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Abstract. We study several problems motivated by Crouzeix’s conjecture, which we con-
sider in the special setting of model spaces and compressions of the shift with finite Blaschke
products as symbols. We pose a version of the conjecture in this setting, called the level set
Crouzeix (LSC) conjecture, and establish structural and uniqueness properties for (open)
level sets of finite Blaschke products that allow us to prove the LSC conjecture in several
cases. In particular, we use the geometry of the numerical range to prove the LSC conjecture
for compressions of the shift corresponding to unicritical Blaschke products of degree 4.

1. Introduction

Let A be an n× n matrix and let W (A) denote its numerical range

W (A) = {〈Ax, x〉 : x ∈ Cn, ‖x‖ = 1} ,

an important subset in the plane that both contains the spectrum of A and encodes additional
properties of A. A famous open problem related to numerical ranges is Crouzeix’s conjecture
from [13], which states

Conjecture 1.1 (Crouzeix’s Conjecture). If p is a polynomial, then ‖p(A)‖ ≤ 2 max
z∈W (A)

|p(z)|.

Numerical evidence for the conjecture can be found in [36] and applications thereof appear
in [8]. In [15], Crouzeix and Palencia showed that the conjecture is true if 2 is replaced
by 1 +

√
2. Both Crouzeix and a variety of other researchers have established Crouzeix’s

conjecture in a number of special cases (see [2, 7, 12, 14, 32, 35] and the survey paper [3]),
but the problem remains open even for 3× 3 matrices.
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Two cases, [35] and [14], motivated the study here. In the first of these papers, the authors
studied perturbed Jordan blocks, or (n+ 1)× (n+ 1) matrices of the form

(1) Jn+1,a :=


0 1

. . . . . .
. . . 1

a 0

 ,

with a ∈ C. For |a| < 1, one can check that these matrices are contractions for which all
eigenvalues lie inside the open unit disk D and the rank (I−A∗A) = rank (I−AA∗) = 1. Such
matrices, which include Jordan blocks, represent operators called compressions of the shift
operator. Following this line of study, we were naturally led to a certain class of nilpotent
operators. The study of such 3 × 3 matrices was the subject of the work in [14]. In this
paper, we consider various situations in which compressed shift operators satisfy Crouzeix’s
conjecture. We turn now to a discussion of such operators.

Let Θ denote a degree-n finite Blaschke product, i.e.

Θ(z) = λ
n∏
j=1

z − aj
1− ājz

, for a1, . . . , an ∈ D and λ ∈ T.

Finite Blaschke products comprise a special class of inner functions, that is, functions that
are bounded and holomorphic on the unit disk D with radial boundary values on the unit
circle T that have modulus one a.e. For Θ a finite Blaschke product, let H2 = H2(D) denote
the standard Hardy space on the unit disk D and let KΘ = H2 	 ΘH2 denote the model
space associated to Θ. If Mz denotes multiplication by the independent variable z, then we
can define the associated compression of the shift SΘ by

SΘ = PΘMz|KΘ
,

where PΘ is the orthogonal projection from H2 onto KΘ. Since degB = n, the space KΘ has
dimension n and so, we can interpret SΘ as an n×n matrix by writing down its representation
with respect to an orthonormal basis of KΘ. These operators SΘ are particularly important
because Sz.-Nagy and Foias [52] showed that every completely non-unitary n×n contraction
of class C0 with defect index 1 is unitarily equivalent to SΘ for some finite Blaschke product
Θ.

Here we are interested in Crouzeix’s conjecture for such compressions of the shift. This
is a natural class to study for two reasons. First, it includes several classes of matrices,
for example, Jordan blocks and perturbed Jordan blocks, for which Crouzeix’s conjecture is
known; these correspond to the finite Blaschke products Θ = zn and Θ = zn−a

1−āzn . Second, the
numerical ranges of compressions of the shift satisfy particularly nice geometric properties
including one called the Poncelet property, see for example [28, 43].
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In this paper, we propose a conjecture related to Crouzeix’s conjecture that is specific to
the behavior of compressions of the shift and finite Blaschke products. To state it, observe
that in [49], Sarason proved that if f is bounded and holomorphic on D, then

f(SΘ) = PΘMf |KΘ
,

where Mf is multiplication by f . Furthermore, his work appears to imply that if B is a finite
Blaschke product with degB < deg Θ, then ‖B(SΘ)‖ = 1. Garcia and Ross provide more
details and a direct statement of this result in Corollary 4 in [25, p. 512]). Combining these
facts with Crouzeix’s conjecture yields the following new complex analysis conjecture:

Conjecture 1.2 (Level set Crouzeix conjecture). Let Θ, B be finite Blaschke products with
degB < deg Θ. Then

(2) max {|B(z)| : z ∈ W (SΘ)} ≥ 1
2
.

This is a conjecture about classical holomorphic functions on D and proposes a non-obvious
relationship between the level sets of finite Blaschke products and the numerical ranges of
compressions of the shift. Indeed, for B a finite Blaschke product and r ∈ (0, 1), define the
open level set

ΩB
r =

{
z ∈ C : |B(z)| < 1

2

}
.

Then if Θ is a finite Blaschke product with deg Θ > degB, the level set Crouzeix conjecture
(LSC conjecture) asserts that W (SΘ) cannot be contained in the level set ΩB

1/2. In what
follows, if (2) holds for a particular pair (B,Θ), we will say that (B,Θ) satisfies the level set
Crouzeix inequality (LSC inequality).

Level sets of inner functions have been studied in other contexts. For example, recall that
an inner function Θ is a one-component inner function if there exists an ε > 0 such that ΩΘ

ε

is connected. These were introduced by B. Cohn [11] and in the interim have been heavily
studied, see [1, 9, 10, 46]. Cohn introduced this class because he was able to characterize
the Carleson measures for the model spaces H2 	 ΘH2, under the assumption that Θ was
a one-component inner function. One can check that all finite Blaschke products are one-
component inner functions.

In this paper, we establish results about the individual level sets of finite Blaschke products,
even in the setting where they have more than one component.

1.1. Outline and Main Results. This paper handles three interconnected topics; it estab-
lishes structural and uniqueness properties for level sets of finite Blaschke products, proves
the LSC conjecture in a number of special cases, and provides an in-depth study of the LSC
conjecture and related topics in the setting of unicritical B or Θ. First, because investigating
the LSC conjecture requires detailed knowledge of level set behavior, Section 2 establishes
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several results about the structure of level sets of finite Blaschke products. A key result is
this statement about uniqueness:

Theorem 1.3. Let B and C be finite Blaschke products with degB = degC. If there is some
r ∈ (0, 1) with ΩB

r ⊆ ΩC
r , then there exists λ ∈ T such that B = λC.

This theorem appears later as Theorem 2.6. It is related to level set investigations for
inner functions conducted by Berman and Stephenson and Sundberg [4, 51]. While Berman
studied inner functions that share level sets for possibly different values, Stephenson and
Sundberg studied inner functions whose level sets corresponding to the same value have
boundaries with a subarc in common. Both results imply that if two inner functions share
a common level set for some value r in (0, 1), then the inner functions must agree up to a
unimodular constant. Theorem 1.3 displays a similar relationship but it restricts to finite
Blaschke products of the same degree and only requires set containment, not equality. The
proof rests on Theorem 2.4, which generalizes a result of Horwitz and Rubel characterizing
when two monic Blaschke products are equal. As the proof of Theorem 2.4 uses many of
original arguments of Horwitz and Rubel, we postpone its proof to Section 7.

Section 3 investigates the LSC inequality for different classes of (B,Θ) using a variety of
tools. The employed techniques often involve the analysis of pseudohyperbolic disks, denoted
Dρ(z0, r), with given (pseudohyperbolic) centers z0 ∈ D and (pseudohyperbolic) radii r, with
0 < r < 1, that is,

Dρ(z0, r) =

{
z ∈ D :

∣∣∣∣ z − z0

1− z̄0z

∣∣∣∣ < r

}
.

The four main cases we handle are encoded in the following theorem:

Theorem 1.4. Let Θ, B be finite Blaschke products with degB < deg Θ. Then the LSC
inequality (2) holds for (B,Θ) in all of the following cases:

i. deg Θ = n for which there is a pseudohyperbolic disk Dρ(z0, (
1
2
)1/(n−1)) ⊆ W (SΘ).

ii. degB = 2 and deg Θ ≥ 6.
iii. B(0) = 0, |B′(0)| ≥ 2

√
2

3
, deg Θ ≥ 9, and 0 ∈ W (SΘ).

iv. degB = 2 and ΩB
1/2 has two components.

These results appear later as Corollary 3.3, Theorem 3.6, Theorem 3.8, and Theorem
3.12, respectively. The proofs employ a variety of tools including the uniqueness result
Theorem 1.3, Fuss’s formula for disks inscribed in quadrilaterals that are circumscribed by
the unit circle T (see [38]), geometric properties of the numerical ranges W (SΘ), and various
relationships between Blaschke product level sets and related pseudohyperbolic disks.

The final theme of the paper concerns a deep study of the unicritical case. In this paper,
we say that a finite Blaschke product C is unicritical if there is a z0 ∈ D, n ≥ 1, and λ ∈ T
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such that

(3) C(z) = λ

(
z − z0

1− z̄0z

)n
.

These unicritical Blaschke products form a natural subset of the set of finite Blaschke products
with a single critical point. Theorem 6.2.1 in [26] implies that each finite Blaschke product
with a single critical point is of the form γ ◦ C, where C is of the form in (3) and γ is an
automorphism of D. The authors of [26] attribute this result to Heins in [39] and provide a
proof along the lines Zakeri’s from [53]. A similar result also appears in Proposition 1.3 in
[20].

In Section 4, we let B be unicritical and prove the following result.

Theorem 1.5. Let Θ and B be finite Blaschke products with degB < deg Θ and B unicritical.
Then the LSC inequality (2) holds for (B,Θ).

This appears later as Corollary 4.2. It follows from properties of finite Blaschke products
and classical results about spectral set properties of disks.

In Section 5, we let Θ be unicritical. The statement of (2) suggests that we need to study
the numerical range of the associated compression of the shift SΘ. For unicritical Θ, these
numerical ranges were studied by Gaaya in [23, 24], Gau and Wu in [30, 31], and in work of
Partington and the second author [33]. When deg Θ = 3, results about W (SΘ) are encoded
in Crouzeix’s work [14]; indeed, his arguments imply that the full Crouzeix conjecture holds
for SΘ when deg Θ = 3 and Θ is unicritical.

We contribute to this area by identifying a natural curve C that lies inside W (SΘ), see
Proposition 5.1. Using this curve, we are able to identify large pseudohyperbolic disks that
lie inside of W (SΘ) for Θ with small degree:

Theorem 1.6. Let Θ be unicritical with deg Θ = n. Then:

i. If n ≥ 3, W (SΘ) always contains a pseudohyperbolic disk of radius 1
21/2 .

ii. If n ≥ 4, W (SΘ) always contains a pseudohyperbolic disk of radius 1
21/3 .

This is encoded in Theorem 5.3 and follows from some technical estimates showing that
certain disks must be contained in the convex hull of the associated C curves. We conjecture
that similar results hold for larger degree Θ but even when deg Θ = 5, the computations
become much more complicated, see Remark 5.4. Then Theorem 1.6 paired with Theorem
1.4(i) shows that the LSC inequality holds for all (B,Θ) with Θ unicritical and degB <

deg Θ ≤ 4. The n = 3 case also follows from Crouzeix’s work [14], but the n = 4 case appears
to be new.

Section 5 also investigates the full Crouzeix conjecture for low degree unicritical Θ, which
we often denote by Θt to indicate the case when the repeated zero occurs at some t ∈ [0, 1).
Basically, we use the associated curves C in W (SΘt) to show that in the n = 3, 4, 5 cases,
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W (SΘt) is a ‖Xt‖·‖X−1
t ‖-spectral set for matricesXt given in (25), (27), and (28) respectively.

This means that for all polynomials p,

‖p(SΘ)‖ ≤ ‖Xt‖ · ‖X−1
t ‖ max

z∈W (SΘ)
|p(z)|.

We can often estimate this constant. In the n = 3 case, one can check that for t ∈ [0, 1),

2 ≤ ‖Xt‖ · ‖X−1
t ‖ = 1

2

√
12 + t2 +

√
16 + 24t2 + t4 ≤

√
13 +

√
41

2
≤ 2.203.

Thus when n = 3, our arguments do not provide a proof of Crouzeix’s conjecture, though
they do give a simple proof of a similar inequality with a slightly worse constant. Meanwhile,
in the n = 4, 5 cases, there is no simple formula for ‖Xt‖ · ‖X−1

t ‖. However, it can be easily
estimated via mathematical software such as Mathematica. These estimations reveal that

• If n = 4 and t ∈ (0, 0.42), ‖Xt‖ · ‖X−1
t ‖ ≤ 2 so Crouzeix’s conjecture holds for SΘt .

• If n = 5 and t ∈ (0.0001, 0.5), ‖Xt‖ · ‖X−1
t ‖ ≤ 2 so Crouzeix’s conjecture holds for

SΘt .

These investigations motivate several questions, particularly connected to when pseudohy-
perbolic disks of certain sizes are contained in numerical ranges of compressions of the shift.
Those questions and some accompanying examples appear in Section 6.

2. Level Sets of Finite Blaschke Products

In this section, we catalog several elegant facts about the structure of level sets of finite
Blaschke products. For r ∈ (0, 1) and a finite Blaschke product B, define its open level set

(4) ΩB
r := {z ∈ C : |B(z)| < r}

and observe that its boundary ∂ΩB
r is exactly

(5) SBr := {z ∈ C : |B(z)| = r}.

Lemma 2.2 below characterizes the number of components of ΩB
r . The proof follows the

same line of argument as the proof of Proposition 2.1 in [19] and uses the Riemann-Hurwitz
theorem (see for example [47]), which we recall below.

Theorem 2.1 (Riemann-Hurwitz Theorem). Let V and W be domains of the Riemann
sphere with m and n connected components, respectively. Let f : V → W be a ramified
proper map with r critical points counted according to multiplicity. Then

m− 2 = k(n− 2) + r.

Lemma 2.2. Let B be a finite Blaschke product with degB = m, let r ∈ (0, 1), and assume
ΩB
r contains k critical points of B. Then ΩB

r has m− k components.
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Proof. Let ζ1, . . . , ζm−1 denote the critical points of B in D. First, assume that r 6= |B(ζi)|
for any i. If we set F (x, y) = |B(x+ iy)|2 − r2, then our assumptions about r imply ∂F

∂x
, ∂F
∂y

cannot simultaneously vanish at any points of the boundary ∂ΩB
r = SBr and an application

of the implicit function theorem says SBr is a union of smooth, simple closed curves.
Assume ΩB

r contains k critical points of B and has J components denoted by Ω1
r, . . . ,Ω

J
r .

We will show that J = m − k. For each j, let kj denote the number of critical points of B
in Ωj

r and dj denote the number of zeros of B in Ωj
r, both counted according to multiplicity.

Then
J∑
j=1

kj = k and
J∑
j=1

dj = m.

Define fj = B|Ωjr . Then fj : Ωj
r → Dr(0) is a dj-to-1 proper analytic map. To see this, fix

w0 ∈ Dr(0) and define g(z) = w0 for all z and h = fj. As the boundary of Ωj
r is a smooth,

simple closed curve and
|g(z)| < |h(z)| = r on ∂Ωj

r,

Rouche’s theorem implies that h− g or equivalently fj − w0 has exactly dj zeros in Ωj
r.

Furthermore, as both Ωj
r and Dr(0) are simply connected, the Riemann-Hurwitz theorem

in this setting implies that
−1 = −dj + kj.

Adding this equation over the J components of ΩB
r gives −J = −m+ k, which is equivalent

to the desired formula: J = m− k.
Now if r = |B(ζi)| for some i, we can still establish the conclusion of the lemma. Specifically,

assume that ΩB
r contains k critical points of B. Then, there is some ε0 > 0 such that for all

0 < ε < ε0, ΩB
r−ε contains exactly the same critical points of B as ΩB

r . By the previous case,
each ΩB

r−ε has J := m− k components for all 0 < ε < ε0. Let (εn) be a decreasing sequence
with each 0 < εn < ε0 and (εn) → 0. For each n, number the components Ω1

r−εn , . . . ,Ω
J
r−εn

so that if n1 < n2, then each Ωj
r−εn1

⊆ Ωj
r−εn2

. Define

U j
r :=

∞⋃
n=1

Ωj
r−εn for each j = 1, . . . , J.

Then by their nested property, one can show that each U j
r is open and connected, while if

j 6= j′, then U j
r ∩ U

j′
r = ∅. Since

ΩB
r =

J⋃
j=1

U j
r ,

these U j
r must be exactly the components of ΩB

r . Thus, ΩB
r has exactlym−k components. �

The following simple observation will be used without further comment in later proofs:
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Remark 2.3. Let r ∈ (0, 1) and B be a finite Blaschke product. Then each component of
the level set ΩB

r must contain at least one zero of B. Indeed, since |B| ≡ r on the boundary
∂ΩB

r , this conclusion follows immediately from the minimum modulus principle.

For the next level set results, we require the following theorem. This generalizes a well
known result of Horwitz and Rubel in [41] and may be of independent interest.

Theorem 2.4. Let A and B be two monic Blaschke products of degree n. Suppose that there
are n points λ1, . . . , λn ∈ D such that A(λj) = B(λj) for j = 1, . . . , n, counting multiplicities.
Then A = B.

For clarity, recall that two holomorphic functions f and g agree at λ with multiplicity k if
f − g has a zero of multiplicity k at λ. Theorem 2.4 differs from the classical Horwitz-Rubel
theorem in that their result requires λ1, . . . , λn to be distinct, while this result allows the λj
to be repeated. Still, the proof is similar to the proof of the original theorem and so, we
postpone it to Section 7.

Returning to level sets, in [50, 51] Stephenson and Sundberg studied r-level curves of
analytic functions f , i.e. curves for which the modulus of f is a constant r. For example,
they characterized when two inner functions share an r level curve:

Theorem 2.5 (Stephenson and Sundberg, [51]). Let f1 and f2 be inner functions and suppose
that they have an r-level curve in common for some r with 0 < r < 1. Then there exists
λ ∈ T such that f1 = λf2.

Here we use Theorem 2.4 to prove a related result for finite Blasche products. While we
consider a more restricted class of functions, we only require that their level sets satisfy a
containment relationship.

Theorem 2.6. Let B and C be finite Blaschke products with degB = degC. If there is some
r ∈ (0, 1) with ΩB

r ⊆ ΩC
r , then there exists λ ∈ T such that B = λC.

Proof. Without loss of generality, we can assume B and C are monic. Let degB = n = degC

and write B = qb
pb

and C = qc
pc

for polynomials qb, pb, qc, pc with deg qb = deg qc = n. By way
of contradiction, assume C 6≡ B. Set f = C −B = r

p
for p = pbpc and for each m ∈ N, define

fm and rm so

fm = C − (1 + 1
m

)B =
qcpb − (1 + 1

m
)qbpc

pbpc
:=

rm
p
.

Then both fm → f , rm → r uniformly on D. By the Cauchy integral formula, the derivatives
f

(k)
m → f (k), r(k)

m → r(k) converge uniformly on D as well for each k ∈ N.
Let Ω1

r, . . . ,Ω
J
r denote the components of ΩB

r and for each j, let nB,j denote the number
of zeros of B in Ωj

r. Then
∑

j nB,j = n. For each z ∈ ∂Ωj
r,

|fm(z) + (1 + 1
m

)B(z)| = |C(z)| ≤ r < r(1 + 1
m

) = |(1 + 1
m

)B(z)|.
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For each j and m, shrink Ωj
r slightly to obtain a compact Kj

m ⊆ Ωj
r such that

|fm(z) + (1 + 1
m

)B(z)| < |(1 + 1
m

)B(z)|

for each z ∈ ∂Kj
m and Kj

m contains nB,j zeros of B. By a standard version of Rouché’s
theorem (for example, Theorem 11 in [44]), B and fm have the same number of zeros in Kj

m.
Thus, fm has at least nB,j zeros in each Ωj

r and thus, at least n zeros in ΩB
r . Call these zeros

a1(m), . . . , an(m). By passing to a subsequence (fm`), we can further assume

a1(m`)→ a1, . . . , an(m`)→ an

for some a1, . . . , an ∈ ΩB
r .

Now we need to show that
∏n

k=1(z − ak) divides r, the numerator of f . To that end,
observe that for each `, there is a polynomial Q` with degQ` ≤ n such that the numerator
of fm` is given by

(6) rm`(z) = Q`(z)
n∏
k=1

(z − ak(m`)).

Then because each ak(m`) ∈ ΩB
r , for all z with |z| = 2, we have

|Q`(z)| ≤ max
{z:|z|=2}

(|qc(z)pb(z)|+ 2|qb(z)pc(z)|)
n∏
k=1

1

2− |ak(m`)|
≤M,

where M is independent of `. Thus, Q` and all of its derivatives (via the Cauchy integral
formula) are uniformly bounded on D by a constant independent of `. Now note that for
each k,

0 ≤ lim
`→∞
|rm`(ak)| ≤M lim

`→∞

n∏
i=1

|ak − ai(m`)| = 0,

so r(ak) = 0. If the list a1, . . . , an contains a repeated zero, say a with multiplicity s,we claim
that r(a) = 0, r′(a) = 0, . . . , r(s−1)(a) = 0. To see why r′(a) = 0, observe that differentiating
(6) gives

r′m`(z) = Q′`(z)
n∏
k=1

(z − ak(m`)) +Q`(z)
n∑
k=1

∏
j 6=k

(z − aj(m`)).

As mentioned earlier, Q′` is also uniformly bounded on D independent of `. Thus, there is
some M such that

|r′m`(z)| ≤M
n∏
k=1

|z − ak(m`)|+M
n∑
k=1

∏
j 6=k

|z − aj(m`)|.

Because at least two sequences of zeros tend towards a, we can conclude that

0 ≤ lim
`→∞
|r′m`(a)| ≤ lim

`→∞
M

n∏
k=1

|a− ak(m`)|+M
n∑
k=1

∏
j 6=k

|a− aj(m`)| = 0,
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so r′(a) = 0. Analogous arguments imply that r′′(a), . . . r(s−1)(a) are also zero. This implies
that (z−a)s must divide r and putting these together, f = Q

p

∏n
k=1(z−ak) for some polynomial

Q with degQ ≤ n. Thus, f = C − B has at least n zeros in D including multiplicity and
hence, Theorem 2.4 implies that B = C. �

This theorem implies a similar result if degC ≤ degB.

Corollary 2.7. Let B and C be finite Blaschke products with degC ≤ degB. If there is
some r ∈ (0, 1) with ΩB

r ⊆ ΩC
r , then there exists λ ∈ T such that B = λC.

Proof. First we assume that degC < degB and show that this gives a contradiction. To that
end, let A be an arbitrary finite Blaschke product with degA = degB− degC =: n > 0. Set
Ĉ = AC. Then if |C(z)| < r, it must be the case that z ∈ D and so we have

|Ĉ(z)| = |A(z)||C(z)| < |C(z)| < r.

This implies ΩC
r ⊆ ΩĈ

r and thus by assumption,

ΩB
r ⊆ ΩC

r ⊆ ΩĈ
r .

Since degB = deg Ĉ, Theorem 2.6 implies that there is a constant λ ∈ T such that B =

λĈ = λAC. Since A was an arbitrary Blaschke product of degree n, this gives a contradiction.
Thus, it must be the case that degC = degB. Then the conclusion follows immediately

from Theorem 2.6. �

Remark 2.8. Theorem 2.6 and Corollary 2.7 are results of the following flavor: if two Blaschke
products B and C share a degree inequality and associated sets share a containment relation-
ship, then the two Blaschke products are equal up to a unimodular constant. In these cases,
the associated sets are r-level sets of the Blaschke products. Gau and Wu (see Lemma 3.4 be-
low) showed that a similar result holds if one takes the associated sets to be numerical ranges
of compressions of shifts defined using the Blaschke products. These complementary results
suggest that level sets of finite Blaschke products and numerical ranges of compressions of
shifts may possess some similar structures.

Remark 2.9. Let Jn+1,a denote the perturbed Jordan block given by (1) and assume that
|a| < 1. These matrices have all eigenvalues in D, they are contractions, and have defect
index 1 (that is, the rank of I − A?A is one). Therefore, these represent compressions of
the shift operator and one can show that their eigenvalues are the zeros of the function
(zn− a)/(1− azn). In [35] it is shown that the Crouzeix conjecture holds for such perturbed
Jordan blocks, and therefore so does the LSC conjecture. Modifying the proof for n > 6 and
applying Corollary 2.7 allows us to view the proof through the lens of level sets.

Recall that W (Szn) = W (Jn) = Dcos(π/(n+1))(0), the closure of the Euclidean disk with
center 0 and radius cos(π/(n + 1)) (see [37], for example). Since the Jordan block Jn is a
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compression of this matrix, W (Jn) ⊆ W (Jn+1,a). We first show that LSC holds for Blaschke
products of the form λzn, where λ ∈ T and then obtain the desired result from this.

Fix n ≥ 6 and let C be an arbitrary Blaschke product with degC ≤ n. Then W (Szn) =

W (Jn) ⊆ W (Jn+1,a). But, n ≥ 6 implies cos(π/(n+ 1))n > 1/2. In particular, |zn| > 1/2 on
∂W (Jn) ⊂ W (Jn+1,a), establishing the claim.

Now, if |C| < 1/2 on W (Jn+1,a), then we have Ωzn

1/2 ⊆ W (Szn) ⊆ ΩC
1/2. By Corollary 2.7,

C = λzn for some λ ∈ D, and the result holds by the previous paragraph.

3. LSC Inequality for classes of B and Θ

In this section, we use a variety of approaches and techniques to prove that the LSC
inequality (2) holds for several classes of finite Blaschke products B,Θ. One approach that
arises frequently is the analysis of related Euclidean and pseudohyperbolic disks. Before
proceeding, we establish some notation and a few important formulas.

Let DR(c) denote a Euclidean disk in D of radius R and center c and let Dρ(z0, r) denote
the pseudohyperbolic disk with (pseudohyperbolic) center z0 and pseudohyperbolic radius r.
An important fact is that every pseudohyperbolic disk is a Euclidean disk in D and every
Euclidean disk in D is a pseudohyperbolic disk. Converting between the two representations
is straightforward; first, Dρ(z0, r) coincides with the Euclidean disk DR(c), where

(7) c =
(1− r2)z0

1− r2|z0|2
and R =

r(1− |z0|2)

1− r2|z0|2
.

Meanwhile, if one starts with a Euclidean disk DR(c), it agrees with the disk Dρ(z0, r) where
z0 ∈ D, r ∈ [0, 1) and the associated centers and radii satisfy the equations

c = z0(1− rR) and R = r(1− |c||z0|),

see for example page 3 in [27]. More specifically, if c = 0, then DR(c) = Dρ(0, R). If c 6= 0,
then DR(c) coincides with Dρ(z0, r) where arg z0 = arg c, |z0| is the unique solution in [0, 1)

of

(8) |z0|+ 1
|z0| =

|c|2 −R2 + 1

|c|
,

and r is the unique solution in [0, 1) of

(9) r + 1
r

=
R2 − |c|2 + 1

R
.

These formulas can be found in [45].

3.1. LSC Inequality via Pseudohyperbolic Disks. We first establish the LSC inequality
(2) when W (SΘ) contains a sufficiently large pseudohyperbolic disk. Specifically, Corollary
2.7 leads to the following result:
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Theorem 3.1. Let B be a finite Blaschke product with degB ≤ m. Then for each z0 ∈ D
and r ∈ (0, 1),

(10) sup{|B(z)| : z ∈ Dρ(z0, r
1/m)} ≥ r.

Proof. Let C be a unicritical Blaschke product with degC = m and its zero at z0. Then

ΩC
r =

{
z ∈ C :

∣∣∣∣ z − z0

1− z̄0z

∣∣∣∣m < r

}
= Dρ(z0, r

1/m).

By way of contradiction, assume

sup{|B(z)| : z ∈ Dρ(z0, r
1/m)} < r.

This assumption implies that ΩC
r ⊆ ΩB

r . Then as degB ≤ degC, Corollary 2.7 implies that
there is some λ ∈ T with B = λC. But then

sup{|B(z)| : z ∈ Dρ(z0, r
1/m)} = sup{|C(z)| : z ∈ Dρ(z0, r

1/m)} = r,

a contradiction. Thus, (10) must hold. �

Theorem 3.1 gives the following corollary related to numerical ranges:

Corollary 3.2. Let A be a square matrix and B a finite Blaschke product with degB ≤ m.
If there is a pseudohyperbolic disk Dρ(z0, r

1/m) ⊆ W (A), then

sup{|B(z)| : z ∈ W (A) ∩ Domain(B)} ≥ r.

By restricting to compressions of the shift, this also gives the LSC inequality (2) for Θ

whose associated numerical ranges contain a large enough pseudohyperbolic disk.

Corollary 3.3. Let B,Θ be finite Blaschke products with degB < deg Θ := n. If there is a
pseudohyperbolic disk Dρ(z0, (

1
2
)1/(n−1)) ⊆ W (SΘ), then

max{|B(z)| : z ∈ W (SΘ)} ≥ 1
2
.

Proof. Note that degB ≤ n − 1. The result now follows from Corollary 3.2 since W (SΘ) is
a closed set in C and B is well defined on W (SΘ) ⊂ D. �

Later, we use Corollary 3.3 to study unicritical Θ in Section 5 and will provide some
associated examples in Section 6.

3.2. LSC Inequality via Fuss’s Formula. In this section, we use Fuss’ formula for circles
circumscribed by quadrilaterals that are inscribed in a circle to prove (2) when degB = 2

and deg Θ ≥ 6.
Our proof will also use the following result of Gau and Wu:
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Lemma 3.4 (Lemma 4.2, [28]). Let SΘ1 and SΘ2 denote two compressions of the shift with
Θ1 and Θ2 Blaschke products with deg Θ1 ≤ deg Θ2. Then SΘ1 is unitarily equivalent to SΘ2

if and only if W (SΘ1) contains W (SΘ2).

F̧or the purposes of this paper, a Poncelet (n+ 1)-ellipse in D is an ellipse that is inscribed
in a convex (n+1)-gon that is itself inscribed in the unit circle. Every Poncelet (n+1)-ellipse
in T is the boundary of the numerical range of a compression of the shift operator SΘ, where
Θ is a Blaschke product of degree n. (This is stated in general in [28], [29, p. 219] and the
proof for n = 2 this can be found in the discussion of Conjecture 5.1 of the same paper. For
n = 3, this appears in [34, Corollary 3.8].) We use this in Lemma 3.5 below and the remark
that follows it.

Lemma 3.5. Fix a ∈ D. Then there exists a Blaschke product Ψ with deg Ψ = 3 such that
W (SΨ) equals the closure of the pseudohyperholic disk Dρ(a, r) for some r ≥ 1√

2
.

Proof. Fix c ∈ D. By Fuss’ formula (see [22] or [21, Corollary 2] for a modern reference)
there is exactly one disk centered at c whose boundary is inscribed in a quadrilateral that is
circumscribed by T (and thus, is a so-called Poncelet-4 circle) and this disk, which we denote
DR(c), has radius

R =
1− |c|2√
2(1 + |c|2)

.

By substituting directly into the formulas from (7), one can check that this Euclidean disk
agrees with the pseudohyperbolic disk Dρ(ã, r) with pseudohyperbolic center and radius given
by

ã =
2c

1 + |c|2
and r =

√
1 + |c|2√

2
.

Now consider the a in the statement of the lemma and choose c ∈ D so that Arg(c) = Arg(a)

and |a| = 2|c|
1+|c|2 . Then, the above arguments imply that DR(c) = Dρ(a, r), where r ≥ 1/

√
2.

By the remarks preceding this lemma and our assumption that the Euclidean disk is bounded
by a Poncelet 4-circle, there is a finite Blaschke product Ψ with deg Ψ = 3 and W (SΨ) equal
to the closure of Dρ(a, r). �

Theorem 3.6. Let B,Θ be finite Blaschke products with degB = 2 and deg Θ ≥ 6. Then

(11) max
z∈W (SΘ)

|B(z)| ≥ 1
2
.

Proof. Let a1, a2 denote the zeros of B. It is easy to see that ΩB
1/2 satisfies the containment

property
ΩB

1/2 ⊆ Dρ(a1,
1√
2
) ∪Dρ(a2,

1√
2
).



14 BICKEL AND GORKIN

By Lemma 3.5, there exist finite Blaschke products Ψ1,Ψ2 with deg Ψj = 3 and rj ≥ 1√
2
for

j = 1, 2 such that
W (SΨj) = Dρ(aj, rj) ⊇ Dρ(aj,

1√
2
).

Set Θ̃ = Ψ1Ψ2. Then
ΩB

1/2 ⊆ W (SΨ1) ∪W (SΨ2) ⊆ W (SΘ̃).

There are two cases. If Θ = λΘ̃ for some λ ∈ T, then since W (SΘ) is closed, we actually
know Ω

B

1/2 is contained in W (SΘ), and so (11) holds. If Θ 6= λΘ̃ for any λ ∈ T, then since SΘ

is not unitarily equivalent to SΘ̃ and deg Θ ≥ deg Θ̃, Lemma 3.4 implies that there is some
z0 ∈ W (SΘ) \W (SΘ̃). By the given set containments, this implies |B(z0)| ≥ 1

2
, so again (11)

holds. �

Remark 3.7. This result can be improved if |a| is close enough to 1: A Poncelet 3-circle is the
boundary of W (Sϕ) for some Blaschke product ϕ of degree-2. By the Chapple-Euler formula
(see [16] or [17, p. 197]) this circle has equation

|z − c| = (1− |c|2)/2.

Using (7), we find that this Euclidean circle has pseudohyperbolic radius

r =
5− |c|2 −

√
9− 10|c|2 + |c|4
4

.

Solving for |c| and then for |a| shows that if

|a| ≥ −5 + 6
√

2−
√

17− 12
√

2

4
√

5− 3
√

2
,

then r ≥ 1/
√

2. So for such a, we can take Ψ to be of degree 2. In particular, if both a1

and a2 have modulus close enough to 1, we may assume that deg Θ ≥ 4 in Theorem 3.6.
Furthermore, formulas for Poncelet n-circles exist, but they are not easy to work with. (See
[17, p. 197].)

3.3. LSC Inequality via Zero Set Conditions. The results in this section should be
compared to those in [5, Corollary 2.3]. We turn now to a theorem that ensures that under
certain conditions, a Blaschke product B must be larger than 1/2 in modulus on the numerical
range of SΘ for a Blaschke product Θ; in particular, if B has B(0) = 0 ∈ W (SΘ) and |B′(0)|
large, then |B| must also be large (in this case, larger than 1/2) on the numerical range of
W (SΘ), as long as the degree of Θ is larger than 8.

Theorem 3.8. Let B,Θ be finite Blaschke products such that B satisfies B(0) = 0 and
|B′(0)| ≥ 2

√
2

3
≈ 0.94 and Θ satisfies deg Θ ≥ 9 and 0 ∈ W (SΘ). Then

max
z∈W (SΘ)

|B(z)| ≥ 1
2
.
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Proof. We modify an argument of K. Hoffman ([40, Lemmas 4.1 and 4.2]) to obtain this
result.

Suppose that B(0) = 0 and let h(z) := B(z)/z, so h(0) = B′(0). Applying the Schwarz-
Pick lemma to h gives

(12) ρ(h(z), h(0)) ≤ ρ(z, 0) = |z|.

Therefore (see [27, p. 4])

|h(z)| ≥ ρ(h(z), 0) ≥ ρ(h(0), 0)− ρ(h(z), h(0))

1− ρ(h(z), h(0))ρ(h(0), 0)
=
|h(0)| − ρ(h(z), h(0))

1− |h(0)|ρ(h(z), h(0))
.

Now if a ∈ (−1, 1), the function (a − x)/(1 − ax) is a decreasing function of x, so equa-
tion (12) implies that

|h(z)| ≥ ρ(h(z), 0) ≥ |h(0)| − ρ(h(z), h(0))

1− |h(0)|ρ(h(z), h(0))
≥ |h(0)| − |z|

1− |h(0)||z|
.

Set δ = |B′(0)|. Since h(z) = B(z)/z we have

|B(z)| ≥ |B
′(0)| − |z|

1− |B′(0)||z|
|z| = δ − |z|

1− δ|z|
|z|.

We are interested in when this is greater than or equal to 1/2. We note that δ−x
1−δxx has a

maximum when |z| = x = 1−
√

1−δ2

δ
and the value is

δ − 1−
√

1−δ2

δ

1− δ 1−
√

1−δ2

δ

1−
√

1− δ2

δ
=

(
1−
√

1− δ2

δ

)2

.

A computation shows that the maximum is greater than or equal to 1/2 when δ ≥ 2
√

2/3.
So |B(z)| ≥ 1/2 when |z| = x = 1−

√
1−δ2

δ
and δ ≥ 2

√
2/3. Using the fact that the numerical

range of a 9 × 9 Jordan block is the numerical range of Sz9 and W (Sz9) is the closed disk
Dcos(π/10)(0), we apply Lemma 3.4 to conclude that W (SΘ) cannot be contained in this circle
of radius cos(π/10) > 2

√
2/3. Since 0 ∈ W (SΘ), there is a point in W (SΘ) with modulus

greater than 2
√

2/3, and sinceW (SΘ) is convex, there must be a point in the numerical range
(on the circle |z| = 1−

√
1−δ2

δ
) where |B(z)| ≥ 1/2. �

We now show that we can drop the condition that B(0) = 0 to conclude that the LSC
inequality (2) holds for B with sufficiently separated zeros and Θ with a sufficiently large
associated numerical range:

Corollary 3.9. Let B be a Blaschke product with zeros a1, . . . , an satisfying
∏

j |aj| ≥
2
√

2
3

and let Θ be a Blaschke product with deg Θ ≥ 9 and 0 ∈ W (SΘ). Then

max
z∈W (SΘ)

|B(z)| ≥ 1
2
.
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Proof. In what follows, we let B̂(z) = zB(z). Then B̂(0) = 0 and |B̂′(0)| =
∏

j |aj| ≥
2
√

2
3
.

As |B(z)| > |B̂(z)| on D, the result follows from Theorem 3.8. �

Remark 3.10. It is worth noting that, while the assumption 0 ∈ W (SΘ) is often a natural
one in the study of numerical ranges, it is somewhat arbitrary here. Indeed we just need to
assume that W (SΘ) contains some point z0 with |z0| < 2

√
2

3
.

3.4. LSC Inequality via Level Set Components. In this section, we establish the LSC
inequality (2) for every degree-2 Blaschke product B such that ΩB

1/2 has two components and
any Θ with deg Θ > 2. We first require some preliminary information about the structure of
such two-component level sets.

Lemma 3.11. Let B be a degree-2 Blaschke product with distinct zeros a1, a2. Let ζ be the
critical point of B in D and choose r with 0 < r < |B(ζ)|. Then ΩB

r has two components
Ω1
r,Ω

2
r with aj ∈ Ωj

r and for all z ∈ Ω1
r, ρ(z, a1) < ρ(z, a2).

Proof. By Lemma 2.2, ΩB
r has two components Ω1

r,Ω
2
r. By Remark 2.3, we can assume

aj ∈ Ωj
r for each j.

We first consider the special case a1 = 0 and a2 = t ∈ (0, 1). We will show: for all z ∈ ΩB
r ,

we have ρ(z, 0) 6= ρ(z, t). To establish that, it suffices to show that for all z ∈ Ω1
r, we have

ρ(z, 0) < ρ(z, t).

Note that ΩB
r ⊆ Dρ(0, r

1/2) ∪ Dρ(t, r
1/2). We will show that these two pseudohyperbolic

disks are disjoint. To that end, consider the family of pseudohyperbolic disks, Dρ(0, s), Dρ(t, s)

for s ∈ (0, 1). As these are also Euclidean disks, we can let c1, c2 and R1, R2 denote the Eu-
clidean centers and radii of Dρ(0, s), Dρ(t, s) respectively. Their values are given by

c1 = 0, c2 =
(1− s2)t

1− s2t2
and R1 = s, R2 =

s(1− t2)

1− s2t2
.

As s increases from 0 to 1, the disks Dρ(0, s), Dρ(t, s) are initially disjoint, then tangent, and
then intersect. By standard properties of circles, they are tangent exactly when

(13) |c1 − c2|2 = (R1 +R2)2.

Then solving (13) for s shows that those circles are tangent exactly when s = s̃ := 1−
√

1−t2
t

and do not intersect for smaller s. It is easy to check that s̃2 = |B(ζ)|. Then by assumption,
r1/2 < s̃ and so, Dρ(0, r

1/2) ∩ Dρ(t, r
1/2) = ∅. Since 0 ∈ Ω1

r, if z ∈ Ω1
r, then z ∈ Dρ(0, r

1/2)

and we have
ρ(z, 0) < r1/2 ≤ ρ(z, t).

More generally, this argument shows that ρ(z, 0) 6= ρ(z, t) for z ∈ ΩB
r .

Now we proceed to the general case. Note that because

0 = ρ(a1, a1) < ρ(a1, a2),
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by continuity, we just need to show that ρ(z, a1) 6= ρ(z, a2) for z ∈ ΩB
r . Let φ be an

automorphism of D with φ(a1) = 0 and t := φ(a2) ∈ (0, 1). Define B̂ = B ◦ φ−1, so that
B = B̂ ◦ φ. Then φ(ζ) is the critical point of B̂ in D. By way of contradiction, assume
ρ(z, a1) = ρ(z, a2) for some z ∈ ΩB

r . Then

ρ(φ(z), 0) = ρ(φ(z), φ(a1)) = ρ(z, a1) = ρ(z, a2) = ρ(φ(z), φ(a2)) = ρ(φ(z), t).

Because r < |B(ζ)| = |B̂(φ(ζ))|, this contradicts the special case we already established and
proves the claim. �

The next section considers the special case in which the Blaschke product B is unicritical.
In the following theorem, we present an application of Lemma 3.11 that uses one of these
results.

Theorem 3.12. Let B be a degree-2 Blaschke product with distinct zeros a1, a2 and assume
ΩB

1/2 has two components. If deg Θ ≥ 3, then

max{|B(z)| : z ∈ W (SΘ)} ≥ 1
2
.

Proof. Assume the conclusion does not hold. Then W (SΘ) ⊆ ΩB
1/2. Because W (SΘ) is

connected, without loss of generality, we can assume that W (SΘ) ⊆ Ω1
1/2. Then by Lemma

3.11,

|C(z)| :=
∣∣∣∣ z − a1

1− ā1z

∣∣∣∣2 ≤ |B(z)| on Ω1
1/2

and hence on W (SΘ). By Corollary 4.2 below, there is some z0 ∈ W (SΘ) with |C(z0)| ≥ 1
2
.

Thus |B(z0)| ≥ 1
2
as well, which establishes the theorem. �

4. The Case of a Unicritical B

In this section, we consider the LSC inequality (2), and more general estimates, in the
setting where B is unicritical, i.e.

B(z) = λ

(
z − z0

1− z0z

)m
,

for some m ≥ 1, z0 ∈ D, and λ ∈ T .

Theorem 4.1. Let A be a square matrix and B a degree-m unicritical Blaschke product with
zero z0. Assume 1

z0
6∈ σ(A) and ‖B(A)‖ = k < 2. Then

sup{|B(z)| : z ∈ W (A) ∩ Domain(B)} ≥ k
2
.

Proof. As (k
2
)1/m < 1, by (7), there is a Euclidean center c ∈ D and radius R < 1 such that

Dρ(z0, (
k
2
)1/m) = DR(c).
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Note that |B(z)| = k
2
on the boundary ∂DR(c), is strictly less than k

2
in DR(c), and is strictly

greater than k
2
on C \DR(c) (except at 1

z0
where it is undefined).

By way of contradiction, assume

sup{|B(z)| : z ∈ W (A) ∩Domain(B)} < k
2
.

This implies 1
z0
6∈ W (A) and W (A) ⊆ DR(c), and as W (A) is compact, there must be an

ε > 0 such that, letting Rε := (1− ε)R, we have

W (A) ⊆ DRε(c).

By well-known results (see for example the arguments in Proposition 3.4 in [12] or Section 6

in [6]), this implies that DRε(c) is a two-spectral set for A; that is, for all polynomials p,

‖p(A)‖ ≤ 2 sup{|p(z)| : z ∈ DRε(c)}.

Since this holds for all polynomials, it immediately extends to all functions in the disk algebra
A(D) and in particular, it holds for B. Since DRε(c) is strictly contained in DR(c), it also
follows that

sup{|B(z)| : z ∈ DRε(c)} < k
2

which, by assumption, gives

k = ‖B(A)‖ ≤ 2 sup{|B(z)| : z ∈ DRε(c)} < 2 · k
2

= k.

This yields the contradiction and establishes the result. �

As corollaries, we immediately get the following results for unicritical Blaschke products
and automorphisms applied to compressions of shifts:

Corollary 4.2. Let Θ and B be finite Blaschke products with degB < deg Θ and B unicritical
with zero z0. Then

max{|B(z)| : z ∈ W (SΘ)} ≥ 1
2
.

Proof. As W (SΘ) ⊆ D, we know 1
z0
6∈ W (SΘ). As discussed earlier, Corollary 4 in [25, p. 512]

implies ‖B(SΘ)‖ = 1. By Theorem 4.1 with k = 1, we find that

max{|B(z)| : z ∈ W (SΘ)} ≥ 1
2
,

which is what we needed to show. �

Corollary 4.3. Let Θ be a finite Blaschke product with deg Θ = n > 1 and let ϕ be an
automorphism of the unit disk. Then

max{|ϕ(z)| : z ∈ W (SΘ)} ≥
(

1
2

)1/(n−1)
.
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Proof. By definition, we can write ϕ(z) := λ z−z0
1−z0z

for some z0 ∈ D and λ ∈ T. Set B(z) =

( z−z0
1−z0z

)n−1. Then B is unicritical with degB < deg Θ, so by Corollary 4.2,

max{|B(z)| : z ∈ W (SΘ)} ≥ 1
2
.

Therefore, there exists a ∈ W (SΘ) such that |ϕ(a)| ≥
(

1
2

)1/(n−1)
. �

5. The Case of a Unicritical Θ

In this section, we consider the LSC inequality (2) when Θ is unicritical, i.e.

Θ(z) = λ

(
z − z0

1− z0z

)n
,

for some n ≥ 1, z0 ∈ D, and λ ∈ T. As λ does not affect the operator SΘ, we will typically
assume λ = 1. We will often use the notation Θz0 or Θn

z0
when we need to keep track of the

zero z0 or power n. For Θ, establishing (2) is really a question about the numerical range
W (SΘ) and thus our initial discussion here focusses on its structure.

A lot is known about the numerical ranges W (SΘ) associated to unicritical Θ. For example
in [24], Gaaya characterized their numerical radii and established a number of intermediate
results, including the following useful equality in his Proposition 2.6:

W (SΘz0
) = eiarg (z0)W (SΘ|z0|

).

Thus to study W (SΘz0
), we can generally assume that z0 = t ∈ [0, 1). For t ∈ (−1, 1), let Mt

be the matrix representation of SΘt with respect to the Takenaka-Malmquist-Walsh basis of
KΘt (see pages 114 − 117 for a discussion of both this basis and Mt [17]). Then Mt is an
upper triangular matrix given by Mt = tI + (1− t2)At, where I is the n× n identity matrix
and At is the upper triangular nilpotent matrix

(14) At =



0 1 −t . . . (−t)n−2

0 1
. . . ...
. . . −t

1

0 0


.

The matrix At is sometimes called a KMS matrix and the numerical ranges of these matrices
have been studied by Gau and Wu in [30, 31]. In the 3 × 3 case, Crouzeix’s results from
[14] can be applied to obtain the boundary of W (At) and hence, of W (Mt). In particular,
following [14, p.39] set

mt(s) = − 2√
3

sin

π + arcsin
(

3
√

3 −2t
2(2+t2)3/2 cos(s)

)
3

 ,
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for t ∈ (−1, 0] and s ∈ [0, 2π]. Then the formula for the boundary representation from [14,
p.31] implies that the boundary of W (Mt) is parameterized by (x̂t(s), ŷt(s)), where

x̂t(s) = t+ (1−t2)
2

√
2 + t2 (− cos(s)mt(s) + sin(s)m′t(s))

ŷt(s) = (1−t2)
2

√
2 + t2 (− sin(s)mt(s)− cos(s)m′t(s)) ,

and a similar formula holds if t ∈ (0, 1). This boundary formula illustrates the fact that even
though At and Mt appear simple, their numerical ranges are quite complicated. Indeed, it
is quite difficult to use this boundary formula to deduce quantitative results about W (SΘt).
Instead, in the following subsection, we find a useful curve Ct inside W (At).

5.1. A curve in W (At). The key result in this section is the following:

Proposition 5.1. Fix t ∈ (−1, 1) and let At be the n × n matrix from (14). Then W (At)

contains the curve Ct := Cn
t parameterized by

(15)
n−1∑
k=1

an,k(−t)k−1eisk, s ∈ [0, 2π),

where an,1 = cos
(

π
n+1

)
and more generally,

(16) an,k =
1

(n+ 1) sin
(

π
n+1

) ((n− k) cos
(
kπ
n+1

)
sin
(

π
n+1

)
+ sin

(
π(n−k)
n+1

))
.

Proof. First we show that for all ~x ∈ Cn, we can find an expression for 〈At~x, ~x〉 in terms of
summations that we will be able to manipulate using trigonometric identities. In particular,
note that a straightforward computation gives

(17) 〈At~x, ~x〉 =
n−1∑
k=1

(−t)k−1

n−k∑
`=1

x̄`x`+k.

We now use a particular choice for the components of ~x that will allow us to rewrite (17)
and obtain a nice curve that lies in W (At). Fix s ∈ [0, 2π) and define ~x ∈ Cn by

x` =
√

2
n+1

sin
(
`π
n+1

)
ei(`−1)s, for 1 ≤ ` ≤ n.

Then as observed in [37, Proposition 1], ‖~x‖ = 1 and
n−1∑
`=1

x̄`x`+1 = cos
(

π
n+1

)
eis.

Substituting that into (17) and factoring out a common 2
n+1

yields the following point corre-
sponding to s:

(18) cos
(

π
n+1

)
eis + 2

n+1

n−1∑
k=2

(−t)k−1

n−k∑
`=1

sin
(
`π
n+1

)
sin
(

(k+`)π
n+1

)
ei(ks).
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The rest of of the proof will follow using trigonometric identities to simplify our equation.
Fix k ≥ 2. Then standard trigonometric identities imply that

(19)
n−k∑
`=1

sin
(
`π
n+1

)
sin
(

(k+`)π
n+1

)
= 1

2
(n− k) cos

(
kπ
n+1

)
− 1

2

n−k∑
`=1

cos
(

(k+2`)π
n+1

)
.

Observe that we can write the second term on the right-hand-side of that equation as

−1
2

n−k∑
`=1

cos
(

(k+2`)π
n+1

)
= −1

2

N−1∑
`=0

cos (α + `β) ,

where
α = (k+2)π

n+1
, β = 2π

n+1
, and N = n− k.

Then well-known identities for arithmetic progressions of angles in trigonometric functions,
see [42, p. 371], imply

n−k∑
`=1

cos
(

(k+2`)π
n+1

)
=

sin
(
Nβ
2

)
sin
(
β
2

) cos
(
α + (N−1)β

2

)
= −

sin
(

(n−k)π
n+1

)
sin
(

π
n+1

) .

Substituting that into (19) and then (18) yields the point from (15). Since each such point
is in W (At), the curve Ct is also in W (At). �

Remark 5.2. While the formula for Ct in Proposition 5.1 appears complicated, it simplifies
quite dramatically for small values of n. For example,

• If n = 3, Ct is given by 1√
2
eis − t

4
ei(2s).

• If n = 4, Ct is given by 1
4
(1 +

√
5)eis − t√

5
ei(2s) + t2

4

(
1− 1√

5

)
ei(3s).

• If n = 5, Ct is given by
√

3
2
eis − 7t

12
ei(2s) + t2

√
3

6
ei(3s) − t3

12
ei(4s).

Figure 1 illustrates these curves Ct ⊆ W (At) and t + (1 − t2)Ct ⊆ W (Mt) for n = 3, . . . , 9

and t = 0.8. These curves do not (in general) appear to be convex, but they do appear to
grow as n increases. The formula also implies that Ct is a closed curve, symmetric across the
x-axis. Setting s = 0, π gives two points in W (At) and taking their average gives the point

(20) ĉt := −
∑

2≤k≤n−1
k even

tk−1

(
(n− k) cos

(
kπ
n+1

)
+

sin
(
π(n−k)
n+1

)
sin
(

π
n+1

) )
,

which must be in W (At) by convexity.
As mentioned earlier, when n = 3, Crouzeix’s work in [14] provides the exact boundary of

W (At). In this 3 × 3 case, Ct appears to closely approximate ∂W (At), especially for small
values of t. This phenomenon is illustrated in Figure 2.

5.2. Applications of Ct. We now use these curves to study W (SΘ), for Θ unicritical. First,
we can use them to identify large circles in W (SΘ) for small values of n.
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(a) The curves Ct for t = 0.8 and
n = 3, . . . , 9.

(b) The curves t+(1−t2)Ct for t = 0.8
and n = 3, . . . , 9 inside D.

Figure 1. A selection of the curves Ct in W (At) and t+ (1− t2)Ct in W (SΘt).

(a) t = 0.55. (b) t = 0.75. (c) t = 0.95.

Figure 2. For n = 3, a selection of the curves Ct and boundaries ∂W (At).

Theorem 5.3. Let Θ be unicritical with deg Θ = n. Then:

i. If n ≥ 3, W (SΘ) always contains a pseudohyperbolic disk of radius cos(π
4
) = 1√

2
.

ii. If n ≥ 4, W (SΘ) always contains a pseudohyperbolic disk of radius cos(π
5
) = 1

4
(1+
√

5).

Proof. Without loss of generality, we can assume the unicritical Θ has its zero t ∈ [0, 1) and
denote the function by Θt. To prove (i), by the nested property of these numerical ranges, we
can assume n = 3. Then, by Remark 5.2, the points on Ct are given by f(s) := 1√

2
eis− t

4
ei(2s)

for s ∈ [0, 2π). A simple computation gives

(21) |f(s) + t
4
|2 = | 1√

2
− t

4
eis + t

4
e−is|2 = 1

2
+ t2

4
sin2(s) ≥ 1

2
.

Thus, Ct ⊆ C \D1/
√

2(− t
4
) and looking at s = 0, π, 2π, the curve Ct begins at 1√

2
− t

4
, goes

through −( 1√
2

+ t
4
), and ends back at 1√

2
− t

4
. These facts combined with the x-axis symmetry
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of Ct implies that the convex hull of Ct (and hence W (At)) contains D1/
√

2(− t
4
). Thus,

(22) D1/
√

2(1−t2)(t− (1− t2) t
4
) ⊆ W (SΘt).

This disk is also a pseudohyperbolic disk. To determine its radius r(t), one can solve (9)
with c = t− (1− t2) t

4
and R = 1√

2
(1− t2) to conclude that

r(t) = 1
32

(
24
√

2− t2
√

2 + t4
√

2−
√

128− 96t2 + 98t4 − 4t6 + 2t8
)
.

Solving r(t) = 1√
2
yields only t = 0, 1 on [0, 1]. As r(1

2
) > 1√

2
, continuity implies that

r(t) ≥ 1√
2
on [0, 1), which shows that the disk in (22) has pseudohyperbolic radius at least

1√
2
and completes the proof of (i).
To prove (ii), we can assume that n = 4. Then since cos(π/5) = 1

4
(1 +

√
5), the formula

for Ct in Remark 5.2 shows that the points on Ct are given by f(s) := cos(π
5
)eis − t√

5
ei(2s) +

t2

4
(1 − 1√

5
)ei(3s) for s ∈ [0, 2π]. We will examine disks in W (At) centered at −t√

5
and thus,

must analyze the quantity

(23) |f(s) + t√
5
|2 =

∣∣∣14(1 +
√

5) + t2

4
(1− 1√

5
) cos(2s)

∣∣∣2 +
∣∣∣− 2t√

5
sin(s) + t2

4
(1− 1√

5
) sin(2s)

∣∣∣2 .
Setting w = cos(s) and simplifying (23), we can conclude that the right-hand side of (23) is
equal to

3+
√

5
8

+ t2

2
√

5
+ 3−

√
5

40
t4 +

(
4−
√

5
5
t2 + 2−2

√
5

5
t3 cos(s)

)
sin(s)2

= 3+
√

5
8

+ t2

2
√

5
+ 3−

√
5

40
t4 +

(
4−
√

5
5
t2 + 2−2

√
5

5
t3w
)

(1− w2)

= 3+
√

5
8

+ t2

2
√

5
+ g(t, w).

A straightforward, though somewhat tedious, calculus computation shows that g(t, w) ≥ 0

on [0, 1]× [−1, 1]. Then the same arguments used in the proof of (i) imply that the Euclidean
disk with center

c = t− (1− t2) t√
5
and radius R = (1− t2)

√
3+
√

5
8

+ t2

2
√

5

is in W (SΘt). As before, we can then solve (9) to recover a formula for the associated pseu-
dohyperbolic radius:

r(t) =
g1(t)−

√
g2(t)√

g3(t)
,

where
g1(t) = 25

√
2 + 55

√
10 + 75

√
2t2 − 23

√
10t2 − 20

√
2t4 + 8

√
10t4

g2(t) = 100
(

75− 25
√

5− 178t2 + 78
√

5t2 + 233.4t4 − 105
√

5t4

− 96.8t6 + 42.4
√

5t6 + 14.4t8 − 6.4
√

5t8
)

g3(t) = 402(15 + 5
√

5 + 4
√

5t2).
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If r(t) = cos(π
5
), algebraic manipulations imply that t is also a zero of

(g1(t)2 + g2(t)− cos(π
5
)2g3(t))2 − 4g2(t)g1(t)2,

which is a degree 10 polynomial with a factor of t2, so it has a double zero at t = 0. One can
use numerical software to see that the other 8 zeros of this polynomial lie far outside of the
interval [0, 1]. As r(1

2
) > cos(π

5
), we can thus deduce that r(t) ≥ cos(π

5
) for all t ∈ (0, 1) and

so, W (SΘt) contains a disk with pseudohyperbolic radius at least cos(π
5
). �

Remark 5.4. If n = 5, one can similarly parameterize Ct with f(s) =
√

3
2
eis − 7t

12
ei(2s) +

t2
√

3
6
ei(3s) − t3

12
ei(4s) and recall that ĉt := − 7t

12
− t3

12
from (20) is in W (At). Unfortunately,

|f(s) − ĉt|2 does not simplify as much as in the n = 3 and n = 4 cases and so, we cannot
proceed as in the proof of Theorem 5.3. Instead, we can rephrase the investigation as: “Is
the disk with pseudohyperbolic radius cos(π

6
) and Euclidean center

c(t) = t− (1− t2)( 7t
12

+ t3

12
)

inside the convex hull of t + (1 − t2)Ct?” To prove this, one can use (9) to solve for the
Euclidean radius R(t) of that disk to get

R(t) = 1
12

(7
√

3−
√

(1 + 5t2 + t4)(3 + 10t2 + 7t4 + t6)).

Then to deduce the desired disk is inside t + (1 − t2)Ct, one just needs to show that the
Euclidean disk with center ĉt and radius R(t)/(1 − t2) is inside the convex hull of Ct. This
will follow if one can establish

|f(s)− ĉt|2 ≥ R(t)2

(1−t2)2 .

This inequality can be checked in Mathematica, which indicates that for 0.01 ≤ t ≤ 0.99

the inequality holds. It seems very likely that the inequality holds for all t ∈ [0, 1], but
the Mathematica minimize command appears less stable near the endpoints t = 0, 1. This
indicates that, when n = 5, there should generally be a pseudohyperbolic disk of radius
cos(π

6
) inside W (SΘt).

The following corollary is an immediate application of Theorem 5.3 and Corollary 3.3. The
n = 3 case also follows from results in [14]. The n = 4 case appears to be new.

Corollary 5.5. Let Θ, B be finite Blaschke products with degB < deg Θ. Let Θ be unicritical
with deg Θ equaling 3 or 4. Then

max{|B(z)| : z ∈ W (SΘ)} ≥ 1
2
.

These results motivate questions about when numerical ranges of compressions of shifts
contain large pseudohyperbolic disks. These questions are explored more in Section 6.
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For now, recall that Crouzeix’s conjecture states: given a square matrix A, the best con-
stant C for which

(24) ‖p(A)‖ ≤ C max
z∈W (A)

|p(z)|

for all polynomials p is C = 2. Using Proposition 5.1, we can study Crouzeix’s conjecture for
compressed shifts associated to unicritical Θ with degree 3, 4, 5. We first obtain the following:

Proposition 5.6. Let Θ be unicritical with deg Θ = 3. Then for every polynomial p ∈ C[z],

‖p(SΘ)‖ ≤
√

13 +
√

41

2
max

z∈W (SΘ)
|p(z)|.

Before proceeding to the proof, a few comments are in order. First in [14], Crouzeix proved
that the numerical range of a 3×3 nilpotent matrix is a 2-spectral set; that is, in this case the
constant C in (24) can be taken to be 2. Because At from (14) is nilpotent, that establishes
Proposition 5.6 but with constant 2.

Our proof here is simpler but gives the weaker constant
√

13+
√

41

2
≈ 2.20245. However,

with some reliance on Mathematica, our arguments do extend to the n = 4 and n = 5 cases.
In those situations, there is a range of t-values (i.e. a range for the modulus of the zero of
the unicritical Θ) where the constant in (24) with A = SΘ is less than 2. For the proofs, we
require the following remark.

Remark 5.7. Fix t ∈ [0, 1), recall the curve Ct ⊆ W (At) from Proposition 5.1 where At is
defined in (14), and let g be a polynomial with g(T) = Ct. Here we claim that g(D) is also
contained in W (At). To see this, note that the boundary of g(D) is contained in Ct by the
open mapping theorem. Let K denote the convex hull of g(D). Since K is compact and
convex, the Krein-Milman theorem implies that K is the convex hull of its extreme points.
If z is an extreme point of K, then z is in the boundary of g(D) ⊆ Ct. Therefore g(D) is in
the convex hull of Ct and, by the convexity of W (At), we have g(D) ⊆ W (At).

Proof of Proposition 5.6. Without loss of generality, we can assume the unicritical Θ has its
only zero t ∈ [0, 1) and will establish the inequality for Mt, the previously-discussed matrix
representation of SΘ. For constants α, β and a matrix A, we haveW (αI+βA) = α+βW (A).
Therefore, the matrix At from (14) satisfies equation (24) with constant C if and only if Mt

satisfies the equation with the same constant. Thus, we work with the matrix At.
By Remark 5.2, Ct is parameterized by 1√

2
eis− t

4
ei(2s), for s ∈ [0, 2π). Then if we define g by

g(z) = 1√
2
z − t

4
z2, we have g(T) = Ct. By Remark 5.7, we immediately have g(D) ⊆ W (At).
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Let J3 denote the 3× 3 Jordan block with zeros on the diagonal and define the matrices

(25) Bt =


0
√

2 − t√
2

0 0
√

2

0 0 0

 and Xt =

1 0 0

0 1√
2

t
4

0 0 1
2

 .

Then it can be checked that g(Bt) = At and Bt = Xt · J3 ·X−1
t , and for p ∈ C[z] we have

‖p(At)‖ = ‖(p ◦ g)(Bt)‖ = ‖Xt(p ◦ g)(J3)X−1
t ‖

≤ ‖Xt‖ · ‖X−1
t ‖ · ‖(p ◦ g)(J3)‖ ≤ ‖Xt‖ · ‖X−1

t ‖ sup
z∈D
|(p ◦ g)(z)|,(26)

where we used von Neumann’s inequality in the last line. We know that z ∈ D implies that
g(z) ∈ W (At). Thus,

‖p(At)‖ ≤ ‖Xt‖ · ‖X−1
t ‖ sup

z∈W (At)

|p(z)|.

A Mathematica computation shows that

‖Xt‖ · ‖X−1
t ‖ = 1

2

√
12 + t2 +

√
16 + 24t2 + t4,

which is increasing in t and satisfies

2 ≤ ‖Xt‖ · ‖X−1
t ‖ ≤

√
13 +

√
41

2
,

which completes the proof. �

Remark 5.8. Let Θt denote a unicritical Blascke product with zero at t ∈ [0, 1) and degree
n. By Remark 5.2, we have tractable formulas for Ct when n = 4 and n = 5. In these cases,
we can adapt the arguments from Proposition 5.6 to show that W (SΘt) is a ‖Xt‖ · ‖X−1

t ‖
spectral set for SΘt , for a (soon-to-be specified) matrix Xt. As before, we work with At.

First, for the n = 4 case, set g(z) = 1
4
(1 +

√
5)z − t√

5
z2 + t2

4

(
1− 1√

5

)
z3 and define

Bt =


0 −1 +

√
5 (9− 21√

5
)t 1

5
(−537 + 241

√
5)t2

0 0 −1 +
√

5 (9− 21√
5
)t

0 0 0 −1 +
√

5

0 0 0 0


and

(27) Xt =


1 0 0 0

0 1
4
(1 +

√
5) − 3

40
(−5 +

√
5)t − t2

8
√

5

0 0 1
8
(3 +

√
5) 3t

4
√

5

0 0 0 1
8
(2 +

√
5)


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Then, g(Bt) = At, Bt = Xt · J4 ·X−1
t , and the same arguments as in the proof of Proposition

5.6 imply that for all polynomials p,

‖p(At)‖ ≤ ‖Xt‖ · ‖X−1
t ‖ sup

z∈W (At)

|p(z)|.

However, for n = 4, there is not a nice formula for ‖Xt‖ · ‖X−1
t ‖. Still, the Mathematica

maximization tool reveals that for t ∈ (0, 0.9999),

‖Xt‖ · ‖X−1
t ‖ ≤ 2.38

and indeed, if t ∈ (0, .42), ‖Xt‖ · ‖X−1
t ‖ < 2. Thus, this argument shows that for n = 4,

Crouzeix’s conjecture holds for all SΘt with t ∈ (0, 0.42).

Basically, the same argument works if n = 5. In this case, g(z) =
√

3
2
z− 7t

12
z2 + t2

√
3

6
z3− t3

12
z4,

Bt =



0 2√
3
− 4t

9
√

3
34t2

81
√

3
− 278t3

729
√

3

0 0 2√
3
− 4t

9
√

3
34t2

81
√

3

0 0 0 2√
3

− 4t
9
√

3

0 0 0 0 2√
3

0 0 0 0 0


and

(28) Xt =



1 0 0 0 0

0
√

3
2

t
6
− t2

8
√

3
t3

144

0 0 3
4

t
2
√

3
−7t2

72

0 0 0 3
√

3
8

3t
8

0 0 0 0 9
16


.

Then, g(Bt) = At, Bt = Xt ·J5 ·X−1
t , and the same arguments imply that for all polynomials

p,
‖p(At)‖ ≤ ‖Xt‖ · ‖X−1

t ‖ sup
z∈W (At)

|p(z)|.

As in the n = 4 case, for n = 5, there is not a nice formula for ‖Xt‖ · ‖X−1
t ‖. Still, the

Mathematica maximization tool reveals that for t ∈ (0.0001, 1),

‖Xt‖ · ‖X−1
t ‖ ≤ 2.51

and indeed, if t ∈ (0.0001, 0.5), ‖Xt‖ · ‖X−1
t ‖ < 2. Here, we consider t values away from 0

because the maximization tool seems to be somewhat unstable near t = 0. Regardless, this
argument shows that, for n = 5, Crouzeix’s conjecture holds for all SΘt with t ∈ (.0001, 0.5).
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For n ≥ 6, the methods we used to compute Bt and Xt are no longer manageable. Still, we
conjecture that a similar argument should work in theory, if not in practice, for these higher
values of n.

We note that knowledge about a bound on ‖X‖‖X−1‖ often provides other information.
For example, a key lemma in a recent paper of Davidson, Paulsen, and Woerdeman, [18],
shows that for a contraction T and operator S with ‖S‖‖S−1‖ ≤ C, the numerical radius of
S−1TS satisfies

w(S−1TS) ≤ 1

2
(C + C−1).

6. Pseudohyperbolic Disks and Numerical Ranges

Several of our results, particularly Corollary 3.3 and Theorem 5.3, require or show the ex-
istence of large pseudohyperbolic disks contained inside the numerical ranges W (SΘ). These
results lead naturally to the following question:

If Θ is a finite Blaschke product with deg Θ = n, does W (SΘ) necessarily contain a pseudo-
hyperbolic disk with pseudohyperbolic radius (1

2
)1/(n−1)?

However, the answer to this question is no! To illustrate this, in the following example,
we provide a family of degree-2 Blaschke products Θ such that W (SΘ) does not contain any
pseudohyperbolic disk of the form Dρ(z0,

1
2
). However, since dimKΘ = 2, the 2× 2 result in

[12] still implies that SΘ satisfies the inequality in Crouzeix’s conjecture.

Example 6.1. Set Θ(z) = z2−t2
1−t2z2 for t ∈ (0, 1). Then one matrix representation of SΘ is

MΘ :=

[
t 1− t2

0 −t

]
and the elliptical range theorem implies that W (SΘ) is the elliptical disk with foci ±t and
minor axis 1− t2. Equivalently, W (SΘ) is exactly the set of points z = x+ iy satisfying

(29)
4x2

(1 + t2)2
+

4y2

(1− t2)2
≤ 1.

Assume that some Dρ(z0,
1
2
) ⊆ W (SΘ) for z0 = x0+iy0. We show this leads to a contradiction

for t >
√

3/4. First, note that z0 ∈ W (SΘ) and so (29) implies that

(30) x2
0 + y2

0 ≤ 1
4
(1 + t2)2 and so, 1− |z0|2 ≥ 1− 1

4
(1 + t2)2.

Recall from (7) that Dρ(z0,
1
2
) is also a Euclidean disk with center c and radius R defined by

c =
3
4
z0

1− 1
4
|z0|2

and R =
1
2
(1− |z0|2)

1− 1
4
|z0|2

.
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By the assumption that Dρ(z0,
1
2
) ⊆ W (SΘ), we see that c ± iR must satisfy (29). So, with

|y| = R in (29) we immediately obtain

4R2

(1− t2)2
≤ 1.

It must be the case that either |z0| <
√

3/4 or |z0| ≥
√

3/4. If |z0| <
√

3/4, then

(1− 3
4
)2

(1− t2)2
≤ (1− |z0|2)2

(1− 1
4
|z0|2)2(1− t2)2

=
4R2

(1− t2)2
≤ 1,

which only holds if t2 ≤ 3
4
, or t ≤

√
3/4. Similarly, if |z0| ≥

√
3/4, (30) implies

(31)
(

16

13

)2 (1− 1
4
(1 + t2)2)2

(1− t2)2
≤ (1− |z0|2)2

(1− 1
4
|z0|2)2(1− t2)2

≤ 1.

A computation shows that

lim
t→1

1− 1
4
(1 + t2)2

1− t2
= 1,

and so for t sufficiently close to 1, (31) has to fail. More specifically, one can check that
(31) only holds if t ≤ 1

2
. Combining our two computations implies that if t >

√
3/4, both

inequalities fail and then W (SΘ) cannot contain a pseudohyperbolic disk Dρ(z0, 1/2).

In contrast, Theorem 5.3 shows that if Θ is unicritical and deg Θ = 3 or deg Θ = 4, then
it includes a pseudohyperbolic disk of the radius (1

2
)1/2 or (1

2
)1/3 respectively. The following

example shows that (unsurprisingly) this result also holds for unicritical Θ with deg Θ = 2.

Example 6.2. Set Θt(z) =
(
z−t
1−tz

)2 for t ∈ [0, 1), so that Θt is a degree 2 unicritical Blaschke
product with its zero at t. We will show that there is a pseudohyperbolic disk Dρ(z0,

1
2
)

contained in the numerical range W (SΘt). One matrix representation of SΘt is

MΘt =

[
t 1− t2

0 t

]
.

Then the elliptical range theorem implies that W (SΘt) is the closed Euclidean disk whose
center c(t) = t and radius R(t) = 1

2
(1 − t2). This Euclidean disk is also a pseudohyperbolic

disk Dρ(z0(t), r(t)) with center z0(t) ∈ R+ and radius r(t) that must satisfy the equations (8)
and (9). Solving those equations gives r(0) = 1

2
, z0(0) = 0, and for t 6= 0,

r(t) = 1
4

(
5− t2 −

√
(1− t2)(9− t2)

)
z0(t) = 1

8t

(
3 + 6t2 − t4 − (1− t2)

√
(1− t2)(9− t2)

)
.

A calculus computation implies that r(t) is increasing in t on [0, 1) and r(0) = 1
2
. Thus,

each W (SΘt) equals the closure of some Dρ(z0(t), r(t)) with r(t) ≥ 1
2
, which gives the desired

result. Moreover, if t 6= 0, then r(t) > 1
2
and so, we can perturb the zeros slightly from t to
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some t1, t2 and the resulting Θ will still include some Dρ(z0,
1
2
) in its associated numerical

range W (SΘ).

That example combined with Theorem 5.3 motivates the following open question:

Question 1. If Θ is unicritical with deg Θ = n, does W (SΘ) necessarily contain a pseudo-
hyperbolic disk with pseudohyperbolic radius (1

2
)1/(n−1)?

We conjecture that the answer is yes. It is worth noting that these large pseudohyperbolic
disks typically cannot be centered at the zero of the unicritical Blaschke product. It is easiest
to see this by examining the degree-2 situation, as follows.

Example 6.3. Assume Θt is unicritical with its zero at t ∈ [0, 1). Then W (SΘt) is the closed
Euclidean disk with center c1 = t and radius R1 = 1

2
(1 − t2). Meanwhile using (7), Dρ(t,

1
2
)

is the Euclidean disk with center c2 and radius R2 given by

c2 =
3
4
t

1− 1
4
t2

and R2 =
1
2
(1− t2)

1− 1
4
t2
.

The boundary circles of two such Euclidean disks intersect in exactly two points (and hence,
neither disk contains the other) if and only if

(32) (R1 −R2)2 < |c1 − c2|2 < (R1 +R2)2.

Computing those quantities directly gives

R1 +R2 =
(1− t2)(8− t2)

2(4− t2)
, R2 −R1 =

t2(1− t2)

2(4− t2)
, c1 − c2 =

t(1− t2)

4− t2
,

and comparing them shows that (32) holds as long as t 6= 0. This shows that if n = 2,
Dρ

(
t, 1

2

)
6⊆ W (SΘt) and similarly, W (SΘt) 6⊆ Dρ

(
t, 1

2

)
.

7. Proof of Theorem 2.4

For completeness, we recall the original result of Horwitz and Rubel:

Theorem 7.1 ([41]). Let A and B be two monic Blaschke products of degree n. Suppose that
there are n distinct points λ1, . . . , λn in D such that A(λj) = B(λj) for j = 1, . . . , n. Then
A = B.

The proof given in [41] relies on the following lemma stated under the assumptions above.
However, the lemma does not use the assumption that the points are distinct. Still, because
this lemma is essential to the proof of Theorem 2.4, we give a detailed proof below. Then
we establish Theorem 2.4, which handles the case where A and B agree at n (not necessarily
distinct) points in D, when those points are counted according to multiplicity.
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Lemma 7.2 ([41]). Let A and B be monic Blaschke products of degree n. Then there exists
λ ∈ T such that A(λ) = B(λ).

Proof. Suppose that A has zeros a1, . . . , an and B has zeros b1, . . . , bn. Note that for λ ∈ T,
we have A(λ) = B(λ) if and only if A(λ)/B(λ) = 1 and this happens if and only if

n∏
j=1

((
λ− aj
λ− bj

)/(1− ajλ
1− bjλ

))
= 1.

Since λ ∈ T, this happens if and only if

(33)
n∏
j=1

((
λ− aj
λ− bj

)/(λ− aj
λ− bj

))
= 1.

Let F (z) :=
∏n

j=1
z−aj
z−bj . Then establishing (33) is equivalent to showing that 1 = F (λ)/F (λ).

Now define G(z) := F (1/z) =
∏n

j=1

(
1/z−aj
1/z−bj

)
and note that G has a holomorphic extension

(also denoted by G) to a domain that includes z = 0, namely,

G(z) =
n∏
j=1

1− ajz
1− bjz

.

Now, aj, bj ∈ D for all j, so there exists δ > 0 such that G is holomorphic and zero free on
|z| < 1 + δ. By [48, Corollary 1.1.3], there exists a holomorphic function H on |z| < 1 + δ

such that

(34) G = eH .

By definition, G(0) = 1, so ImH(0) = 2πm for some m ∈ Z. Subtracting 2πmi from H will
not change (34) or the holomorphic nature of H−2πmi, so we may assume that ImH(0) = 0.
Since ImH is harmonic, the mean value theorem implies that

0 = ImH(0) =
1

2π

∫ 2π

0

ImH(eiθ)dθ.

Because ImH is continuous on T, this implies that there must exist θ0 ∈ [0, 2π] with
ImH(eiθ0) = 0. Let λ := e−iθ0 . Then

F (λ) = G(eiθ0) = eRe [H(eiθ0 )] ∈ R \ {0}.

Therefore, F (λ)/F (λ) = 1, as needed. �

We can now prove Theorem 2.4. This proof uses a somewhat different argument than the
proof in [41].
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Proof. By Lemma 7.2, there is a point λ ∈ T where A(λ) = B(λ). Let a1, . . . , an be the zeros
of A counted according to multiplicity and define polynomials

pa(z) =
n∏
j=1

(z − aj) and qa =
n∏
j=1

(1− ājz),

so A = pa/qa. Define pb, qb in an analogous way for B. Consider the polynomial Q :=

paqb − pbqa, which is the numerator for A − B and observe that degQ ≤ 2n. Moreover, a
simple computation shows

(35) z2nQ(1/z̄) = −Q(z).

Assume that A and B agree with multiplicity k at c ∈ D with c 6= 0. Then (z − c)k divides
Q and so, (35) implies that (1− c̄z)k divides Q. Thus Q has a zero of multiplicity k at both
c ∈ D and 1/c̄ ∈ C \ D.

The rest of the proof requires two cases. For the first case, assume each λi 6= 0. By our
above arguments, again counting according to multiplicity, Q vanishes at 2n+ 1 points in C
and so, is identically 0. Thus A = B. For the second case, assume without loss of generality
that λ1 = 0 and A,B agree with multiplicity k at λ1. Then Q = zkR for some polynomial R
and (35) becomes

z2n−kR(1/z̄) = −zkR(z).

This implies degR ≤ 2n − 2k and thus, degQ ≤ 2n − k. By the above arguments, Q must
vanish at 2n+ 1− k points in C and so is identically 0. Thus A = B. �

As pointed out in [41], the assumption that the Blaschke products are monic is essential;
if A(z) = z−i/2

1−(i/2)z
and B(z) = i z−1/2

1−(1/2)z
, then A(0) = B(0) but clearly A 6= B.

References

[1] A. D. Baranov, Weighted Bernstein inequalities and embedding theorems for model subspaces. (Russian)
Algebra i Analiz 15 (2003), no. 5, 138–168; translation in St. Petersburg Math. J. 15 (2004), no. 5,
733–752.

[2] C. Badea, M. Crouzeix, B. Delyon, Convex domains and K-spectral sets. Math. Z. 252 (2006), no. 2,
345–365.

[3] C. Badea, B. Beckermann, Spectral sets, 2013, preprint.
[4] R. Berman, The level sets of the moduli of functions of bounded characteristic. Trans. Amer. Math. Soc.

281 (1984), no. 2, 725–744.
[5] K. Bickel, P. Gorkin; A. Greenbaum, T. Ransford, F. L. Schwenninger, E. Wegert, Crouzeix’s conjecture

and related problems. Comput. Methods Funct. Theory 20 (2020), no. 3-4, 701–728.
[6] T. Caldwell, A. Greenbaum, K. Li, Some extensions of the Crouzeix–Palencia result. SIAM J. Matrix

Anal. Appl. 39 (2018), 769–780.
[7] D. Choi, A proof of Crouzeix’s conjecture for a class of matrices, Linear Alg. Appl. 438 (2013), 3247–3257.
[8] D. Choi, A. Greenbaum, Roots of matrices in the study of GMRES convergence and Crouzeix’s conjec-

ture. SIAM J. Matrix Anal. Appl. 36 (2015), no. 1, 289–301



BLASCHKE PRODUCTS, LEVEL SETS, AND CROUZEIX’S CONJECTURE 33

[9] J. Cima and R. Mortini, One-component inner functions. Complex Anal. Synerg. 3 (2017), no. 1, Paper
No. 2, 15 pp.

[10] J. Cima and R. Mortini, One-component inner functions II, Advancements in complex analysis (eds D.
Breaz and M. Rassias; Springer, Berlin, 2020) 39–49.

[11] B. Cohn, Carleson measures for functions orthogonal to invariant subspaces. Pacific J. Math. 103 (1982),
no. 2, 347–364.

[12] M. Crouzeix, Bounds for analytical functions of matrices. Integral Equations Operator Theory 48 (2004),
no. 4, 461–477.

[13] M. Crouzeix, Numerical range and functional calculus in Hilbert space. J. Funct. Anal. 244 (2007), no.
2, 668–690.

[14] M. Crouzeix, Spectral sets and 3 × 3 nilpotent matrices. Topics in functional and harmonic analysis,
27–42, Theta Ser. Adv. Math., 14, Theta, Bucharest, 2013.

[15] M. Crouzeix, C. Palencia, The numerical range is a (1 +
√
2) spectral set, SIAM J. Matrix Anal. Appl.,

38 (2017), 649–655.
[16] U. Daepp, P. Gorkin, R. Mortini, Ellipses and finite Blaschke products. Amer. Math. Monthly 109

(2002), no. 9, 785–795.
[17] U. Daepp, P. Gorkin, A. Shaffer, K. Voss, Finding ellipses. What Blaschke products, Poncelet’s theorem,

and the numerical range know about each other. Carus Mathematical Monographs, 34. MAA Press,
Providence, RI, 2018.

[18] K. R. Davidson, V. I. Paulsen, Hugo J. Woerdeman, Complete spectral sets and numerical range. Proc.
Amer. Math. Soc. 146 (2018), no. 3, 1189–1195.

[19] P. Ebenfelt, D. Khavinson, H.S. Shapiro. Two-dimensional shapes and lemniscates. Complex analysis
and dynamical systems IV. Part 1, 45–59, Contemp. Math., 553, Israel Math. Conf. Proc., Amer. Math.
Soc., Providence, RI, 2011.

[20] A. Fletcher, Unicritical Blaschke products and domains of ellipticity. Qual. Theory Dyn. Syst. 14 (2015),
no. 1, 25–38.

[21] M. Fujimura, Inscribed ellipses and Blaschke products. Comput. Methods Funct. Theory 13 (2013), no.
4, 557–573.

[22] Fuss, N. Nova Acta Petropol. 10, 1792.
[23] H. Gaaya, On the numerical radius of the truncated adjoint shift. Extracta Math. 25 (2010), no. 2,

165–182.
[24] H. Gaaya, A sharpened Schwarz-Pick operatorial inequality for nilpotent operators. Indiana Univ. Math.

J. 61 (2012), no. 1, 223–248.
[25] S. R. Garcia, W. T. Ross, A non-linear extremal problem on the Hardy space. Comput. Methods Funct.

Theory 9 (2009), no. 2, 485–524.
[26] S.R. Garcia, J. Mashreghi, and W.T. Ross, Finite Blaschke products and their connections. Springer,

Cham, 2018.
[27] J. B. Garnett, Bounded analytic functions. Pure and Applied Mathematics, 96. Academic Press, Inc.

[Harcourt Brace Jovanovich, Publishers], New York-London, 1981.
[28] H.-L. Gau, P. Y. Wu, Numerical range of S(φ), Linear and Multilinear Algebra, 45 (1998), no. 1, 49–73.
[29] H.-L. Gau, P. Y. Wu, Condition for the numerical range to contain an elliptic disc. Linear Algebra Appl.

364 (2003), 213–222.
[30] H.-L. Gau, P. Y. Wu, Numerical ranges of KMS matrices. Acta Sci. Math. (Szeged) 79 (2013), no. 3-4,

583–610.



34 BICKEL AND GORKIN

[31] H.-L. Gau, P. Y. Wu, Yuan Zero-dilation indices of KMS matrices. Ann. Funct. Anal. 5 (2014), no. 1,
30–35.

[32] C. Glader, M. Kurula, M. Lindström, Crouzeix’s conjecture holds for tridiagonal 3 × 3 matrices with
elliptic numerical range centered at an eigenvalue. SIAM J. Matrix Anal. Appl. 39 (2018), no. 1, 346–364.

[33] P. Gorkin, J. R. Partington, Norms of truncated Toeplitz operators and numerical radii of restricted
shifts. Comput. Methods Funct. Theory 19 (2019), no. 3, 487–508.

[34] P. Gorkin, N. Wagner, Ellipses and compositions of finite Blaschke products. J. Math. Anal. Appl. 445
(2017), no. 2, 1354–1366.

[35] A. Greenbaum, D. Choi, Crouzeix’s conjecture and perturbed Jordan blocks. Linear Algebra Appl. 436
(2012), no. 7, 2342–2352.

[36] A. Greenbaum, M. L. Overton, Numerical investigation of Crouzeix’s conjecture. Linear Algebra Appl.
542 (2018), 225–245.

[37] U. Haagerup, P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space. Proc.
Amer. Math. Soc. 115 (1992), no. 2, 371–379.

[38] A. Hess, Bicentric quadrilaterals through inversion, Forum Geometricorum, Volume 13 (2013) 11–15.
[39] M. Heins, Some characterizations of finite Blaschke products of positive degree. J. Analyse Math. 46

(1986), 162–166.
[40] K. Hoffman, Bounded analytic functions and Gleason parts. Ann. of Math. (2) 86 (1967), 74–111.
[41] A. Horwitz, L. Rubel, A uniqueness theorem for monic Blaschke products. Proc. Amer. Math. Soc. 96

(1986), no. 1, 180–182.
[42] M. Knapp, Sines and Cosines of Angles in Arithmetic Progression. Mathematics Magazine. 82 (2009)

no. 5, 371-372.
[43] B. Mirman, Numerical ranges and Poncelet curves. Linear Algebra Appl. 281 (1998), no. 1-3, 59–85.
[44] R. Mortini, R. Rupp, The symmetric versions of Rouché’s theorem via ∂-calculus. J. Complex Anal.

2014, Art. ID 260953, 9 pp.
[45] R. Mortini, R. Rupp, Extension Problems and Stable Ranks: A Space Odyssey. Berkhäuser, 2021.
[46] A. Nicolau, A. Reijonen, A characterization of one-component inner functions. Bull. Lond. Math. Soc.

53 (2021), no. 1, 42–52.
[47] N. Steinmetz, The formula of Riemann-Hurwitz and iteration of rational functions, Complex Variables

Theory Appl. 22 (1993), no. 3-4, 203–206.
[48] T. Ransford, Potential theory in the complex plane. London Mathematical Society Student Texts, 28.

Cambridge University Press, Cambridge, 1995.
[49] D. Sarason, Generalized interpolation in H∞. Trans. Amer. Math. Soc. 127 (1967), 179–203.
[50] K. Stephenson. Analytic functions sharing level curves and tracts. Ann. of Math., 123, (1986), 107-144.
[51] K. Stephenson, C. Sundberg, Level curves of inner functions. Proc. London Math. Soc., 51, (1985), 77-94.
[52] B. Sz.-Nagy, C. Foias, H. Bercovici, L. Kérchy, Harmonic analysis of operators on Hilbert space, second

ed., Universitext, Springer, New York, 2010.
[53] S. Zakeri, On critical points of proper holomorphic maps on the unit disk. Bull. London Math. Soc. 30

(1998), no. 1, 62–66.



BLASCHKE PRODUCTS, LEVEL SETS, AND CROUZEIX’S CONJECTURE 35

Department of Mathematics, Bucknell University, 360 Olin Science Building, Lewisburg,

PA 17837, USA.

Email address : kelly.bickel@bucknell.edu

Department of Mathematics, Bucknell University, 360 Olin Science Building, Lewisburg,

PA 17837, USA.

Email address : pgorkin@bucknell.edu


	1. Introduction
	1.1. Outline and Main Results

	2. Level Sets of Finite Blaschke Products
	3. LSC Inequality for classes of B and 
	3.1. LSC Inequality via Pseudohyperbolic Disks
	3.2. LSC Inequality via Fuss's Formula
	3.3. LSC Inequality via Zero Set Conditions
	3.4. LSC Inequality via Level Set Components

	4. The Case of a Unicritical B
	5. The Case of a Unicritical 
	5.1. A curve in W(At)
	5.2. Applications of Ct.

	6. Pseudohyperbolic Disks and Numerical Ranges
	7. Proof of Theorem 2.4
	References

