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Abstract. We study Clark measures associated with general two-variable rational inner
functions (RIFs) on the bidisk, including those with singularities, and with general d-
variable rational inner functions with no singularities. We give precise descriptions of
support sets and weights for such Clark measures in terms of level sets and partial
derivatives of the associated RIF. In two variables, we characterize when the associated
Clark embeddings are unitary, and for generic parameter values, we relate vanishing of
two-variable weights with the contact order of the associated RIF at a singularity.

1. Introduction5

For d ∈ N, we let6

Dd = {(z1, . . . , zd) ∈ Cd : |zj| < 1, j = 1, . . . , d}
denote the unit polydisk and7

Td = {(ζ1, . . . , ζd) ∈ Cd : |ζj| = 1, j = 1, . . . , d}
be its distinguished boundary. If ϕ : Dd → D is a holomorphic function, then, for α ∈ T,8

the expression9

ℜ
(
α + ϕ(z)

α− ϕ(z)

)
=

1− |ϕ(z)|2

|α− ϕ(z)|2
is positive and pluriharmonic, and hence there exists a unique positive Borel measure σα10

on Td such that11

1− |ϕ(z)|2

|α− ϕ(z)|2
=

∫
Td

Pz(ζ)dσα(ζ),

where Pz(ζ) denotes the Poisson kernel for the polydisk12

Pz(ζ) =
d∏

j=1

Pzj(ζj), and Pzj(ζj) =
1− |zj|2

|ζj − zj|2
.

Measures of this type, namely ones whose Poisson integral is the real part of a holomorphic
function on the polydisk Dd, are called pluriharmonic measures, see [16, Section 2.2]. Note
that Pz(ζ) = Cz(ζ)Cζ(z)/Cz(z), where Cζ(z) denotes the Cauchy kernel for Dd, defined
by

Cζ(z) =
d∏

j=1

1

1− zjζj
, z ∈ Dd, ζ ∈ Dd

.
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The measures {σα} are called the Aleksandrov–Clark measures associated with ϕ and if ϕ1

is inner (defined below), these measures are called Clark measures. The purpose of this2

paper is to present several results concerning such measures for the class of rational inner3

functions.4

First suppose ϕ : Dd → C is a bounded holomorphic function. Then, by Fatou’s theorem5

for polydisks (see [18]), ϕ possesses non-tangential limits6

ϕ∗(ζ) = ∠ lim
Dd∋z→ζ

ϕ(z)

for Lebesgue-almost every ζ ∈ Td; non-tangential in this context means that |zj − ζj| <7

c(1 − |zj|2) for some constant c > 1, and j = 1, . . . , d. Throughout this paper, when8

the context makes it clear that we are referencing boundary values, we will write ϕ(ζ)9

instead of ϕ∗(ζ). A bounded holomorphic function ϕ : Dd → C is called inner if these10

non-tangential boundary values satisfy |ϕ∗(ζ)| = 1 for almost every ζ ∈ Td. Then, a11

rational inner function is an inner function of the form ϕ = q/p where q, p are in the12

polynomial ring C[z1, . . . , zd].13

Rational inner functions (RIFs) have been studied extensively in function theory and op-14

erator theory in polydisks, especially in the two-variable setting. RIFs are more tractable15

than general inner functions and enjoy some additional regularity properties; for instance,16

a theorem of Knese states that any RIF ϕ : Dd → D has non-tangential boundary values17

ϕ∗(ζ) ∈ T at every ζ ∈ Td, see [15]. RIFs are also easy to construct (see Section 2 below)18

and can be used to explore questions in a concrete way that appear difficult to answer for19

general inner functions. On the other hand, RIFs do exhibit some complexity and some20

surprising features in higher dimensions: for instance, ϕ = q/p can have singularities on21

the boundary at points τ ∈ Td where p(τ) = 0 = q(τ), and the analytic and geometric22

properties of such boundary singularities can be relatively intricate, see [6, 7].23

In the recent paper [10], E. Doubtsov initiated a systematic study of Clark measures24

associated with inner functions in polydisks. After extending some classical one-variable25

results such as Aleksandrov’s disintegration theorem to higher dimensions, he made the26

surprising observation that certain isometries into L2(σα), which are always onto for inner27

functions in one variable, may fail to be surjective in d variables, and this behavior can even28

happen for Clark measures associated to RIFs. Inspired by Doubtsov’s work, a subset of29

the authors of this manuscript undertook a detailed study [4] of Clark measures associated30

with a subclass of two-variable RIFs ϕ = q/p whose q, p-polynomials have degree n in the31

first variable, and 1 in the second. In particular, [4] gives an explicit description of the32

family of Clark measures {σα}α∈T for bidegree (n, 1) RIFs and a criterion, formulated in33

terms of non-tangential values at singularities of ϕ, for when Clark isometries into L2(σα)34

are surjective. The purpose of the present work is to extend these results to the full class of35

two-variable RIFs, with no degree restrictions. Additionally, we will discuss obstructions36

that arise in higher dimensions and prove some partial results concerning d-variable RIFs37

and associated Clark measures under additional hypotheses.38

1.1. Overview. First, in Section 2, we discuss some basic facts about Clark measures in39

the polydisk setting; these results are most likely known to specialists. We then review40

and extend some results concerning d-variable rational inner functions from the recent41

papers [6, 7, 8]. In particular, we explain how RIFs on the bidisk can be seen to have42

level sets that can be globally parameterized on T2 by analytic functions even in the43
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presence of singularities. To avoid trivial complications, here and throughout this paper,1

we will assume that ϕ = q/p for polynomials q, p ∈ C[z1, . . . , zd] that are non-constant in2

each variable zj.3

In Section 3, we present a structure formula for Clark measures associated with a4

bidegree (m,n) RIF in the bidisk, thus extending the work in [4] which dealt with bidegree5

(m, 1) RIFs. In brief, for all but finitely many α ∈ T, called the generic case, the pairing6

of the measure σα with a continuous function f on T2 can be described by a sum of terms7

of the form8 ∫
T
f(ζ, gαj (ζ))

dm(ζ)

| ∂ϕ
∂z2

(ζ, gαj (ζ))|
,

where m denotes normalized Lebesgue measure on T and gα1 , . . . , g
α
m are analytic functions9

parametrizing the α-level set of the RIF ϕ under consideration. An analogous represen-10

tation for Clark measures associated with d-variable RIFs is shown to hold under the11

additional assumption that the RIF possesses no singularities on Dd
. In two variables and12

when ϕ does have singularities, there may be values α ∈ T (the exceptional case) where13

one needs to add in finitely many terms of the form cα
∫
T f(τ, ζ)dm(ζ), where τ ∈ T and14

cα > 0 is a constant.15

In Section 4, we analyze Clark embedding operators from the model space Kϕ =16

H2(D2) ⊖ ϕH2(D2) to L2(σα), where H
2(D2) is the classic Hardy space on the bidisk.17

We prove that for generic α, these Clark isometries are surjective and hence unitary. On18

the other hand, we show that if α ∈ T is an exceptional parameter value, then the associ-19

ated Clark isometry fails to be surjective. This shows that we have identified the correct20

notion of “exceptional value” in the case of general bidegrees and resolves a problem left21

over from [4].22

In Section 5, we use recent work in [5] to gain further insight into the structure of23

Clark measures for bidegree (m,n) RIFs. We prove that, for all but finitely many pa-24

rameter values α ∈ T, the weights | ∂ϕ
∂z2

(ζ, gαj (ζ))|−1 appearing in the structure formula25

for Clark measures are bounded and exhibit an order of vanishing at singular points that26

is determined by the contact order of the underlying RIF at the corresponding singu-27

larities. Contact order is a geometric quantity that was introduced in [6] and has been28

used to study integrability properties of RIF derivatives and nontangential polynomial29

approximation of RIFs at singular points. The main result in Section 5 was essentially30

conjectured in [4].31

Finally, we conclude in Section 6 by examining a singular three-variable example, which32

is not covered by our general results on Clark measures for higher-dimensional RIFs. The33

Clark measure formulas we obtain suggest that the higher-dimensional cases are more34

challenging and that some of our results for bidegree (m,n) RIFs may fail in the d-variable35

setting.36

2. Preliminaries37

There are several recent and interesting works on extensions of classical Clark theory in38

one variable to the multivariable setting, see for instance [2, 3, 13]. Since we are interested39

in Clark measures associated with RIFs, we restrict our attention to the polydisk setting.40
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2.1. Clark theory in polydisks. Let ϕ be an inner function on Dd. We denote by Kϕ

the model space associated to the function ϕ, defined by

Kϕ := H2(Dd)⊖ ϕH2(Dd).

Since multiplication by ϕ is a partial isometry on H2(Dd), the reproducing kernel of Kϕ

is given by

K(z, w) = Kw(z) := (1− ϕ(w)ϕ(z))Cw(z), for z, w ∈ Dd.

As in one variable, in the paper [10], Doubtsov constructed an embedding map Jα : Kϕ 7→1

L2(σα) by first defining it on reproducing kernels as2

(1) Jα[Kw](ζ) := (1− αϕ(w))Cw(ζ), for w ∈ Dd, ζ ∈ Td,

then showing that this map preserves inner products on reproducing kernels, and finally3

extending it to an isometric embedding of Kϕ into L2(σα) using density of the reproduc-4

ing kernels. However, unlike in one variable, this map is not automatically surjective.5

Theorem 3.2 of [10] states that the isometric embedding Jα constructed above is unitary6

if and only if the polydisk algebra A(Dd) is dense in L2(σα).7

Now, let ϕ : Dd → D be a rational inner function, with associated Clark measure σα for8

a fixed α ∈ T. As is asserted in [10], each σα is supported on the unimodular level set9

(2) Cα(ϕ) = clos

{
ζ ∈ Td : lim

r→1−
ϕ(rζ) = α

}
,

where “clos” denotes the closure of the set. When the function ϕ is clear from the context,10

we sometimes refer to this set as simply Cα. While the measure-support statement should11

be well known to specialists, we give a proof for the sake of completeness.12

Lemma 2.1. Let ϕ be an RIF on Dd and let α ∈ T. Then supp(σα) ⊂ Cα(ϕ).13

Proof. Let B ⊂ Td be an open ball such that limr→1− ϕ(rζ) ̸= α for all ζ ∈ B. We need14

to show that σα(B) = 0. Since the Poisson kernel is non-negative, we have that15 ∫
B

P (rζ, η)dσα(η) ≤
∫
Td

P (rζ, η)dσα(η) =
1− |ϕ(rζ)|2

|α− ϕ(rζ)|2

for all ζ ∈ B and every 0 ≤ r < 1. By [15, Corollary 14.6], the right hand side vanishes16

when r tends to 1, and so17

lim
r→1−

∫
B

P (rζ, η)dσα(η) = 0.

Now consider the set18

Dr(ζ) := {η ∈ Td : |rζj − ηj| ≤ 2(1− r), j = 1, . . . , d}.
For every η in this set, we have that19

|rζj − ηj|2 ≤ 4(1− r)2 =⇒ 1− r2

4(1− r)2
=

1 + r

4(1− r)
≤ 1− r2

|rζj − ηj|2
,

and so20 (
1 + r

4(1− r)

)d

≤ P (rζ, η).
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Clearly1 (
1 + r

4(1− r)

)d

σα(B ∩Dr(ζ)) ≤
∫
B∩Dr(ζ)

P (rζ, η)dσα(η) ≤
∫
B

P (rζ, η)dσα(η),

so2

(3) lim
r→1−

σα(B ∩Dr(ζ))

(1− r)d
= 0.

Note that since ζj, ηj ∈ T, the inequality3

|rζj − ηj| = |r − ηjζj| < 2(1− r),

can be written in polar coordinates (with eiθj = ηjζj) as4

2(1− r) > |r − eiθj | ⇐⇒ 4(1− 2r + r2) > 1 + r2 − 2r cos θj

⇐⇒ 3r2 − 6r + 3 = 3(1− r)2 > 2r − 2r cos(θj)

⇐⇒ cos(θj) > 1− 3(1− r)2

2r
,

and so5

Dr(ζ) =

{
ζeiθ ∈ Td : |θj| < cos−1

(
1− 3(1− r)2

2r

)
, j = 1, . . . , d

}
.

In particular, as a subset of Td, this is a product of d copies of the same interval, and so6

(for r close to 1) the Lebesgue measure of Dr(ζ) can be estimated independently of ζ by7

|Dr(ζ)| = 2d cos−1

(
1− 3(1− r)2

2r

)d

≥ c(d)

√
3(1− r)2

2r

d

≥ c′(d)(1− r)d.

Together with (3) this implies that8

lim
r→1−

σα(B ∩Dr(ζ))

|Dr(ζ)|
= 0

for every ζ ∈ B.9

Since Dr(ζ) is a cube in Td with volume tending to zero, this implies that the d-10

dimensional upper density of the restriction measure (σα)|B, defined by (σα)|B(A) :=11

σα(B ∩ A), is zero at every point in Td, see for example, the ideas around Proposition12

2.2.2 in [17]. This in turn implies that (σα)|B is equal to zero which in particular implies13

that σα(B) = 0. □14

Note that Lemma 2.1 implies that every Clark measure associated to an RIF is a15

singular measure with respect to the Lebesgue measure on Td. It is also worth noting16

that in the case where ϕ = p̃/p is a two-variable RIF, we actually have supp(σα) = Cα(ϕ).17

This will follow from our later results Theorem 3.3 and Theorem 3.8. Thus, it makes18

sense to conjecture that supp(σα) = Cα(ϕ) for general RIFs on the polydisk Dd as well.19

For the sake of completeness, we also state and prove the following converse, which is20

well known in the one-variable setting.21

Lemma 2.2. Let µ be a positive pluriharmonic measure on Td with mass 1. Then there22

is a holomorphic function ϕµ : Dd → D such that µ is the Aleksandrov-Clark measure23

corresponding to the holomorphic function ϕµ and the parameter value α = 1.24
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If µ is singular with respect to Lebesgue measure, then ϕµ is an inner function and µ1

is its Clark measure for α = 1.2

Proof. LetHµ(z) be the holomorphic function on Dd whose real part is the Poisson integral3

of µ and which satisfies that Hµ(0) = 1. Such a function exists since the real part of the4

Poisson integral will be 1 at the origin since µ is a probability measure, and we can choose5

a harmonic conjugate which vanishes at the origin.6

Now consider the function7

ϕµ(z) :=
Hµ(z)− 1

Hµ(z) + 1
.

We have that8

Hµ(z) =
1 + ϕµ(z)

1− ϕµ(z)
,

and so

1− |ϕµ(z)|2

|1− ϕµ(z)|2
= ℜ

(
1 + ϕµ(z)

1− ϕµ(z)

)
= ℜ(Hµ(z)) =

∫
Td

P (z, ζ)dµ(ζ).(4)

Since Hµ maps Dd to the right half plane, and since z 7→ (z − 1)/(z + 1) maps the right9

half plane to the unit disc, we see that ϕµ : Dd → D. Thus, (4) shows that µ is the10

Aleksandrov-Clark measure corresponding to the holomorphic function ϕµ(z) and α = 1.11

If µ is singular with respect to Lebesgue measure, Theorem 2.3.1 in [18] shows that12

lim
r→1−

∫
Td

P (rz, ζ)dµ(ζ) = lim
r→1−

1− |ϕµ(rz)|2

|1− ϕµ(rz)|2
= 0

for almost every z ∈ Td, which shows that |ϕµ(z)| = 1 almost everywhere on Td. □13

2.2. Background on rational inner functions. We shall need some detailed results14

concerning RIFs in two variables, but we begin by recalling some basic facts from the15

general theory. We say that p ∈ C[z1, . . . , zd] is a stable polynomial if p has no zeros in16

Dd. A polynomial in d variables has polydegree (n1, . . . , nd) ∈ Nd if p has degree nj when17

viewed as a polynomial in the variable zj. A result of Rudin and Stout [19, 18] states that18

any RIF in Dd can be written in the form19

ϕ(z) = eiazk11 · · · zkdd
p̃(z)

p(z)

where a ∈ R, k1, . . . , kd are natural numbers, p is a stable polynomial of polydegree20

(n1, . . . , nd), and p̃ is its reflection21

p̃(z) = zn1
1 · · · znd

d p

(
1

z̄1
, . . . ,

1

z̄d

)
.

We shall often assume that the RIFs we consider are of the form ϕ = p̃/p, where p is a22

stable polynomial that is atoral. The concept of atoral polynomials is discussed at length23

in [1, 5], but for the present work, we just note that atoral implies that p and p̃ have no24

common factors, and that the zero set of p, denoted Z(p), satisfies dim(Z(p)∩Td) ≤ d−2.25

Let us summarize some important definitions and properties of RIFs. First, we say26

that a RIF ϕ = q/p has polydegree (n1, . . . , nd) if p and q have no common factors and for27

each j, nj is the maximum of the degrees of p and q when they are viewed as polynomials28
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in the variables zj. When we consider ϕ = p̃/p, then the polydegree of ϕ will always agree1

with both the polydegree of its denominator p and the polydegree of its numerator p̃.2

If ϕ is a polydegree (n1, . . . , nd) RIF, then for any index j and any fixed collection of3

points {ζ1, . . . , ζj−1, ζj+1, . . . , ζd} ⊂ T, we can consider the one-variable function zj 7→4

ϕ(ζ1, . . . , zj, . . . , ζd). If zj 7→ p(ζ1, . . . , zj, . . . , ζd) is not identically zero, then it vanishes5

at at most nj points on D. Because ϕ is bounded on Dd, these have to be common zeros6

of the numerator and denominator of zj 7→ ϕ(ζ1, . . . , zj, . . . , ζd). Thus, they cancel out7

and we are left with a rational function defined on D with at most a finite number of8

singularities on T. Because ϕ is a RIF, this one-variable function must attain unimodular9

boundary values at almost every point on T. Hence, it is a finite Blaschke product of10

degree at most nj. As shown in the lemma below, generically the degree is exactly nj,11

but for certain values of ζ, the degree can be strictly smaller than nj.12

Furthermore, if we restrict to a RIF ϕ on D2, then [15, Lemma 10.1] states that ϕ does13

not have any singularities on T × D or D × T. Thus, in that case for any ζ1 ∈ T, the14

mapping z2 7→ p(ζ1, z2) can never vanish identically, so this slicing operation always yields15

a finite Blaschke product.16

To prove the lemma below, we need some short-hand notation. Given a point ζ =17

(ζ1, . . . , ζd−1, ζd) ∈ Td, let us write ζ ′ = (ζ1, . . . , ζd−1) ∈ Td−1; we also use analogous18

notation for points z ∈ Cd.19

Lemma 2.3. Let ϕ = p̃
p
be an RIF on Dd with polydegree (n1, . . . , nd). For a fixed ζ ′ ∈20

Td−1, set ϕζ′(zd) = ϕ(ζ1, . . . , ζd−1, zd). If ϕ does not have a singularity with coordinates of21

the form (ζ ′, τ) ∈ Td for some τ ∈ T, then ϕζ′ is a finite Blaschke product of degree nd.22

Proof. First, observe that if ϕ has no singularities of the form (ζ ′, ω) ∈ Td, then the23

function pζ′(zd) := p(ζ ′, zd) is not identically zero. Then the assertion that ϕζ′ is a finite24

Blaschke product of degree at most nd is immediate from the discussion proceeding the25

statement of Lemma 2.3.26

It remains to show that ϕζ′ has degree exactly nd. We first show that its initial numer-27

ator p̃(ζ ′, zd) has degree nd and then argue that there can be no degree drop by canceling28

terms from the numerator and denominator. To this end, let us write29

p(z) = p1(z
′) + zdp2(z

′, zd) = p1(z
′) +Q(z)

for polynomials p1, p2, and Q. Then30

p̃(z) = znd
d p̃1(z

′) + Q̃(z),

where the reflection of p1 is only with respect to the variables z1, . . . , zd−1. From this, one31

can see that degzd(Q̃) < nd, using the definition of the “∼” operation combined with the32

fact that each term in Q has degree at least 1 in the variable zd.33

Next, we note that if p̃1(ζ
′) = 0 for some ζ ′ ∈ Td−1 then we would also have p1(ζ

′) = 0.34

This in turn would imply that pζ′(0) = 0. An application of Hurwitz’s theorem as in [8,35

p. 1123] implies that pζ′ is either nonvanshing on D or identically zero. We have already36

established that pζ′ is not identically zero and so, pζ′(0) = 0 would give a contradiction.37

Thus, p̃1(ζ
′) ̸= 0.38

Hence, for ζ ′ ∈ Td−1, we have deg p̃(ζ ′, zd) = nd. This means that any degree drop39

in ϕζ′ must arise from cancelling a common zero of p̃(ζ ′, zd) and p(ζ
′, zd). Because pζ′ is40

nonvanishing on D, this zero must necessarily occur on T, which in turn would imply that41
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ϕ has a singularity at some (ζ ′, τ) ∈ Td, contrary to our hypothesis. Thus, it must be the1

case that the degree of ϕζ′ is exactly nd. □2

One useful way of studying RIFs is via their level sets Cα(ϕ) as defined in (2). For3

example, Lemma 2.1 shows their relevance to the analysis of the Clark measures associated4

with an RIF. In [8], the authors established the following useful alternative description of5

the unimodular level sets.6

Theorem 2.4. Let ϕ = p̃
p
be an RIF on Dd, fix α ∈ T, and set7

Lα(ϕ) = {ζ ∈ Td : p̃(ζ)− αp(ζ) = 0}.
Then Cα(ϕ) = Lα(ϕ).8

Proof. See [8, Theorem 2.6]. □9

Much of the remainder of this paper will be concerned with Clark measures for rational10

inner functions on the bidisk D2. One reason why we focus on this case is that level sets of11

two-variable RIFs have much better properties than those of their d-variable counterparts.12

Namely, when d ≥ 3, the level sets of d-dimensional RIFs can exhibit discontinuities. See13

[8] for a fuller discussion of the sometimes pathological nature of level sets for d-variable14

RIFs in dimension d ≥ 3. By contrast, when d = 2 we have the lemma given below, which15

is implicit in [6, 7]. As mentioned earlier, here and throughout the paper, we assume that16

a bidegree (m,n) RIF has both m > 0 and n > 0.17

Lemma 2.5. Let ϕ be a bidegree (m,n) RIF. For each α ∈ T and any choice of τ0 ∈ T,18

there exist functions gα1 , . . . , g
α
n defined on T and analytic on T \ {τ0} such that Cα(ϕ) can19

be written as a union of graphs of the form20

{(ζ, gαj (ζ)) : ζ ∈ T}, j = 1, . . . , n,

potentially, together with a finite number of vertical lines ζ1 = τ1, . . . , ζ1 = τk, where each21

τj ∈ T.22

Proof. We first fix τ ∈ T and obtain a parameterization of Cα ∩ (Iτ × T), where Iτ is a23

small interval in T containing τ . We have to consider both the situation where τ is not the24

z1-coordinate of a singularity of ϕ (Step 1) and the situation where τ is the z1-coordinate25

of a singularity of ϕ (Step 2). In the latter case, we reference previous results to obtain26

the parameterization. Finally, we glue these local parameterizations together to obtain27

global ones (Step 3).28

Step 1. First, let us assume that τ is not the z1-coordinate of a singularity of ϕ on29

T2. Then, Lemma 2.3 implies that ϕτ (z2) := ϕ(τ, z2) is a nonconstant finite Blaschke30

product with deg ϕτ = n. By properties of nonconstant finite Blaschke products, there31

are precisely n distinct points η1, . . . , ηn ∈ T such that ϕτ (ηj) = α for j = 1, . . . , n. Since32

ϕτ is a non-constant Blaschke product, ϕ′
τ (ζ) ̸= 0 for all ζ ∈ T, and then33

∂ϕ

∂z2
(τ, ηj) = ϕ′

τ (ηj) ̸= 0, j = 1, . . . , n.

Since the two-variable function ϕ is analytic in a neighborhood of each (τ, ηj), the implicit34

function theorem applies and yields locally analytic functions gα1,τ , . . . , g
α
n,τ and an open35

interval Iτ containing τ such that Cα is parametrized by36

(5) ζ2 = gα1,τ (ζ1), . . . , ζ2 = gαn,τ (ζ1)
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on Iτ × U , where U is initially a union of open arcs containing the points η1, . . . , ηn. By1

shrinking the interval Iτ further, we can ensure that (5) parametrizes all pieces of Cα that2

are contained in the strip Iτ × T, since for each ζ1 close to τ , we can ensure that the3

equation ϕ(ζ1, ζ2) = α has exactly n distinct solutions.4

Step 2. Suppose now that τ is the z1-coordinate of a singularity of ϕ. Then either5

(a) the line {ζ ∈ T2 : ζ1 = τ} is contained in Cα, or (b) the intersection of the line6

{ζ ∈ T2 : ζ1 = τ} with Cα consists of at most n points coming from the singularities of ϕ7

that have z1-coordinate τ as well as additional points η ∈ T with ϕτ (η) = α.8

Let us address case (a) first. Basically, we need to parameterize any pieces of Cα that9

intersect the line {ζ ∈ T2 : ζ1 = τ}. To that end, assume that (τ, γ) ∈ T2 is the limit of a10

sequence of points (τm, γm) ⊂ Cα with τm ̸= τ . We claim that (τ, γ) must be a singularity11

of ϕ, which will allow us to apply known results. To that end, for each m, define the12

one-variable function ϕm(z1) = ϕ(z1, γmτ̄mz1). We have ϕm(τ) = α since the vertical13

line {ζ1 = τ} was assumed to belong to Cα, and moreover ϕm(τm) = ϕ(τm, γm) = α by14

assumption. Since ϕm is a nonconstant finite Blaschke product, for any given λ ∈ T\{α},15

we can find a sequence (ρm) ⊆ T with each ρm on the smaller of the two arcs of T16

between τ and τm with the property that ϕm(ρm) = λ. Since τm → τ , we must also have17

ρm → τ . Then ϕ(ρm, γmτ̄mρm) = λ for each m. Since (ρm, γmτ̄mρm) → (τ, γ) as m → ∞,18

this implies that ϕ is discontinuous at (τ, γ). Hence, ϕ has a singularity at (τ, γ). This19

means that we can apply [7, Theorem 2.9] at (τ, γ), which states that Cα can be locally20

parameterized by analytic functions near each singularity of ϕ.21

If we are in case (b), we can again parameterize Cα at the singularities using [7, Theorem22

2.9], and apply the implicit function theorem at the other points since ϕτ is again non-23

constant.24

Thus in both case (a) and case (b) we get a collection of analytic functions which,25

possibly together with a vertical line {ζ1 = τ}, parameterize Cα on some strip Iτ × T,26

provided Iτ is chosen to be a sufficiently small interval containing τ . Furthermore, for27

all but finitely many τ , there are precisely n distinct points η1, . . . , ηn ∈ T such that28

ϕ(τ, ηj) = α. This means that in each case, we must get exactly n functions.29

Step 3. We can now cover T2 with a union of strips of the form Iτ × T, where each30

Iτ is from Step 1 or Step 2. Since there are finitely many singularities, and since T2 is31

compact, we can refine this to a finite number of strips in such a way that each singularity32

of ϕ is inside one of these strips. On each strip we have an analytic parameterization, and33

on their overlaps the parameterizations must agree. The one difficulty is that as we go all34

the way around T, one branch might end at the point where another branch began and35

so, it might not be the case that gαj (e
iθ) = gαj (e

iθ+2πi) for each j. Instead we might get36

gαj (e
iθ) = gαk (e

iθ+2πi) with j ̸= k. Thus, we need to allow one τ0 ∈ T where the branches37

can jump. With that technicality, we can obtain functions gα1 , . . . , g
α
n that are globally38

defined on T, parameterize the components of Cα(ϕ) that are not lines, and are analytic39

except at a single point. □40

Remark 2.6. If ϕ is a two-variable RIF which has no singularities, then Step 2 becomes41

superfluous, and the conclusion follows from Steps 1 and 3. But these steps, unlike Step42

2, do not require us to restrict to dimension d = 2.43

Hence, if ϕ = p̃
p
is a d-variable RIF, d ≥ 2, with degzd p = nd and with no singularities44

on Dd
, then there exist analytic functions gα1 , . . . g

α
nd

such that Cα can be parameterized45
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as1

ζd = gα1 (ζ1, . . . , ζd−1), . . . , ζd = gαnd
(ζ1, . . . , ζd−1).

We will use this parameterization in our later investigations of the d-variable situation.2

Lastly, our fine analysis of Clark measures for two-variable RIF will require the notion of3

contact order of a RIF at a singularity, a concept introduced in [6], and further developed4

in [7], in connection with the study of integrability of the partial derivatives of a RIF.5

Let α1, α2 ∈ T with α1 ̸= α2 and let {gα1
j }j and {gα2

k }k be the functions from Lemma 2.56

associated with α1 and α2 respectively. Then [7, Theorem 3.1] implies the following.7

Lemma 2.7. Excluding at most one α0 ∈ T, the contact order of a RIF at a singularity8

(τ, γ) ∈ T2 is the maximal order of vanishing of the pairwise differences gα1
j (ζ) − gα2

k (ζ)9

at ζ = τ for any pair α1, α2 ∈ T \ {α0}, where we restrict attention to the gαi
j that satisfy10

gαi
j (τ) = γ.11

We note that it follows from the work in [7] that the contact order of a RIF at a12

singularity is always a positive even integer. Also, while the computation in Lemma 2.713

might make it look like contact order somehow depends on the choice of the constants14

α1, α2 ∈ T, it is actually independent of that choice.15

3. Structure of Clark measures for RIFs16

In this section, we determine the structure of the Clark measures σα for general RIFs17

on D2. There are two cases to consider: the case where the parameter α is generic and18

the case where α is exceptional. These two types of parameters are defined as follows.19

Definition 3.1. A point α ∈ T is said to be an exceptional value if ϕ(τ, z2) ≡ α or20

if ϕ(z1, τ) ≡ α for some τ ∈ T. This is equivalent to saying that one of the two lines21

{ζ ∈ T2 : ζ1 = τ} or {ζ ∈ T2 : ζ2 = τ} is in Cα(ϕ) for some τ ∈ T. If α ∈ T is not an22

exceptional value, then we say that α is a generic value.23

Remark 3.2. For bidegree (n, 1) RIFs, it was shown in [4, Section 3] that α ∈ T is24

exceptional if and only if α is the non-tangential value of ϕ at some singularity of ϕ.25

However, this characterization does not generalize to higher-degree RIFs.26

Still, there are RIFs with bidegree at least (2, 2) with exceptional values. In particular,27

consider28

ϕ(z) =
2z21z

2
2 − z21 − z22

2− z21 − z22
.

If we set α = −1, then Cα(ϕ) contains the four lines {ζ ∈ T2 : ζ1 = ±1} and {ζ ∈ T2 : ζ2 =29

±1} and so α = −1 is an exceptional value for ϕ.30

After looking at the two-variable generic case, we will also show how one can translate31

some of those arguments to the d-variable setting.32

3.1. Clark measures in the generic two-variable case. Our first goal is to prove the33

follow description of the Clark measures σα for generic parameter values α ∈ T.34

Theorem 3.3. Let ϕ = p̃
p
be a bidegree (m,n) RIF, and let α ∈ T be generic for ϕ. Then,35

for f ∈ C(T2), the associated Clark measure σα satisfies36 ∫
T2

f(ζ)dσα(ζ) =
n∑

j=1

∫
T
f(ζ, gαj (ζ))

dm(ζ)

| ∂ϕ
∂z2

(ζ, gαj (ζ))|
,
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where gα1 , . . . , g
α
n are the parametrizing functions for Cα(ϕ) from Lemma 2.5.1

Proof. Let α ∈ T be generic for ϕ. Then by Lemma 2.5, there exist functions gα1 , . . . , g
α
n2

analytic on T (minus some arbitrary base point τ0) such that3

Cα(ϕ) =
n⋃

j=1

{(ζ, gαj (ζ)) : ζ ∈ T}.

We first establish the desired formula in the special case where f is a product of one-4

variable Poisson kernels. Fix z2 ∈ D and consider the one-variable function5

(6) ψz2(z1) =
1− |ϕ(z1, z2)|2

|α− ϕ(z1, z2)|2
=

∫
T2

Pz1(ζ1)Pz2(ζ2)dσα(ζ), z1 ∈ D.

Because ϕ is a two-variable RIF, it has no singularities on T × D and so, ϕ(·, z2) is6

continuous on D. Moreover, by the discussion preceding Lemma 2.3, for each ζ ∈ T, the7

function Φζ := ϕ(ζ, ·) is a finite Blaschke product. If for some ζ we had8

Φζ(z2) = ϕ(ζ, z2) = α,

then Φζ would be constant on D and that would imply that α is an exceptional value, a9

contradiction. Thus, ϕ(·, z2) cannot attain the value α in D. Then, the function ψz2 is10

continuous on D and thus, ψz2 is the Poisson integral of its boundary values. In other11

words, for each z1 ∈ D,12

(7) ψz2(z1) =

∫
T

1− |ϕ(ζ, z2)|2

|α− ϕ(ζ, z2)|2
Pz1(ζ)dm(ζ).

For all but finitely many ζ, Lemma 2.3 implies that the finite Blaschke product Φζ has13

degree n. By standard one-variable results, see [9, 12], the Clark measure for Φζ is given14

by15
n∑

j=1

1

|Φ′
ζ(ηj)|

δηj ,

where {η1, . . . , ηn} ⊂ T are the distinct points on T with Φζ(ηj) = α. We note that16

Φ′
ζ(z2) =

∂ϕ
∂z2

(ζ, z2). Then the parametrization of Cα(ϕ) given above implies that17

(8)
1− |ϕ(ζ, z2)|2

|α− ϕ(ζ, z2)|2
=

n∑
j=1

1

| ∂ϕ
∂z2

(ζ, gαj (ζ))|
Pz2(g

α
j (ζ)).

Combining (6), (7), and (8), we obtain the desired formula for f = Pz1Pz2 .18

The conclusion of the theorem now follows from the fact that linear combinations of19

Poisson kernels are dense in C(T2). □20

Remark 3.4. One can interchange the roles of the variables z1 and z2 to obtain an anal-21

ogous version of Theorem 3.3 where Cα is parametrized using the variable ζ2. See [5] for22

an in-depth discussion concerning variable switching.23
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3.2. Clark measures for RIFs in more than two variables. Let us take a brief1

interlude to examine how the arguments in the previous section generalize to RIFs in2

more than two variables. It turns out that singularities present significant complications3

(discussed more below) so instead, let us first assume that we have a d-variable RIF with4

no singularities on the closed polydisk. Then we have the following result.5

Theorem 3.5. Let ϕ = p̃
p
be a polydegree (n1, . . . , nd) RIF with no singularities on Dd

6

and let α ∈ T. Then, for f ∈ C(Td), the associated Clark measure σα satisfies7 ∫
Td

f(ζ)dσα(ζ) =

nd∑
j=1

∫
Td−1

f(ζ ′, gαj (ζ
′))

dm(ζ ′)

| ∂ϕ
∂zd

(ζ ′, gαj (ζ
′))|

,

where gα1 , . . . , g
α
nd

are the analytic functions that parametrize Cα(ϕ) from Remark 2.6.8

Proof. The proof is basically the same as that of Theorem 3.3. Fix zd ∈ D and define9

ψzd(z
′) =

1− |ϕ(z′, zd)|2

|α− ϕ(z′, zd)|2
, z′ ∈ Dd−1.

Then for ζ ′ ∈ Td−1, Lemma 2.3 implies that Φζ′ := ϕ(ζ ′, ·) is a nonconstant finite Blachke10

product of degree nd and using that, we can conclude that ϕ(·, zd) does not attain the11

value α in Dd−1
. Then ψzd is continuous on the closed polydisk and so we can write it as12

the Poisson integral of its boundary values13

(9)
1− |ϕ(z′, zd)|2

|α− ϕ(z′, zd)|2
= ψzd(z

′) =

∫
Td−1

1− |ϕ(ζ ′, zd)|2

|α− ϕ(ζ ′, zd)|2
Pz′(ζ

′)dm(ζ ′)

for z′ ∈ Dd−1. Furthermore, Φζ′ has associated Clark measure14

nd∑
j=1

1

|Φ′
ζ′(ηj)|

δηj =

nd∑
j=1

1

| ∂ϕ
∂zd

(ζ ′, ηj)|
δηj ,

where {η1, . . . , ηnd
} ⊂ T are the distinct points satisfying Φζ′(ηj) = α. As in the proof15

of Theorem 3.3, we can then rewrite (9) using the one-variable Clark measure and the16

parameterizing functions from Remark 2.6 to obtain the desired equality when f is a17

product of one-variable Poisson kernels. The conclusion of the theorem follows from the18

fact that linear combinations of Poisson kernels are dense in C(Td). □19

However, if ϕ is a polydegree (n1, . . . , nd) RIF with singularities on the boundary of Dd,20

then these arguments break down in multiple places. For example, even if α is generic21

in the natural sense, the existence of singularities means that we still cannot necessarily22

guarantee that φzd(·) will be continuous on Dd−1
. This means we cannot always perform23

the trick of rewriting that key function in terms of the Poisson integral of its boundary24

values.25

Similarly, in two variables, we were able to invoke Lemma 2.5 to deduce that the points26

ηj could be described by analytic functions, regardless of whether ϕ possessed singularities27

or not. In three or more variables, the analogous statement is false in general, see [8];28

in that paper, the authors show that when d = 3 and ϕ has singularities, the functions29

parameterizing the components of Cα(ϕ) need not be continuous. So, additional work30

appears to be needed to obtain a version of Theorem 3.3 in the general d-variable setting.31
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3.3. Clark measures in the exceptional two-variable case. We now return to two-1

variable RIFs and examine Clark measures associated with the exceptional parameter2

values. In this setting, additional care is required to handle cancellations present in ϕ on3

the vertical line part of Cα and control the z1-partial derivative of ϕ on that vertical line.4

That is the context of the following lemma.5

Lemma 3.6. Let ϕ = p̃
p
be a bidegree (m,n) RIF and suppose that the line {ζ ∈ T2 : ζ1 =6

τ} is in Cα(ϕ). Then ∂ϕ
∂z1

(τ, z2) ≡ c1 for some constant c1 ̸= 0.7

Proof. In this proof, we will carefully analyze how the presence of {ζ ∈ T2 : ζ1 = τ} in Cα8

affects the structure of the three polynomials p, p̃ and p̃ − αp. These polynomials show9

up when we compute ∂ϕ
∂z1

(τ, z2), and we will use our findings to deduce that this partial10

derivative must be a nonzero constant.11

First, the assumption that {ζ ∈ T2 : ζ1 = τ} is in Cα(ϕ) implies that12

(10) αp(τ, ζ2) = p̃(τ, ζ2)

for all ζ2 ∈ T. Recall that p has no zeros in D2 ∪ (T×D)∪ (D×T), see [15, Lemma 10.1].13

Then (10) coupled with the maximum modulus principle implies that ϕτ (z2) := ϕ(τ, z2) ≡14

α on D as well. Thus,15

αp(τ, z2) = p̃(τ, z2),

for all z2 and arguments very similar to those in Lemma 2.3 imply that the degrees of16

those polynomials in z2 must be n. Then by the above facts about the locations of the17

zeros of p, there must exist λ1, . . . , λJ ∈ T, integers m1, . . . ,mJ with m1 + · · ·+mJ = n,18

and polynomials q1, q2 of bidegree at most (m− 1, n) such that19

(11) p(z) = (z1 − τ)q1(z) +
J∏

j=1

(z2 − λj)
mj

and20

p̃(z) = (z1 − τ)q2(z) + α
J∏

j=1

(z2 − λj)
mj .

Before analyzing ∂ϕ
∂z1

(τ, z2), we need to show that the order of vanishing of p at (τ, λj) is21

equal to mj. To see this, write p(x1 + τ, x2 + λj) using its homogeneous expansion22

p(x1 + τ, x2 + λj) = PM(x1, x2) +
∑

k≥M+1

Pk(x1, x2),

where each Pk is homogeneous of degree k, and M is the order of vanishing of p at (τ, λj).23

Now, as is explained in [5, Section 2], we must have24

PM(x1, x2) = c

M∏
j=1

(x2 − ajx1)

for some c ̸= 0 and a1, . . . , aM > 0. Then using (11), we have25

p(τ +x1, λj +x2) = c

M∏
j=1

(x2− ajx1)+
∑

k≥M+1

Pk(x1, x2) = x
mj

2 r(x2)+x1q1(τ +x1, λj +x2),
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for some polynomial r with r(0) ̸= 0. Then, plugging in x1 = 0, we get1

cxM2 +
∑

k≥M+1

Pk(0, x2) = x
mj

2 r(0).

For each k ≥ M + 1, either Pk(0, x2) = 0 or it vanishes to order strictly higher than M .2

Thus, the above equation gives M = mj as claimed. Expanding p̃ in a similar fashion3

gives4

p̃(τ + x1, λj + x2) =
∑
k≥N

Qk(x1, x2),

where N is the order of vanishing of p̃ at (τ, λj). Using Proposition 14.5 and related5

results in [15], we can conclude that N =M = mj and Qmj
= αPmj

.6

This means that p̃−αp vanishes to order at least mj +1 at (τ, λj). Using the previous7

equations for p and p̃, we have8

p̃(z)− αp(z) = (z1 − τ)R(z),

where R vanishes to order at least mj at each (τ, λj) and degR ≤ (m− 1, n). This latter9

condition means degz1 R ≤ m− 1 and degz2 R ≤ n, where these are the degrees of R in z110

and z2 separately. Thus, the one-variable polynomial R(τ, z2) vanishes to order at least11

mj at each λj. Since degR(τ, z2) ≤ n, this means either R(τ, z2) is identically zero or12 ∏J
j=1(z2 − λj)

mj divides R(τ, z2). The second case would actually imply that13

(12) R(τ, z2) = c1

J∏
j=1

(z2 − λj)
mj ,

for some c1 ̸= 0.14

Now we have enough information to study ∂ϕ
∂z1

(τ, z2). Specifically, by canceling terms,15

we have16

∂ϕ

∂z1
(τ, z2) =

∂p̃
∂z1
p− p̃ ∂p

∂z1

p2
(τ, z2) =

∂
∂z1

(p̃− αp)

p
(τ, z2).

Hence, implementing our previous observations gives17

∂ϕ

∂z1
(τ, z2) =

R(τ, z2)∏J
j=1(z2 − λj)mj

.

Since, for almost every ζ ∈ T, ϕ(·, ζ) is a finite Blaschke product, its derivative cannot18

vanish on T. Hence R(τ, z2) is not identically zero. Thus, it must be the case that R(τ, z2)19

satisfies (12) and so, ∂ϕ
∂z1

(τ, z2) ≡ c1 ̸= 0, as claimed. □20

We will use a limiting argument to study Clark measures associated to exceptional21

values using known results for generic parameter values. A key ingredient is the following22

lemma.23

Lemma 3.7. Let ϕ = p̃
p
be a bidegree (m,n) RIF and let τ1, . . . , τK denote the z1-24

coordinates of the singularities of ϕ on T2. Let ϵ̂ < 1
2
min{|τk − τj| : j ̸= k} and define25

(13) Sϵ̂ :=

{
ζ ∈ T : min

1≤k≤K
|ζ − τk| < ϵ̂

}
.
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Then if f ∈ C(T2), we have1

(14) F (ζ, α) :=
n∑

j=1

f(ζ, gαj (ζ))
1

| ∂ϕ
∂z2

(ζ, gαj (ζ))|

is uniformly continuous on (T \Sϵ̂)×T, where gα1 , . . . , gαn are the parametrizing functions2

for Cα(ϕ) from Lemma 2.5.3

Proof. First, note that by standard properties of RIFs, ∂ϕ
∂z2

is continuous and nonzero4

on (T \ Sϵ̂) × T. So it suffices to show that the set {gα1 (ζ), . . . , gαn(ζ)} is continuous on5

(T \ Sϵ̂) × T up to a reordering of the functions. Specifically, we need to show that for6

each ϵ0 > 0, there is a δ > 0 such that if |ζ − z| + |α − γ| < δ for ζ, z ∈ (T \ Sϵ̂) and7

α, γ ∈ T, then after potentially reordering, we have8

(15)
n∑

j=1

∣∣gαj (ζ)− gγj (z)
∣∣ < ϵ0.

To that end, we will use the implicit function theorem. Define the function Φ(ζ, w, α) =9

ϕ(ζ, w)−α. By properties of finite Blaschke products, for each fixed (ζ0, α0) ∈ (T\Sϵ̂)×T,10

there exist distinct w1, . . . , wn ∈ T such that Φ(ζ0, wj, α0) = 0. Then for j = 1, . . . , n,11

the implicit function theorem implies that there are open arcs in T, which we denote12

U j
1 := U j

1 (ζ0, α0), U
j
2 := U j

2 (ζ0, α0), U
j
3 := U j

3 (ζ0, α0) centered at ζ0, wj, α0 respectively and13

a continuous function G
(α0,ζ0)
j such that14 {

(ζ, w, α) ∈ U j
1 × U j

2 × U j
3 : Φ(ζ, w, α) = 0

}
=
{
(ζ,G

(α0,ζ0)
j (ζ, α), α) : (ζ, α) ∈ U j

1 × U j
3

}
.

By shrinking these arcs if necessary, we can assume that the U j
1 , U

j
3 do not depend on j,15

that the U1
2 , . . . , U

n
2 are pairwise-disjoint, and that the G functions are uniformly contin-16

uous on U1 × U3. Then the family of sets17

{U1(ζ0, α0)× U3(ζ0, α0) : (ζ0, α0) ∈ (T \ Sϵ̂)× T}
forms an open cover of (T \ Sϵ̂)×T. Since (T \ Sϵ̂)×T is compact, we can obtain a finite18

subcover19 {
U1(ζℓ, αℓ)× U3(ζℓ, αℓ)

}L
ℓ=1
.

Now choose δ > 0 such that if |ζ − z| + |α − γ| < δ, then the points (ζ, α), (z, γ) must20

be in at least one common set in this finite subcover. Shrinking δ if necessarily, we can21

further assume that for all of the G
(αℓ,ζℓ)
j , if (ζ, α), (z, γ) are in U1(ζℓ, αℓ)×U3(ζℓ, αℓ), then22

(16) |z − ζ|+ |α− γ| < δ implies that |G(αℓ,ζℓ)
j (ζ, α)−G

(αℓ,ζℓ)
j (z, γ)| < ϵ0

n
.

Furthermore, the disjointness of the U j
2 (αℓ, ζℓ) implies that (after reordering with respect23

to the j index) we must have24

gαj (ζ) = G
(αℓ,ζℓ)
j (ζ, α) and gγj (z) = G

(αℓ,ζℓ)
j (z, γ),

for j = 1, . . . , n. Then the desired inequality (15) follows immediately from (16). □25

Now we can prove the general formula for Clark measures associated to exceptional26

values of two-variable RIFs.27
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Theorem 3.8. Let ϕ = p̃
p
be a bidegree (m,n) RIF, and let α ∈ T be exceptional for ϕ.1

Then for f ∈ C(T2), the associated Clark measure σα satisfies2 ∫
T2

f(ζ)dσα(ζ) =
n∑

j=1

∫
T
f(ζ, gαj (ζ))

dm(ζ)

| ∂ϕ
∂z2

(ζ, gαj (ζ))|
+

ℓ∑
k=1

cαk

∫
T
f(τk, ζ)dm(ζ),

where gα1 , . . . , g
α
n are the parametrizing functions from Lemma 2.5, ζ1 = τ1, . . . , ζ1 = τℓ are3

the vertical lines in Cα(ϕ) from Lemma 2.5, and the cαk = | ∂ϕ
∂z1

(τk, z2)|−1 > 0 are constants.4

Proof. This proof uses many of the same arguments as the proof of Proposition 3.9 in [4],5

though it needs the additional tools of Lemma 3.6 and Lemma 3.7. For the ease of the6

reader, we still include the details below.7

First, write Cα(ϕ) as Eα∪(∪ℓ
k=1Lk) where Eα is the set parametrized by the gαj and each

Lk denotes the vertical line {ζ1 = τk} in T2. As Clark measures do not have point-masses
[4, Theorem 2.1], σα(Eα ∩ Lk) = 0 for each k. Thus, it suffices for us to show∫

T2

f(ζ)χEα(ζ)dσα(ζ) =
n∑

j=1

∫
T
f(ζ, gαj (ζ))

dm(ζ)

| ∂ϕ
∂z2

(ζ, gαj (ζ))|
(17) ∫

T2

f(ζ)χLk
(ζ)dσα(ζ) = cαk

∫
T
f(τk, ζ)dm(ζ)(18)

for all f ∈ C(T2) and k = 1, . . . , ℓ, where we use χE to denote the characteristic function8

of a set E.9

10

Part 1. Let us first establish (17). Let f ∈ C(T2). Fix ϵ > 0 sufficiently small and11

define Sϵ and Sϵ/2 as in (13) for ϵ̂ = ϵ and ϵ̂ = ϵ
2
respectively. It is worth noting that the12

τ1, . . . , τℓ in the current proof (the constant values for the lines Lk) form a subset of the13

τ1, . . . , τK from (13) (the z1-coordinates of the singularities of ϕ on T2). Thus, it makes14

sense to assume that the line-values appear at the beginning of the singularity-values list15

and then use τk to denote elements from either list.16

Now, let (αi) ⊆ T be a sequence converging to α with each αi generic. By Corollary17

2.2 in [10], we know that the sequence (σαi
) converges weak-⋆ to σα. To use that, let Ψϵ18

be a function in C(T) satisfying19

Ψϵ ≡ 1 on T \ Sϵ, Ψϵ ≡ 0 on Sϵ/2, 0 ≤ Ψϵ ≤ 1 on Sϵ \ Sϵ/2.

By these assumptions and by Theorem 3.3, we have∫
T2

f(ζ)Ψϵ(ζ1)dσα(ζ) = lim
i→∞

∫
T2

f(ζ)Ψϵ(ζ1)dσαi
(ζ)

= lim
i→∞

n∑
j=1

∫
T
f(ζ, gαi

j (ζ))Ψϵ(ζ)
dm(ζ)

| ∂ϕ
∂z2

(ζ, gαi
j (ζ))|

=
n∑

j=1

∫
T
f(ζ, gαj (ζ))Ψϵ(ζ)

dm(ζ)

| ∂ϕ
∂z2

(ζ, gαj (ζ))|
,(19)

where the last equality follows from Lemma 3.7, which implies that F (ζ, α) as defined in20

(14) is uniformly continuous on (T\Sϵ/2)×T. Thus, F (ζ, α)Ψϵ(ζ) is uniformly continuous21
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on T2. Since Ψϵ(ζ1) ≡ 0 on each line Lk, we can conclude that1 ∣∣∣∣∫
T2

f(ζ)χEα(ζ)dσα(ζ)−
∫
T2

f(ζ)Ψϵ(ζ1)dσα(ζ)

∣∣∣∣ ≤ ∫
T2

|f(ζ)|(1−Ψϵ(ζ1))χEα(ζ)dσα(ζ)

≤ ∥f∥L∞(T2)σα((Sϵ × T) ∩ Eα).

As ϵ↘ 0, the set (Sϵ × T) ∩ Eα shrinks to a finite set of points and so,2

lim
ϵ↘0

σα((Sϵ × T) ∩ Eα) = 0.

From this, we can conclude3 ∫
T2

f(ζ)χEα(ζ)dσα(ζ) = lim
ϵ↘0

∫
T2

f(ζ)Ψϵ(ζ1)dσα(ζ).

Meanwhile, by breaking f into its real and imaginary parts and then their positive and4

negative parts, we can use the monotone convergence theorem to conclude that5

lim
ϵ↘0

n∑
j=1

∫
T
f(ζ, gαj (ζ))Ψϵ(ζ)

dm(ζ)

| ∂ϕ
∂z2

(ζ, gαj (ζ))|
=

n∑
j=1

∫
T
f(ζ, gαj (ζ))

dm(ζ)

| ∂ϕ
∂z2

(ζ, gαj (ζ))|
.

Combining these last two equalities with (19) yields (17).6

7

Part 2. To establish (18), we follow the proof from [4] and show that (18) holds for8

all Poisson kernels Pz, where z ∈ D2. Then the result follows immediately, since linear9

combinations of these are dense in C(T2).10

First, fix r ∈ (0, 1). The definition of σα implies that11

(20)

∫
T2

P(rτk,z2)(ζ)dσα(ζ) = ℜ
(
α + ϕ(rτk, z2)

α− ϕ(rτk, z2)

)
.

For the remainder of the proof, we basically just multiply both sides of (20) by (1 − r)12

and take limits. First, for ζ ∈ T2, one can check that13

lim
r→1−

(1− r)P(rτk,z2)(ζ) =

{
0 if ζ1 ̸= τk,

2Pz2(ζ2) if ζ1 = τk.

Then the dominated convergence theorem implies that14

lim
r→1−

∫
T2

(1− r)P(rτk,z2)(ζ)dσα(ζ) =

∫
T2

2Pz2(ζ2)χLk
(ζ)dσα(ζ).

Since Lk ⊆ Cα, the maximum modulus principle implies that ϕ(τk, z2) = α for all z2 ∈ D.15

Furthermore, since ϕ is analytic at each (τk, z2) for z2 ∈ D, we have16

lim
z1→τk

ϕ(z1, z2) = α and lim
z1→τk

ϕ(z1, z2)− α

z1 − τk
= ∂ϕ

∂z1
(τk, z2) := dαk ̸= 0,

by Lemma 3.6. Then Carathéodory’s theorem (for instance, consult (VI-3) in [20]) gives17

lim
r→1−

1− |ϕ(rτk, z2)|
1− r

= dαk τkᾱ = |dαk |



18 ANDERSON, BERGQVIST, BICKEL, CIMA, AND SOLA

and so1

lim
r→1−

ℜ
(
(1− r)(α + ϕ(rτk, z2))

α− ϕ(rτk, z2)

)
= lim

r→1−
(1− r)

1− |ϕ(rτk, z2)|2

|α− ϕ(rτk, z2)|2

= lim
r→1−

2

∣∣∣∣ τk − rτk
α− ϕ(rτk, z2)

∣∣∣∣2 1− |ϕ(rτk, z2)|
1− r

=
2

|dαk |
.

To finish the proof, set2

(21) cαk =
1

|dαk |
=

1

| ∂ϕ
∂z1

(τk, z2)|
> 0.

Then (20) paired with our prior computations imply that3 ∫
T2

Pz2(ζ2)χLk
(ζ)dσα(ζ) = cαk = cαk

∫
T
Pz2(ζ)dm(ζ).

If we multiply both sides by Pz1(τk), this gives (18) for f = Pz1Pz2 , which is what we were4

trying to show. □5

4. Analysis of Clark embeddings6

Let ϕ be a two-variable RIF and recall that Kϕ denotes the two-variable model space7

associated to ϕ. Then, as discussed earlier, Doubtsov in [10] studied the canonical isometry8

Jα : Kϕ 7→ L2(σα), which is initially defined on reproducing kernels by9

Jα[Kw](ζ) := (1− αϕ(w))Cw(ζ), for w ∈ D2, ζ ∈ T2

and then extended to all functions in Kϕ. In this section, we characterize when Jα is10

unitary. As in the previous section, we must consider the cases of generic α and exceptional11

α separately.12

4.1. Clark embeddings associated to generic values. Our structure theorem for13

Clark measures associated with generic α ∈ T allows us to show that the corresponding14

Clark embedding operators are surjective. We achieve this by showing that, for α ∈ T15

generic, the bidisk algebra A(D2) is dense in L2(σα). Then we can appeal to Doubtsov’s16

result [10, Theorem 3.2]. Note that we are excluding the degenerate case when ϕ is a17

function of one variable only; in that case Jα fails to be unitary for all α ∈ T, cf. [10].18

We first need the following auxiliary lemma.19

Lemma 4.1. Let ϕ = p̃
p
be a bidegree (m,n) RIF and suppose α ∈ T is a generic value20

for ϕ. Then there exist rational functions R1, R2 ∈ A(D2) such that z̄1 = R1 and z̄2 = R221

on Cα(ϕ).22

Proof. Since neither p̃ nor p are polynomials in one variable only, we may write23

ϕ(z) =
q1(z2) + z1q2(z1, z2)

p1(z2) + z1p2(z1, z2)

for some polynomials p1, q1 ∈ C[z2] and p2, q2 ∈ C[z1, z2]. Similarly, we have24

ϕ(z) =
r1(z1) + z2r2(z1, z2)

s1(z1) + z2s2(z1, z2)
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again with r1, s1 being polynomials in one variable, and r2, s2 being polynomials in z1, z2.
Using the first representation, we can rewrite the expression p̃(z)− αp(z) as

p̃(z)− αp(z) = q1(z2) + z1q2(z1, z2)− α(p1(z2) + z1p2(z1, z2))

= q1(z2)− αp1(z2) + z1(q2(z1, z2)− αp2(z1, z2)).(22)

Suppose now that q1(z2)− αp1(z2) does not vanish on D. Then (22) implies that p̃(z)−1

αp(z) = 0 precisely when2

1 =
z1(αp2(z1, z2)− q2(z1, z2))

q1(z2)− αp1(z2)

and if ζ ∈ Cα, we can rewrite this as3

ζ̄1 =
αp2(ζ1, ζ2)− q2(ζ1, ζ2)

q1(ζ2)− αp1(ζ2)
.

Since its denominator is non-vanishing in the closed unit disk, the rational function on4

the right belongs to the bidisk algebra A(D2). Similarly, if r1(z1)−αs1(z2) ̸= 0 for z2 ∈ D,5

then z̄2 can be seen to be equal to a rational function in A(D2) on Cα. If both q1 − αp16

and r1−αs1 are non-vanishing on the closed unit disk, the assertion of the lemma follows.7

It remains to prove that the assumption that α is generic rules out the presence of8

zeros in D. First note that any zero of q1(z2) − αp1(z2) in D must in fact belong to T;9

otherwise, ϕ would be unimodular at (0, z2), which is impossible since ϕ is a nonconstant10

RIF. Seeking a contradiction, we assume q1(τ) = αp1(τ) for some τ ∈ T. Consider the11

function12

ϕτ (z1) = ϕ(z1, τ) =
q1(τ) + z1q2(z1, τ)

p1(τ) + z1p2(z1, τ)
,

and note that ϕτ is a finite Blaschke product. Evaluating at z1 = 0, we obtain that13

ϕτ (0) =
q1(τ)

p1(τ)
= α

p1(τ)

p1(τ)
= α.

Hence ϕτ (z1) ≡ α for z1 ∈ D. But this amounts to saying that T × {τ} ⊂ Cα which14

contradicts the assumption that α is generic. A similar argument applies to r1−αs1, and15

the proof is complete. □16

Now, we can show that the Clark embedding operators corresponding to generic values17

are surjective.18

Theorem 4.2. Let ϕ = p̃
p
be a bidegree (m,n) RIF and let α ∈ T be a generic value for19

ϕ. Then the Clark embedding Jα : Kϕ → L2(σα) is unitary.20

Proof. Using Theorem 3.2 in [10], it will suffice to show that A(D2) is dense in L2(σα).21

Since σα is a finite Borel measure on the compact set T2 (and hence, a finite Radon22

measure), C(T2) is dense in L2(σα). Moreover, by the Stone-Weierstrass theorem, the23

set of two-variable trigonometric polynomials is dense in C(T2). From this, it is easy24

to show that the set of two-variable trigonometric polynomials is also dense in L2(σα).25

Specifically, fix f ∈ L2(σα), and ϵ > 0. Then there is a function g ∈ C(T2) and a26

trigonometric polynomial p such that27

∥f − g∥L2(σα) <
ϵ
2

and max
z∈T2

|g(z)− p(z)| < ϵ

2σα(T2)
.
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Then1

∥f − p∥L2(σα) ≤ ∥f − g∥L2(σα) + ∥g − p∥L2(σα) < ϵ,

as needed. By Lemma 4.1, we know that each trigonometric polynomial agrees with some2

function in A(D2) on Cα(ϕ), which contains the support of σα. Thus, A(D2) is dense in3

L2(σα). □4

4.2. Clark embeddings associated to exceptional values. Let us now consider the5

case of exceptional values. In this situation, the Clark embedding operators are never6

surjective.7

Theorem 4.3. Let ϕ = p̃
p
be a bidegree (m,n) RIF and let α ∈ T be an exceptional value8

for ϕ. Then the Clark embedding Jα : Kϕ → L2(σα) is not unitary.9

Proof. The proof proceeds along the same lines as the second half of the proof of [4,10

Proposition 3.10]. Namely, by Theorem 3.8, for f ∈ C(T2), among the nonnegative terms11

that make up12 ∫
T2

|f(ζ)|2dσα(ζ)

is a term of one of the following two forms:13

c1

∫
T
|f(τ, ζ)|2dm(ζ) or c1

∫
T
|f(ζ, τ)|2dm(ζ),

for some c1 ̸= 0. Without loss of generality, we assume the former. By Theorem 3.2 in [10],14

Jα is unitary if and only if A(D2) is dense in L2(σα). Now for any choice of f ∈ A(D2), the15

function f(τ, ζ2) belongs to H
2(T). But H2(T) has positive distance from the L2(T)-span16

of the function g(ζ) = ζ̄2, which is an element of L2(σα) since g is continuous and σα is17

Radon. Hence A(D2) fails to be dense in L2(σα), and the assertion follows. □18

5. Fine structure of Clark measures for two-variable RIFs19

In this section, we continue our study of Clark measures associated with RIFs in the20

bidisk and our main goal is to use results from [5] to address a question raised in [4, Remark21

5.5]. Specifically, for a bidegree (n, 1) RIF ϕ, it was observed that the Clark measures22

associated to generic α values exhibited a certain type of vanishing at the singularities of23

ϕ and that this vanishing appeared connected to the notion of contact order from [6]. In24

what follows, we will make these ideas precise and prove an order of vanishing result in25

the more general bidegree (m,n) context of this paper.26

5.1. Preliminaries on fine structure. First, let ϕ = p̃
p
be a bidegree (m,n) RIF, and27

let α ∈ T be generic. With the notation from Theorem 3.3 and for j = 1, . . . , n, let Wα
j28

denote the the weight function29

(23) Wα
j (ζ) =

∣∣∣∣ ∂ϕ∂z2 (ζ, gαj (ζ))
∣∣∣∣−1

that appears in the Clark measure formula. In what follows, it will be useful to have the30

additional information about Wα
j encoded in the following lemma.31
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Figure 1. Level curves for a RIF ϕ with a level curve component (ζ, gαj (ζ))
that does not pass through the singularity at (1, 1), graphed via arguments
on [−π, π)2.

Lemma 5.1. Let ϕ = p̃
p
be a bidegree (m,n) RIF and let α ∈ T is generic. Then for each1

j, the function Wα
j ∈ L1(T) and satisfies the formula2

(24) Wα
j (ζ) =

|p(ζ, gαj (ζ)|∣∣∣ ∂p̃∂z2
(ζ, gαj (ζ))− α ∂p

∂z2
(ζ, gαj (ζ))

∣∣∣ .
Proof. Fix a generic α ∈ T. Observe that since3

n∑
j=1

∫
T
Wα

j (ζ)dm(ζ) =

∫
T2

dσα(ζ) =
1− |ϕ(0)|2

|α− ϕ(0)|2
<∞,

each Wα
j must be in L1(T). Next, note that4

∂ϕ

∂z2
(z1, z2) =

∂

∂z2

(
p̃

p

)
(z1, z2) =

∂p̃
∂z2

(z1, z2) · p(z1, z2)− ∂p
∂z2

(z1, z2) · p̃(z1, z2)
p(z1, z2)2

.

Now, by the definition of Cα(ϕ), we have p̃(ζ, gαj (ζ)) = αp(ζ, gαj (ζ)), meaning we can cancel5

a common factor of p(ζ, gαj (ζ)) to obtain6

∂ϕ

∂z2
(ζ, gαj (ζ)) =

∂p̃
∂z2

(ζ, gαj (ζ))− α ∂p
∂z2

(ζ, gαj (ζ))

p(ζ, gαj (ζ))
.

Taking reciprocals and moduli, we obtain the desired formula. □7

Now let (τ, γ) ∈ T2 be a singularity of ϕ. This implies αp(τ, γ) = 0 = p̃(τ, γ) and so,8

(τ, γ) ∈ Cα(ϕ) for each α. Then, Lemma 5.1 suggests that each Wα
j (ζ) should probably9

vanish at ζ = τ , provided (τ, gαj (τ)) = (τ, γ). Note, however, that not every component of10

Cα need go through each singularity, i.e. satisfy gαj (τ) = γ. This is exhibited in Figure 1,11

which is reproduced from [7, Example 7.2] and displays some level curve components that12

do not go through the singularity at (1, 1). Thus |p(ζ, gαj (ζ))| may be strictly positive for13

some indices j.14

The goal for the remainder of this section is to prove the following statement:15
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For most values of α, if a branch (ζ, gαj (ζ)) of Cα goes through the singularity (τ, γ), then1

the corresponding weight function Wα
j has order of vanishing at τ that corresponds to2

the “contact order” of the corresponding branch of Z(p̃) at the point (τ, γ).3

5.2. Change of variables and key definitions. To make notions of contact order4

precise and connect them to level set behaviors, we switch to the setting of the upper5

half-plane and use the machinery developed in [5]. This will flatten the distinguished6

boundary T2 to R2 and allow us to move the singularity to the origin (0, 0). While we7

present the salient details of the change of variables here, the interested reader can find8

additional details and results in Section 2 of [5].9

First, without loss of generality, assume that the singularity of interest is (τ, γ) = (1, 1).10

Let H denote the upper half-plane H = {z ∈ C : Im(z) > 0} and let β : D → H and11

β−1 : H → D be the conformal maps12

β(z) = i

(
1− z

1 + z

)
and β−1(z) =

1 + iz

1− iz
.

Recall that ϕ = p̃
p
is a bidegree (m,n) RIF. To convert ϕ toH, first define a new polynomial13

q by14

q(z) = (1− iz1)
m(1− iz2)

np
(
β−1(z1), β

−1(z2)
)
.

Then q is a polynomial with no zeros on H2 but a zero at (0, 0). Similarly, define15

q̄(z) := (1− iz1)
m(1− iz2)

np̃
(
β−1(z1), β

−1(z2)
)
.

One can check that16

q̄(z) = q(z̄1, z̄2)

and the rational function17

Ψ(z) :=
q̄(z)

q(z)

satisfies |Ψ(z1, z2)| ≤ 1 on H2 and |Ψ(z1, z2)| = 1 a.e. on R2 with a singularity at (0, 0).18

Thus, we have transformed ϕ on D2 with a singularity at (1, 1) to Ψ on H2 with a singu-19

larity at (0, 0).20

Now we need notation to identify level sets in this context. Specifically, for α ∈ T,21

define the set22

Vα(Ψ) =
{
x ∈ R2 : q̄(x)− αq(x) = 0

}
.

Let ζ2 = gαj (ζ1) be a branch of Cα(ϕ). Then if we define hαj := β ◦ gαj ◦ β−1, the curve23

x2 = hαj (x1) must be a branch of Vα(Ψ) and this fact is clearly reversible. This is useful24

because Theorems 2.16 and 2.20 in [5] give information connecting the branches of the zero25

set Z(q) and the branches of the level set Vα(Ψ) via their respective Puiseux expansions.26

(See [11, Chapter 7] for a detailed overview of how to parametrize branches of an algebraic27

curve using Puiseux series, and [5, Section 2] for a fuller discussion of the specific forms28

these take in the present setting.)29

We encode the important information from [5] in the following two theorems:30

Theorem 5.2. There is a positive integer J and related positive integers M1, . . . ,MJ such31

that near (0, 0), q factors as32

(25) q(z) = u(z)
J∏

j=1

Mj∏
m=1

(
z2 + qj(z1) + z

2Lj

1 ψj(µ
m
j z

1
Mj

1 )

)
,
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where u is a unit at (0, 0) ( i.e. u is analytic with u(0, 0) ̸= 0), each qj ∈ R[z] (i.e. is1

a polynomial with real coefficients) has deg qj < 2Lj, qj(0) = 0, and q′j(0) > 0, each2

µj = exp(2iπ/Mj) is a primitive root of unity, and each ψj is analytic near the origin with3

Im(ψj(0)) > 0.4

Theorem 5.3. For all but finitely many α ∈ T, we can also factor5

(26) q̄(z)− αq(z) = (1− α)uα(z)
J∏

j=1

Mj∏
m=1

(
z2 + qj(z1) + z

2Lj

1 ψα
j,m(z1)

)
,

where uα is a unit at (0, 0), each qj is the same as in (25) and each ψα
j,m is a real analytic6

function in a neighborhood of the origin.7

Remark 5.4. Basically, Theorems 5.2 and 5.3 describe the branches of the zero set Z(q)8

and the level set Vα(Ψ) near (0, 0). To denote that we are now looking specifically at R2,9

we use variables x = (x1, x2). Then Theorem 5.2 says that near (0, 0), each branch of10

Z(q) in R2 is of the form11

x2 = −qj(x1)− x
2Lj

1 ψj

(
µm
j x

1
Mj

1

)
,

where the qj and ψj satisfy certain properties. Similarly, Theorem 5.3 says that near12

(0, 0), each branch of Vα(Ψ) is of the form13

x2 = −qj(x1)− x
2Lj

1 ψα
j,m(x1),

where the qj and ψα
j,m satisfy certain properties. It is very important to note that the14

polynomials qj are the same in the two theorems. However, the ψj and ψ
α
j,m are not. They15

actually exhibit immediate disagreement because Im(ψj(0)) ̸= 0 and ψα
j,m(0) ∈ R.16

We let Tq denote the set of α ∈ T for which Theorem 5.3 applies. This is T with a17

finite set removed and corresponds to the α for which q̄−αq has a factorization mirroring18

that of q. As a consequence, for α ∈ Tq, can define the contact order of each branch of19

Cα as follows.20

Definition 5.5. Let ζ2 = gαj (ζ1) be a branch of Cα going through (1, 1) and let x2 = hαj (x1)21

be the corresponding branch of Vα going through (0, 0). Then (referring to Theorem 5.3),22

hαj (x1) = −qk(x1)− x2Lk
1 ψα

k,m(x1), for some pair (k,m).

We then say that Kj := 2Lk is both the contact order of ϕ at (1, 1) for the branch23

ζ2 = gαj (ζ1) of Cα and the contact order of Ψ at (0, 0) for the branch x2 = hαj (x1) of Vα.24

We now have enough machinery to state our main result, which precisely describes how25

a weight function Wα
j behaves near a singularity (τ, γ) of ϕ.26

Theorem 5.6. Assume the setup of Theorem 3.3 and let Wα
j be given as in (23). For27

all but finitely many α ∈ T, the following holds. If (τ, γ) ∈ T2 is a singularity of ϕ and28

ζ2 = gαj (ζ1) is a branch of Cα going through (τ, γ), then there are constants c, C such that29

(27) 0 < c ≤
W α

j (ζ)

|ζ − τ |Kj
≤ C

for all ζ in a neighborhood of τ , where Kj is the contact order of ϕ at (τ, γ) associated30

with the branch ζ2 = gαj (ζ1) as given in Definition 5.5.31
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The proof requires an additional technical lemma and so, we postpone the proof until1

the next section. However, we do observe a quick corollary.2

Corollary 5.7. Assume the setup of Theorem 3.3 and let Wα
j be given as in (23). If α is3

a parameter value for which Theorem 5.6 applies, then W α
j is a bounded function on T.4

Proof. Let τ1, . . . , τk denote the z1-coordinates of the singularities of ϕ that the branch5

ζ2 = gαj (ζ1) passes through. By Theorem 5.6, there are open intervals Iℓ around each τℓ6

such that Wα
j is bounded on Iτℓ . Now, consider W

α
j on T \

(
∪k

ℓ=1Iℓ
)
. By assumption,7 ∣∣∣ ∂ϕ∂z2

(
ζ, gαj (ζ)

)∣∣∣
is continuous on T \

(
∪k

ℓ=1Iℓ
)
. Thus, if W α

j is unbounded on T \
(
∪k

ℓ=1Iℓ
)
, there must be8

a point τ0 such that9 ∣∣∣ ∂ϕ∂z2

(
τ0, g

α
j (τ0)

)∣∣∣ = 0.

But, this would imply that the finite Blaschke product ϕτ0(z) := ϕ(τ0, z) is constant and10

thus, the line {ζ2 ∈ T : ζ1 = τ0} is in some Cλ. Note that α is generic and so, is not equal11

to this λ. But, this implies that the point (τ0, g
α
j (τ0)) is on two different level sets of ϕ12

and so, has to be a singularity of ϕ. This is a contradiction and so, Wα
j must be bounded13

after all. □14

5.3. Proof of Theorem 5.6. The proof of Theorem 5.6 basically involves translating15

W α
j to the setting of q, q̄ and using the factorization results to identify the natural order16

vanishing of the numerator and denominator of the translated W α
j near the singularity.17

However, there is the possibility of additional, unexpected vanishing in the denominator.18

To account for that, we require a somewhat technical lemma that is based on the ideas19

from [5]. Specifically, we say that the branch of q (as given in the factorization (25)) with20

index (j,m) has initial segment r ∈ R[z] of order n if21

r(z1)−
(
qj(z1) + z

2Lj

1 ψj(µ
m
j z

1
Mj

1 )

)
= O (|z1|n) ,

and for α ∈ Tq, we say the branch of q̄−αq (as given in the factorization (26)) with index22

(j,m) has initial segment r ∈ R[z] of order n if23

r(z1)−
(
qj(z1) + z

2Lj

1 ψα
j,m(z1)

)
= O (|z1|n) .

Then we have the following lemma.24

Lemma 5.8. Given the factorizations and definitions above, there are at most finitely25

many α ∈ T such that for some pair (j,m),26

(28) r(z1) := qj(z1) + z
2Lj

1 ψα
j,m(0),

is an initial segment of a branch of q of order 2Lj + 1.27

Proof. Fix an index j0 with 1 ≤ j0 ≤ J and observe there are at most finitely many b ∈ R28

such that29

(29) rb(z1) := qj0(z1) + bz
2Lj0
1

is an initial segment of a branch of q of order 2Lj0 + 1. In particular, if that happened,30

(29) would have to be the initial part of a different qj appearing in the factorization of q.31
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Since there are only finitely many such qj, there are only finitely many such b. In such1

situations, the given branch of q (say with index (j,m) as in (25)) would have to satisfy2

2Lj > 2Lj0 because Im(ψj(0)) ̸= 0 and so, the degree z
2Lj

1 term in the branch cannot3

agree with the degree z
2Lj

1 term in rb.4

Fix a (b, j0) combination such that rb is an initial segment of order 2Lj0 +1 of a branch5

of q. To prove the lemma, it will suffice to show that there is at most one α ∈ Tq with6

ψα
j0,m

(0) = b for some m. By assumption, there is some positive number N such that7

rb is an initial segment of order 2Lj0 + 1 for exactly N branches of q as given in (25).8

As this agreement must be happening between the terms in rb and the terms in the real9

polynomials qj in the branches, we can translate this information over to all q̄ − αq with10

α ∈ Tq.11

Specifically, for α ∈ Tq, the qj are the same in the two branch factorizations (25) and12

(26). Thus, rb also agrees to order 2Lj0 + 1 with N of the qj (counted according to13

multiplicity) appearing in (26) and thus, is an initial segment of order 2Lj0 +1 for at least14

N branches of q̄ − αq.15

Proceeding towards a contradiction, assume that two of these α, call them α1 and α2,16

have ψαi
j0,mi

(0) = b for some indices m1 and m2. Then rb is an initial segment of order17

2Lj0 + 1 of the (j0,m1) and (j0,m2) branches of q̄ − α1q and q̄ − α2q respectively and18

these new branches are in addition to the N branches already identified, since those had19

to satisfy 2Lj > 2Lj0 . This means that rb is an initial segment of order 2Lj0 + 1 for at20

least N + 1 branches of both q̄ − α1q and q̄ − α2q. But, by the discussion in the proof21

of Theorem 2.21 in [5], with the exception of at most one α ∈ Tq, rb must be an initial22

segment of order 2Lj0 + 1 for the same number of branches of q and q̄ − αq. This means23

that rb must be an initial segment of order 2Lj0 +1 for at least N +1 branches of q, which24

gives our contradiction. Thus, there is at most one α ∈ Tq with ψ
α
j0,m

(0) = b for some m,25

and the proof is complete. □26

Given that key technical lemma, we can now prove Theorem 5.6.27

Proof. Without loss of generality, assume (τ, γ) = (1, 1). Fix α ∈ T and by omitting at28

most a finite number of α, one can assume that α ∈ Tq so the factorization in Theorem29

5.3 applies and α does not possess the behavior detailed in the statement of Lemma 5.8.30

Let ζ2 = gαj (ζ1) be the branch Cα going through (1, 1) associated with Wα
j and let31

x2 = hαj (x1) be the corresponding branch of Vα going through (0, 0). Define the related32

function33

V α
j (x) =

|q(x, hαj (x))|
| ∂q̄
∂z2

(x, hαj (x))− α ∂q
∂z2

(x, hαj (x))|
.

Because (β−1)′(x) is bounded above and below in a neighborhood of the origin, one can34

use the formula for Wα
j in (24) to show that there are constants d,D such that35

(30) 0 < d ≤
V α
j (x)

|x|Kj
≤ D

if and only if (27) holds. The remainder of the proof establishes (30) by identifying the36

order of vanishing at x = 0 of both the numerator and denominator of V α
j and showing37

that the difference in these orders of vanishing is exactly Kj.38
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We first study the denominator of V α
j . Differentiating the factorization in (26) with1

respect to z2 gives2

∂
∂z2

[
q̄(z)− αq(z)

]
= (1− α)

∂uα

∂z2
(z)

J∏
k=1

Mk∏
m=1

(
z2 + qk(z1) + z2Lk

1 ψα
k,m(z1)

)
+ (1− α)uα(z)

∑
# of factors in (26)

( ∏
one factor deleted

(
z2 + qk(z1) + z2Lk

1 ψα
k,m(z1)

))
.

Recall that3

hαj (z1) = −qj0(z1)− z
2Lj0
1 ψα

j0,m0
(z1),

for some pair (j0,m0). Then substituting (x, hαj (x)) into the above z2-derivative gives the4

following formula for the denominator of V α
j5

∂
∂z2

[
q̄ − αq

]
(x, hαj (x)) = (1− α)uα(x, hαj (x))

∏
(k,m)̸=(j0,m0)

(
hαj (x) + qk(x) + x2Lkψα

k,m(x)
)
,

where all but one term vanished when we substituted in z1 = x and z2 = hαj (x). Let6

Nα(h
α
j , k,m) be the order of vanishing of the term7

hαj (x) + qk(x) + x2Lkψα
k,m(x)

at x = 0, so that the order of vanishing of the denominator of V α
j at x = 0 is8 ∑

(k,m)̸=(j0,m0)

Nα(h
α
j , k,m).

We can similarly study the numerator of V α
j . Specifically, substituting (x, hαj (x)) into the9

factorization of q from (25) gives10

q(x, hαj (x)) = u(x, hαj (x))
J∏

k=1

Mk∏
m=1

(
hαj (x) + qk(x) + x2Lkψk(µ

m
k x

1
Mk )
)
.

Let N(hαj , k,m) be the order of vanishing of the term11

hαj (x) + qk(x) + x2Lkψk(µ
m
k x

1
Mk )

at x = 0, so that the order of vanishing of the numerator of V α
j at x = 0 is12 ∑

(k,m)

N(hαj , k,m).

Because Im(ψj0(0)) ̸= 0, one can check that N(hαj , j0,m0) = Kj. Furthermore, we claim13

that for each (k,m) ̸= (j0,m0) we have14

(31) Nα(h
α
j , k,m) = N(hαj , k,m).

Once we have (31), comparing the numerator and denominator of V α
j near x = 0 will15

yield (30).16

We establish (31) by contradiction: assume there is some (k,m) ̸= (j0,m0) such that17

Nα(h
α
j , k,m) ̸= N(hαj , k,m). If either Nα(h

α
j , k,m) or N(hαj , k,m) was less than 2Lk,18

they would have to be equal, since the underlying branches are equal to that order. So,19
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it must be the case that one is greater than 2Lk. As Im(ψj0(0)) ̸= 0, we must have1

N(hαj , k,m) ≤ 2Lk and so we can conclude that Nα(h
α
j , k,m) > 2Lk.2

This implies that both the (m0, j0) and (k,m) branches of Vα are of the form3

(32) x2 = −qk(x)− x2Lkψα
k,m(0) + O

(
|x|2Lk+1

)
.

Fix x close to zero and define Ψx(x2) := Ψ(x, x2). Then4

Ψx(x2) = ϕ(β−1(x), β−1(x2)).

Recall that ϕ(ζ, ·) is a nonconstant finite Blaschke product for all but finitely many ζ ∈ T.5

Thus, by properties of finite Blaschke products, for almost every x, as inputs to Ψx go6

through the x2 values between those of the two branches of Vα of form (32), it must output7

each λ ∈ T at least once. This implies for each λ ∈ Tq, there is actually a branch of Vλ of8

form (32). Then the discussion in the proof of Theorem 2.21 in [5] implies that9

qk(x) + x2Lkψα
k,m(0)

is an initial segment of a branch of q of order 2Lk + 1. As this is the exact condition10

discussed in Lemma 5.8, this contradicts the fact that we already removed such α values11

from consideration. This establishes (31) and completes the proof. □12

Remark 5.9. Note that it is indeed possible to have lower order of vanishing for certain13

values of α, so that it is necessary to allow exclusion of some finite collection in the14

statement of Theorem 5.6. See for instance [4, Example 5.2], where all weights W α
15

exhibit order 4 vanishing at the unique singularity of that RIF, except for W−1 which16

vanishes to order 2.17

6. A tridisk example18

For s ≥ 3, consider the three-variable rational inner function19

(33) ϕs(z) =
p̃s(z)

ps(z)
=
sz1z2z3 − z1z2 − z1z3 − z2z3

s− z1 − z2 − z3
, z ∈ D3.

This function and its close relatives often appear as basic tridisk examples, see e.g. [14, 5].20

When s > 3, the polynomial ps has no zeros in the closed tridisk. Hence ϕs has no21

singularities on D3, and Theorem 3.5 applies. A computation shows that22

∂ϕs

∂z3
(z) =

s2z1z2 − s(z21z2 + z1z
2
2 + z1 + z2) + z21 + z1z2 + z22

(s− z1 − z2 − z3)2
.

For α ∈ T fixed, the set {ζ ∈ T3 : p̃s(ζ)− αps(ζ) = 0} can be parametrized as23

ζ3 = ψα
s (ζ1, ζ2) =

αs− αζ1 − αζ2 + ζ1ζ2
sζ1ζ2 − ζ1 − ζ2 + α

, (ζ1, ζ2) ∈ T2.

As is guaranteed by [8, Theorem 4.8], each ψα
s is the reciprocal of an RIF on D2, and each24

ψα
s is continuous on D2 when s > 3 since ϕs has no singularities. This can also be checked25

directly in this simple case. Plugging ζ3 = ψα
s into ∂ϕs

∂z3
and simplifying, we get that for26

α ∈ T fixed and for f ∈ C(T3), the Clark measure σs,α satisfies27 ∫
T3

f(ζ)dσs,α(ζ) =

∫
T2

f (ζ1, ζ2, ψ
α
s (ζ1, ζ2))Ws,α(ζ1, ζ2)dm(ζ1, ζ2),
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where1

Ws,α(ζ1, ζ2) =

∣∣∣∣s2ζ1ζ2 − s(ζ21ζ2 + ζ1ζ
2
2 + ζ1 + ζ2) + ζ21 + ζ1ζ2 + ζ22

(sζ1ζ2 − ζ1 − ζ2 + α)2

∣∣∣∣ .
Thus, when s > 3, each weight Ws,α is continuous and bounded above and below on T2,2

but even for this simple choice of RIF, the explicit representation of the σs,α involves some3

fairly complicated expressions.4

(a) Level set for ϕ = (3z1z2z3 − z1z2 −
z1z3 − z2z3)/(3− z1 − z2 − z3) for α = i.

(b) Level set for ϕ = (3z1z2z3 − z1z2 −
z1z3 − z2z3)/(3 − z1 − z2 − z3) for α = 1
and α = −1 (salmon).

Figure 2. Supports of the Clark measures σ3,α for ϕ3.

We now turn to the critical case s = 3. Then ϕ3 has a singularity at (1, 1, 1) ∈ T3, with5

ϕ∗
3(1, 1, 1) = ∠ limz→(1,1,1) ϕ3(z) = −1, and we check that ϕ3(1, 1, z3) ≡ −1, reflecting the6

fact that the corresponding Blaschke factor experiences a degree drop. For all α ̸= −1, the7

two-variable RIF 1/ψα
3 is continuous on D2, and the weight W3,α also remains continuous.8

However, for each α ∈ T\{−1}, we haveW3,α(1, 1) = 0. Finally, examining what happens9

for α = −1, the non-tangential value of ϕ3 at its singularity, reveals some of the difficulties10

that can arise in higher dimensions. First of all,11

ζ3 = ψ−1
3 (ζ1, ζ2) =

−3 + ζ1 + ζ2 + ζ1ζ2
−1− ζ1 − ζ1 + 3ζ1ζ2

is the reciprocal of an RIF with a singularity at (1, 1), illustrating the fact that the level12

set C−1 cannot be viewed as a smooth surface in the three-torus. Figure 2 shows the13

graphs of Ci, C1, and C−1 on T3, where points are associated with their arguments in14

[−π, π)3.15

Moreover, we see that16

W ∗(ζ1, ζ2) = lim
α→−1

W3,α(ζ1, ζ2) =

∣∣∣∣−3(ζ21ζ2 + ζ1ζ
2
2 + ζ1 + ζ2) + ζ21 + 10ζ1ζ2 + ζ22

(3ζ1ζ2 − ζ1 − ζ2 − 1)2

∣∣∣∣
is a discontinuous function on T2, which is moreover unbounded near (1, 1) ∈ T2, as17

can be verified by evaluating along the curve {(eiθ, e−iθ)} ⊂ T2 to obtain the expression18

W ∗(eiθ, e−iθ) = 1 + 1
1−cos θ

.19

Given this example, it would appear that a more sophisticated approach is needed to20

handle Clark measures for RIFs in higher dimensions that possess singularities.21
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