, regardless of how
much or little they may know about flight. It would not have been possible if we had called flight
solved after the Wright brothers’ first flight in 1903. Furthermore, my recent transatlantic flight
with ∼230 other passengers would not have been possible if we had stopped investing in research
on flight after that first commercial flight in 1914.

Like that first commercial flight, one of the most exciting things about AlphaFold is the new
opportunities it creates by making structure prediction a routine process that is available to the
masses rather than just expert users. For example, AlphaFold’s predictions have enabled molecular
replacement solutions to previously unsolvable crystallographic datasets (8, 10, 11). Others are
devising new structure-based hypotheses about biological problems using AlphaFold structures
(12),much as scientists have done with crystal structures since they first became available.Those of
us studying protein dynamics withmolecular dynamics simulations are using AlphaFold structures
as starting points in cases where experimentally derived structures are not available (13). Similarly,
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AlphaFold structures are enabling structure-based drug discovery for targets nobody has solved
experimental structures for yet (14). One can even go to new scales, scanning entire genomes for
interesting features, like new proteins and folds (15–17).

In addition to AlphaFold’s use for different applications, there aremany natural extensions of its
success in structure prediction. For example, there are still limitations when it comes to predicting
the structures of large assemblies or incorporating nonprotein elements into predicted structures,
so improved methods for such applications are needed despite recent progress (18, 19). Efforts to
make open source versions of powerful algorithms akin to AlphaFold are also valuable catalysts
that empower the broader community to contribute new ideas (20, 21).

THE FRONTIER OF CONFORMATIONAL ENSEMBLES

In addition to the new opportunities that AlphaFold creates, the advance also highlights the
frontiers where there are still large gaps in our understanding.

In the case of AlphaFold, themethod’s greatest strength is also its greatest weakness: AlphaFold
predicts a single structure even for proteins that are known to switch between different conforma-
tions as part of their function (22) and is subject to the same limitations as experimental techniques
that resolve a single structure. AlphaFold does not give us the mechanism of protein folding. Fur-
ther, AlphaFold often predicts the same structure for a sequence with a point mutation as it did
for the wild-type sequence (23), just as experimentally derived structures of protein variants are
often indistinguishable (3). Structure-based drug discovery remains difficult (24). Disordered re-
gions that are left unresolved in experimentally derived structures appear as unrealistic swirls in
AlphaFold-predicted structures (25).

One critical frontier that AlphaFold helps highlight, then, is understanding proteins’ confor-
mational ensembles and energy landscapes.The ability to predict such ensembles should reveal the
mechanisms of protein folding and the different structural states that are important to a protein’s
function, whether they are the on/off states of a molecular switch or the different conformations
of a catalytic cycle. One could examine how point mutations or small molecules shift the relative
probabilities of different structures and how these shifts alter the affinities of a protein for different
binding partners (26, 27). Structure-based drug design could become more rational and routine
(28–30), and one could sift through the myriad structures adopted by disordered proteins to find
patterns tied to function.

MACHINE LEARNING AND CONFORMATIONAL ENSEMBLES

In light of AlphaFold’s success at structure prediction, a natural question is what role machine
learning will play in our evolving understanding of conformational ensembles.

A major challenge here is the availability of large amounts of high-quality data, or the lack
thereof. One of the key ingredients of AlphaFold’s success was the availability of the PDB (7).
The PDB is dominated by atomically detailed structures solved by X-ray crystallography, as well
as structures provided by practitioners of nuclear magnetic resonance (NMR) spectroscopy and
cryoEM in the same format. While protein conformational ensembles have been of interest for
many years, there is no analogous repository of high-resolution ensembles in a consistent format.
No doubt many in the community would be happy to contribute to a repository of ensemble data
if there were a clear path to doing so. However, there are a multitude of methods for studying
conformational ensembles and they vary so greatly (e.g., in their spatial and temporal resolution)
that they cannot be represented in a single common format. Hypothetically, one could learn pro-
teins’ conformational ensembles by drawing on disparate data types. However, doing so would be
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far more complicated due to both logistical reasons (e.g., how to amass and organize such data)
and theoretical considerations (e.g., how much weight to put on different types of data).

One possibility is that an algorithm like AlphaFold can succeed in modeling conformational
ensembles given existing resources like the PDB. There are many examples where researchers
have captured different conformations of a single protein and deposited these structures to the
PDB. In principle, one could design a machine learning algorithm that can leverage these exam-
ples of conformational diversity to predict conformational ensembles. Del Alamo et al. (31) took
an early step in this direction by showing that one can trick AlphaFold into generating diverse
predicted structures by asking it to generate structures for different subsets of a large sequence
alignment instead of giving it all the sequence information and asking it for a single structure.
While this approach can be useful, later work showed that it often fails to recapitulate alternative
structures of a protein that are known to exist (32). An added layer of complexity arises because the
number of structures of a given protein in a given conformation that have been deposited to the
PDB does not necessarily reflect the relative probabilities that the protein adopts those different
structures in solution. Therefore, it is unclear how one would train a machine learning algorithm
to capture these physical relationships (33). Difficult does not mean impossible, though, and new
algorithms are being developed to try and capture proteins’ conformational ensembles (32, 34,
35).

Another possibility is that a combination of machine learning and physics-based approaches
will provide a route to predictive models of proteins’ conformational ensembles. One way to
achieve this is by training machine learning algorithms based on large sets of atomically detailed
computer simulations of protein dynamics. The Folding@home project that I lead is providing
a wealth of data to explore this possibility by enlisting citizen scientists from around the world
to help generate atomically detailed molecular dynamics simulations of proteins (36, 37). For ex-
ample, the PocketMiner algorithm for predicting the locations of cryptic pockets was trained on
these data (5). PocketMiner was trained to take a structure from a simulation as input and pre-
dict the probability that a given residue becomes more exposed to solvent due to formation of a
cryptic pocket in a fixed amount of simulation time after that snapshot. We demonstrated that
PocketMiner does an excellent job of predicting if and where cryptic pockets are likely to form
in experimentally derived structures and is likely to work equally well on AlphaFold-predicted
structures. Other labs are training generative models of conformational ensembles by drawing on
simulation data (38–40).

CONCLUSIONS AND FUTURE OUTLOOK

AlphaFold is revolutionizing structural biology by providing routine access to highly accurate
predictions of protein structures. This structural information opens up innumerable avenues of
research.However, important limitations remain, necessitating continued investment in structure
prediction. Moreover, our understanding of protein folding mechanisms and protein dynamics
more broadly remains limited. Further insight into conformational ensembles will advance our
understanding of protein function and dysfunction and enhance our ability to design new proteins
and drugs. As with structure prediction, machine learning is likely to play a prominent role in
advances on these important frontiers.
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