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ABSTRACT: Self-consistent field theory (SCFT), the mean-field theory of
polymer thermodynamics, is a powerful tool for understanding ordered state
selection in block copolymer melts and blends. However, the nonlinear governing - GANs
equations pose a significant challenge when SCFT is used for phase discovery
because converging an SCFT solution typically requires an initial guess close to the
self-consistent solution. This Viewpoint provides a concise overview of recent
efforts where machine learning methods (particle swarm optimization, Bayesian
optimization, and generative adversarial networks) have been used to make the first
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strides toward converting SCFT from a primarily explanatory tool into one that can

be readily deployed for phase discovery.

he long-standing scientific interest in block polymers

arises, in part, from their ability to self-assemble into a vast
number of ordered states from very simple building blocks. In
contrast to self-assembly in other forms of soft matter, such as
concentrated lipid solutions' or ligand-grafted nanoparticles,”
the thermodynamics governing block copolymer self-assembly
are a relatively simple combination of Gaussian chain statistics
and Flory—Huggins interactions” applied to a single-component
system. In light of this simplicity, the number of crystalline states
that have been uncovered in block copolymers is remarkable.
Consider the simplest case of a neat AB diblock copolymer melt.
At equilibrium, depending on the A-block volume fraction, the
ratio of the statistical segment lengths of the A and B blocks (the
conformational asymmetry), and the segregation strength, an
AB diblock copolymer can be in one of four particle-forming
states (body-centered cubic (bcc),”® close packed,6 Al15, or
"), two network phases (double gyroid9 or the Fddd network '’
known as O7°), hexagonally close-packed cylinders, or
lamellae."" Understanding the fundamental mechanisms giving
rise to this phase behavior, let alone the massive number of
phases that emerge in multiblock polymer melts'>'* and various
metastable states accessible by processing,'*”'® has been a
decades-long effort in block polymer research.

Self-consistent field theory (SCFT) is the primary tool for
computing the free energy of block polymer melts and thus
interrogating their phase behavior. Readers interested in a
pedagogical introduction to SCFT are referred to a recent
primer'/ that provides an entry g)oint to the more rigorous
explanations in the literature.”'®"” Strictly speaking, SCFT is
valid in the limit of an infinite invariant degree of polymerization
N, where N'/?is the ratio of the pervaded volume of the chain to
its self-volume.””*" In the mean-field limit N — oo, the partition
function is dominated by a single configuration of the fields, and
SCFT refers to the computation of the resulting morphology
and free energy. Like all field theories, SCFT becomes
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increasingly efficient with increasing density because (i) the
many-bodied interactions are decoupled through the particle-to-
field tranformation and (ii) the dynamics of the physical system
are no longer important, so the calculations are much faster than,
say, molecular dynamics simulations of a coarse-grained
polymer model.'® As a mean-field theory, SCFT cannot
accurately predict the order—disorder transition (ODT);** the
mean-field disordered state is homogeneous, but there exists
structure in the disordered state proximate to the ODT**>° that
can only be captured in theory through a fluctuating field
model.””** However, a comparison of calibrated particle-based
simulation models to SCFT have revealed that the ordered-state
free energies predicted by SCFT are remarkably close to those
produced by simulations, even if the simulations are at values of
N far from the mean-field limit.*”*° Thus, provided that N > 10>
and we are examining phase behavior above the ODT for that
value of N, the mean-field approximation embedded in SCFT is
not a severe limitation for predicting the free energy.”

SCFT has played a key explanatory role in block polymer
phase behavior. For example, SCFT calculations were essential
to establishing the stability of double gyroid relative to double
diamond and perforated lamellae,”" as well as demonstrating
that conformational asymmetry stabilizes the Frank—Kasper o-
phase.”> While SCFT has been a crucial counterpart to
experiments in explaining the origins of different ordered
phases, the theory has played a much smaller role in the
discovery of new phases. There are two notable exceptions: the
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predictions of a Frank—Kasper phase® and the O”° phase in
diblock copolymers,®* each of which were later realized
experimentally.”®'" While these two papers®”** shine as
examples of phase discovery via SCFT, a theory-driven approach
to block polymer phase discovery, akin to what has happened
(either by design or serendipity) in experiments, remains an
elusive goal.

Why is the computational phase discovery by SCFT so
challenging? The answer lies in the SCFT workflow depicted in
Figure 1. Initializing an SCFT calculation requires first
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Figure 1. Illustration of the workflow for an SCFT calculation. In this
example, the form-factor method was used to generate the initial guess
(input) on the left. The converged solution with an optimal unit cell
(output) is provided in the right-hand image. Reproduced with
permission from ref 17. Copyright 2024 American Chemical Society.

generating an initial guess for the chemical potential fields.
There are methods for generating these guesses based on the
morphology of a system. For example, particle-forming phases
can be initialized using a form-factor method, 53¢ and network
phases are readily generated using level sets. 3637 The solution
then proceeds in an iterative manner:'”'® (i) the constrained
partition functions (also called the propagators) for each species
are computed from the solution of the modified diffusion
equations (MDEs) using the chemical potential fields; (ii) those
propagators are used to compute the density fields for each
block; (iii) the density fields are used to check the self-consistent
field (SCF) equations; and (iv) if the chemical potential fields
from step (iii) do not agree with the fields used for step (i), the
chemical potential fields are updated for the next iteration.
Depending on the quality of the initial guess, tens to hundreds of
iterations are typically required and there is no guarantee of
convergence. Therein lies the challenge when using SCFT for
phase discovery: how can you find anything new if you have to
have a good estimate of the answer to start the calculation?

A natural starting point for addressing this challenge is to start
from many random initial guesses for the fields and attempt to
converge them in parallel. This combmatorlal approach,
proposed by Drolet and Fredrickson in 1999, was partially
successful. They identified all of the equilibrium phases known
at that time for diblock copolymers (bcc spheres, hexagonally
packed cylinders, double gyroid, and lamellae) along with many
defective, metastable solutions. The Drolet—Fredrickson
approach used a simple mixing (* Plcard -type algorithm”) to
evolve the chemical potential fields.”® The advantage of this
iterative algorithm is that it is tolerant to the quality of the initial
guess, but the convergence rate is very slow””*’ compared to
more sophisticated methods such as Anderson mixing."" In the
context of phase discovery, which is our focus here, it is notable
that these calculations®® produced neither the O7° network
phase, an equilibrium state predicted by SCFT six years later,”*
nor the Frank—Kasper phases that have dominated the study of
diblock copolymer phase behavior in recent years."” However, it
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is worth noting that both O” and the Frank—Kasper phases have
large unit cells that typically require many basis functions to
resolve; it is unlikely that random initial guesses on a relatively
coarse grid would produce, for example, the 30 particles in the
Frank—Kasper o-phase.”” It is also possible that the absence of
these phases in prior work™ is simply the result of a limited
number of calculations. Given sufficient computational
resources and sufficiently large unit cells, it is reasonable to
posit that random initialization would eventually produce SCFT
calculations that converged to an O”° phase and various Frank—
Kasper phases, as well as other novel phases.

If the convergence rate of a tolerant SCFT solver is the
problem, then a potential solution is to abandon SCFT in favor
of an approximate Hamiltonian while retaining the idea of
random initialization. This approach, pursued by Bohovot-Raviv
and Wang* shortly after the pioneering work of Drolet and
Fredrickson,”® appears to be robust at identifying interesting
morphologies, at least for the ABC terpolymers in two
dimensions studied in that paper."’ Bohovot-Raviv and Wang
further suggested that their approximate approach could be used
to generate initial guesses for SCFT, a tantalizing idea that has
not been pursued.

In the intervening 25 years, two major advances have revived
recent interest in (and increased the feasibility of) using SCFT
for computational phase discovery in block polymers beyond
these two early examples.**** The first advance is improvements
in the numerical methods, including efficient algorithms for
solving the modified diffusion equations for the propagators;**
better algorithms for updating the chemical potential fields,
most notably Anderson mixing’”*' and semi-implicit meth-
ods;'®* and a method for computing the unit cell stress,*®
which can be incorporated with the self-consistent field update
to accelerate the overall calculation.”” Many of these
methodological advances are available in the open-source
Polymer Self-Consistent Field (PSCF) package from Morse
and collaborators,*”*® including a GPU irnplementation49 that
can be useful for large unit cell calculations such as Frank—
Kasper phases.”

The second important advance has been the massive interest
in machine learning (ML) and the applications of these methods
to polymer science. Figure 2 outlines the different approaches
that have been developed in the context of the phase behavior.
The ideal situation (Figure 2a) is to go directly from the polymer
formulation to the prediction of the phase. Given sufficient data,
some (or all) of which could come from SCFT, this is a
reasonable proposal but one that has been only partially realized
27% in part because the amount of available data is
much smaller than, for example, scraping the internet for image
data to train ML to generate new images. A second approach
(Figure 2b) is to use ML to accelerate the SCFT calculations by
removing the main bottleneck, namely, solving the modified
diffusion equatlons for the propagators. This is an active area of
investigation® 39763 and likely to prove fruitful in the coming
years. For the purposes of phase discovery, however, the most
useful immediate application of ML for SCFT is the generation
of nonobvious initial guesses (Figure 2c) that will converge to
previously unanticipated phases. The advantage of ML here is
that the demands placed on the guess generator are modest
because the converged SCFT solution ensures that the result is
physically relevant; the generator simply needs to provide initial
conditions in different basins of attraction that will converge to
different SCFT fixed points.”' While we have posed the methods
in Figure 2 as distinct approaches, in the long run, they should all
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Figure 2. Approaches to using machine learning to enable block
polymer phase discovery. (a) Data-driven methods that go directly
from the polymer formulation and the temperature to the predicted
phase. (b) Use of machine learning methods, such as neural networks,
for solving the modified diffusion equations (MDEs), which are the
bottleneck in the SCFT calculation. (c) Use of machine learning
methods to generate initial guesses that will converge to different
solutions. The structures in this panel converged to 0%, O’ and
hexagonally perforated lamellae. The structure in panel (a) and the
algorithm in panel (b) were adapted from ref 17. Copyright 2024
American Chemical Society. Initial guesses in panel (c) were adapted
from ref 51. Copyright 2023 the authors.

be synergistic: fast ML methods to solve the SCFT equations
(Figure 2b) can be used to converge novel initial guesses (Figure
2c) with high throughput, thereby generating sufficient data to
ultimately produce a data-driven approach to directly predicting
phase behavior from the polymer properties without the
intermediate step of computing free energies (Figure 2a).

Alternatively, the novel initial guesses can be used as candidate
phases in an inverse design approach to determine polymer
formulations that can stabilize a new morphology.

To date there have been three approaches to using ML to
generate fruitful initial guesses for SCFT. The first two use
different stochastic optimization approaches, either particle
swarm optimization (PSO)®* or Bayesian optimization.”> The
third is a different direction using generative adversarial
networks (GANs)®" that learn from SCFT trajectories.

In PSO, a set of agents move in a convective-diffusive manner,
where the convective term is based on information received
from other agents to drive them toward a more promising region
of the space, the swarming, while the random (diffusive) part
enables escape from local minima.®® The overall dynamics are
intended to mimic, for example, the way insects search for food.
Early applications of PSO to block polymer phase behavior
focused on the inverse design problem, where the agents move
in the state space (e.g, block volume fraction and segregation
strength) in response to comparisons of the free energy of a
target phase relative to other possible phases.””~® These early
works cannot be considered phase discovery, however, since all
of the possible phases need to be itemized a priori to compute
the fitness.

The first example of using PSO for phase discovery is the work
by Tsai and Fredrickson.”* As illustrated in the example of
Figure 3, the agents are randomly initialized as pairs of peaks in a
thin shell of radius g™ in reciprocal space, where g* is the primary
peak in the structure factor. This approach thus shares a
methodological lineage with the pioneering study by Drolet and
Fredrickson® because the initialization method is random, but
now with a sparser set of information (pairs of peaks) and a
switch from real space to reciprocal space. The SCFT calculation
is then initialized with chemical potential fields that correspond
to the structure factor produced by those peaks. The fitness used
for PSO is the free energy produced by the converged SCFT
solution, and the agents are evolved via PSO to new values of the
peak positions, peak amplitudes, and value of g*. The PSO
trajectory in Figure 3 is a clear example of phase discovery, as the
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Figure 3. Example of using particle swarm optimization (PSO) for phase discovery, where the agents are pairs of peaks on a thin shell in reciprocal
space around the primary peak g*. (a) Trajectory of the agents during the PSO. Only one of each pair of peaks is illustrated. (b—d) Location of the
agents in reciprocal space and the SCFT morphology from the converged solution for iterations 0, 25, and 50. Reproduced with permission from ref 64.

Copyright 2022 American Chemical Society.
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Figure 4. Example of Bayesian optimization applied to a surrogate model for the first four basis functions in a symmetry-constrained basis set for space
group Im3d (red). At each iteration, an SCFT calculation produces a value of the free energy F(X) and optimized cubic unit cell parameter a that is used
to update the surrogate model. The blue peaks in the SCFT calculation correspond to the weights of the next few symmetry-constrained basis
functions, and the changes in the intensity of the red peaks are the adjustments in the low g wavevectors during the SCFT calculation. Reproduced with

permission from ref 65. Copyright 2024 American Chemical Society.

structure after S0 iterations of PSO was deemed a “mystery”
phase by the authors and thus not anticipated.”* Remarkably,
this structure is the Frank—Kasper Z-phase, which was
considered as a possible candidate phase in previous work on
Laves phases in diblock copolymer melts and has been
produced in giant shape amphiphiles.”’

The other optimization approach used for phase discovery is
Bayesian optimization.71 Bayesian optimization requires two
inputs: (i) a probabilistic surrogate model that describes the
current belief in the value of the objective function for a given set
of inputs and (ii) an acquisition function that quantifies the
optimality of a sequence of queries. In each iteration of Bayesian
optimization, the next evaluation of the objective function (the
query) is based on the acquisition function, and the query is
selected to maximize the amount of information that is learned
about the objective function. The output of that query is then
used to update the surrogate model with new information. Each
iteration thus decreases the uncertainty in the surrogate model.

Dong et al.”® merged Bayesian optimization with SCET by
using a small set of symmetry-constrained basis functions for the
SCFT initialization step, where the Bayesian optimization
parameters are the weights for each basis function and the cubic
unit cell parameter. The surrogate model is a Gaussian process
model for the lower bound confidence of the free energy,
whereupon the Bayesian optimization selects queries (values of
the basis function weights and the unit cell parameter) that
reduce the uncertainty in the dependence of the free energy on
those parameters. Importantly, for a pseudospectral SCFT
calculation, the number of basis functions is equal to the number
of grid points. As a result, the SCFT calculation has more
information than the surrogate model; including all of that
information in the surrogate model would be prohibitively
expensive, because it would create a search in a much higher
dimensional space.

As we can see in the example in Figure 4, the weights for the
basis functions in the surrogate model are adjusted by the
Bayesian optimization model during each iteration. Since each
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Bayesian optimization step produces a new converged SCFT
solution, each iteration corresponds to a possible candidate
phase in that space group. While the equilibrium phase is the one
with the lowest free energy, the goal here is phase exploration. In
this sense, the advantage of Bayesian optimization is that the
acquisition function continuously suggests a new point in the
basis function space for computation that will reduce the
uncertainty in the free energy model and that reduction is likely
to be a place where there is a novel phase (because the free
energy of that region of the space is very uncertain a priori). As
such, the generation of candidate phases is somewhat decoupled
from the free energy optimization in the sense that subsequent
queries do not necessarily need to be lower free energy states.

In both the Bayesian optimization®® and the PSO®*
approaches, the search space is reduced by either restricting
the initialization to be symmetry-constrained basis vectors®® or
wave vectors of approximate magnitude g*.°* Both approaches
reduce the dimensionality of the search space compared to the
full basis set used for the SCFT calculation, and they have a
further benefit of removing local free energy minima that emerge
from the roughness of the free energy when all basis functions
are included.”® However, each approach has its drawbacks.
When restricting the basis functions to a shell at g*, there is no
way for the system to converge on a solution that has strong
peaks in the structure function with very different values of g,
such as the ¢ phase.”> This limitation is removed by using
symmetry-constrained basis functions. However, if one only
uses symmetry-constrained basis functions, then the structures
that emerge from the calculation all have the same symmetry;
therefore, the Bayesian optimization-SCFT calculation needs to
be repeated for every space group. Moreover, for low symmetry
space groups, many basis functions are required, and the
advantage of using symmetry-constrained basis functions is
reduced.

The third approach, which uses generative adversarial
networks (GANs) to generate the initial guesses, is quite
different from the preceding optimization-based methods. A
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Figure 5. Discovery of the H'®' network phase using a generative adversarial network (GAN) for initial guess generation. The different panels show the
trajectory of the SCFT solution from (a) the initial guess to (b) 11, (c) 33, (d) 65, and (e) 266 iterations. The axis tick marks correspond to the unit cell
size in units of the diblock polymer’s end-to-end distance. The maximum value of the color bar differs for each panel and they are available in ref 51.

Reproduced from ref 51. Copyright 2023 the authors.

GAN’>7> uses two neural networks, a generator and a
discriminator. The generator takes as input random noise and
returns examples. The discriminator compares those examples
to a set of true data and assesses whether the output of the
discriminator is real or fake. Both networks are trained in tandem
to improve their performance. In a converged GAN, the
discriminator cannot tell the difference between the fake data
and real data. GANs have been used, most famously, for
generating fake pictures from a set of real images. Such
applications put a high demand on the GAN because the output
of the generator, in the end, must fool a human discriminator.

In the context of SCFT, the demands on the generator are
much lower because the initial guesses simply need to be “good
enough” for SCFT to converge them to a physically relevant
solution. The key is to have sufficient diversity in the initial
guesses produced by the GAN so that new phases emerge. In our
work,®" we trained the GAN with SCFT trajectory data from five
network phases (single gyroid, double gyroid, single diamond,
single primitive and double primitive) at a state point where a
diblock copolymer melt produces double gyroid as the stable
state.”’ The approach not only uncovered every known network
phase in block polymers,'””*~7° but ended up producing a total
of 349 candidate phases with competitive free energies.

Figure S shows the SCFT trajectory that produced the most
intriguing of those candidate phases, H'"! The free energy of
H"! lies slightly below hexagonally perforated lamellae, which
has been produced in diblock polymers via processing.”*”> From
a materials science standpoint, H'"®! is notable for its chiral
network,”"”” which could endow it with useful optical
properties. From a methodological standpoint, Figure $
demonstrates the remarkable ability of SCFT to modulate the
structure during the calculation, including large changes in the
unit cell dimensions due to stress relaxation, which reinforces
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the claim that the demands placed on the generator are modest.
Importantly, H'®' has not been observed or considered
previously in soft matter, demonstrating the power of a GAN
to generate novel results.

The approach we pursued”' simply represents the first step
toward the use of GANs for block polymer phase discovery, and
there are numerous avenues for improvement.78 Indeed, the
precise reason for the success of the GAN approach in our
study’' is unclear; as is the case with many machine-learning
methods, interpretability is not simple. However, we suspect
that two key factors play a role. First, the training data provides
the GAN with information about both cocontinuous phases and
known network topologies, which should allow it to infer similar
structures as initial guesses. Second, the dynamics of an SCFT
trajectory using Anderson mixing to simultaneously relax the
unit cell stress and solve for the saddle point of the fields*” is
disconnected from any physical relaxation mechanism such as
Rouse diffusion. As a result, even when starting from initial
guesses that are reasonably far from the fixed point, as is the case
in Figure S, the SCFT iterator can impose large-scale changes to
the structure that can ultimately converge to a crystal structure
that may have only minimal similarity to the initial condition.

The adoption of machine-learning methods to improve phase
discovery in block copolymers is clearly in its infancy, but the
results so far are promising.SI’M’é5 Understandably, most of the
focus to date has been on systems where the phase behavior is
already well understood, in particular, for AB diblock
copolymers, demonstrating that all of the known phases can
be generated and that previously unanticipated solutions to the
SCFT equations emerge. Since these are well studied polymer
systems, it is unsurprising (but also unfortunate) that no new
stable states have been discovered akin to what was done in
predicting the existence of a Frank—Kasper phase in branched
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diblocks™ or the prediction of the O”° phase in linear diblock
copolymers near the ODT.** Finding new stable morphologies
will require extending these methods to more complicated
architectures or to block polymer blends (or both), which may
prove nontrivial from a methodological standpoint. Moreover,
increasing the state space (block volume fractions, segregation
strengths, and blend composition) will likely require that inverse
design tools, such as PSO®’~® or Bayesian optimization,”” be
deployed in conjunction with initial guess generators to
efficiently search through the state space for novel, stable
solutions. These searches will require (at least) tens to hundreds
of thousands of SCFT calculations, which will place computa-
tional demands that have been met in part through GPU
acceleration”*” and could be further improved, at least in
principle, through machine learning advances for solving the
modified diffusion equations.””~®* While there is work to be
done, there is now a clear path forward for converting SCFT
from a primarily explanatory tool into a truly predictive tool.
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