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Abstract 

Measurement of domain-general object recognition ability (o) requires minimization of domain-

specific variance. One approach is to model o as a latent variable explaining performance on a 

battery of tests which differ in task demands and stimuli; however, time and sample requirements 

may be prohibitive. Alternatively, an aggregate measure of o can be obtained by averaging z-scores 

across tests. Using data from Sunday et al. (2022), we demonstrate that aggregate scores from just 

two such object recognition tests provide a good approximation (r = .79) of factor scores calculated 

from a model using a much larger set of tests. Some test combinations produced correlations of up 

to r = .87 with factor scores. We then revise these tests to reduce testing time, and develop an odd-

one-out task, using a unique object category on each trial, to increase task and stimuli diversity. To 

test our measures, 163 participants completed the object recognition tests on two occasions, one 

month apart. Providing the first evidence that o is stable over time, our short aggregate o measure 

demonstrated good test-retest reliability (r = .77). The stability of o could not be completely 

accounted for by intelligence, perceptual speed, and early visual ability. Structural equation 

modelling suggests our tests load significantly onto the same latent variable, and reveals that as a 

latent variable, o is highly stable (r = .93). Aggregation is an efficient method to estimate o, allowing 

investigation of individual differences in object recognition ability to be more accessible in future 

studies.  
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Introduction 

Despite a long history of individual differences research in psychology (Cronbach & Meehl, 

1955; Spearman, 1904), there has remained a divide between the experimental and the 

correlational tradition (Cronbach, 1957) in vision research, with the focus primarily on the 

experimental (Wilmer, 2008). However, in recent years there has been an increase in interest in 

individual differences in high-level vision, particularly in the area of object recognition (Dennett et 

al., 2012; Gauthier et al., 2022; McGugin et al., 2012; Richler et al., 2019). Vision science has 

primarily focused on effects at the group level, often neglecting the value of variation between 

individuals. The study of individual differences can help validate measures (Vogel & Awh, 2008) and 

test hypotheses about mechanisms (Mollon et al., 2017), including their functional organization and 

their utility (Wilmer, 2008). Measures of visual abilities designed to capture individual differences 

allow researchers to answer novel and important theoretical questions that cannot be assessed at 

the group level and may have practical applications in identifying individuals of exceptional ability, or 

of unusual inability. 

Object recognition ability is the ability to discriminate between visually similar objects, or 

the ability to make object category judgments. We focus particularly on within-category 

discrimination, due to its relevance to many important but difficult human activities. Individual 

differences in this ability can be specific to individual domains (e.g. bird recognition), sometimes as a 

result of differential levels of experience, but can also reflect domain-general differences in ability 

(Gauthier, 2018). Measures of object recognition ability will always tap into the domain-general 

ability but may tap more or less into abilities specific to particular domains. Researchers who are 

interested in domain-general abilities must always consider the domain-generality of their 

measures. In this paper we discuss an aggregate approach to measuring domain-general object 

recognition ability and provide a new set of object-recognition tests for research use. 

The measurement of individual differences in object recognition is rooted in the 

development of tests targeting specific domains, in particular, that of face recognition. One of the 
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most widely used measures is the Cambridge Face Memory Test (CFMT; Cho et al., 2015; Duchaine & 

Nakayama, 2006), but several similar tests now exist (see White & Burton, 2022 for a review). 

Building on the success of the CFMT, several measures of object recognition ability were developed 

for other object categories, such as The Cambridge Car Memory Test (Dennett et al., 2012). The 

Vanderbilt Expertise Test (VET; McGugin et al., 2012) was developed to test for expertise across 

many categories. The existence of substantial correlations between recognition ability on the VET for 

different object categories suggested that there may be a domain-general ability. To identify a truly 

domain-general object recognition ability, it is necessary to account for variance caused by 1) 

experience with specific object categories; 2) the kinds of features diagnostic for objects in specific 

categories; and 3) the specific demands of the tasks used to measure performance. To eliminate 

experience-related variance, novel categories of objects such as Greebles (Gauthier & Tarr, 1997) 

can be used, such as is done in the Novel Object Memory Test (Richler et al., 2017a). Alternatively, 

latent variable modelling or the aggregation of scores across tests can combine performance for 

multiple familiar object categories, minimizing the influence of variation in experience and also any 

other property of a specific category (e.g., whether texture is diagnostic, or whether the objects are 

symmetrical). The same approaches can be used to reduce the influence of diagnostic feature types 

and task demands to ensure that what is measured is not specific to strategies or skills that are only 

beneficial for certain tasks, such as matching strategies (Growns et al., 2022) or reliance on visual 

short term memory (Vogel & Awh, 2008).  

Using structural equation modelling (SEM), Richler et al. (2019) showed that a higher order 

factor explained 89% of variance in performance across memory and matching tasks for different 

object categories, strongly supporting the existence of a domain-general object recognition ability 

(o). Further work demonstrated that this ability was common to both novel and familiar object 

categories, as a higher order factor for novel object recognition correlated nearly perfectly (r = .98) 

with a higher order factor for familiar object recognition (Sunday et al., 2022). Additional 

investigation has begun to position o in relation to other abilities: o can predict performance in 



Running Head: Object Recognition Ability 

 5 

medical imaging tasks requiring visual search, such as the identification of lung nodules (Sunday et 

al., 2018), and it can do so separately from intelligence and experience. It can also predict 

categorization of music notes (Chang & Gauthier, 2021), or judgements of whether blood cells are 

cancerous (Smithson et al., 2023). O also predicts the accuracy with which people can estimate 

summary statistics (e.g. mean) of groups of objects (Chang & Gauthier, 2022), and ability to 

recognize different types of food (Gauthier & Fiestan, 2023), whereas it does not predict experience 

with visual arts (Chow et al., 2022b). Beyond visual abilities, o is also related to haptic object 

recognition accuracy (Chow et al., 2022a), and has a strong correlation with auditory object 

recognition accuracy (Chow et al., 2023). Neural correlates of o have been identified, and are 

distributed across the visual cortex, ventral visual areas of the occipitotemporal cortex, and parietal 

areas that are also implicated in shape perception (McGugin et al., 2022).  

In many of the recent studies exploring relationships between o and other variables, 

researchers did not use SEM with several tasks and categories, as was used in the initial 

identification of the construct. An SEM approach has several advantages, as it can estimate latent 

variables that are free from construct-irrelevant variance and measurement error (Bollen, 1989). 

However, the approach requires several indicators for each latent variable and large enough samples 

to fit models, which is why many studies have used an aggregate approach. To efficiently obtain 

estimates of o, aggregates of two tests (one memory task and one matching task) were used, with 

the tests varying in their task requirements and in the object categories of their stimuli. This 

approach has typically led to correlations around .25-.4 between the two object recognition tests, an 

effect size that is expected because the two tests do not have much overlap other than via the 

higher-level ability. By the principle of aggregation, the influence of task-specific variance on final 

scores is reduced, and the influence of the construct of interest that is partly measured by both tasks 

is increased (Rushton et al., 1983). While this approach was assumed to measure the same construct 

as that identified in SEM research using the same tests, it had not been directly compared to it. In 

this work, we have several goals: 1) to compare, using an existing dataset, the aggregate estimation 
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of o using two tests with factor scores based on a confirmatory factor model that includes a larger 

number of tests (here 6); 2) to increase the efficiency (in terms of testing time) of the aggregate 

method by modifying the matching test; 3) to expand the construct coverage of a general o by 

including a new task with task demands and stimuli that differ from the existing tasks; 4) to test the 

convergent validity of our measures; 5) to measure the test-retest reliability of the aggregate 

method and to estimate the stability of the o construct; and 6) to further map the nomological net 

surrounding o, using new measures that have not been related to the construct before, and to 

assess whether longitudinally stable variance in o survives the partialling out of measures of several 

theoretically related abilities. 

 

Part I - Comparing the two-test aggregates and six-test factor scores with data from Sunday et al. 

(2022). 

 First, we reanalyzed existing data to explicitly compare the aggregate method using just two 

tests with factor scores calculated from a larger confirmatory factor model. This dataset contains 

participants’ scores on two sets of six object recognition measures, each set using either novel or 

familiar object categories. The dataset provides an opportunity to compare aggregate scores 

calculated from one set of tests with factor scores calculated from the other set. Sunday et al. (2022) 

recruited 294 participants from the Vanderbilt University community. Participants completed 18 

tests across two 2-hour sessions, no more than a week apart. Participants completed 3 tasks for 

each of 6 object categories. Three object categories were novel (symmetrical Greebles or s-Greebles, 

vertical Ziggerins or v-Ziggerins, and Sheinbugs1), and 3 categories were familiar (birds, planes, and 

Transformer toys in their robot form). Participants completed two types of object recognition tasks – 

learned exemplars (LE) and matching (MA). Participants also completed ensemble perception tasks 

for each category, but we do not use these results in the present analyses. Session one included MA 

 
1 There are two sets of Greebles, symmetrical and asymmetrical, and two sets of Ziggerins, vertical and 

horizontal, that were used in the original SEM study on o (Richler et al. 2017).  
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tests for Transformer toys, birds, and s-Greebles, and LE tests for birds and Sheinbugs. Session two 

included MA tests for v-Ziggerins, Sheinbugs, and planes, and LE tests for Transformer toys, planes, 

s-Greebles, and v-Ziggerins. The test sequence and trial order for each test were fixed for all 

participants to avoid disparate order effects which may impair measurement of individual 

differences. 

 

Learning Exemplars Task 

For each test, participants had to learn and then try to recognize six target objects from one 

object category. Participants studied 6 exemplars shown simultaneously, and they were given the 

chance to review them after trials 6 and 24. Each test included 48 three-alternative forced choice 

trials, in which they had unlimited time to select the object they thought was one of the six target 

objects from an array of three. Performance was calculated as percent accuracy (further details of 

the tests are described in Sunday et al., 2022) 

 

Matching Task 

On each trial participants were asked to compare two sequentially presented objects and 

determine if they have the same identity. Each test for any given category included 360 trials, with 

equal numbers of same and different trials. Each trial began with the presentation of an object for 

300 ms for the first half of the test, and 150 ms for the remaining trials. This was followed by a 500 

ms scrambled mask specific to the object category presented on that trial, and then a probe object 

to which participants were given 3000 ms to respond. A fixation cross was displayed for 500 ms as an 

interstimulus interval. Performance was calculated as sensitivity (d’). Further details of these tests 

are described in Sunday et al. (2022). 

 

Analyses and Discussion 
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To assess the criterion validity of aggregate o scores calculated from two measures, we 

compared these scores to factor scores calculated using the maximum a posteriori method from the 

full model (Figure 1). This model closely resembles that used in figure 5 from Sunday et al. (2022), 

without the ensemble processing variable and indicators. Factor scores were calculated separately 

for novel and familiar objects. Aggregate scores were calculated from every combination of one MA 

task and one LE task that use different object categories, within both subsets of tasks for novel and 

familiar categories. There are therefore 6 sets of possible aggregate scores each for novel and 

familiar objects. To avoid comparing scores calculated from the same data, we compare aggregate 

scores from two o tasks using categories from either novel or familiar objects, with factor scores 

calculated for the opposite type of object. A schematic example of the approach is in Figure 1. 

Although in principle, correlating across different object-familiarity levels could reduce the 

correlation between aggregate o scores and factor scores, Sunday et al. (2022) found that the 

correlation between oN and oF was r = .98, so the two abilities are practically the same and an 

attenuation of the correlations for this reason is unlikely.    
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Although Sunday et al. (2022) collected data from 294 participants and factor scores were 

calculated on the entire sample (using methods robust to missing data or outliers), for aggregate 

scores we excluded participants with missing data because they would affect aggregate calculations. 

This left 210 participants. Table 1 shows correlations between factor scores and aggregate scores. 

We Fisher transformed the correlations before calculating the mean, and then inverse transformed 

the mean back to r, as is recommended practice to obtain less biased estimates (Corey et al., 1998). 

The mean correlation between aggregate scores and factor scores was r = .79. For comparison, the 

correlation between the aggregate of all 6 novel object tests and the familiar object factor score was 

r = .95). Interestingly, the aggregates of two novel object tests were better estimates of familiar 

object factor scores (r = .82) than aggregates of familiar object tests were for novel object factor 

scores (r = .75), a difference that cannot be attributed to the different factor scores as they were 

  

Figure 1. Diagram showing an example of how tests were selected from Sunday et al.’s (2022) 
model for our comparisons. In this example, the two novel object tests that are shown in 
color on the left are used to create an aggregate score (MA from one object category, LE 
from another object category, while the greyed-out tests are not used), whereas all six of the 
familiar object tests on the right are used to create a factor score. The aggregate score uses 
equally weighted tests, whereas the weights for the factor score calculation were obtained 
from the SEM model. The correlation between the aggregate score and the factor score is 
then calculated. 
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nearly identical (r = .99). Although a two-sided Fisher’s z-test (.82 – .75; z = 1.878, p = .06; 95% CI [-

0.03, 0.15]) was not significant, the difference is consistent with previous evidence that novel object 

recognition tests correlate more highly with each other than do familiar object tests (Richler et al., 

2017), potentially due to a greater role for the domain-general ability in tests of novel objects. Given 

these results, we can be confident that for both theoretical and empirical reasons, using novel 

objects to estimate o may be better than using familiar objects, or no different, but should not 

provide worse estimates. In prior work using the aggregate approach to estimate o, novel object 

tasks have been used to avoid any contribution from experience with familiar objects. A large and 

varied set of familiar categories may converge on an unbiased estimate of domain-general ability 

(Richler et al., 2017), but measurement with novel objects may provide a more direct way to avoid 

this potential source of bias. 

The high correlation between aggregate estimates of o and factor scores from a model with 

6 tasks validates the aggregate approach that has been used in prior research. There is no question 

that there are some advantages to an SEM approach, including the ability to calculate correlations 

among variables, free from the attenuating effects of measurement error. An alternative approach 

to handling measurement error when correlating aggregate scores with other variables is to 

disattenuate correlations based on the reliability of the measures (Nunnally, 1994; Wang & Stanley, 

1970). The ability to estimate o quickly makes possible the use of this construct in a broader set of 

research circumstances (e.g., when time is limited, often because many constructs must be 

estimated, or when limits in sample size will not allow an SEM approach). 
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Part II – A Trio of Measures 

In Part I we demonstrated that it is possible to obtain good estimates of o by aggregating 

across only two tests with differing task demands and stimuli. In Part II, we further refined this 

approach by revising our existing tests to measure o more efficiently and adding an additional test to 

measure o more comprehensively. Then we assessed the validity and reliability of these measures. 

Our motivations for developing a new set of tests are multiple. The matching task used in 

Sunday et al. (2022) had 360 trials, and is thus impractical for many research projects. Shorter 

measures of o will make measurement more efficient and allow the inclusion of the construct in 

research where time and resources are limited. Furthermore, the matching task was not initially 

designed for individual differences work, and so trials were not previously selected on the basis of 

Table 1 

Correlations between aggregate scores and factor score estimates 

Matching Category Learning Exemplar Category oFamiliar oNovel 

v-Ziggerins s-Greebles .85 

v-Ziggerins Sheinbugs .71 

s-Greebles v-Ziggerins .87 

s-Greebles Sheinbugs .76 

Sheinbugs v-Ziggerins .84 

Sheinbugs s-Greebles .85 

Birds Planes  .77 

Birds Transformers  .80 

Planes Birds  .70 

Planes Transformers  .83 

Transformers Birds  .63 

Transformers Planes  .73 

Note. Aggregates of novel object tests are compared with the familiar 
object factor scores, whereas aggregates of familiar object tests are 
compared with the novel object factor scores. 
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item analyses, nor was trial difficulty manipulated to ensure a good range (high reliability was 

instead achieved because of a large number of trials). Additionally, because the matching task is an 

old/new task, the decision to respond ‘old’ on a given trial depends on whether the memory 

strength for the object is stronger than a decision threshold that varies across participants (some 

participants need to be very sure before they say they recognize an object, others do not).  To 

account for the influence of response bias, a measure from signal detection theory known as d’ is 

used to index accuracy (Stanislaw & Todorov, 1999). However, in attempting to correct for response 

bias, the calculation of d' as commonly performed relies on unrealistic assumptions about the 

distribution of memory strengths that may lead to incorrect conclusions. It is assumed that memory 

strengths for old and new items follow equivalent normal distributions, albeit with different means. 

Brady et al. (2022) demonstrate that the violation of this assumption can lead to cases where an 

individual who has better memory than another person will have a d’ suggestive of worse memory 

than that person. These issues are especially concerning when d’ is used to measure individual 

differences. Therefore, it is recommended to use a forced choice design, because instead of 

measuring whether a person’s memory strength for an object is above or below a particular 

threshold which is unique to them, an individual can compare memory strengths for each item on a 

trial and choose the item with the strongest one.  

  Another motivation for revising measurement methods is to further refine the construct of 

o. As o is a newly identified construct, there is still substantial uncertainty about the specific 

dimensions that must be measured to capture the construct well. Construct theories are transient 

and evolve as measurement helps us to better align theoretical predictions and observations (Kuhn, 

1961; Stenner et al., 2022). When selecting indicators for a construct, it is necessary to consider 

whether the dimensions of importance have been well characterized by prior work. Constructs 

which have been well characterized may be confidently measured by a small number of indicators 

that capture the known dimensions of relevance. However, for novel constructs there is great 

uncertainty about which specific dimensions are of importance. Only through an iterative process 
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can researchers arrive at greater certainty about how to best capture a latent construct. Simulations 

suggest that under such conditions of uncertainty, it is beneficial to use a greater number of diverse 

indicators, which capture multiple dimensions of potential importance (Little et al., 1999). By adding 

another test to our set of measures that varies significantly from our existing tests, we may be better 

able to triangulate o. Our existing two tests (MA and LE) both allow for within-test learning of 

categories, as participants gain experience with objects from the same category across trials. It is 

currently uncertain how important this learning element is to the o construct, so we designed an 

additional test – the Many Objects Oddball test (MOO), which presents a new object category on 

each trial and does not allow for learning. The shared variance between this test and the existing 

tests should tap into an ability that applies regardless of whether learning is possible across trials. 

Our proposed trio of measures therefore consists of the LE test used in Part I, a revised 

version of the MA test used in part I, and the new MOO test. We describe the development and 

features of these tasks in the task development section. To test the psychometric properties of our 

new trio of tests, we administered them to a large sample on two occasions spaced a month apart. 

Using this design, not only can we assess the convergent validity of our measures, but we can also 

calculate test-retest reliability for each measure, and for the overall aggregate. While o may be 

assumed to be a stable trait, no prior work has directly assessed the degree of stability, which could 

have implications for any potential applications of the construct in real world contexts. This study 

thus represents the first longitudinal investigation of o. Additionally, we tested participants on other 

cognitive and perceptual abilities, including perceptual speed, intelligence, and low-level visual 

perception. This allows us to investigate the relationship between o and these other abilities and 

determine whether the longitudinal stability of performance on o tasks can be explained by these 

other abilities. We deliberately chose measures of other perceptual abilities which that most similar 

in task design to our o tests so that we would have the best chance of accounting for o test variance 

with these measures. Many psychological constructs are merely rehashed versions of existing 
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constructs (Kelley, 1927), and it is therefore useful to test whether o can be accounted for by 

theoretically similar constructs and existing task designs. 

Participants 

We recruited 200 participants online from Prolific to complete two sessions, spaced 30 days 

apart. Based on previous work (e.g. Richler et al., 2019; Sunday et al., 2022), we expected that 

correlations between our object-recognition tests would range from .3 to.4. Such correlations 

should, with 80% confidence, reach a critical point of stability with a half-width of .1 at around 200 

participants (Schönbrodt & Perugini, 2013). We restricted recruitment to participants whose first 

language was English and had an approval rate above 95% on the site. To ensure high-quality data, 

we embedded attention checks into most of our tests that did not have strict time limits (power 

tests, in contrast to speed tests). These attention checks were simple instructions intended to ensure 

that participants were attentive to the task. For the first session, if a participant failed two or more 

attention checks embedded throughout our tasks, we replaced them. In this first session, we 

collected 200 complete datasets (mean age = 41.2 years, SD = 13.9; 103 women, 92 men, 5 other). In 

the second session, we also did not use data from participants who failed two or more attention 

checks. Of the initial 200 participants, 163 participants (mean age = 41.4 years, SD = 13.6; 87 women, 

72 men, 4 other) successfully completed the second session. For analyses concerning o tests only, all 

163 participants who completed both sessions were included. For analyses involving additional 

variables, four participants were excluded for scores that were more than three standard deviations 

below the mean or scored negatively on perceptual speed tasks.  

Task Development 

Three-Alternate Forced Choice Matching Task 

We designed a new version of the matching task, switching to a three-alternative forced 

choice design. There are several benefits to this format relative to the same/different format used in 

prior work. First, changing the task from one which asks participants if an object is one they have 
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previously seen to a task where they have to determine which one of a set of objects is one they 

have previously seen relieves us from making strong assumptions about unobservable memory 

strengths that are necessary to calculate a measure of discriminability like d’. Recent best practices 

recommendations suggest that a forced-choice format should be used whenever possible (Brady et 

al., 2022). In addition, using a 3AFC format allows us to reduce the probability of being correct if 

guessing at random to one third from one half, which reduces measurement error and allows 

achievement of higher reliability using fewer trials. Finally, a 3AFC format provides us with more 

degrees of freedom to manipulate the difficulty of the discrimination. A large variability in the 

difficulty of the trials is helpful, as easy trials can help discriminate individuals at the lowest end of 

the ability, while harder trials help discriminate individuals at the highest end of the ability. These 

changes allowed us to reduce the number of trials from 360 in the old format to 51 in the new 

format, raising reliability in a shorter test. It can also be scored more easily using percent accuracy.  

 On each trial, participants were presented with an object briefly, then asked to select the 

matching object amongst an array of three objects. This test included 51 trials using asymmetrical 

Greebles, rendered in two views approximately 30 degrees apart, rotated around the vertical axis. 

The first three trials have correct/incorrect feedback, and feedback is not included in later trials. 

Following practice there were four blocks of trials increasing in difficulty. Target objects were 

repeated only once during the entire test, in a different view each time. Target objects were never 

used as foils on other trials. All trials began with the fixation cross for 500 ms, followed by the 

presentation of the target object for 300-1000 ms (dependent on trial difficulty). This was followed 

by a 500 ms mask of scrambled object parts with visual noise, and an array of three objects. The trial 

ended when the participant made a response by clicking on one of the objects, indicating the match. 

The first block of 8 trials showed the target for 300 ms and the options in the same view as the 

target. The second block of 16 trials showed the target for 500 ms and the options in a different view 

from the target. Participants were then informed that the targets would appear in visual noise with 

an example. The noise was Perlin noise, which is a pseudo-pattern gradient noise used by visual 
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effects artists to increase realism in computer graphics. A two-tone pseudo-pattern appeared behind 

the Greebles and with 80% transparency over them. The third block of 12 trials showed the target in 

noise and presented for 750 ms, followed by the options without noise in the same view as the 

target. The fourth block of 12 trials showed the target in noise for 1000 ms, followed by the options 

without noise in a different view as the target. Percent accuracy was used as a measure of 

performance. 

 

Many Objects Oddball 

We also developed a new object recognition test – the Many Objects Oddball Test (MOO). In 

this test, participants pick the odd one out from three objects from the same category. These objects 

are complex, varying along multiple dimensions, but crucially, because no object category is 

repeated, there is no possibility for within-test learning about the dimensions that are relevant for 

any given category. This is unlike in the MA and the LE in Sunday et al. (2022), where object 

categories are repeated across trials. In some of our work we have used an MA task that mixed 

objects from five novel categories (Sunday et al., 2018), but even these tasks allowed learning at the 

category level as several objects within any one category were presented over the course of 200 

trials. For both the revised MA task and the MOO task, we initially created a set of trials intended to 

capture a range of difficulty. We collected data from independent samples and then calculated trial 

difficulty, item-rest correlation, and internal reliability. For each task, we reordered trials based on 

empirical difficulty and then replaced trials with low item-rest correlation. After these modifications, 

we collected data again from another sample and continued to improve the tasks. We repeated this 

data collection from independent samples followed by task modifications until we achieved high 

internal reliability.   

On each trial, participants were presented with three objects from the same object category 

and asked to choose which object was different from the other two. This test included 45 trials using 
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objects from many novel object categories intermixed throughout the task – specifically, while 

objects were highly similar within a trial, they were from highly different categories across trials. The 

objects came from a set collected by McGugin et al. (2022) from various sources. Each trial began 

with the presentation of a fixation cross in the center of the screen for 250 ms, followed by the 

presentation of three objects for 750-4000 ms to vary difficulty. This was followed by a prompt for a 

response with three empty squares where the objects had previously appeared. The trial would only 

end when the participant made a response by clicking on one of the squares, indicating the object 

that appeared there was the oddball. During the presentation of the objects, each image was a 

slightly different size and vertically offset such that it was difficult to determine the oddball using 

low-level feature comparisons. The two images showing the same object showed it in a slightly 

different view. All images were transformed to greyscale and equated for low-level image properties 

using the Matlab SHINE toolbox (Willenbockel et al., 2010). In addition, based on pilot data, Perlin 

noise was added to some trials to increase difficulty. Feedback was given on every trial, but due to 

the wide variety of object categories used in this task, we assumed very little learning in this test. 

Percent accuracy was used as a measure of performance. 

Test Battery 

o tests 

Our trio of o tests consisted of one of the previously used LE tests (with vertical Ziggerins; 

details described in Part I), the 3AFC version of the MA test with asymmetrical Greebles, and the 

newly developed MOO test (Figure 2). Aggregate o scores were calculated for each participant by 

averaging z-scores from each test. We implemented these tests using jsPsych (version 7.2; de Leeuw, 

2015) and we provide these tests in an easy-to-use offline format that can be adapted for online use 

in our GitHub repository (https://github.com/OPLabVanderbilt/Ojs/tree/main/standalone).  
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Figure 2. Trio of object recognition tasks used to measure o scores. 

 

Note. The object category differs for each trial of the MOO test. 

 

 

Matrix Matching Intelligence Test 

The Matrix Matching Test (Pluck, 2019) asks participants to select the missing piece of a 

visuo-spatial pattern, or to select the item that best matches the semantic meaning of a given set of 

images. Of the total 24 trials, 12 trials measured visuospatial intelligence, and 12 measured semantic 

reasoning. Previous work suggests this task correlates highly with other established intelligence tests 

such as the Weschler Adult Intelligence Scale-IV (r = .89; Pluck, 2019).  
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Perceptual Speed   

Perceptual speed was measured using a pair of speeded tests (Ekstrom et al., 1976): Hidden 

Patterns, in which participants had to verify whether one line drawing was contained within another; 

and Identical Picture matching, in which participants saw a picture and had to select the exact 

matching picture amongst foils. In both tests participants complete as many trials as possible and 

incorrect trials are subtracted from the total. Participants were given three minutes for the Hidden 

Patterns test, and one and a half minutes for the Identical Pictures test. We aggregated z-scores on 

these tests to create an overall perceptual speed score. 

Hanover Early Vision Assessment 

 The Hanover Early Vision Assessment (HEVA; Kieseler et al., 2022) measures low-level visual 

ability, where on each trial participants had to select the oddball amongst three images based on a 

low-level feature such as line length or orientation. There were 120 trials in total made up of 20 

blocks of six trials each. All six trials within a block tested comparisons of the same feature type. The 

five feature comparisons were dot distance, circle size, ellipsoid size, angle size, and line length. 
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Figure 3. Example trials for tests of abilities other than object recognition 

 

Note. In the Matrix Matching Test the goal is to select the option that fits the pattern. In the 
Hanover Early Vision Assessment participants pick out the odd shape. There are two perceptual 
speed tests, in order from left to right: Identical Pictures, and Hidden Patterns. In the Identical 
Pictures task, participants pick the object which matches the target object, in the Hidden Patterns 
task participants judge whether the model is contained in the other line drawing. 

 

Procedure 

The study was split across two sessions and was completed entirely online. In the first 

session participants completed the LE test, the 3AFC MA test, the MOO test, the perceptual speed 

tests, the Matrix Matching test, and then HEVA. This first session took approximately 45 minutes. 

Participants were invited to the second session 30 days after they completed the first session and 

were given seven days to complete it. This second session only included the LE test, the 3AFC MA 

test, and the MOO test. The trio of o tasks took approximately 15 minutes. 
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Results 

Reliability & Validity 

The three o tests all had significant positive correlations with one another at both sessions (see Table 

2 for correlations between tests). We calculated single session ʎ2 reliability estimates for the o tests, 

which suggested good reliability (see Table 3 for descriptive statistics and reliability). However, the 

single-session reliability of aggregate o scores was higher still, as is often the case when measures 

correlate (Lord & Novick, 1968). The test-retest reliability of the three o tests were all acceptable, 

though somewhat lower than single-session reliability. However, the test-retest reliability of the 

aggregate measure of o was considerably higher than that of the individual tests, demonstrating that 

the aggregate measure of o is a reliable measure of individual differences even between sessions. As 

correlation estimates are limited by the reliabilities of the variables (Lord & Novick, 1968), by 

disattenuating for measurement error we can obtain estimates of the stability of the underlying 

construct of interest (Spearman, 1907). The disattenuated correlation (r = .89) suggests that the o 

construct is highly stable over a month. 

Table 2. 
Correlations between tasks 
 

Task Age MOO LE 3AFC 
MA 

Identical 
Pictures 

Hidden 
Patterns 

Matrix 
Intelligence 

MOO -.26**       

LE .10 .18*      

3AFC MA -.20* .44*** .35***     

Identical Pictures -.37*** .52*** .19* .46***    

Hidden Patterns -.22* .32*** .27*** .44*** .56***   

Intelligence -.02 .29***  .5** .4*** .28*** .42***  

HEVA -.01 .24** .37*** .4*** .19* .31*** .45*** 

Note. *p < .05; ** p <.01; *** p <.001, using the Holm-Bonferroni method of controlling family-wise 

error rate (Holm, 1979).  
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Table 3 

Descriptive statistics 

 Session 1 Session 2  

Test Mean (SD) Reliability Mean (SD)  Reliability Test-retest reliability 
Aggregate o 0.07 (0.73) .85 0 (0.76) .86 .77 [.70, .83] 

    Learning Exemplars 58.5% (15.8%) .85 60.8% (17.6%) .88 .62 [.52, .71] 

    3AFC Matching 69.1% (11%) .73 71.5% (11.1%) .72 .66 [.56, .74] 

    Many Objects Oddball 71% (10.6%) .66 71.8% (11%) .68 .66 [.56, .74] 

Perceptual Speed 0.05 (1.29) .94    

    Identical Pictures 47.7 (8.3) .86    

    Hidden Patterns 97.5 (37.2) .96    

Matrix Intelligence 72% (11.7%) .69    

Hanover Early Vision 

Assessment 

74.8% (11.3%) .92    

Note. ʎ2 reliability was calculated for Learning Exemplars, 3AFC Matching, Many Objects Oddball, and Hanover 

Early Vision Assessment, as it is more robust than Cronbach’s α (Callender & Osburn, 1979). Aggregate o 

reliability was calculated with equal weighting for each subtest following Wang and Stanley (1970). For the 

Matrix Matching intelligence test, Lambda 2 was first calculated separately for visuospatial trials and semantic 

trials, and then aggregate reliability was calculated for the final score. As the perceptual speed tests are 

speeded, the split-half reliabilities for the identical pictures and hidden patterns tests were calculated as the 

Spearman-Brown prophecy corrected correlation between the scores from the first half of allotted time and the 

scores from the second half of allotted time. These estimates were then used to calculate the aggregate 

perceptual speed reliability. 95% CIs are reported for test-retest reliability estimates. 

 

The high reliability of aggregate o both within-session and across-sessions suggests our 

measures are well suited for individual differences research. However, it is possible that the stability 

of our measures may be explained by other abilities these aggregate scores may capture. Table 4 

shows that all of the abilities we measured correlated significantly with one another, suggesting that 

there is substantial shared variance between them. To test whether our measures capture a stable 

object recognition ability that is independent of these related cognitive abilities, we conducted a 

hierarchical regression (Table 5) predicting aggregate o at session two. In the first step we added age 

as a predictor variable, as age is a subject factor that could impact many cognitive abilities. In the 

second step we added perceptual speed, intelligence, and early visual abilities as predictor variables. 

Finally, to determine the extent to which our object recognition measures capture o independently 

of these other tests, we added aggregate o from session one in the final step. Age did not 

significantly predict o at session two. A large portion of o score variance was predicted by the 

addition of intelligence, perceptual speed, and early visual abilities in step 2 (ΔR2 = .41), which all 

independently predicted o. In the final step, the addition of aggregate o at session one significantly 
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increased the total variance explained in aggregate o at session two (ΔR2 = .17). Thus, the 

relationship between aggregate o at session one and session two cannot be completely explained by 

perceptual speed, intelligence, and low-level visual abilities. In the final model early visual abilities 

and perceptual speed were significant unique predictors of o, whereas intelligence no longer 

uniquely predicted o. Interestingly, this is true even though we used measures of intelligence and 

processing speed that included objects and shapes (i.e. we used measures of perceptual speed, 

which is a facet of processing speed concerned with visual stimuli) which may themselves include a 

contribution from o. One explanation for this lack of a unique relationship may be that general 

intelligence contributes to all cognitive ability tests so this source of variance in o tests may also be 

captured by the other perceptual tests.  

Table 4 
Correlations between abilities 
Task Age o Perceptual Speed Matrix Intelligence 
o -.16        [-.29, -.02]    
Perceptual Speed -.36*** [-.47, -.23] .56*** [.45, .65]   
Matrix Intelligence -.02        [-.16, .12] .54*** [.43, .63] .36*** [.23, .48]  
HEVA -.02        [-.15, .13] .45*** [.33, .56] .26**   [.12, .38] .45*** [.33, .55] 

Note. *p < .05; ** p <.01; *** p <.001, using the Holm-Bonferroni method of controlling family-wise error rate 

(Holm, 1979). 95% CIs are displayed. 

 

Table 5 
Hierarchical Regression 
Predictor β t F adj R2 ΔR2 

Step 1 (age)   3.213 .01  

  Age -0.14 -1.837    

Step 2 (other abilities)   29.19 .42*** .41*** 

  Age -0.02 -0.362    

  Intelligence 0.19 2.653**    

  Perceptual Speed 0.13 5.234***    

  HEVA 0.32 4.769***    

Step 3 (o at time 1)   46.91 .59*** .17*** 

  Age 0 -0.055    

  Intelligence 0.03 0.534    

  Perceptual Speed 0.13 2.07*    

  HEVA 0.21 3.603***    

  o Session 1 .57 8.212***    
 

Note. *p < .05; ** p <.01; *** p <.001. Standardized beta weights and t values 

are for simultaneous regression, change in R2 is the change between each step. 
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Structural Equation Models – Convergent Validity and Stability 

To estimate the stability of o over the course of a month, we modelled o as a latent variable 

in a structural equation model. This approach is advantageous as it accounts for measurement error, 

in addition to more effectively removing the influence of irrelevant task-specific variance (Bollen & 

Bauldry, 2011). Our model indicated a very high stability coefficient (γ = 1.08, 95% CI [.68, 1.47]; r = 

.93, 95% CI [.85, 1]), demonstrating that o is almost perfectly correlated across sessions. In both 

sessions, all three tests had highly significant path coefficients from o, suggesting the measures have 

convergent validity. These path coefficients were particularly high for the 3AFC Matching Task (See 

Figure 3 for standardized coefficients). We also tested for metric measurement invariance across the 

two sessions and found no significant reduction in model fit, but we did find a significant reduction 

in fit for a scalar invariant model. (See Supplementary Materials). 

 

Figure 3. Longitudinal Structural Equation Model of o at time 1 and time 2. 

 

Note. Standardized solution. Significant paths have coefficients in Bold, *** 
indicates p < .001. Fit statistics: χ2 (5) = 1.4, p = .92; RMSEA = 0, 90% CI [0, .035]; NNFI = 

1.03; SRMR = .009.  
 

Ot1 Ot2

LEt1 MAt1 LEt2 MAt2 MOOt2

.93***

.38*** .88*** .54*** .4*** .94*** .56***

MOOt1
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Discussion 

The aggregate o measure was highly reliable for both single-session and between-session 

measurement, including across a month-long time interval (r = .77). Classical Test Theory assumes 

that correlations between observed scores for different tests occur due to correlations between the 

true score portion of the variance of each test, and not the error variance. If multiple tests measure 

the same construct, their true-score variances will correlate, increasing the reliability of their 

aggregate. Because we aim to measure domain-general ability, not all true-score variance in an 

object recognition test is relevant to the construct, as some true-score variance is due to domain-

specific factors, such as stimuli or task demands. An inherent limitation of the aggregate approach is 

that it is does not separate domain-general and domain-specific sources of true-score variance, so 

some of the increased reliability of the aggregate measure may result from irrelevant true-score 

variance that is shared between only some of the constituent tasks (for a further explanation see 

Gerbing & Anderson, 1984). Because composite measures like aggregate o assume that a linear 

combination of scores define the construct, they partially consist of measurement error and 

irrelevant domain-specific variance. These unwanted sources of variance can contaminate aggregate 

measures and may bias estimated relationships between the composite and other variables (Bollen 

& Lennox, 1991) as these irrelevant sources of variance may themselves covary, or fail to covary, 

with other constructs. However, these issues may be mitigated by aggregation of measures with 

diverse task demands. With diverse measures, construct-irrelevant sources of variance should be 

unique to individual tests, and domain-general ability should predominate over other sources of 

variance, as domain-general ability contributes to performance on every test. The resulting 

aggregate should therefore largely reflect domain-general ability as opposed to measurement error 

and task-specific abilities (See Lubinski, 2004, p.99).  

Although an aggregate measure of o can better capture the domain-general construct than a 

single-format test, o is properly conceived of as a latent variable which causes performance on the 
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object-recognition tests, rather than a variable composed from test scores. This is synonymous with 

the distinction between effect and cause indicators as has been discussed in the structural equation 

modelling literature (Bollen & Bauldry, 2011). To obtain a purer measure of o, our trio of measures 

can also be used as indicators of o modelled as a latent variable, thus removing measurement error 

and further limiting the influence of task-specific variance. This difference between approaches 

explains the difference in stability estimates between o modelled as a latent variable (r = .93) and o 

measured as an aggregate (r = .77; disattenuated r = .89). However, the aggregate approach is a 

useful compromise between the analysis of single measure variables, which can be more biased, and 

the use of structural equation models, which require large samples and often more complex 

research designs. 

Whenever a new construct is proposed, it is worth establishing its independence of, or 

dependence on, other theoretically related constructs. The location of the construct within the 

nomological net allows for a fuller understanding of the identified construct, and for the validation 

of new measures (Cronbach & Meehl, 1955). In the case of o, we are still beginning to understand its 

place among its peers. The construct is likely to be related to measures of more specific aspects of 

object recognition, for instance visual memory (Brady et al., 2011) or object matching (Growns et al., 

2023). Critically, both the latent variable and aggregate approaches we compared here target a more 

general ability, as the individual tests vary on both dimensions of object category and task demands. 

Previous work has demonstrated that o is related to, but largely independent of, fluid IQ and visual 

working memory (Richler et al., 2017, 2019; Sunday et al., 2018). We find moderate to strong 

relationships between aggregate o, perceptual speed, intelligence, and early visual abilities. The 

interpretation of these relationships based solely on first-order correlations can be difficult, as much 

of the variance may overlap between multiple variables. Using hierarchical regression with 

aggregate o at session two as the dependent variable, and all other variables as predictors, we found 

that a considerable proportion of aggregate o could be explained by intelligence, perceptual speed, 

and early visual abilities (R2 = .41). But crucially, even after partialling the other abilities out, there 
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was still a substantial unique relationship between o at session one and o at session two (R2 = .17), 

which demonstrates that the aggregate o measure captures something distinct from intelligence, 

perceptual speed, and early visual ability. Furthermore, as we are not modelling o as a latent 

variable in this analysis, the unique relationship between each session’s aggregate o is likely an 

underestimate, as it is constrained by measurement error (Charles, 2005). 

Although the variance in aggregate o at session two uniquely explained by aggregate o at 

session one was smaller than the total variance explained by other abilities, it is worth considering 

the similarity of the tests used in measuring these other abilities to those used in measuring o. For 

example, HEVA requires that participants detect the odd one out of three images of low-level 

features. These task demands are very similar to those in the MOO test, except that the HEVA test 

uses low-level features such as line length, rather than high-level complex objects. The Matrix 

Matching Intelligence test is a visual measure of intelligence, rather than verbal. Perceptual speed is 

the facet of the more general processing speed that is explicitly concerned with the rapid search for, 

and comparison of, specifically visual stimuli (Flanagan & Dixon, 2014). The Identical Pictures 

perceptual speed test is a matching task requiring participants to pick which of three images is the 

same as the target image, which is a very similar format to the 3AFC MA test. The Hidden Patterns 

perceptual speed test also requires matching, as it asks participants to judge target line drawings 

that may be contained within another line-drawing. Given the similarities in task demands and the 

heavy visual component of all tasks, the existence of a sizeable unique relationship between 

aggregate o at session one and session two suggests that there may be a substantial degree of 

independence between o and these other abilities. Our approach was to deliberately pick those 

aspects of other constructs which were most theoretically close to o, and those tests of other 

constructs which shared the most task demands with our tests, in order that there would be the best 

chance possible of accounting for the variance in o tests with these tests of other abilities.  
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 A limitation of this approach is that it is not possible to separate shared method variance 

from shared construct variance when analyzing correlations between these abilities. Future research 

should use more balanced sets of measures of other constructs in order to precisely estimate the 

degree of relationship between o and other constructs through the use of SEM methods. For 

example, the aggregate measure of perceptual speed correlated highly with aggregate o (r = .56), 

but it is unclear whether this is due to an inherently strong relationship between the two constructs, 

or because the tests for both abilities have similar task demands. Indeed, for the LE, which is the 

most dissimilar in task demands from the perceptual speed tests, there is a much lower relationship 

with perceptual speed (r = .24) than there is for the 3AFC MA (r = .5) and the MOO (r = .5). The 

perceptual speed tests require rapid visual comparison of simultaneously presented stimuli, and the 

3AFC MA and the MOO both have limits on encoding time and have short time intervals between 

encoding and retrieval. However, the LE has no limit on encoding time, and has longer time intervals 

between encoding and retrieval. By using a more diverse set of tests as indicators for these other 

abilities, we could use an SEM approach to obtain a clearer picture of how closely the underlying 

abilities are related when accounting for the shared variance due to similarity of task demands. It is 

likely that there is a substantial relationship between o and these other abilities at a construct level, 

even if shared method variance were accounted for. This might be expected if o is theoretically 

conceived of as existing within a hierarchical model of cognitive abilities such as that described by 

the Cattell-Horn-Carrol (CHC) model (Schneider & McGrew, 2018). In such a model, all abilities are 

expected to correlate due to the shared influence of general intelligence, which occupies the top of 

the hierarchy, but abilities are also expected to correlate more highly with one another if they are 

theoretically related due to the shared influence of some broad ability. For example, if o were 

conceived of as being a narrow facet of a broader visual processing ability, it would be expected to 

correlate with other visual abilities to a greater degree than with non-visual abilities, as the other 

visual abilities would also be strongly influenced by the broad visual processing ability. The position 

that o should occupy in a model like CHC is currently unclear, but we expect strong correlations 
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between o, which fundamentally concerns individuation, and abilities that require perceptual 

discrimination – especially of complex stimuli. Perceptual speed requires rapid visual comparison, 

but perceptual speed tests require simpler judgements than o tests do, and scores on perceptual 

speed tests depend on the rapidity of these simple judgements rather than on the accuracy of 

difficult judgements. Because both constructs describe an ability concerning perceptual comparison, 

we would expect some overlap between these abilities, despite the theoretical distinction. Likewise, 

we would expect some overlap between o and the ability to make similarity judgements for low-

level stimulus properties that is tested by HEVA. However, our analysis suggests that these related 

abilities do not explain all of the variance in the o ability. Recent evidence suggests that the 

relationship between visual o and the ability to individuate complex auditory stimuli is higher than 

the relationship between o and visuospatial abilities (Smithson et al., 2024; see also: Chow et al., 

2023). Given these results, o seems unlikely to rely primarily on a more general visual ability. 

We find a large relationship between the aggregate o measure and general intelligence (r = 

.54). In part, this reflects an already known relationship between o tasks and fluid-IQ; previous 

research has indicated relationships of small to moderate size (Richler et al., 2017, 2019). However, 

this relationship may also reflect the nature of aggregate measures, in that the ‘general factor’ can 

be expected to contribute to performance on all ability tests, and so aggregates of different tests will 

contain a component of variance that can be attributed to general intelligence. Of course, this is not 

unique to aggregate measures, but while aggregate measurement can minimize the influence of 

domain-specific variance, domain-general influences will remain influential on scores. By implication, 

the aggregate o measure will, at least in part, correlate with other abilities for the simple reason that 

it correlates substantially with intelligence. For example, the correlation between aggregate o and 

perceptual speed (r = .56 to rpartial = .46) and HEVA (r = .43 to rpartial = .26) are both reduced when we 

partial out scores on the matrix matching intelligence test. This underscores the importance of 

controlling general intelligence when using aggregate measures to predict other variables, if the 

hypothesis concerns the predictive ability of o specifically and not general intelligence. In previous 
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work using aggregate o measures, general intelligence has been partialed out when predicting 

criterion variables (e.g. Chang & Gauthier, 2021; Sunday et al., 2018). In addition, intelligence can 

also be measured using tests that do not require shape processing, and this may alter the size of the 

relationship with o. 

As the measurement of o is still in its infancy, there are many unanswered questions about 

the best task designs for measuring it. All path coefficients from the latent variable o to the three 

object recognition tests were highly significant, but varied greatly in size, in particular the 3AFC MA 

predominated over the other two tests. However, in recent large-sample research using these 

measures, the loadings onto o from these three tasks has been more balanced (Chow et al., 2023; 

Smithson et al., 2024). For a well-established construct with a long history of psychometric research, 

each measure can be well designed to reflect the latent construct to a high degree. However, for 

novel constructs, it may be favourable to choose indicators that differ to a greater extent, such that 

although the path coefficients are lower, the location of the construct in multivariate space may be 

more accurately triangulated (Little et al., 1999). Only through an iterative process of adjusting, 

testing, and seeing what breaks measurement, are we likely to develop a clearer picture of which 

dimensions are of importance for capturing the construct more accurately with each measure. 

Furthermore, when measuring a domain-general ability, it may be particularly important that 

indicators are not too similar, as covariance between three quite different tasks is more likely to 

represent an ability which is truly domain-general than covariance between three very similar tasks 

which covary very strongly. It is possible that in such a situation, if each test is not designed to give 

full coverage of a construct, individual measures of different constructs could correlate more highly 

than measures of the same construct if task demands were shared between the measures of 

different constructs, but not shared between the measures of the same construct, especially if the 

relationship between constructs is non-zero (Bollen & Lennox, 1991). Future work could also aim to 

develop additional measures of o such that the aspects of task design that are crucial for 

measurement can be determined. By systematically varying features of object recognition tests and 
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comparing how different variants load onto the latent o variable, it may be possible to develop a 

clearer picture about what is necessary and what is not necessary to capture o. The development of 

this trio of o tasks represents an important step forward in the measurement of domain-general 

object recognition ability, and we provide a valid, reliable, and quick measure of general object 

recognition for all researchers to use. We consider this a good starting point for future task 

development and for the exploration of the o construct. By making these measures publicly 

available, we hope that other researchers will be able to include o in their research designs. 
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Data are available at https://osf.io/m9xa5/  
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Supplementary Materials 

Table 1 

Model Fit Indices – longitudinal measurement invariance. 

Model Description df χ2 Δχ2 RMSEA  

[90% CI] 

NNFI SRMR AIC BIC 

1 No Equality Constraints 5 1.4 

p = .92 

 0 [0, .035] 1.030 .008 7398.24 7466.30 

2 Metric Invariance: 

equal path coefficients 

and across sessions. 

 

8 2.74 

p = .95 

1.34 

p = .72 

0 [0, .005] 1.028 .020 7393.58 7452.36 

3 Scalar Invariance: 

equal path coefficients 

and intercepts across 

sessions. 

11 17.28 

P = .1 

14.54 

P = .002 

.059 [0, .11] 0.976 .042 7402.12 7451.62 

 

Table 2 

Model Fit Indices – one factor vs two factor model. 

Model Description df χ2 Δχ2 RMSEA  

[90% CI] 

NNFI SRMR AIC BIC 

1 Two o latent variables: 

one for each 

timepoint, with 

correlated errors. 

 

5 1.4 

p = .92 

 0 [0, .035] 1.030 .008 7398.24 7466.30 

2 

 

 

 

 

 

 

 

One o latent variable 

for all measures, with 

correlated errors, 

implying perfect 

correlation in latent 

ability from time 1 to 

time 2.  

6 3.79 

p = .71 

2.39 

p = .12 

0 [0, .005] 1.016 .011 7398.63 7463.6 

3 One o latent variable, 

with equal path 

coefficients across 

sessions 

9 5.35 

P = .8 

1.56 

P = .67 

0 [0, .057] 1.017 .021 7394.19 7449.88 

 


