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Helical boundary modes from synthetic spin in a plasmonic lattice
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Artificial lattices have been used as a platform to extend the application of topological band theory beyond
electronic systems. Here, using the two-dimensional Lieb lattice as a prototypical example, we show that an
array of disks which each support localized plasmon modes gives rise to an analog of the quantum spin-Hall
state enforced by a synthetic time-reversal symmetry. We find that the plasmonic modes naturally possess
a synthetic spin degree of freedom which leads to a spin-dependent second-neighbor coupling mechanism
mediated by interorbital coupling. This interaction introduces a nontrivial Z2 topological order and gaps out
the Bloch spectrum. A faithful mapping of the plasmonic system onto a tight-binding model is developed and
shown to capture its essential topological signatures. Full wave numerical simulations of graphene disks arranged
in a Lieb lattice confirm the existence of propagating helical boundary modes in the nontrivial band gap.
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Introduction. Artificial lattices can be patterned into or-
dered structures designed to control the efficient flow of
energy and information [1]. There has been particular interest
in developing periodic structures for this purpose that use non-
trivial topology in their interior Bloch bands [2,3]. These are
known to support protected transport channels at boundaries
between distinct topological states, in analogy to the well-
studied electronic surface states that occur at the boundaries of
two- and three-dimensional topological insulators [4]. Indeed,
nontrivial bulk Chern bands in two dimensions have been
successfully developed on photonic [5], plasmonic [6], and
even mechanical platforms [7], where time-reversal symmetry
is broken in order to establish their topological nature. In
striking contrast, photonic two-dimensional (2D) analogs to
quantum spin-Hall states which retain time-reversal symme-
try have been elusive. A key challenge is that the Kramer’s
degeneracies for half-integral angular momentum, whose con-
nectivity is essential for defining the topological state, are
generically absent from photonic and plasmonic analogs [8].
While multiple realizations of a photonic quantum spin-Hall
state have been demonstrated [9–11], intricate engineering via
fine tuning of the design is required to enforce the required
symmetries [3].

In particular, graphene has been proven to be a promis-
ing platform for realizing topological plasmons due to
its highly controllable carrier density. Spatially varying
modulations to the carrier density achieved by patterning
[6,12] or introducing a metagate [13,14] folds the plasmon
dispersion into a plasmonic band structure where the ad-
dition of time-reversal symmetry-breaking magnetic fields
or mirror symmetry-breaking chemical potentials can open
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topologically nontrivial gaps. Propagating edge plasmon
modes are observed in the topologically nontrivial gaps. How-
ever, such realizations of a plasmonic crystal lack natural
spin degrees of freedom, making it difficult to realize analogs
of the quantum spin-Hall effect which gives rise to counter-
propagating helical edge states without having to introduce
symmetry breaking. Furthermore, proposed plasmonic crys-
tals developed by imposing weak density modulations on a
uniform background charge density are lacking the flexibility
to engineer lattice networks with topological character.

In this Letter, we suggest a different approach to this
problem and illustrate it with studies of a two-dimensional
plasmonic Lieb lattice [15,16] as a prototype. We construct the
plasmonic lattice by analyzing an array of graphene nanodisks
in a Lieb lattice configuration, where each disk is a local
resonator that supports a ladder of localized plasmon modes.
The rotational symmetry of the disks gives rise to synthetic
spin degrees of freedom for the localized plasmons. Interest-
ingly, we identify an interorbital interaction between different
multipole sectors that leads to an effective spin-dependent
second-neighbor coupling. The effective coupling mechanism
is shown to open a topologically nontrivial gap in the plas-
mon band structure with spin-polarized edge plasmon modes
traversing the gap. Our model is characterized by two length
(energy) scales that express the confinement of excitations
within and transmission between nodes of a Lieb lattice net-
work. Over a realizable parameter range in which these scales
are of comparable size, we identify both an emergent twofold
Kramer’s degeneracy and a synthetic spin-orbit process that
gaps the Bloch spectra to endow the bands with nontrivial
Z2 topological order [17]. We test this idea with full wave
numerical calculations to confirm the existence of counter-
propagating helical modes on the boundaries. We emphasize
that these phenomena in artificial lattices are controlled by two
energy scales which are tunable over a wide dynamic range
and access ordered states that are practically unachievable in
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FIG. 1. Plasmonic band structure of graphene nanodisk arrays. (a) Schematic representation of an array of graphene disks configured into
a Lieb lattice. (b) Electric potential of the first six plasmonic modes of an isolated graphene disk. (c) Top-down view of the plasmonic Lieb
lattice with d = 100 nm and a = 105 nm. The dashed box shows the unit cell of the lattice. (d) Plasmonic band structure corresponding to
the arrangement shown in (c). The red, black, and blue bands correspond to bands formed by the dipole, quadrupole, and hexapole modes,
respectively. (e) Top-down view of the plasmonic lattice with overlapping disks (d = 100 nm, a = 85 nm). Color coding of the bands is not
applied since classification in terms of the multipole modes of the disk does not hold in this case. For all simulations, the graphene Fermi
energy is set to EF = 0.5 eV and the substrate dielectric constant is εs = 2.2.

ordinary electronic materials. This strategy can be generalized
to a wide family of appropriately designed artificial lattices.

Results and discussion. A plasmonic band structure can be
calculated when graphene nanodisks are arranged in a peri-
odic configuration [see Fig. 1(a)] where the localized plasmon
modes of each disk will form a basis for the plasmonic band
structure. The first six modes of an isolated graphene disk,
shown in Fig. 1(b), are doubly degenerate dipole, quadrupole,
and hexapole modes. The degeneracy of the multipole modes
is enforced by the rotational symmetry of the nanodisks and
will be shown to act as synthetic spin degrees of freedom in a
plasmonic lattice. In this Letter, we will focus primarily on the
bands formed by hopping between the quadrupole modes. Un-
like the dipole and hexapole modes, the quadrupole modes do
not couple to free space light and will have significantly lower
losses. Note that while we use graphene plasmons due to their
intrinsic two-dimensionality and tunable carrier density, any
material that supports two-dimensional multipole modes will
also be suitable for the proposal given in this work.

Here we analyze graphene nanodisks on a Lieb lattice
[15,16] which shares the C4 symmetry of the quadrupole
modes. A spinless nearest-neighbor tight-binding model of
the Lieb lattice has three bands, with a flat band in the
middle and a threefold degeneracy at the M point where all
three bands cross. Including spin degrees of freedom will

double the number of bands and also induce a gap opening
at theM point if a spin-dependent interaction is included [15].
The plasmonic band structure of the graphene disk Lieb lat-
tice is shown in Fig. 1(d), where the disk diameter is set to
d = 100 nm and the disk separation is a = 105 nm. The three
groups of bands, colored in red, black, and blue, correspond
to the bands formed by the dipole, quadrupole, and hexapole
modes, respectively. We find that the dipole, quadrupole, and
hexapole modes develop a band structure resembling the band
structure of a tight-binding Lieb lattice. Interestingly, a gap
opening is observed at the M point for the quadrupole and
hexapole bands, which will be shown to be the result of a
synthetic spin-dependent interaction. When the disks begin
to overlap [a < d , Fig. 1(c)], a stark change in the band
structure is observed. A low-energy hydrodynamic plasmon
mode for which the dispersion satisfies ω → 0 as q → 0
appears and the mapping onto a tight-binding Lieb lattice
breaks down. This situation corresponds to the setup given
in previous works [6,13,14,18], where periodic modulation of
the structure or density is used to perturb the hydrodynamic
mode.

To better understand the plasmon band structure given in
Fig. 1(b), we develop a mapping of the plasmonic crystal
onto a tight-binding model. The governing equations of the
plasmonic response can be written as an eigenvalue equation
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Ĥψ = ωψ , where [6]

Ĥ =
(

0 V̂ p̂T
√

ωF (r)
e2

π h̄

√
ωF (r)p̂ 0

)
, ψ =

(
�

J/
√

ωF (r)

)
.

(1)

The eigenstate ψ is a vector of the potential � and current
density J, p̂ is the in-plane momentum operator, V̂ is the
Coulomb operator, and ωF = EF/h̄ is the Fermi frequency.
The localized plasmonic modes of the nanodisk play the role
of the atomic orbitals in a tight-binding theory. From an eigen-
mode calculation of the isolated graphene disk, we find that
the electric potential is given by

�
p
n,l (r) =

{
un(r) cos(lθ ), p = +
un(r) sin(lθ ), p = −,

(2)

where un(r) gives the radial dependence of �, n is the num-
ber of nodes in un(r), and l is a positive integer. The six
lowest-energy modes have n = 0 and l = 1, 2, 3, which corre-
spond to the dipole (l = 1), quadrupole (l = 2), and hexapole
(l = 3) modes. Henceforth, the superscript n will be omitted
for notational simplicity. Note that rotational symmetry of the
isolated graphene disk implies that ψ+

l and ψ−
l are degenerate

in energy (see Supplemental Material [19]).
Equipped with the Hamiltonian and atomic orbitals, we

may now calculate the site diagonal and intersite matrix ele-
ments of the tight-binding Hamiltonian. In general, the matrix
elements between orbitals ψ

p
l and ψ

p′
l ′ on disks separated by

R are given by

t pp
′

ll ′ (R) = −i
e2

π h̄

∫ [
Jp∗l (r) · ∇�

p′
l ′ (r − R)

+ �
p∗
l (r)∇ · Jp′

l ′ (r − R)
]
d2r, (3)

where the inner product is defined such that Ĥψ = ωψ is
a Hermitian eigenproblem [6]. With the current density and
electric potential of the orbital modes, it is straightforward
to calculate the tight-binding model parameters. For the Lieb
lattice, the nearest-neighbor (NN) hopping parameters can be
calculated by setting R = ±ax̂ ≡ ±ax or R = ±aŷ ≡ ±ay
in Eq. (3).

We now take a closer look at the nearest-neighbor cou-
pling between the quadrupole orbitals ψ±

2 . Either by explicit
calculation through Eq. (3) or by inspection of the mode
symmetries, it may be shown that hopping from ψ+

2 to ψ−
2

given by t+−
22 (a j ) is zero for j = x, y. It follows from the C4

symmetry of the quadrupole modes that hopping magnitudes
in the x and y directions will be equal, i.e., t pp22 (ax ) = t pp22 (ay)
for p = ±. Finally, it is important to note that the ψ+

2 and
ψ−

2 orbitals have hopping amplitudes with opposite sign. The
plasmonic band structure of the quadrupole with nearest-
neighbor hopping will therefore have two copies of the the
three-band Lieb lattice band structure, where one of the copies
will be inverted in energy with respect to the other. This is
indeed what we observe for the quadrupole modes, as shown
in Fig. 1(d). A similar analysis can be applied to the other
multipole modes.

In order to understand the gap opening observed at the
M point, we extend the model to include orbital coupling

En
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gy
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FIG. 2. Orbital coupling between ψ±
2 and ψ±

3 . (a) Representa-
tion of nearest-neighbor hopping between ψ+

3 and ψ±
2 . Hoppings

for R = ±ax,±ay are considered. The electric potential � of the
modes is shown. The plus and minus signs associated with each
hopping parameter indicate its sign. (b) Hopping between ψ−

3 and
ψ±

2 . All hopping parameters for (b) can be generated by rotation
of the configuration in (a). (c) The allowed hopping transitions are
represented on an energy level diagram. A second-order transition
connecting ψ+

2 to ψ−
2 is possible via the ψ±

3 modes.

between the quadrupole modes (ψ±
2 ) and the hexapole mode

ψ+
3 . In Fig. 2(a), all allowed hoppings between the ψ+

3 and
ψ±

2 modes are shown along with their respective signs. Hop-
ping parameters t++

23 (±ay), t−+
23 (±ax ) are zero and are not

shown. Applying a C4 rotation centered on the ψ+3 mode
transforms the configuration of Figs. 2(a) into 2(b) with an
overall sign change on all sites. This transformation directly
gives the hopping parameters between ψ−

3 and ψ±
2 . All the

allowed transitions are illustrated on an energy level diagram
in Fig. 2(c).

Considering second-order hopping processes mediated by
the ψ±

3 orbital states, we find two processes that affect the
quadrupole mode band structure. First, a second-order hop-
ping along two links in the x or y directions [e.g., t++

23 (ax )
followed by t++

32 (ax )] provides a uniform shift in the energy of
all orbital modes. A more interesting effect is found when a
left or right turn is made between the first and second hops.
Taking into account the signs given in Fig. 2, we arrive at
an effective second-neighbor hopping between the quadrupole
modes given by

W = its
∑
pp′

∑
〈〈i j〉〉

vi jc
†
ip[σy]pp′c jp′ , (4)

where vi j = (d1 × d2)z, d1,2 are the nearest-neighbor bonds
connecting site i to j, c†ip is a creation operator for orbital
ψ

p
2 on lattice site i, and σy is a Pauli matrix acting on the

quadrupole orbital degrees of freedom. This intrinsic inter-
action is analogous to the Kane-Mele spin-orbit interaction
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FIG. 3. Tight-binding mapping of a plasmonic Lieb lattice. (a) Tight-binding model onto which the plasmonic crystal can be mapped.
The red and blue arrows represent two paths through which the interaction given by Eq. (4) connects a ψ+

2 state to a ψ−
2 state. (b) Schematic

representation of a graphene nanodisk Lieb lattice with ψ+
2 and ψ−

2 orbitals on each site. Parameters are equivalent to the setup in Figs. 1(b),
1(c), and 1(d) Band structure calculated from the tight-binding model given in Eq. (5) with α = −1 and α = −1.2, respectively. For the
α = −1 case, the Z2 topological invariant ν for each band is also shown. For the α = −1.2 case, topologically trivial second-neighbor hopping
is included. (e) Full wave electromagnetic simulation of plasmonic band structure for the configuration shown in (b).

discussed in the context of electronic systems [17]. Strength
of the interaction ts can be found by projecting the full Hamil-
tonian into an effective Hamiltonian in the ψ±

2 basis. The
effective Bloch Hamiltonian for the ψ±

2 orbital basis may then
be written as

h(k) =
(
h+(k) w(k)

w†(k) h−(k)

)
=

(
h+(k) w(k)

w†(k) αh+(k)

)
, (5)

where h± is the intraorbital Hamiltonian for orbital ψ±
2 , α is

the ratio between hopping amplitudes t++
22 and t−−

22 , and w

is a skew-Hermitian Hamiltonian that describes the effective
second-neighbor coupling given by Eq. (4). Matrix represen-
tations of Eq. (5) are given in (see Supplemental Material
[19]). With the effective Bloch Hamiltonian, we are able to
map the quadrupole degrees of freedom of a plasmonic lattice
onto a simple tight-binding model with two basis orbitals on
each lattice site [see Figs. 3(a) and 3(b)].

For the ideal case with α = −1 in Eq. (5), the Hamiltonian
may be written as

h(k) = h+(k) ⊗ σz + w(k) ⊗ iσy. (6)

The band structure for this Hamiltonian is shown in Fig. 3(c).
A strict topological classification of this Hamiltonian based
on its symmetries is possible. Define a synthetic time-reversal
operator as T = λz ⊗ iσyK , where λz = diag(1,−1, 1) is a
sublattice symmetry operator acting on the sublattice de-
grees of freedom, σy is a Pauli matrix acting on the orbital

degrees of freedom, and K represents complex conjuga-
tion. Then, the Hamiltonian in Eq. (6) satisfies Th(k)T−1 =
h(−k). Since T 2 = −1, a twofold degeneracy is enforced at
the time-reversal invariant momenta by Kramer’s theorem.
A particle-hole symmetry operator can also be defined as
C = σxK such thatCh(k)C−1 = −h(−k) andC2 = +1. From
the time-reversal and particle-hole symmetry, we can now
place the α = −1 Hamiltonian into the DIII symmetry class
[20]. In two dimensions, this class is characterized by a Z2
topological invariant. Since inversion symmetry is preserved,
we may calculate the Z2 invariant [21] ν of a single band by

(−1)ν =
∏
i

δi, δi = ξ (�i), (7)

where �i are the time-reversal invariant momenta in the Bril-
louin zone and ξ (�i ) is the parity eigenvalue of the band
at �i. Unlike the electronic case for which δi is given as a
product of the parity eigenvalues for all occupied bands, here
we associate a separate ν with each band individually since
there is no notion of band filling. The Z2 invariant for each
band shown in Fig. 3(c) reveals the topologically nontrivial
nature of the ideal plasmonic Lieb lattice.

Physically, α = −1 requires fine tuning to a special state
where the symmetry is strictly enforced. The plasmonic lattice
comprised of disks does not have symmetries that require the
α = −1 condition. When α 
= −1, classification of the system
into the DIII class no longer holds and we do not have a
sharp definition for the Z2 topological invariant. In addition,

L161301-4



HELICAL BOUNDARY MODES FROM SYNTHETIC SPIN IN … PHYSICAL REVIEW B 109, L161301 (2024)

0
-4

-2

0

2

4

E
/t

(a)

(d)

(b)

(e)

(c)

(f)

0

0.17

0.18

0.19

E
 (

eV
)

0.186

0.1865

0.187

0.1875

0.188

0.1885

E
 (

eV
)

0.6

0.7

0.8

0.9

t/
E

0.6

0.7

0.8

0.9

E
/t

0
-4

-2

0

2

4

E
/t

FIG. 4. Edge modes of the plasmonic Lieb lattice. (a), (d) Tight-binding band structure calculation for Lieb lattice in a ribbon geometry with
α = −1. The edge modes are highlighted in red, while the bulk band projections are colored in gray. All edge modes are doubly degenerate.
A more detailed view of the crossing point of (a) is given in (d). (b), (e) Tight-binding band structure for α = −1.2 and with topologically
trivial second-neighbor hopping included. (c), (f) Full wave numerical simulation for plasmonic Lieb lattice in ribbon geometry. Parameters
are identical to those used for Figs. 1(b) and 3(e).

topologically trivial intraorbital second-neighbor coupling
(i.e., direct coupling along diagonal links in the Lieb lat-
tice) is also present in the plasmonic lattice. Tight-binding
calculations for the bulk band structure with α = −1.2 and
the trivial second-neighbor coupling are shown in Fig. 3(d).
Breaking of the synthetic time-reversal symmetry is evident
from the lifted degeneracy of the bulk bands at time reversal
invariant momenta (TRIM) points � and X . The spectrum
is also no longer symmetric with respect to E = 0 because
particle-hole symmetry is broken by the topologically trivial
second-neighbor hopping.

However, by examining the edge states of the physical
α 
= −1, we find that the topological signatures of the ideal
lattice are still present. The spectrum of the edge modes can be
studied in a finite-system ribbon geometry and shows that the
edge modes from the ideal DIII structure [Fig. 4(a)] survive
even when the strict symmetry classification breaks down
[Fig. 4(b)]. A difference between the two cases is observed
at the edge mode crossing points shown in Figs. 4(d) and 4(e)
where the symmetry-broken case shows an avoided crossing
originating from mixing of the edge modes. In principle,
propagating edge modes near this crossing point will be able
to backscatter. However, the size of the edge mode avoided
crossing is roughly two orders of magnitude smaller than the
band width, making it negligible in most practical situations.
Full wave numerical simulations of the bulk plasmonic band
structure shown in Fig. 3(e) confirm that while the α = −1
condition is not strictly satisfied, the edge modes of topologi-
cal origin still survive, as shown in Figs. 4(c) and 4(f).

To elucidate the properties of the edge modes, we apply
a transformation into the angular momentum basis to Eq. (5).

The angular momentum basis states are given by ψ̃m = ψ+
|m| +

isgn(m)ψ−
|m|, where the electric potential of ψ̃m is �̃m(r) ≡

u0(r)eimθ and m = ±1,±2,±3. Applying the transformation
to Eq. (5) gives the tight-binding Hamiltonian in the angular
momentum basis,

h̃(k) =
(
h̄(k) + iw(k) �(k)

�(k) h̄(k) − iw(k)

)
, (8)

where h̄ = (h+ + h−)/2 and � = (h+ − h−)/2. Written in
this form, it is clear that the plasmonic crystal will behave in a
similar manner to the electronic quantum spin-Hall insulator,
where the electronic spin degrees of freedom are mapped
onto the chirality of the plasmon modes. The plasmonic edge
modes observed in Fig. 4(f) will have a potential proportional
to e±i2θ on each disk where the chirality is tied to the propa-
gation direction.

The existence of helical edge states can be confirmed by a
simulation on a finite array of graphene disks. In order to cou-
ple with the ψ̃−2 angular momentummode, we use a circularly
polarized dipole with dipole moment p = x̂ + iŷ placed at the
edge of an A-site graphene disk. Simulation results in Fig. 5
show a projection of the excited plasmon fields onto the ψ̃±2

modes. We find that the dipole strongly couples to a ψ̃−2 mode
which propagates counterclockwise along the boundaries of
the system. A weak excitation of ψ̃+2 is caused by imper-
fect coupling between the circularly polarized dipole and the
ψ̃−2 mode.

We now identify perturbations that open a topologically
trivial gap at the M point and may occur in an array of
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FIG. 5. Dipole launching the edge states of the plasmonic Lieb lattice. (a) Band structure of the plasmonic Lieb lattice in a ribbon geometry.
Bands traversing the bulk gap are all doubly degenerate. (b) Schematic representation of the eigenstate corresponding to the black diamond in
(a). The blue (red) shows projection onto state ψ̃−2 (ψ̃+2). Arrows indicate the group velocity of each edge mode. (c) Simulation of topological
edge plasmon launched by circularly polarized dipole at frequency indicated in (a). Magnitude of the plasmon electric field is multiplied by a
projection onto the ψ̃±2 angular momentum states. Dipole source is placed at the black arrow 5 nm above the graphene nanodisk.

plasmonic disks. The first is an inversion-breaking perturba-
tion which may result from an asymmetric hopping along
either the x or y links in the lattice. A shift of the A- or
C-site plasmonic disk towards the B site will give rise to
the inversion-breaking perturbation. Shifting the B-site energy
also opens up a gap on one side of the flat bands. A shift in the
Fermi energy of the plasmonic disk will result in this type of
perturbation. When applying either of the above-mentioned
perturbations to an ideal DIII class system, the edge modes
are removed only after the gap closes and reopens. Interest-
ingly, even in the physical case where we are no longer in
the ideal DIII class, the edge modes persist until the gap is
closed, implying that the edge modes remain robust to external
perturbations over a wide parameter range (see Supplemental
Material [19]).

Experimentally, the proposed helical edge modes can be
excited by placing a near-field antenna at the edge of the
plasmon disk array, as shown in Fig. 5(c). For the setup used in
this work, the gap in which the edge mode can be observed is
4 meV. We expect the edge mode in this gap to be observable
as a plasmonic band gap of similar size has been successfully
resolved using the near-field scanning microscope technique
[14]. Furthermore, the line widths of the plasmonic band
structure reveal that the band gap can be resolved even in
the presence of realistic losses. The energy scale of the plas-
monic band structure can also be shifted by simply scaling
the geometry of the lattice. For a disk size of d = 700 nm
and periodicity a = 735 nm, the quadrupole band energies are
lowered to 70 meV. Importantly, the ratio between the band-
width and band gap stays constant as the geometry is scaled.
Hence the physical phenomena that we have examined for the
setup in this work can be translated to a different energy range
by scaling the geometry accordingly. Finally, imperfections

in disk fabrication may result in a slight breaking of the
rotational symmetry of the multipolar modes. Even with slight
rotational symmetry breaking, we find that the band gap is not
closed and that the edge modes are still observable within the
band gap (see Supplemental Material [19]).

Conclusion. In summary, we have shown that propagating
helical edge modes induced by an intrinsic synthetic spin-orbit
process exists in an artificial plasmonic crystal. We consider
the Lieb lattice as a prototypical example and develop a
mapping of the plasmonic system onto a simple tight-binding
model. With the tight-binding model, we identify an ideal
limit of the system in which it can be classified into the DIII
symmetry class. In this limit, a nontrivial Z2 invariant is cal-
culated and the associated topologically protected edge states
are shown to exist. It is important to note that this ideal limit
is distinct from the case of electron spins on a Lieb lattice and
is a result of the opposite sign hopping between the localized
plasmon modes. Although the physical plasmonic lattice does
not strictly follow the behavior of this ideal limit, we are able
to verify that the system is close enough to retain the edge
states found for the ideal DIII limit. Propagation of the helical
plasmonic edge modes is verified using full wave numerical
simulations. Further engineering of the substrate or fine tun-
ing of the disk shapes may lead to a realization of the ideal
DIII limit.

Methods. All electromagnetic simulations were performed
using COMSOL MULTIPHYSICS. Graphene is modeled as a sur-
face current with a Drude conductivity, σ (ω) = e2

π h̄
EF

h̄γ−ih̄ω .
Scattering time is set to τ = 1 ps, where γ = 1/τ . The bulk
plasmonic band structure shown in Figs. 1 and 3 was per-
formed by assuming periodic boundary conditions along both
of the in-plane directions. In the out-of-plane direction, the
structure is padded with 1 µm of free space and a perfectly
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matched layer of thickness 300 nm. The plasmonic band struc-
ture calculation for a ribbon geometry, shown in Figs. 4(c) and
4(f), was performed using a ribbon length of 25 unit cells with
periodic boundary conditions only in the direction parallel
to the ribbon edges. The circularly polarized dipole used for
Fig. 5(c) was placed 5 nm above the edge of the
graphene nanodisk. Projection of the potential onto the
angular momentum states ψ̃±2 was calculated as

∫
ei2θ

�(r)/|�(r)|d2r − ∫
e−i2θ�(r)/|�(r)|d2r for each disk.
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