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Abstract

The goal of precision medicine is to utilize our knowledge of the molecular

causes of disease to better diagnose and treat patients. However, there is a sub-

stantial mismatch between the small number of food and drug administration

(FDA)-approved drugs and annotated coding variants compared to the needs

of precision medicine. This review introduces the concept of physics-based pre-

cision medicine, a scalable framework that promises to improve our under-

standing of sequence–function relationships and accelerate drug discovery. We

show that accounting for the ensemble of structures a protein adopts in solu-

tion with computer simulations overcomes many of the limitations imposed by

assuming a single protein structure. We highlight studies of protein dynamics

and recent methods for the analysis of structural ensembles. These studies

demonstrate that differences in conformational distributions predict functional

differences within protein families and between variants. Thanks to new com-

putational tools that are providing unprecedented access to protein structural

ensembles, this insight may enable accurate predictions of variant pathogenic-

ity for entire libraries of variants. We further show that explicitly accounting

for protein ensembles, with methods like alchemical free energy calculations

or docking to Markov state models, can uncover novel lead compounds. To

conclude, we demonstrate that cryptic pockets, or cavities absent in experi-

mental structures, provide an avenue to target proteins that are currently con-

sidered undruggable. Taken together, our review provides a roadmap for the

field of protein science to accelerate precision medicine.
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1 | INTRODUCTION

The goal of precision medicine is to utilize our knowl-
edge of the molecular causes of disease to better diagnose
and treat patients. In the precision medicine framework,
diseases are subdivided by their underlying etiologies,
and treatment is based on a patient's unique genetic
background, unlike the current state of medicine where
most patients with a given diagnosis are treated the same
way. Precision medicine has the potential to substantially
improve response rates to therapies and reduce unwanted
side effects. There has been some early success in adopt-
ing precision medicine. Notable examples include preci-
sion oncology, pharmacogenomics, and the treatment of
cystic fibrosis where patients are matched to treatments
based on their mutations (Ashley, 2016).

However, significant hurdles remain to fully realizing
the promise of precision medicine. Firstly, the number of
variants that need to be annotated is daunting. To use
just protein coding missense variants as an example,
there are almost 500,000 missense variants of unknown
clinical significance in the ClinVar repository of genetic
variants (Landrum et al., 2018). Additionally, even when
patient carry pathogenic variants, there are rarely specific
molecular therapies that treat their particular disease
process. Precision medicine requires an arsenal of drugs
that is much larger than the current pool of FDA-
approved therapies.

Computational modeling has the potential to bridge
the mismatch between the low numbers of annotated
variants and FDA-approved drugs and the needs of preci-
sion medicine. Experiments from biochemical assays to
animal models can provide insight into how a variant
affects function at different scales. However, these experi-
ments are typically low throughput and require substan-
tial time and effort. More high throughput approaches,
like deep mutational scanning, can exhaustively deter-
mine how mutations in a protein affect its function, but
they are difficult and expensive to perform (Fowler &
Fields, 2014). Similarly, high throughput screening with
purified proteins, cell lines, or complex organoids can
uncover new lead compounds (Gilmartin et al., 2014;
Macarron et al., 2011; Malik et al., 2011). However, lead
compounds revealed in these assays are often difficult to
improve without a detailed understanding of how a com-
pound binds its target. For these reasons, there has been
great interest in using computational modeling to
improve variant interpretation and drug discovery. In
principle, computational modeling can be used to predict
the functional impact of a very large number of variants
or screen large libraries of drug candidates.

To date, the field has focused primarily on solving
structures of proteins and using these to understand

sequence–function relationships and discover new drugs.
Biophysicists have typically placed great weight on all-
atom models of a protein structure, which are typically
generated through x-ray crystallography or, increasingly,
cryogenic electron microscopy (Chim et al., 2021;
Martynowycz et al., 2021; Scapin et al., 2018). More
recently, with the emergence of highly accurate predic-
tive models of protein structures like AlphaFold, we now
have access to reliable structures for nearly all human
proteins (Jumper et al., 2021). It has long been suggested
that protein structure can inform which variants are
likely to be pathogenic (Schmidt et al., 2023). After all,
variants that fall in functionally relevant parts of a pro-
tein (e.g., an active site) may be more likely to have dele-
terious consequences. In theory, a single structure could
aid in the interpretation of all missense variants that
affect a given protein. Additionally, structure-based drug
design offers the tantalizing promise of rational
drug design. By docking small molecules against experi-
mental or predicted structures, it should be possible to
identify novel drugs against targets identified in popula-
tion genetic studies.

However, single structures have substantial limita-
tions that constrain their utility for variant interpretation
and drug discovery. Combining machine learning with
protein structure to predict variant pathogenicity has
shown substantial promise, but even the best-performing
models fail in many cases and usually do not distinguish
between activating and inactivating mutations (see
Section 2). An illustrative example comes from myosin
motors, a class of proteins frequently mutated in human
disease (Trivedi et al., 2020). To predict the effects of
mutations based on a single structure, one typically uses
heuristics, like assuming that mutations at nearby sites
have similar effects. However, in many cases, myosin
mutations cause opposite phenotypes (i.e., hypertrophic
cardiomyopathy vs. dilated cardiomyopathy) but are
found at neighboring residues, or even at the same resi-
due (Lehman et al., 2023). Hence, a structure can provide
some clues as to how a variant will affect function, but
the predictive power of this approach is limited.

Similarly, rational drug design methods largely
assume that proteins adopt a single structure, which is
greatly limiting in several ways. Firstly, this assumption
limits drug design to inhibiting proteins by identifying
compounds that bind key functional sites, thereby physi-
cally blocking the protein from performing functions like
catalysis or binding other proteins. It is all but impossible
to imagine designing a drug to enhance a desirable func-
tion if proteins are essentially rigid bodies. Moreover,
many proteins must be written off as undruggable
because their structures lack pockets where an inhibitor
has the potential to bind tightly enough to serve as a
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valuable drug (Borrel et al., 2015; Cox et al., 2014;
Hopkins & Groom, 2002). Finally, current computational
drug design methods struggle to quantitatively predict
protein–ligand binding affinities, suggesting there is a
fatal flaw in the single structure assumption (Jones
et al., 2021; Meller, de Oliveira, et al., 2023).

A long-standing hypothesis is that accounting for the
entire ensemble of structures a protein adopts in solution
would be vastly superior to assuming a single structure
encodes all the relevant information (Karplus &
McCammon, 2002; Prakash et al., 2015; Stank
et al., 2016). For example, sequence variation can pro-
duce distinct biochemical phenotypes by modulating the
relative probabilities of an ensemble of conformations
primed for different functional roles. There is a growing
body of evidence for this hypothesis (see Section 2). For
example, variants that cause increases in the probability
of structures with a favorable alignment of catalytic resi-
dues lead to elevated catalytic efficiencies (Lim
et al., 2001; Soeung et al., 2020). Similarly, within protein
families, differences in the distributions of conformations
adopted in simulation can predict functional differences,
even when crystal structures and phylogeny cannot
(Porter et al., 2020; Sultan et al., 2018). Thus, our ability
to predict which patient missense variants are pathogenic
is likely to improve when we explicitly consider protein
ensembles.

Our ability to discover new drugs will also greatly
improve thanks to an ensemble perspective. A protein–
ligand affinity is an ensemble measurement, which
reflects contributions from each state in the protein struc-
tural ensemble and that of the ligand. Thus, by incorpo-
rating knowledge of proteins' conformational ensembles,
we may be able to finally develop universally accurate
methods for predicting protein–ligand affinity. Addition-
ally, we may be able to design specific allosteric modula-
tors of proteins that are currently considered
undruggable but may form cryptic pockets in their
excited states.

Here, we describe how computer simulations are pro-
viding a general and scalable means to take an ensemble
perspective toward sequence–function relationships and
drug discovery, thereby enabling a physics-based
approach to precision medicine. We will highlight excit-
ing new uses of Markov state models (MSMs) and deep
learning to predict the effects of missense variants and
perform virtual screening (Chodera & Noé, 2014; Corso
et al., 2022; Gentile et al., 2022; Husic & Pande, 2018;
Meller, Bhakat, et al., 2023; Prinz et al., 2011). In addition
to facilitating traditional drug discovery approaches, this
perspective also opens novel opportunities. For example,
cryptic pockets that are absent in structural snapshots of
a protein but form due to protein dynamics are providing

new targets for drug discovery. Finally, we discuss some
of the remaining hurdles standing between the current
state of physics-based precision medicine and direct
impact on clinical care.

2 | PREDICTING SEQUENCE–
FUNCTION RELATIONSHIPS FROM
AN ENSEMBLE PERSPECTIVE

Models that can predict function from sequence are
urgently needed to interpret the effects of sequence varia-
tion within protein families and in patient cohorts.
Within protein families, closely related isoforms often
perform different functions because of variation in under-
lying biochemical parameters (Bloemink & Geeves, 2011;
Greenberg et al., 2015; Palzkill, 2018; Patel et al., 2018;
Porter et al., 2020). For example, some myosin motors
function as cargo transporters while others participate in
filaments to drive muscle contraction (Robert-Paganin
et al., 2020; Trivedi et al., 2020). Structural biologists have
solved structures across several protein families with rele-
vance to human disease, like myosins, kinases, and
G-protein-coupled receptors (GPCRs) (Canagarajah
et al., 1997; Day et al., 2009; Dominguez et al., 1998;
Shiriaeva et al., 2023; Wacker et al., 2017). Comparing
structures of these closely related proteins could, in prin-
ciple, provide clues as to why proteins within the same
family vary in their function. By extension, models which
integrate a protein's structure with its evolutionary his-
tory to predict function could enable exciting avenues in
protein design. For example, it may be possible to predict
what minimal set of mutations is needed to modify the
biochemical properties of naturally occurring proteins
(e.g., modifying a myosin's nucleotide binding
properties).

Moreover, because of the genomic revolution, there is
a growing need for methods that can accurately predict
whether a given protein variant affects function. There
are now almost 500,000 missense variants of unknown
significance in ClinVar and many more likely to be dis-
covered as whole genome sequencing becomes routine in
clinical care (Landrum et al., 2018). This has created a
significant need for tools to determine whether patient
mutations are deleterious or benign to a protein's func-
tion. If protein function is encoded in protein structure,
then experimental structures or even AlphaFold-
predicted structures could assist in interpreting these var-
iants of unknown significance.

However, in many cases, it remains unclear how
sequence differences contribute to functional differences
when biochemically distinct proteins have nearly indis-
tinguishable experimental structures (Figure 1). For
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example, motors from the myosin superfamily vary
greatly in the percent of time they spend bound to actin
in their mechanochemical cycle (0.05–0.95) (Bloemink &
Geeves, 2011). Despite this, crystal structures of two
divergent myosin motor domains, the part of the protein
that hydrolyzes ATP and binds actin, overlay with less
than 1 Å of backbone root mean square deviation
(RMSD) even though the sequence identity between
these motors is only 35% (Planelles-Herrero et al., 2017;
Ropars et al., 2016; Trivedi et al., 2020). Similarly, crystal
structures of single point variants often produce very sim-
ilar structures. The CTX-M β-lactamases mediate antibi-
otic resistance by hydrolyzing β-lactam antibiotics
(Brown et al., 2020). Because many CTX-M clinical vari-
ants confer higher catalytic efficiency or protein stability,
substantial effort was dedicated to solving their crystal
structures (Adamski et al., 2015; Chen et al., 2005; Kemp
et al., 2021; Lu et al., 2023). As is seen in Figure 1a, these
CTX-M variants have highly similar crystal structures
with a backbone RMSD of <1 Å. Perhaps unsurprisingly
then, predicted structures from homology modeling or
AlphaFold also produce highly similar structures for sin-
gle point variants (Buel & Walters, 2022; Feyfant
et al., 2007; Pak et al., 2023). Even if different variants
produce similar ground state structures, it has long been
suggested that a mutation's location in a protein's struc-
ture can at least inform whether that mutation is
deleterious.

Mapping genetic variation to experimental structures
has not transformed our ability to predict how sequence

variation modulates protein function, though there has
been substantial progress toward this goal. It is reason-
able to expect that mutations which fall in functionally
relevant regions or disrupt the overall structure of the
protein (i.e., by introducing steric clash) are more likely
to affect protein function and hence cause deleterious
downstream consequences. This logic has been pursued
by several methods that use a mutation's 3D neighbor-
hood or spatial location to predict its functional conse-
quences or pathogenicity (Adzhubei et al., 2010, 2013;
Cheng et al., 2023). Recently published models like Pri-
mateAI and AlphaMissense distinguish benign variants
from pathogenic variants with relatively high accuracy
across several variant pathogenicity prediction bench-
marks (e.g., ROC-AUC 0.797 and 0.809, respectively on
the Deciphering Developmental Disorders benchmark)
(Cheng et al., 2023; Gao et al., 2023). Notably, these
models leverage not only a residue's location in a 3D
structure but also that protein's evolutionary history
embedded in its multiple sequence alignment. Though
they are a highly useful community resource, AlphaMis-
sense predictions are worse for disordered regions, sug-
gesting that explicitly accounting for dynamics may be
required to understand how residues in these regions
contribute to pathogenicity. Additionally, AlphaMissense
classifies many hyperactivating mutations (e.g., those in
the human glucose sensor GCK) as ambiguous or benign.
Pathogenic variants that diminish protein function will
likely require different drug design strategies than vari-
ants that enhance protein function. Hence, new

N106A
D233N

CTX-M
Variant

kcat (s–1) All-atrom 
RMSD ( )

CTX-M-14 47.2 ± 4.3 -

CTX-M-14 
N106A 100 ± 4 0.926

CTX-M-14 
D233N 19.0 ± 7.7 0.782

(b)(a)

FIGURE 1 CTX-M β-lactamase variants exhibit functional divergence despite highly similar structures. (a) Overlay of wildtype CTX-M-

14 (gray), N106A mutant (red), and D233N mutant (cyan). Bound cefotaxime substrate is shown in blue. (b) Comparison of catalytic rate

(kcat) of ampicillin hydrolysis among variants depicted in (a) (Adamski et al., 2015; Kemp et al., 2021; Lu et al., 2023). Root mean square

deviation of each mutant is given with respect to wildtype CTX-M-14.
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predictive models of sequence–function relationships are
still needed. Informatics approaches could mature to fill
this need, but mechanistic models would still be valuable
for informing the development of new therapeutics.

Considering protein dynamics can not only improve
upon the performance of machine learning models using
protein structure and evolutionary history but also enable
more quantitative predictions of how variants affect a
protein's function, especially for enzymes. Previous stud-
ies have shown that pathogenic mutations tend to alter
the dynamics of regions critical for protein function like
active sites or protein interfaces (Butler et al., 2015;
Kumar et al., 2015; Ose et al., 2022). Additionally, incor-
porating dynamical features in machine learning models
can improve variant pathogenicity prediction (Ponzoni &
Bahar, 2018). Moreover, there are instances where simi-
lar mutations in adjacent residues cause opposite pheno-
types. For example, a A223T mutation in β-cardiac
myosin causes dilated cardiomyopathy but is spatially
adjacent to another mutation, I263T, that causes hyper-
trophic cardiomyopathy (Spudich et al., 2016; Ujfalusi
et al., 2018). This suggests that considering a protein's
conformational distribution may be necessary to leverage
structural data for improved predictions of variants' func-
tional effects.

Fortunately, new computational tools are now provid-
ing unprecedented access to protein structural ensembles.
Molecular dynamics (MD) simulations provide an
atomic-resolution lens into how proteins behave in solu-
tion at room or physiological temperatures (McCammon
et al., 1977; Voelz et al., 2010; Zimmerman et al., 2021).
Recent advances in custom hardware like Anton and
massively parallel distributed computing platforms like
folding@home have helped MD simulations reach
unprecedented scales (Shim et al., 2022; Voelz
et al., 2023). Several tools have been developed to facili-
tate the comparison of ensembles. Highly parallel simula-
tions can be aggregated with MSMs to create a map of a
protein's free energy landscape (Pande et al., 2010; Prinz
et al., 2011; Su�arez et al., 2021). A sequence invariant
extension of MSMs enables quantitative comparisons of
protein dynamics across protein families (Sultan &
Pande, 2018). Finally, multiple machine learning
approaches, like self-supervised autoencoders, time-
lagged autoencoders, and support vector machines have
been successfully applied to identify differences between
ensembles (Fleetwood et al., 2020; Mardt et al., 2018;
Wang et al., 2020; Ward et al., 2021). In our experience,
comparing ensembles with self-supervised autoencoders
called DiffNets is a relatively automated approach for
identifying conformational differences that explain func-
tional patterns across GPCRs, myosins, and β-lactamases
(Lee et al., 2023; Malik et al., 2021). Overall, these

advances promise to not only accelerate our ability to
gather the kind of large simulation datasets required for
accurate estimation of thermodynamic parameters but
also enable rapid analysis of the high-dimensional data-
sets that are generated.

Within protein families, differences in conformational
distributions predict functional differences. When we
examined simulations of eight myosin isoforms, we found
that simulations sample conformational diversity in the
nucleotide-binding P-loop of myosin motors that is rarely
observed in crystal structures (Porter et al., 2020). Fur-
thermore, the balance between nucleotide-favorable and
nucleotide-unfavorable conformations could predict a
myosin's propensity to stay bound to actin (Figure 2).
Motors with an intrinsic preference for nucleotide-
favorable states (i.e., higher ensemble probability) were
more likely to stay bound to actin likely because the
dominant actin-bound state is also adenosine diphos-
phate (ADP)-bound. Further work found correlations
between the behavior of a myosin active site loop and the
probability with which a myosin motor adopts a bio-
chemical state associated with a slow rate of ATP hydro-
lysis (Lee et al., 2023). Like myosins, kinases also have
highly conserved structures but varying biochemical
properties (Sultan et al., 2018). Sultan et al. showed that
kinases from the Src family differ in their propensity to
adopt catalytically active conformations. Kinases with
higher equilibrium probabilities of the catalytically active
state tend to display higher specific activities. These
examples illustrate that sequence variation can produce
distinct biochemical phenotypes by modulating the rela-
tive probabilities of an ensemble of conformations
primed for different functional roles (Campbell
et al., 2016).

Conformational preferences can also help explain
how single point mutations contribute to biochemical dif-
ferences that lead to human disease. It is especially
important to consider dynamics when a mutation falls
outside an active site or known binding site. For example,
in the case of p53, a tumor suppresser protein nicknamed
the “guardian of the genome” because of its importance
in cancer, the Y220C mutation falls outside of its DNA-
binding interface (Boeckler et al., 2008). MSMs con-
structed from p53 simulations revealed that this mutation
allosterically modulated the behavior of the DNA-binding
interface (Barros et al., 2021). Specifically, the mutation
was associated with stabilizing a structural state where a
lysine residue that typically interacts with DNA is seques-
tered in a salt bridge. Importantly, this structural state
had not been captured in existing crystal structures,
highlighting the importance of protein dynamics. Like-
wise, considering dynamics is crucial when mutations at
the same or nearby positions have variable effects. For
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example, only certain allosteric mutations in the TEM
β-lactamase confer stability to the enzyme and allow for
bacteria to evolve antibiotic resistance. Atomically
detailed simulations coupled to MSMs showed that a
M182T mutation acts as a cap on a helix that stabilizes
numerous hydrogen bonds in that helix (Zimmerman
et al., 2017). Biochemical intuition suggests that an
M182N mutation should have the same effect as aspara-
gine is an even better cap on helices. However, simula-
tions predicted that M182N would not be stabilizing due
to competition between alternative hydrogen bonding
networks it can form. Importantly, this prediction was
proved correct by subsequent experimental measure-
ments of the variants' stability. Another simulation study
of TEM β-lactamase demonstrated that the propensity to
adopt conformations where an active site loop is pinned
down was strongly correlated with the catalytic efficiency
of 15 TEM variants (Hart et al., 2016). Thus, conforma-
tional preferences can explain how even highly similar
mutations can produce different biochemical properties.

Future work is needed to develop computational
approaches that can leverage a detailed understanding of
protein dynamics to make accurate predictions for entire
libraries of clinical variants. Because of the very large

number of variants of unknown significance, it is not
realistic to generate separate ensembles for each variant.
Instead, future methods will need to leverage existing
simulations, typically of a wildtype ensemble, to predict
how a variant will perturb an ensemble. Plattner et al.
(2017) developed a method that avoids running addi-
tional simulations for a variant. In this approach, state
populations in a wildtype MSM are adjusted based on the
difference in potential energy in implicit solvent between
a structure with a variant and the corresponding wildtype
structure. While this approach showed good agreement
with experiment for a model system, it assumes that a
variant will occupy the same set of states as the wildtype
protein. To avoid this assumption but still leverage a
wildtype MSM, one can introduce a mutation to a repre-
sentative structure from each wildtype MSM state and
launch simulations from these structures to generate a
new MSM for a variant. In the future, it may be possible
to generate statistically weighted ensembles without run-
ning simulations, and early methods in this direction are
showing promise (del Alamo et al., 2022; Janson
et al., 2023; Vani et al., 2023). In the long run, such
efforts will be crucial to enabling a detailed understand-
ing of the functional consequences of variants of

(a)

(b)

(c)Myosin Active Site

FIGURE 2 The conformational dynamics of isolated myosin motor domains predict myosin biochemical properties. (a) In one of the

commonly observed conformations (i.e., macrostates) in the isolated myosin motor domain ensemble, an active site loop known as the

P-loop has its central carbonyl oriented downward away from ATP (gray silhouette). This state is similar to ground state experimental

structures (gray structure) and is referred to as state A. (b) In another high probability macrostate of the isolated (i.e., ATP-free) motor

domain ensemble, this carbonyl points toward the ATP position. This orientation is stabilized by interactions with nearby residues like S242

(MYH7 numbering). (c) The free energy difference between state A and state B is correlated with a myosin motor's in vitro duty ratio. High

duty motors primarily occupy the nucleotide-compatible state A while low duty motors have a higher probability of adopting the nucleotide-

incompatible state B in their apo ensembles.
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unknown significance and the development of novel
therapies targeting those variants.

3 | ENABLING ENSEMBLE-BASED
DRUG DESIGN

Virtual screening has emerged as a routine tool in drug
discovery. While experimentally screening large libraries
of compounds in biophysical assays remains a successful
paradigm in drug discovery, virtual screening has notable
advantages. Because docking software is fast, it enables
screening extremely large libraries of compounds
(>1 billion) with highly diverse chemistries (Luttens
et al., 2022). Improved scoring functions, faster software,
and the emergence of “make-on-demand” compound
libraries have contributed to notable success stories. Sev-
eral virtual screening campaigns report hit rates of well
above 10% with one campaign uncovering a picomolar
binder of the D4 dopamine receptor (Lyu et al., 2019).

However, there are limitations to using single struc-
tures in drug discovery. Successful docking campaigns
have typically targeted proteins with high-resolution
experimental structures and known ligands. It is much
less clear what success rates to expect for targets that lack
known ligands or experimental structures, but they are
likely to be substantially worse. Additionally, to ensure
rapid calculations, docking scoring functions make sev-
eral approximations that result in poor predictions of
binding affinities between a compound and its protein
target (Trott & Olson, 2010).

Several examples highlight the importance of remem-
bering that proteins exist in a dynamic equilibrium
between multiple states, and different receptor conforma-
tions may bind different chemistries. For example, one
famous class of drug targets, kinases, have different ratios
of “DFG-in” and “DFG-out” conformations (Haldane
et al., 2016). Docking ligands to apo protein conforma-
tions that do not reflect the ligand-bound structure may
result in poor compound ranking. This may explain why
docking success rates are generally higher when using
target receptors bound to a known ligand (Rueda
et al., 2010). Accounting for receptor heterogeneity
remains a substantial challenge in virtual screening.

More recently, progress has been made toward
accounting for protein conformational heterogeneity in
virtual screening. One promising strategy has been to use
multiconformer models of ligand-free electron density
maps as input to virtual screening. For example, Fischer
et al. (2014) docked to different loop conformations of
cytochrome c peroxidase and assigned Boltzmann-
weighted energy penalties to each docked pose based on
crystallographic occupancies. Loop conformations that

had low occupancies received higher penalties to avoid
selecting ligands that preferentially stabilized higher
energy protein conformations. Impressively, this
approach led to the discovery of ligands with new chemo-
types and physical properties. On the other hand, other
groups have combined ensembles generated using MD
simulations with docking to discover new chemical mat-
ter. This approach is commonly referred to as “ensemble
docking.” Lückmann et al. (2019) simulated a GPCR that
is an anti-diabetes target and found that removing an
agonist from simulations causes closure of a pocket. They
reasoned that forcing this pocket open with a ligand
would sensitize the receptor to the agonist. Indeed, by
docking compounds to four representative structures
from MD simulations where that pocket was open, they
discovered a novel positive allosteric modulator that sen-
sitized the receptor to stimulation via the agonist. Luck-
man et al. selected those compounds that had the best
scores for any given target receptor conformation
(i.e., scores for the same compound across different target
conformations were not aggregated). It is likely that the
four states that were considered vary in their equilibrium
probabilities. Hence, more sophisticated in silico methods
that directly estimate the free energy of binding from an
ensemble may have an improved ability to predict affini-
ties and rank compounds.

Alchemical binding free energy calculations provide a
means to directly estimate protein–ligand affinity. Bind-
ing simulations can either be relative to other ligand
affinities, in which case they are often called relative
binding free energy calculations (RBFE) or free energy
perturbation calculations (FEP). Alternatively they can
be relative to an unbound receptor, in which case they
are called absolute binding free energy simulations.
Authoritative reviews and an edited volume on many
subtopics in this area exist (Chipot, 2014; Mobley &
Gilson, 2017; Pohorille et al., 2010). Briefly, these
schemes use the Zwanzig perturbation formula to esti-
mate the free energy of binding. This can either be by
enhancing sampling of a conformational change that
leads to (un)binding of a ligand in a simulation, or by dis-
appearing or mutating the ligand (Chipot, 2014). In
either case, transformations can occur using rapid switch-
ing schemes (non-equilibrium switching) or using equi-
librium simulations. For both approaches, stratification
of the switching process through intermediate states is
nearly always beneficial for convergence (Pohorille
et al., 2010).

Alchemical free energy methods have a balance of
performance and accuracy that is intended to bias toward
high accuracy with significant computational resources
and require a skilled practitioner to make key decisions.
RBFE assume a common binding mode for the scaffold
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moiety and are started from a particular ligand-pose
receptor conformation. Selecting an appropriate pose is
crucial for the accuracy of the calculation (Cournia
et al., 2017). Furthermore, the simulations must be man-
ually prepared since transitions between poses are
restricted in most formulations. The free energy calcula-
tions themselves are performed as replica simulations
that are defined in a series along a perturbation parame-
ter (lambda) that morphs the system Hamiltonian from
one extreme of the transformation to the other—this pro-
vides stratification that enhances convergence. Such cal-
culations must converge several “window” simulations or
dissipated work estimates that correspond to the system
held at a particular point in the transformation process.
Thus, they are resource intensive to perform. Addition-
ally, morphing systems from one charge state to another
also poses technical challenges—although there are also
proposed solutions to these challenges, changes in charge
species tend to be less accurate.

Despite these challenges, free energy calculations
have played an increasingly important role in drug dis-
covery (Hu et al., 2023). Thanks to improvements in soft-
ware and the development of methods to address
technical challenges like pose lock-in, relative binding
free energy methods have developed a reputation for
being chemically accurate (within 1 kcal/mol of experi-
mental affinities) when the ligand binding problem is
well suited to their use (Heinzelmann & Gilson, 2021;
Sherborne et al., 2016; Wang et al., 2019; Xu, 2023).
Indeed, a method called FEP+ exhibited the highest
capacity to rank affinity of any of the methods assessed
in a recent benchmark (Breznik et al., 2023; Steinbrecher
et al., 2015). Recent studies have also demonstrated that
free energy calculations can be performed at a large scale.
While most applications of alchemical free energy calcu-
lations consider tens or hundreds of compounds, the Fol-
ding@home community screened over 20,000 ligands in
support of the COVID Moonshot, which aims to develop
a patent free inhibitor of the SARS-CoV-2 main protease.
Impressively, the overall root mean squared error
(RMSE) between experimental pIC50s and calculated
pIC50s from RBFE ranged from 0.55 to 0.79 kcal/mol
across several binder scaffolds (Boby et al., 2023). This is
well within the 1 kcal/mol threshold often seen as the
level of chemical accuracy needed to truly design novel
binders in silco.

However, blind affinity predictions suggest that free
energy calculations still have a long way to go and may
underestimate protein conformational heterogeneity. A
the critical assessment of protein structure prediction
(CASP)-like blind prediction competition, the Statistical
Assessment of the Modeling of Proteins and Ligands
(SAMPL), has emerged as a way for the community to

test ideas and to iterate over public datasets (Mobley
et al., 2014). SAMPL challenges have historically
restricted affinity predictions to host–guest complexes
(though the most recent one will include protein–ligand
challenges). These complexes—usually macrocycles like
crown-ethers with 100 or less heavy atoms—provide a
well bounded problem for binding estimation because of
their small size and reduced conformational flexibility
while still offering the same sorts of physical interactions
implicated in noncovalent protein–ligand complexes.
That said they result in real challenges to most affinity
prediction methodologies, with RMSE above 3 kcal/mol
being the norm and only a handful of methods
(e.g., groups using the AMOBEA polarizable force field)
performing within 2 kcal/mol of experiment (Amezcua
et al., 2021). Importantly, some guest complexes, like the
“Trimer Trip” host, can adopt multiple ligand-compatible
conformations (Kellett et al., 2021). Though most
methods failed to make accurate predictions for this more
challenging host, one group which determined the rela-
tive probabilities of the two host conformations in the
absence of ligand was able to accurately predict its affin-
ity for the ligand. Accounting for receptor heterogeneity
is therefore one of the more significant gaps present even
in this simplified context.

Combining MSMs with methods that predict protein–
ligand affinities is an exciting avenue for rigorously
accounting for conformational heterogeneity in both the
protein and ligand. The main advantage of this approach
is that it explicitly considers multiple protein conforma-
tions. Though building an MSM is computationally
expensive, once built, an MSM produces a compressed
representation of the system's ensemble that can be
reused for many ligands. One strategy that leverages this
compressed representation is performing docking or
binding calculations to representative receptor conforma-
tions from an MSM. Because the relative weight of each
state is known from the apo model's equilibrium proba-
bilities, it is possible to calculate an overall affinity
between a small molecule and the protein ensemble. In
an early formulation of this approach dubbed “Boltz-
mann docking,” an enzyme substrate's binding affinity
for different receptors was computed by taking the
ensemble average of docking scores across a set of MSM
states, weighting each state by its equilibrium probability.
Boltzmann docking was better able to predict the cata-
lytic efficiencies of different TEM β-lactamase variants
than docking to a single structure, suggesting it could
predict substrate affinity (Hart et al., 2016). Boltzmann
docking was also used to identify novel allosteric activa-
tors and inhibitors of TEM activity by screening over
10,000 compounds against structures from simulation
(Hart et al., 2017). Though these results were promising,
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compounds were only docked to a subset of MSM states
that had open pockets, suggesting that binding affinities
may be overestimated.

Recent theoretical improvements have not only
expanded the potential utility of MSMs in drug discovery
but also provided a framework for understanding how
ligands achieve their biological effects. Inspired by Boltz-
mann docking, Smith et al. took a binding polynomial
approach to derive a more physically accurate way to cal-
culate the average affinity of a ligand to a set of protein
structures (Louis et al., 2023). This approach, called
“PopShift,” outperforms Boltzmann docking, traditional
ensemble docking approaches, and other common esti-
mators of binding free energies. It also provides a formula
for reweighting individual states based on the affinity
between the ligand and protein and the apo equilibrium
probability. Hence, PopShift can probe which states are
the most populated in the bound state and predict a
ligand's allosteric effects (Figure 3a). Furthermore, this
framework accommodates multiple ligand poses, recep-
tor conformational heterogeneity, and the effect ligand
binding has on receptor states. In another study, this
updated PopShift approach (previously referred to as
MSM-docking) was able to accurately predict one com-
pound's binding affinity for different myosin motors
(Figure 3b) (Meller, Lotthammer, et al., 2023). Though
only docking has been used with this framework so far,
our view is that in future iterations of this method,

binding affinity estimates for each state can be done with
implicit solvent methods (e.g., generalized Born Poisson–
Boltzmann calculations) or alchemical free energy simu-
lations. Thus, the use of MSMs has great potential in
improving computer-aided drug design and expanding
the arsenal of drugs required for precision medicine.

4 | EXPANDING THE DRUGGABLE
PROTEOME WITH CRYPTIC
POCKETS AND ALLOSTERY

Experimental structures are an invaluable input to the
computational drug design pipeline, but they do have
important limitations. Firstly, many proteins may appear
undruggable because they lack pockets in their experi-
mental structures. By one estimate, as many as half of all
structured domains lack sufficiently large pockets on
their surface to accommodate drug-like molecules
(Meller, Ward, et al., 2023). Secondly, though many pro-
teins have pockets where they bind their natural sub-
strates (e.g., enzyme active sites), compounds which bind
at these sites are obligate inhibitors. When developing
drugs for many diseases, especially genetic diseases
caused by loss-of-function mutations, it is more desirable
to restore protein function. Thirdly, as proteins are highly
dynamic in solution, targeting pockets seen in their
ground states may not yield drugs when those pockets

(a) (b)

(k
ca
l/m

ol
)

(kcal/mol)

FIGURE 3 PopShift provides a framework for determining ligand–protein binding affinities and allosteric effects using apo Markov

state models. (a) Cartoon illustration of a Markov state model demonstrating how a ligand can adjust the probability of conformational

states. The network on the left shows a three-state model with different pocket conformations. The size of each circle corresponds to the

state's equilibrium probability. When a ligand perturbation is applied to the Markov state model (e.g., a ligand is docked to each of these

conformations and an affinity for each pose is estimated), the probabilities are updated with the state containing an open pocket (shown as a

green cavity) increasing in probability while a closed state decreases in probability. (b) The PopShift approach accurately predicts affinities

between blebbistatin, a myosin inhibitor (chemical structure shown in a), and different myosin motors.
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are rare or unrepresentative of the protein's ensemble
(Cimermancic et al., 2016).

Cryptic pockets and allostery could greatly expand
the set of potentially druggable targets (Nussinov &
Tsai, 2013). Protein fluctuations often reveal the forma-
tion of pockets absent in ligand-free experimental struc-
tures, also known as cryptic pockets (Blamey et al., 2005;
Horn & Shoichet, 2004; Oleinikovas et al., 2016). For pro-
teins that lack pockets in their native structures, cryptic
pockets may render these targets druggable. For other
proteins, like enzymes, that have pockets (e.g., active
sites), cryptic pockets open new therapeutic opportuni-
ties. Many cryptic pockets are distant from active sites, so
compounds targeting them can allosterically inhibit or
activate protein function, unlike compounds targeting
active sites which are limited to competitive inhibition
(Hart et al., 2017). Furthermore, while most orthosteric
sites are highly conserved as proteins from the same fam-
ily typically bind the same ligands, cryptic pockets are
likely less conserved (Ivetac & McCammon, 2010;
Wenthur et al., 2014). This opens the possibility of devel-
oping more specific allosteric modulators of protein func-
tion. However, cryptic pockets remain difficult to
discover intentionally with experimental techniques.
Most cryptic pockets are discovered serendipitously when
a structure of a protein bound to a ligand reveals a previ-
ously unobserved pocket (Allingham et al., 2005; Horn &
Shoichet, 2004; Sirigu et al., 2016). Furthermore, while
MD simulations of proteins can reveal cryptic pockets,
they remain computationally expensive.

Fortunately, machine learning models can aid in
identifying which proteins are likely to form cryptic
pockets. CryptoSite is an outstanding example of a
machine learning tool that takes a structure as input and
predicts the probability with which each residue forms a
cryptic pocket (Cimermancic et al., 2016). CryptoSite was
trained with examples of cryptic pockets from the protein
data bank (PDB) and achieves good accuracy on a held-
out test set (ROC-AUC: 0.83). Notably, CryptoSite uses
features generated from a coarse-grained simulation to
make its predictions. This means that running CryptoSite
on an example can take up to a day, depending on the
size of the input structure. On the other hand, a tool from
our lab called PocketMiner uses only single structures as
input to a graph neural network to make rapid predic-
tions of cryptic pocket formation (Meller, Ward,
et al., 2023). Both CryptoSite and PocketMiner achieve
similar performance, but PocketMiner returns a predic-
tion in under a second. PocketMiner was trained using
labels derived from MD simulations, suggesting that
models trained with simulation data can be used to pre-
dict other protein features. Moreover, deploying Crypto-
Site and PocketMiner at the proteome level suggests that

there are thousands of human proteins that lack pockets
in their ground state structures but are likely to form
druggable cryptic pockets. To generate structures con-
taining cryptic pockets that are not observed in the PDB,
it may be possible to use AlphaFold to generate an
ensemble of structures that samples cryptic pocket open-
ing (Meller, Bhakat, et al., 2023). For many proteins
known to form cryptic pockets, AlphaFold successfully
generates open, or partially open, conformations when its
input multiple sequence alignment is stochastically sub-
sampled. Thus, machine learning tools can greatly accel-
erate the prioritization of drug targets and the discovery
of cryptic pockets.

Furthermore, great progress has been made in discov-
ering cryptic pockets with computer simulations
(Comitani & Gervasio, 2018; Raich et al., 2021; Sztain
et al., 2021). We have found that a handful of conven-
tional MD simulations of intermediate length started
from a ligand-free experimental structure are often suffi-
cient to observe cryptic pocket formation (Meller, Ward,
et al., 2023). We found this to be true in 14 out of
15 experimentally validated cryptic pockets, spanning
several different classes of motions. However, there are
proteins whose cryptic pocket opening occurs over such
slow timescales that sampling the opening event with
conventional MD simulations remains difficult (Meller,
Bhakat, et al., 2023; Meller, Ward, et al., 2023;
Oleinikovas et al., 2016). It may also be important to
accurately characterize the free energy landscape of cryp-
tic pocket opening by observing large numbers of open-
ing and closing events. Fortunately, even for pockets that
are slow to form in conventional MD simulations, there
are several promising strategies to encourage sampling of
pocket formation. We have shown that in the case of an
antimalarial drug target, it is possible to accelerate cryptic
pocket discovery by starting simulations from an
AlphaFold-generated ensemble (Meller, Bhakat, et al.,
2023). For the antimalarial target, AlphaFold generated
partially open states that were more likely to transition to
fully open conformations. A Markov state model was
then used to build a quantitative map of the free energy
landscape of cryptic pocket opening. In other cases, it
may be more appropriate to use techniques like
enhanced sampling methods, such as metadynamics or a
Hamiltonian replica exchange method, or an adaptive
sampling strategy like FAST to discover cryptic pockets
(Capelli et al., 2022; Comitani & Gervasio, 2018; Valsson
et al., 2016; Zimmerman & Bowman, 2015). After collect-
ing simulation data, one can determine where cryptic
pockets form by applying a pocket detection algorithm,
like LIGSITE, fpocket, or P2Rank, to each state in an
ensemble or MSM or using the exposons method
(Kriv�ak & Hoksza, 2018; Le Guilloux et al., 2009; Porter,
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Moeder, et al., 2019; Porter, Zimmerman, et al., 2019;
Valsson et al., 2016).

Crucially, multiple lines of experimental evidence
corroborate cryptic pockets discovered in simulation and
their functional importance. In the case of TEM-1 β-lacta-
mase, simulations have revealed the formation of several
cryptic pockets (Bowman et al., 2015; Bowman &
Geissler, 2012; Hart et al., 2016). The most commonly
occurring cryptic pocket in TEM-1 β-lactamase simula-
tions (partially open as much as 53% of the time) is found
at a known cryptic allosteric binding site (Bowman &
Geissler, 2012). Moreover, simulations revealed a novel
TEM-1 cryptic pocket, known as the omega loop pocket
because it forms due to a loop motion (Porter, Moeder,
et al., 2019). Thiol labeling experiments showed that this
pocket opens faster than the global rate of unfolding, cor-
roborating its existence. Interestingly, it was later shown
that opening of this cryptic pocket was important for
β-lactamase function. Across different β-lactamases,
omega loop cryptic pocket opening was associated with
increased benzylpenicillinase activity (Knoverek
et al., 2021). As with TEM-1 β-lactamase, simulations of
the Ebola virus viral protein 35 (VP35) revealed the for-
mation of a cryptic pocket, even though the VP35 crystal
structure lacks large pockets on its surface and might be
considered an “undruggable” target (Cruz et al., 2022).
With VP35, however, there was no precedence in the lit-
erature suggesting that it might harbor a cryptic site.
Nonetheless, thiol labeling experiments were used to
demonstrate that cryptic pocket opening occurs at rates
faster than the global rate of unfolding. Moreover, labeled
VP35 (i.e., VP35 where the thiol labeling reagent was
covalently attached to a cysteine) with the cryptic pocket
forced open, showed decreased binding to double
stranded RNA. Together, these experiments suggest tar-
geting cryptic pockets with ligands is likely to have func-
tional consequences.

Additionally, simulation studies of several drug tar-
gets have shown that differences in cryptic pocket forma-
tion underlie the specificity of compounds known to bind
at cryptic pockets. For example, a positive allosteric mod-
ulator of a G-protein coupled receptor achieves a high
degree of specificity despite binding at an allosteric bind-
ing site that is insufficiently large to accommodate its size
across all similar receptors, including the sensitive recep-
tor (Abdul-Ridha et al., 2014; Hollingsworth et al., 2019).
Hollingsworth et al. (2019) demonstrated that cryptic
pocket opening occurs with a much higher probability in
the sensitive receptor. Furthermore, they showed that
mutational disruption of the cryptic pocket reduces affin-
ity of the selective allosteric modulator. Another com-
pound that binds at a cryptic site is the myosin inhibitor
blebbistatin. In all blebbistatin-free myosin structures,

including structures of sensitive isoforms, the blebbistatin
pocket is closed (Allingham et al., 2005; Meller,
Lotthammer, et al., 2023). Thus, blebbistatin's binding
site is cryptic, though we have not seen this point regu-
larly acknowledged in the literature. Moreover, blebbista-
tin has almost 100-fold differences in binding affinity
across sensitive isoforms. MD simulations revealed that
cryptic pocket opening is unique to simulations of sensi-
tive isoforms and that the probability of pocket opening
predicts differences in affinity across sensitive isoforms.
Together, these results suggest that differences in cryptic
pocket opening can be exploited for the development of
specific compounds.

Finally, virtual screening with simulation structures
containing cryptic pockets is an increasingly promising
strategy for drug discovery. A cryptic pocket opens in
simulations of the p53 core domain when this domain
carries cancer-causing mutations (Wassman
et al., 2013). After assessing this pocket with several
pocket detection algorithms, Wassman et al. used
molecular docking to identify compounds that might
bind at this cryptic pocket. Specifically, they docked
against the 15 most-populated clusters from their MD
simulations and chose compounds based on their best
score against any of the clusters. This approach led to
the discovery of a compound that showed dose-
dependent activation of p53. In a follow-up study, Dur-
airaj et al. (2022) screened a much larger library of
1.7 million compounds against an open state from simu-
lation and identified compounds that could reactivate
p53. The best compounds achieve IC50s of less than
10 μM against mutant p53. Importantly, they also
showed that their compounds bind in the target pocket
in the p53 core domain using a photo-affinity labeling
experiment. Similarly, Hart et al. (2017) discovered an
inhibitor and an activator of TEM-1 β-lactamase by
docking to simulation structures. To our knowledge,
this was the first attempt to dock against an MSM to
account for protein conformational heterogeneity. In
experiments, the EC50s of compounds prioritized by
docking were around 60 μM. Overall, these results sug-
gest that simulation structures containing open cryptic
pockets can be used to identify novel drugs (Figure 4).

5 | CONCLUSIONS

Computer simulations of proteins are addressing many of
the key barriers to precision medicine. Even when
ground state structures are highly similar, differences in
conformational ensembles can often explain how genetic
variation seen in the clinic contributes to biochemical dif-
ferences that lead to human disease. Simulations are a

MELLER ET AL. 11 of 16

 1469896x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.4902, W

iley O
nline Library on [13/05/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



promising means to identify differences in conforma-
tional ensembles, and new tools are making the acquisi-
tion and analysis of simulation data more facile.
Simulations are also addressing one of the other key chal-
lenges in precision medicine—the need for more drugs
tailored to each patient. Ensemble-based drug design pro-
vides a scalable framework to discovering new lead com-
pounds and understanding how compounds perturb
ensembles. Additionally, simulations are a well-
established means to identify novel cryptic pockets that
may render challenging protein targets druggable. There
are still many theoretical and technical challenges that
must be overcome to scale some of these approaches to
entire libraries of variants and compounds. Nonetheless,
physics-based precision medicine has the promise to
improve our understanding of sequence–function rela-
tionships and to accelerate drug discovery.
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