N =

~ W

10
11

12

CLARK MEASURES FOR RATIONAL INNER FUNCTIONS II:
GENERAL BIDEGREES AND HIGHER DIMENSIONS

JOHN T. ANDERSON, LINUS BERGQVIST, KELLY BICKEL, JOSEPH A. CIMA,
AND ALAN A. SOLA

ABSTRACT. We study Clark measures associated with general two-variable rational inner
functions (RIFs) on the bidisk, including those with singularities, and with general d-
variable rational inner functions with no singularities. We give precise descriptions of
support sets and weights for such Clark measures in terms of level sets and partial
derivatives of the associated RIF. In two variables, we characterize when the associated
Clark embeddings are unitary, and for generic parameter values, we relate vanishing of
two-variable weights with the contact order of the associated RIF at a singularity.

1. INTRODUCTION
For d € N, we let
D = {(z1,...,24) €C%: |z5] < 1,5 =1,...,d}
denote the unit polydisk and
={(C1,...,C) €CL |Gl =1,7=1,...,d}
be its distinguished boundary. If ¢: D¢ — D is a holomorphic function, then, for o € T,

the expression
R(2290)) Ll
a—¢(z))  Ja—o(z)]?
is positive and pluriharmonic, and hence there exists a unique positive Borel measure o,
on T? such that
1—|¢(2)[?

= P, g dog C )
o IF o P00
where P,(¢) denotes the Poisson kernel for the polydisk

d
:HPZj(<j>7 and PZj(Cj):
j=1

Measures of this type, namely ones whose Poisson integral is the real part of a holomorphic
function on the polydisk D¢, are called pluriharmonic measures, see [16, Section 2.2]. Note
that P,(¢) = C,(¢)C¢(2)/C.(2), where C¢(z) denotes the Cauchy kernel for D¢, defined
by

=[[—— »eD? ¢ eD”.
J=11 C
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2 ANDERSON, BERGQVIST, BICKEL, CIMA, AND SOLA

The measures {o,} are called the Aleksandrov—-Clark measures associated with ¢ and if ¢
is inner (defined below), these measures are called Clark measures. The purpose of this
paper is to present several results concerning such measures for the class of rational inner
functions.

First suppose ¢: D¢ — C is a bounded holomorphic function. Then, by Fatou’s theorem
for polydisks (see [18]), ¢ possesses non-tangential limits

¢(Q)= £ Jim 6(:)

for Lebesgue-almost every ¢ € T? non-tangential in this context means that |z; — (;| <
c(1 — |z4]?) for some constant ¢ > 1, and j = 1,...,d. Throughout this paper, when
the context makes it clear that we are referencing boundary values, we will write ¢(()
instead of ¢*(¢). A bounded holomorphic function ¢: D¢ — C is called inner if these
non-tangential boundary values satisfy |¢*(¢)] = 1 for almost every ¢ € T¢. Then, a
rational inner function is an inner function of the form ¢ = ¢/p where ¢,p are in the
polynomial ring Clzy, .. ., z4].

Rational inner functions (RIFs) have been studied extensively in function theory and op-
erator theory in polydisks, especially in the two-variable setting. RIF's are more tractable
than general inner functions and enjoy some additional regularity properties; for instance,
a theorem of Knese states that any RIF ¢: D¢ — D has non-tangential boundary values
#*(¢) € T at every ¢ € T¢, see [15]. RIFs are also easy to construct (see Section 2 below)
and can be used to explore questions in a concrete way that appear difficult to answer for
general inner functions. On the other hand, RIFs do exhibit some complexity and some
surprising features in higher dimensions: for instance, ¢ = ¢/p can have singularities on
the boundary at points 7 € T¢ where p(7) = 0 = ¢(7), and the analytic and geometric
properties of such boundary singularities can be relatively intricate, see [6, 7].

In the recent paper [10], E. Doubtsov initiated a systematic study of Clark measures
associated with inner functions in polydisks. After extending some classical one-variable
results such as Aleksandrov’s disintegration theorem to higher dimensions, he made the
surprising observation that certain isometries into L?(o,), which are always onto for inner
functions in one variable, may fail to be surjective in d variables, and this behavior can even
happen for Clark measures associated to RIFs. Inspired by Doubtsov’s work, a subset of
the authors of this manuscript undertook a detailed study [4] of Clark measures associated
with a subclass of two-variable RIFs ¢ = ¢/p whose ¢, p-polynomials have degree n in the
first variable, and 1 in the second. In particular, [4] gives an explicit description of the
family of Clark measures {0, }acr for bidegree (n,1) RIFs and a criterion, formulated in
terms of non-tangential values at singularities of ¢, for when Clark isometries into L?(o,)
are surjective. The purpose of the present work is to extend these results to the full class of
two-variable RIFs, with no degree restrictions. Additionally, we will discuss obstructions
that arise in higher dimensions and prove some partial results concerning d-variable RIF's
and associated Clark measures under additional hypotheses.

1.1. Overview. First, in Section 2, we discuss some basic facts about Clark measures in
the polydisk setting; these results are most likely known to specialists. We then review
and extend some results concerning d-variable rational inner functions from the recent
papers [6, 7, 8]. In particular, we explain how RIFs on the bidisk can be seen to have
level sets that can be globally parameterized on T? by analytic functions even in the



0 N o o~ W N =

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

38
39
40

CLARK MEASURES FOR RIFS II 3

presence of singularities. To avoid trivial complications, here and throughout this paper,
we will assume that ¢ = ¢/p for polynomials ¢, p € Clzy, ..., z4] that are non-constant in
each variable z;.

In Section 3, we present a structure formula for Clark measures associated with a
bidegree (m,n) RIF in the bidisk, thus extending the work in [4] which dealt with bidegree
(m, 1) RIFs. In brief, for all but finitely many « € T, called the generic case, the pairing
of the measure o, with a continuous function f on T? can be described by a sum of terms
of the form dm(0)

N m
f s O iy

where m denotes normalized Lebesgue measure on T and g¢, ..., g5, are analytic functions
parametrizing the a-level set of the RIF ¢ under consideration. An analogous represen-
tation for Clark measures associated with d-variable RIFs is S}E}Nn to hold under the
additional assumption that the RIF possesses no singularities on D . In two variables and
when ¢ does have singularities, there may be values a € T (the exceptional case) where
one needs to add in finitely many terms of the form ¢, [} f(7,()dm(¢), where 7 € T and
co > 0 is a constant.

In Section 4, we analyze Clark embedding operators from the model space K, =
H?*(D?) & ¢H?*(D?) to L*(0,), where H?*(D?) is the classic Hardy space on the bidisk.
We prove that for generic a, these Clark isometries are surjective and hence unitary. On
the other hand, we show that if & € T is an exceptional parameter value, then the associ-
ated Clark isometry fails to be surjective. This shows that we have identified the correct
notion of “exceptional value” in the case of general bidegrees and resolves a problem left
over from [4].

In Section 5, we use recent work in [5] to gain further insight into the structure of
Clark measures for bidegree (m,n) RIFs. We prove that, for all but finitely many pa-
rameter values o € T, the weights ]g—j;(( ,95(¢ )|~ appearing in the structure formula
for Clark measures are bounded and exhibit an order of vanishing at singular points that
is determined by the contact order of the underlying RIF at the corresponding singu-
larities. Contact order is a geometric quantity that was introduced in [6] and has been
used to study integrability properties of RIF derivatives and nontangential polynomial
approximation of RIFs at singular points. The main result in Section 5 was essentially
conjectured in [4].

Finally, we conclude in Section 6 by examining a singular three-variable example, which
is not covered by our general results on Clark measures for higher-dimensional RIFs. The
Clark measure formulas we obtain suggest that the higher-dimensional cases are more
challenging and that some of our results for bidegree (m,n) RIFs may fail in the d-variable
setting.

2. PRELIMINARIES

There are several recent and interesting works on extensions of classical Clark theory in
one variable to the multivariable setting, see for instance [2, 3, 13]. Since we are interested
in Clark measures associated with RIF's, we restrict our attention to the polydisk setting.
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2.1. Clark theory in polydisks. Let ¢ be an inner function on D?. We denote by K
the model space associated to the function ¢, defined by

K, = H*(D") © ¢ H*(D).
Since multiplication by ¢ is a partial isometry on H?(D?), the reproducing kernel of K,
is given by
K(zw) = Ku(2) = (1 - 3)p(2))Cul2),  for z,w € D

As in one variable, in the paper [10], Doubtsov constructed an embedding map J,, : Ky —
L?(0,) by first defining it on reproducing kernels as

(1) Jo[Ku](€) = (1 = ad(w))Cu((), for w € D¢ € T,
then showing that this map preserves inner products on reproducing kernels, and finally
extending it to an isometric embedding of K, into L*(c,) using density of the reproduc-
ing kernels. However, unlike in one variable, this map is not automatically surjective.
Theorem 3.2 of [10] states that the isometric embedding .J,, constructed above is unitary
if and only if the polydisk algebra A(D?) is dense in L?(o,).

Now, let ¢: D — D be a rational inner function, with associated Clark measure o, for
a fixed o € T. As is asserted in [10], each o, is supported on the unimodular level set

2 Cale) =clos {1 i 6(r) =},

where “clos” denotes the closure of the set. When the function ¢ is clear from the context,
we sometimes refer to this set as simply C,. While the measure-support statement should
be well known to specialists, we give a proof for the sake of completeness.

Lemma 2.1. Let ¢ be an RIF on D? and let « € T. Then supp(c,) C Col).

Proof. Let B C T? be an open ball such that lim,_,;- ¢(r¢) # a for all ( € B. We need
to show that o,(B) = 0. Since the Poisson kernel is non-negative, we have that

/BP(TC’W)d%(U) < /Td P(r¢, m)doa () = %

for all ( € B and every 0 < r < 1. By [15, Corollary 14.6], the right hand side vanishes
when r tends to 1, and so

lim [ P(r¢,n)don(n) =0.

r—1- B
Now consider the set
DyQ) = {neT: |G —m <20 —7), j=1,....d}.
For every 7 in this set, we have that
1—1r2 1+7r 1—7r2

r — i <4(1 —1r)? = = < ,
rG =l <A T = T T e S g P

<%)d < P(rC, ).

and so
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Clearly
1+ \*
(7s) iy < [ Plcadntn < [ Pocnion)
5 UL T

Note that since (;,7; € T, the inequality
¢ = nl = r = iG5| < 2(1=7),
can be written in polar coordinates (with e = 1,(;) as
21 —7) > |r — e <= 4(1 —2r +7?) > 1+ 7% — 2rcosb;
< 3r?—6r+3=3(1-r)*>2r—2rcos(d;)
3(1 —r)?

— 0;) >1-—
cos(6;) Sy

and so

, 3(1—r)?
D.(¢) = {Ce’g € T*:10;] < cos™* (1 — %) , ] = 1,...,d} :
r
In particular, as a subset of T¢, this is a product of d copies of the same interval, and so
(for r close to 1) the Lebesgue measure of D,.(() can be estimated independently of ¢ by

d

. 3(1—1)%\" 3(1—1)?
D =27 1" > —— >/ 1—7r)
D01 =2 cos (1 202 = U = ¢ -
Together with (3) this implies that
. 9a(BND,(Q))
lim =0
1= [Dr(Q)]

for every ( € B.

Since D,(¢) is a cube in T¢ with volume tending to zero, this implies that the d-
dimensional upper density of the restriction measure (0,)p, defined by (04)B(A) =
oo(B N A), is zero at every point in T? see for example, the ideas around Proposition

2.2.2 in [17]. This in turn implies that (04)| is equal to zero which in particular implies
that 0,(B) = 0. O

Note that Lemma 2.1 implies that every Clark measure associated to an RIF is a
singular measure with respect to the Lebesgue measure on T¢. It is also worth noting
that in the case where ¢ = p/p is a two-variable RIF, we actually have supp(o,) = Cuo(9).
This will follow from our later results Theorem 3.3 and Theorem 3.8. Thus, it makes
sense to conjecture that supp (o) = Co(¢) for general RIFs on the polydisk D? as well.

For the sake of completeness, we also state and prove the following converse, which is
well known in the one-variable setting.

Lemma 2.2. Let 1 be a positive pluriharmonic measure on T with mass 1. Then there
is a holomorphic function ¢,: D — D such that p is the Aleksandrov-Clark measure
corresponding to the holomorphic function ¢, and the parameter value o = 1.
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6 ANDERSON, BERGQVIST, BICKEL, CIMA, AND SOLA

If v is singular with respect to Lebesgue measure, then ¢, is an inner function and
15 its Clark measure for a = 1.

Proof. Let H,(z) be the holomorphic function on D¢ whose real part is the Poisson integral
of  and which satisfies that H,(0) = 1. Such a function exists since the real part of the
Poisson integral will be 1 at the origin since p is a probability measure, and we can choose
a harmonic conjugate which vanishes at the origin.

Now consider the function

 Hu(2) -1
Pu(z) = Ho(2) +1
We have that L4 6.(2)
HH(Z) = %,
and so
1—1ou(2)1* _ o (14 8u(2) _ ) — .
(4) |1 —¢“<Z)|2 - éR (1 o (ﬁ#(Z')) §}%(1¥,lt< )) /]I‘d P( 7<>du(<)

Since H,, maps D? to the right half plane, and since z — (z — 1)/(z + 1) maps the right

half plane to the unit disc, we see that ¢,: D¢ — D. Thus, (4) shows that yu is the

Aleksandrov-Clark measure corresponding to the holomorphic function ¢,(z) and a = 1.
If p is singular with respect to Lebesgue measure, Theorem 2.3.1 in [18] shows that

- 1= ou(rz)P?
Jim | POz Q)du(c) = m =0
for almost every z € T¢, which shows that |¢,(z)| = 1 almost everywhere on T O

2.2. Background on rational inner functions. We shall need some detailed results
concerning RIFs in two variables, but we begin by recalling some basic facts from the
general theory. We say that p € Clzy, ..., 2z4] is a stable polynomial if p has no zeros in
D?. A polynomial in d variables has polydegree (ny,...,ng) € N if p has degree n; when
viewed as a polynomial in the variable z;. A result of Rudin and Stout [19, 18] states that
any RIF in D? can be written in the form

P(z) = et ... Z{y@

p(z)
where a € R, kq,...,kq are natural numbers, p is a stable polynomial of polydegree
(n1,...,nq), and p is its reflection
1 1
p(2) =27t 2 —, ..., — |.
P =t zin (o 2 )

We shall often assume that the RIFs we consider are of the form ¢ = p/p, where p is a
stable polynomial that is atoral. The concept of atoral polynomials is discussed at length
in [1, 5], but for the present work, we just note that atoral implies that p and p have no
common factors, and that the zero set of p, denoted Z(p), satisfies dim(Z(p)NT?) < d—2.

Let us summarize some important definitions and properties of RIFs. First, we say
that a RIF ¢ = ¢/p has polydegree (ny,...,ng) if p and ¢ have no common factors and for
each j, n; is the maximum of the degrees of p and ¢ when they are viewed as polynomials
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CLARK MEASURES FOR RIFS II 7

in the variables z;. When we consider ¢ = p/p, then the polydegree of ¢ will always agree
with both the polydegree of its denominator p and the polydegree of its numerator p.

If ¢ is a polydegree (ny,...,ng) RIF, then for any index j and any fixed collection of
points {Ci,...,¢j-1,Cjt1,---,Cip € T, we can consider the one-variable function z; —
&(Crye ey 2jyeesCa). I 25 = (G-, 2, ..., Ca) 1S not identically zero, then it vanishes
at at most n; points on . Because ¢ is bounded on D?, these have to be common zeros
of the numerator and denominator of z; — ¢((y,...,2;,...,¢s). Thus, they cancel out
and we are left with a rational function defined on D with at most a finite number of
singularities on T. Because ¢ is a RIF, this one-variable function must attain unimodular
boundary values at almost every point on T. Hence, it is a finite Blaschke product of
degree at most n;. As shown in the lemma below, generically the degree is exactly n;,
but for certain values of ¢, the degree can be strictly smaller than n;.

Furthermore, if we restrict to a RIF ¢ on D?) then [15, Lemma 10.1] states that ¢ does
not have any singularities on T x D or D x T. Thus, in that case for any (; € T, the
mapping 2o — p((i, 22) can never vanish identically, so this slicing operation always yields
a finite Blaschke product.

To prove the lemma below, we need some short-hand notation. Given a point ( =
(Cty-v vy Cao1,Ca) € T let us write ¢ = (Gr,...,Ca—1) € T we also use analogous
notation for points z € C.

Lemma 2.3. Let ¢ = ;2; be an RIF on D with polydegree (ny,...,ng). For a fived ¢' €

T, set ¢er(za) = G(Chy -+, Camn, 2d)- If ¢ does not have a singularity with coordinates of
the form (¢',7) € T? for some T € T, then ¢ is a finite Blaschke product of degree ng.

Proof. First, observe that if ¢ has no singularities of the form (¢’,w) € T¢, then the
function per(z4) == p((’, zq4) is not identically zero. Then the assertion that ¢ is a finite
Blaschke product of degree at most ny is immediate from the discussion proceeding the
statement of Lemma 2.3.

It remains to show that ¢ has degree exactly nqy. We first show that its initial numer-
ator p({’, z4) has degree ny and then argue that there can be no degree drop by canceling
terms from the numerator and denominator. To this end, let us write

p(2) = pi(2) + zapa2(', za) = p1(2') + Q(2)
for polynomials p;, po, and ). Then

B(2) = zhi(2) + Q(2),
where the reflection of p; is only with respect to the variables 21, ..., z4_1. From this, one

A )

can see that deg, (Q) < ng, using the definition of the “~” operation combined with the
fact that each term in () has degree at least 1 in the variable z,.

Next, we note that if p1(¢’) = 0 for some ¢’ € T~ then we would also have p;(¢’) = 0.
This in turn would imply that po/(0) = 0. An application of Hurwitz’s theorem as in |8,
p. 1123] implies that p¢ is either nonvanshing on D or identically zero. We have already
established that p. is not identically zero and so, pe(0) = 0 would give a contradiction.
ThuS, ﬁl(gl> 7£ 0.

Hence, for ¢’ € T4 we have degp(¢’, z4) = ng. This means that any degree drop
in ¢ must arise from cancelling a common zero of p((’, zq) and p(¢’, z4). Because p is
nonvanishing on D, this zero must necessarily occur on T, which in turn would imply that



N =

o 0~ W

10
11
12
13
14
15
16
17

18
19
20

21
22

23
24
25
26
27
28
29
30
31
32
33

34
35
36

8 ANDERSON, BERGQVIST, BICKEL, CIMA, AND SOLA

¢ has a singularity at some (', 7) € T%, contrary to our hypothesis. Thus, it must be the
case that the degree of ¢ is exactly ng. U

One useful way of studying RIFs is via their level sets C,(¢) as defined in (2). For
example, Lemma 2.1 shows their relevance to the analysis of the Clark measures associated
with an RIF. In [8], the authors established the following useful alternative description of
the unimodular level sets.

Theorem 2.4. Let ¢ = g be an RIF on D%, fix o € T, and set

La(¢) = 1{¢ € T p(¢) — ap(¢) = 0}
Then Co(¢) = Lo(9).
Proof. See [8, Theorem 2.6]. O

Much of the remainder of this paper will be concerned with Clark measures for rational
inner functions on the bidisk D?. One reason why we focus on this case is that level sets of
two-variable RIF's have much better properties than those of their d-variable counterparts.
Namely, when d > 3, the level sets of d-dimensional RIFs can exhibit discontinuities. See
8] for a fuller discussion of the sometimes pathological nature of level sets for d-variable
RIFs in dimension d > 3. By contrast, when d = 2 we have the lemma given below, which
is implicit in [6, 7]. As mentioned earlier, here and throughout the paper, we assume that
a bidegree (m,n) RIF has both m > 0 and n > 0.

Lemma 2.5. Let ¢ be a bidegree (m,n) RIF. For each o € T and any choice of 19 € T,
there exist functions g3, ..., g% defined on T and analytic on T\ {10} such that Co(¢) can
be written as a union of graphs of the form

{(C’g‘jO‘<C)): C GT}, j = 17"'7n7
potentially, together with a finite number of vertical lines (; = 11, ...,(; = T, where each
Tj € T.

Proof. We first fix 7 € T and obtain a parameterization of C, N (I, x T), where I, is a
small interval in T containing 7. We have to consider both the situation where 7 is not the
z1-coordinate of a singularity of ¢ (Step 1) and the situation where 7 is the z;-coordinate
of a singularity of ¢ (Step 2). In the latter case, we reference previous results to obtain
the parameterization. Finally, we glue these local parameterizations together to obtain
global ones (Step 3).

Step 1. First, let us assume that 7 is not the z;-coordinate of a singularity of ¢ on
T?. Then, Lemma 2.3 implies that ¢, (z2) := ¢(7,22) is a nonconstant finite Blaschke
product with deg ¢, = n. By properties of nonconstant finite Blaschke products, there
are precisely n distinct points 7y, ...,n, € T such that ¢.(n;) = « for j =1,...,n. Since
¢, is a non-constant Blaschke product, ¢/ (¢) # 0 for all ¢ € T, and then

0¢ .

_(T7nj):¢;(nj>7éo7 jzlv"'7n'

322
Since the two-variable function ¢ is analytic in a neighborhood of each (7,7;), the implicit
function theorem applies and yields locally analytic functions gf,, ..., g, and an open

interval I, containing 7 such that C, is parametrized by

(5) G=g7 (), - G=gn.(C)
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CLARK MEASURES FOR RIFS II 9

on I, x U, where U is initially a union of open arcs containing the points 7y, ...,n,. By
shrinking the interval I further, we can ensure that (5) parametrizes all pieces of C, that
are contained in the strip I, x T, since for each (; close to 7, we can ensure that the
equation ¢((1,(2) = a has exactly n distinct solutions.

Step 2. Suppose now that 7 is the z;-coordinate of a singularity of ¢. Then either
(a) the line {¢ € T?: ¢; = 7} is contained in C,, or (b) the intersection of the line
{¢ € T?: ¢, = 7} with C, consists of at most n points coming from the singularities of ¢
that have z;-coordinate 7 as well as additional points n € T with ¢.(n) = a.

Let us address case (a) first. Basically, we need to parameterize any pieces of C, that
intersect the line {¢ € T?: {; = 7}. To that end, assume that (7,7) € T? is the limit of a
sequence of points (7, Vm) C Co with 7, # 7. We claim that (7,+) must be a singularity
of ¢, which will allow us to apply known results. To that end, for each m, define the
one-variable function ¢,,(z1) = &(21, ¥mTmz1). We have ¢,,(7) = a since the vertical
line {¢; = 7} was assumed to belong to C,, and moreover ¢,,(7,) = ¢(Tm,¥m) = « by
assumption. Since ¢,, is a nonconstant finite Blaschke product, for any given A € T\ {«},
we can find a sequence (p,,) C T with each p,, on the smaller of the two arcs of T
between 7 and 7, with the property that ¢,,(p,) = A. Since 7, — 7, we must also have
Pm — 7. Then ¢(pm, YmTmpm) = A for each m. Since (pm, YmTmpm) — (7,7) as m — oo,
this implies that ¢ is discontinuous at (7,7). Hence, ¢ has a singularity at (7,7). This
means that we can apply [7, Theorem 2.9] at (7,~), which states that C, can be locally
parameterized by analytic functions near each singularity of ¢.

If we are in case (b), we can again parameterize C, at the singularities using [7, Theorem
2.9], and apply the implicit function theorem at the other points since ¢, is again non-
constant.

Thus in both case (a) and case (b) we get a collection of analytic functions which,
possibly together with a vertical line {¢; = 7}, parameterize C, on some strip I, x T,
provided I, is chosen to be a sufficiently small interval containing 7. Furthermore, for
all but finitely many 7, there are precisely n distinct points 7y,...,n, € T such that
¢(7,7m;) = a. This means that in each case, we must get exactly n functions.

Step 3. We can now cover T? with a union of strips of the form I. x T, where each
I is from Step 1 or Step 2. Since there are finitely many singularities, and since T? is
compact, we can refine this to a finite number of strips in such a way that each singularity
of ¢ is inside one of these strips. On each strip we have an analytic parameterization, and
on their overlaps the parameterizations must agree. The one difficulty is that as we go all
the way around T, one branch might end at the point where another branch began and
so, it might not be the case that ¢¥(e”) = g¢(e”*>™) for each j. Instead we might get
g5 (") = gp (™) with j # k. Thus, we need to allow one 75 € T where the branches
can jump. With that technicality, we can obtain functions gf,...,gs that are globally
defined on T, parameterize the components of C,(¢) that are not lines, and are analytic
except at a single point. 0]

Remark 2.6. If ¢ is a two-variable RIF which has no singularities, then Step 2 becomes
superfluous, and the conclusion follows from Steps 1 and 3. But these steps, unlike Step
2, do not require us to restrict to dimension d = 2.

Hence, if ¢ = % is a d-variable RIF, d > 2, with deg, p = ng and with no singularities

—d : ) . :
on I, then there exist analytic functions g7, ...gy;, such that C, can be parameterized
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as
Cd - g?(Ch . '7€d—1)7 . '7<d - gzd(gla s 7Cd—1)'

We will use this parameterization in our later investigations of the d-variable situation.

Lastly, our fine analysis of Clark measures for two-variable RIF will require the notion of
contact order of a RIF at a singularity, a concept introduced in [6], and further developed
in [7], in connection with the study of integrability of the partial derivatives of a RIF.
Let aq, a9 € T with oy # g and let {gjo-“}j and {g;.?}x be the functions from Lemma 2.5
associated with ay and ao respectively. Then [7, Theorem 3.1] implies the following.

Lemma 2.7. Ezxcluding at most one oy € T, the contact order of a RIF at a singularity
(1,7) € T? is the mazimal order of vanishing of the pairwise differences g5 (¢) — gi*(C)
at ¢ =7 for any pair ay, s € T\ {ap}, where we restrict attention to the gi* that satisfy
g;' (1) =

We note that it follows from the work in [7] that the contact order of a RIF at a
singularity is always a positive even integer. Also, while the computation in Lemma 2.7

might make it look like contact order somehow depends on the choice of the constants
a1, ao € T, it is actually independent of that choice.

3. STRUCTURE OF CLARK MEASURES FOR RIF's

In this section, we determine the structure of the Clark measures o, for general RIFs
on D%, There are two cases to consider: the case where the parameter « is generic and
the case where « is exceptional. These two types of parameters are defined as follows.

Definition 3.1. A point o € T is said to be an exceptional value if ¢(T,2z2) = « or
if 9(z1,7) = « for some 7 € T. This is equivalent to saying that one of the two lines
{CeT?: (=7} or{C€T? & =1} isin Culg) for some T € T. If a € T is not an

exceptional value, then we say that o is a generic value.

Remark 3.2. For bidegree (n,1) RIFs, it was shown in [4, Section 3] that a € T is
exceptional if and only if « is the non-tangential value of ¢ at some singularity of ¢.
However, this characterization does not generalize to higher-degree RIF's.

Still, there are RIFs with bidegree at least (2,2) with exceptional values. In particular,

consider ) ) )

#(z) = 2 — 23— 22
If we set a = —1, then C,(¢) contains the four lines {¢ € T?: {; = +1} and {¢ € T?: {, =
+1} and so o = —1 is an exceptional value for ¢.

After looking at the two-variable generic case, we will also show how one can translate
some of those arguments to the d-variable setting.

3.1. Clark measures in the generic two-variable case. Our first goal is to prove the
follow description of the Clark measures o, for generic parameter values o € T.

Theorem 3.3. Let ¢ = ]]—:; be a bidegree (m,n) RIF, and let € T be generic for ¢. Then,
for f € C(T?), the associated Clark measure o, satisfies

< a(cy) IO
[ 100 =32 [ Feai O i
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where g, ..., g% are the parametrizing functions for Co(¢) from Lemma 2.5.

Proof. Let a € T be generic for ¢. Then by Lemma 2.5, there exist functions gy, ..., g>
analytic on T (minus some arbitrary base point 74) such that

= U{(c,gﬂc»: ¢ €T}

We first establish the desired formula in the special case where f is a product of one-
variable Poisson kernels. Fix z, € D and consider the one-variable function

1= o(z, )P - ;
) buln) = S — [ PL(G)PaGMo), €D

Because ¢ is a two-variable RIF, it has no singularities on T x I and so, O(+, 29) 18
continuous on D. Moreover, by the discussion preceding Lemma 2.3, for each ( € T, the
function @, := ¢((, -) is a finite Blaschke product. If for some ¢ we had

q)C(ZQ) = ¢(C7 ZQ) =
then @, would be constant on D and that would imply that « is an exceptional value, a

contradiction. Thus, ¢(-, z5) cannot attain the value o in . Then, the function v, is
continuous on D and thus, 1., is the Poisson integral of its boundary values. In other

words, for each z; € D,
I (]
(7) wZQ(Zl) - T |C¥ — ¢(C’ 22)’2P21(C)dm(<-)

For all but finitely many ¢, Lemma 2.3 implies that the finite Blaschke product ®. has
degree n. By standard one-variable results, see [9, 12], the Clark measure for ®. is given

by
Z |‘I>’ il o

where {771, ...y} C T are the dlstlnct points on T with ®.(n;) = a. We note that
D (22) = 82 % (¢, ). Then the parametrization of Co(¢) given above implies that

1—[6(¢ 2)]* 1
(8) =D e P (97 (Q))
oG E = TECEO) 2
Combining (6), (7), and (8), we obtain the desired formula for f = P, P,,.
The conclusion of the theorem now follows from the fact that linear combinations of
Poisson kernels are dense in C'(T?). O

Remark 3.4. One can interchange the roles of the variables z; and z; to obtain an anal-
ogous version of Theorem 3.3 where C, is parametrized using the variable (5. See [5] for
an in-depth discussion concerning variable switching.
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12 ANDERSON, BERGQVIST, BICKEL, CIMA, AND SOLA

3.2. Clark measures for RIFs in more than two variables. Let us take a brief
interlude to examine how the arguments in the previous section generalize to RIFs in
more than two variables. It turns out that singularities present significant complications
(discussed more below) so instead, let us first assume that we have a d-variable RIF with
no singularities on the closed polydisk. Then we have the following result.

Theorem 3.5. Let ¢ = £ be a polydegree (ny,...,nq) RIF with no singularities on D’
and let « € T. Then, for f € C’(']I‘d) the associated Clark measure o, satisfies

Z . dm(¢)
dO'a )
Td—1 (C ))|52d(</79?<cl>>’

where g, ..., g, are the analytic functzons that parametrize C,(¢) from Remark 2.6.

D I

Proof. The proof is basically the same as that of Theorem 3.3. Fix z; € D and define
1—|o(2, 2q)]?
wzcl(z/): | ( - d)|27
v = (%', za)|
Then for ¢’ € T¢"!, Lemma 2.3 implies that & := ¢({’, ) is a nonconstant finite Blachke
product of degree ny and using that, we can conclude that ¢(-, z4) does not attain the

e D4

. =d— . . : o
value a in D . Then 1., is continuous on the closed polydisk and so we can write it as
the Poisson integral of its boundary values

R o N S B (0T [
o oo == [ e o (@)

for 2/ € D41, Furthermore, ®¢ has associated Clark measure

ng 1

= 55— 0n;>

Z|CI)// 77] | "73 jzl|azd(</777j)‘ "
where {n1,...,m,,} C T are the distinct points satisfying ®¢(n;) = a. As in the proof
of Theorem 3.3, we can then rewrite (9) using the one-variable Clark measure and the
parameterizing functions from Remark 2.6 to obtain the desired equality when f is a
product of one-variable Poisson kernels. The conclusion of the theorem follows from the
fact that linear combinations of Poisson kernels are dense in C(T?). O

However, if ¢ is a polydegree (ny,...,nq) RIF with singularities on the boundary of D%,
then these arguments break down in multiple places. For example, even if « is generic
in the natural sense, the existence of singularities means that we still cannot necessarily

guarantee that ¢, (-) will be continuous on D", This means we cannot always perform
the trick of rewriting that key function in terms of the Poisson integral of its boundary
values.

Similarly, in two variables, we were able to invoke Lemma 2.5 to deduce that the points
n; could be described by analytic functions, regardless of whether ¢ possessed singularities
or not. In three or more variables, the analogous statement is false in general, see [8];
in that paper, the authors show that when d = 3 and ¢ has singularities, the functions
parameterizing the components of C,(¢) need not be continuous. So, additional work
appears to be needed to obtain a version of Theorem 3.3 in the general d-variable setting.
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3.3. Clark measures in the exceptional two-variable case. We now return to two-
variable RIFs and examine Clark measures associated with the exceptional parameter
values. In this setting, additional care is required to handle cancellations present in ¢ on
the vertical line part of C, and control the z;-partial derivative of ¢ on that vertical line.
That is the context of the following lemma.

Lemma 3.6. Let ¢ = g be a bidegree (m,n) RIF and suppose that the line {¢ € T?: {; =
7} is in Co(¢). Then g—i(T, 29) = ¢1 for some constant ¢y # 0.

Proof. In this proof, we will carefully analyze how the presence of {¢ € T? : (; = 7} in C,
affects the structure of the three polynomials p, p and p — ap. These polynomials show
¢

up when we compute 8—Z1(7', 25), and we will use our findings to deduce that this partial

derivative must be a nonzero constant.
First, the assumption that {¢ € T?: {; = 7} is in C4(¢) implies that

(10) ap<7—7 C2> :]5(7—7 C2>
for all (; € T. Recall that p has no zeros in D* U (T x D) U (D x T), see [15, Lemma 10.1].
Then (10) coupled with the maximum modulus principle implies that ¢, (2q) := ¢(7, 22) =
a on D as well. Thus,

ap(T, z2) = p(T, 22),
for all z, and arguments very similar to those in Lemma 2.3 imply that the degrees of
those polynomials in z3 must be n. Then by the above facts about the locations of the
zeros of p, there must exist A\y,..., Ay € T, integers my,...,my with my +---+my; = n,
and polynomials ¢;, g2 of bidegree at most (m — 1,n) such that

(11) p(z) = (z1 — ) (2) + H(ZQ — /\j)mj
and

p(z) = (21 — 7)qa(2) + OzH(zz — )",

Before analyzing g—jl(r, 23), we need to show that the order of vanishing of p at (7, A;) is
equal to m;. To see this, write p(x; + 7, z2 + A;) using its homogeneous expansion

p(xy 4+ 7,29 + Aj) = Pry(21,22) + Z Py(x1, 22),
k>MA+1

where each P, is homogeneous of degree k, and M is the order of vanishing of p at (7, A;).
Now, as is explained in [5, Section 2], we must have
M

Py (xy,29) = cH(mz — a;r)
j=1
for some ¢ # 0 and ay,...,ap > 0. Then using (11), we have

M
p(T+x1,\j+22) = cH(m —a;x1) + Z Py(z1,29) = 237 r(@2) + 21q1 (T 4 21, \j + 22),
j=1 E>M+1
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14 ANDERSON, BERGQVIST, BICKEL, CIMA, AND SOLA

for some polynomial r with r(0) # 0. Then, plugging in z; = 0, we get
cxyl + Z P(0,25) = 2577(0).

k>M+1
For each k > M + 1, either P;(0,z2) = 0 or it vanishes to order strictly higher than M.
Thus, the above equation gives M = m; as claimed. Expanding p in a similar fashion
gives
P(T+ a1, A+ 22) = Z Qr(z1, 22),
k>N

where N is the order of vanishing of p at (7, ;). Using Proposition 14.5 and related
results in [15], we can conclude that N = M = m; and Q,,; = aFPp,,.

This means that p — ap vanishes to order at least m; + 1 at (7, A;). Using the previous
equations for p and p, we have

p(2) — ap(z) = (21 — T)R(2),
where R vanishes to order at least m; at each (7, \;) and deg R < (m — 1,n). This latter
condition means deg, R < m — 1 and deg,, R < n, where these are the degrees of R in z;
and zo separately. Thus, the one-variable polynomial R(7, z5) vanishes to order at least
m; at each A;. Since deg R(T, z2) < n, this means either R(7,2;) is identically zero or

szl(zg — \;)™ divides R(T, z2). The second case would actually imply that

J
(12) R(T,2) = &1 H(Z2 — )™,

for some ¢; # 0. ,
Now we have enough information to study g—i(r, 29). Specifically, by canceling terms,
we have o Y .
a—(TZ):a_;;p_pa_i('rz):a_zl(p_ap)(Tz)
Dz 2 p? 12 P 12)

Hence, implementing our previous observations gives
a¢ R(T, 22)
a— (7', 22) = 7 .
1 Hj:l(z2 — Aj)™
Since, for almost every ¢ € T, ¢(-,() is a finite Blaschke product, its derivative cannot

vanish on T. Hence R(7, 22) is not identically zero. Thus, it must be the case that R(7, 23)

satisfies (12) and so, g—i(T, 29) = ¢1 # 0, as claimed. O

We will use a limiting argument to study Clark measures associated to exceptional
values using known results for generic parameter values. A key ingredient is the following
lemma.

Lemma 3.7. Let ¢ = g be a bidegree (m,n) RIF and let T,...,7x denote the z-
coordinates of the singularities of ¢ on T?. Let € < 3 min{|m, — 7;]: j # k} and define

(13) Se 1= {(GT: min \C—Tk]<€}.

1<k<K
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Then if f € C(T?), we have

. 1
(14) F(¢a)=) f(C.97 () a5
; S ()]
is uniformly continuous on (T \ Sz) x T, where gf, ..., g% are the parametrizing functions

for Co (@) from Lemma 2.5.

Proof. First, note that by standard properties of RIF's, g—i is continuous and nonzero
on (T\ S:) x T. So it suffices to show that the set {¢7(¢),...,¢%({)} is continuous on
(T '\ S¢) x T up to a reordering of the functions. Specifically, we need to show that for
each ¢y > 0, there is a § > 0 such that if | — z| + |a — | < 6 for (,z € (T \ S5¢) and
a,v € T, then after potentially reordering, we have

(15) Z |g] o g] ‘ < €o-

To that end, we will use the impllclt function theorem. Define the function ®({,w, o) =
¢(¢, w)—a. By properties of finite Blaschke products, for each fixed ((p, ) € (T\ S:) x T,
there exist distinct wy,...,w, € T such that ®((p,w;,ap) = 0. Then for j = 1,....,n,
the implicit function theorem 1rnphes that there are open arcs in T, which we denote
Ul = Ul (Co, ), Uj = UJ(CO,Ozo) 7 := U] (o, ) centered at Co,w],ao respectively and

a continuous function G i 20:0) <uch that
{(¢w,a) € U] x U x U] : ®(¢,w, ) = 0} = {(C,G§“°’<°)(C,a),04) (¢ a) e U] x Ug}.

By shrinking these arcs if necessary, we can assume that the Uf , Ug do not depend on j,
that the Uy, ..., Ul are pairwise-disjoint, and that the G functions are uniformly contin-
uous on Uy x Us. Then the family of sets

{U1(Co, o) % Us (o, ) = (Co, a0) € (T'\ Se) x T}

forms an open cover of (T \ S;) x T. Since (T \ S¢) x T is compact, we can obtain a finite
subcover

L

{U1(Ce ae) x Us(Coye) § oy
Now choose § > 0 such that if | — z| 4+ |a — 7| < §, then the points (¢, @), (z,7) must
be in at least one common set in this finite subcover. Shrinking ¢ if necessarily, we can

further assume that for all of the Gg»a’“”ge), if (¢, @), (z,7) are in Uy (g, o) X Us(y, ), then

(16) |z —C|+|a—7] <& implies that [G*(¢,a) — G (2,7)] < .

Furthermore, the disjointness of the Ug (cv, () implies that (after reordering with respect
to the j index) we must have

9(Q) = GG a) and g)(2) = Gz, ),
for j =1,...,n. Then the desired inequality (15) follows immediately from (16). O

Now we can prove the general formula for Clark measures associated to exceptional
values of two-variable RIFs.
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Theorem 3.8. Let ¢ = ;—'Z be a bidegree (m,n) RIF, and let o € T be exceptional for ¢.
Then for f € C(T?), the associated Clark measure o, satisfies

()dou(C Z/f , g5 ( 822@ gj ch/f Tk, C)dm(C

where g¢', ..., gy are the parametrizing functions fmm Lemma 2.5, (4 = 11,...,(1 = 7y are
the vertical lines in Co (@) from Lemma 2.5, and the ¢ = \%(Tk, 29)|7! > 0 are constants.

Proof. This proof uses many of the same arguments as the proof of Proposition 3.9 in [4],
though it needs the additional tools of Lemma 3.6 and Lemma 3.7. For the ease of the
reader, we still include the details below.

First, write C,(¢) as E,U(U%_, Ly,) where E,, is the set parametrized by the g5 and each
Ly, denotes the vertical line {¢; = 7} in T?. As Clark measures do not have point-masses
[4, Theorem 2.1], 0,(FE, N Lg) = 0 for each k. Thus, it suffices for us to show

(17) T2f(C)XEa Q)doa(C Z/f ) ] B??—SEO(C))’

(18) O Qdon(6) = [ FlrG)am(©

T T
for all f € C(T?) and k= 1,...,¢, where we use g to denote the characteristic function
of a set F.

Part 1. Let us first establish (17). Let f € C(T?). Fix € > 0 sufficiently small and

define S. and S/, as in (13) for € = € and ¢ = § respectively. It is worth noting that the
T1,...,7T¢ in the current proof (the constant values for the lines Lj) form a subset of the
Ti,...,Tx from (13) (the z;-coordinates of the singularities of ¢ on T?). Thus, it makes

sense to assume that the line-values appear at the beginning of the singularity-values list
and then use 7, to denote elements from either list.

Now, let () € T be a sequence converging to o with each «; generic. By Corollary
2.2 in [10], we know that the sequence (o,,) converges weak-x to o,. To use that, let W,
be a function in C(T) satisfying

Ue=1onT\S, V.=0o0n S, 0¥ <1onS\Spm.

By these assumptions and by Theorem 3.3, we have

/f (o) = Tim [ F(OW(¢)dow, (€)

1— 00 T2

:}ir?o;/qrf(é,gf"@) (g dm(o( 9)]

25 (¢
R . dm(¢)
(19) - Z / G N

where the last equality follows from Lemma 3.7, which implies that F'({, «) as defined in
(14) is uniformly continuous on (T\S,/2) x T. Thus, F((, a)¥(¢) is uniformly continuous
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on T?. Since U.(¢1) = 0 on each line Ly, we can conclude that

[ 1606 (©0u(0) = [ £1O0)(0)| < [ 17010 = ez 0)zalc)

< [[fllzo(r2yoa((Se x T) N Eqy).
As e N\, 0, the set (S, x T) N E, shrinks to a finite set of points and so,
11{1(1) o.((Se x T)N E,) = 0.

From this, we can conclude

/f e (C)doa(C) = lim / F(O)P(G)doa(C):

Meanwhile, by breaking f into its real and imaginary parts and then their positive and
negative parts, we can use the monotone convergence theorem to conclude that

| dm(¢)
KrgZ/ngj C)— Z/f & m‘

‘ 0za (g g]
Combining these last two equalities with (19) yields (17).

Part 2. To establish (18), we follow the proof from [4] and show that (18) holds for
all Poisson kernels P,, where z € D?. Then the result follows immediately, since linear
combinations of these are dense in C/(T?).

First, fix r € (0,1). The definition of o, implies that

(20 [ RoneolOrdonc) = 0 (25720,

For the remainder of the proof, we basically just multiply both sides of (20) by (1 — r)
and take limits. First, for ¢ € T?, one can check that

. . 0 if Cl 7& Tk
rlir{l_(l — T)P(rfk,zz)(C) - { 2PZ2(C2) if ¢ = 7.
Then the dominated convergence theorem implies that

hn{ (1—- T)P(er,zz)(C)dUa(O = / 2P, (Co)xr, (€)doa(C).

r—1= Jr2 T2
Since Ly C C,, the maximum modulus principle implies that ¢(7y, 22) = a for all z5 € D.
Furthermore, since ¢ is analytic at each (7%, z9) for zo € D, we have

lim ¢(z1,22) = a and lim Sl ) —a gj’ (Tk, 22) == dj #0,
21Tk 21Tk 21 — Tk
by Lemma 3.6. Then Carathéodory’s theorem (for instance, consult (VI-3) in [20]) gives

lim - ’¢(r7_ka 22)’
r—1- 1—r

= dppa = |dy|
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and so
_ . 2
lim R (1 T)(Oé + (b(TTka Z2)> — lim (1 . 7“) 1 |¢(TTI<:7 22)|
1 a — ¢(r7g, 29) 1 lae — P(r7g, 22)|?
~ i 9| T Tk 21— |p(rmy, 22)] _ 2 '
r—1- | — ¢(r7E, 29) 1—7r |d%|
To finish the proof, set
(21) o L L >0
Y = = )
a2 (s )]

Then (20) paired with our prior computations imply that
[, Pl (Qdoa(O) = =t [ P@am(0)
TQ

T
If we multiply both sides by P, (7%), this gives (18) for f = P,, P,,, which is what we were
trying to show. 0

4. ANALYSIS OF CLARK EMBEDDINGS

Let ¢ be a two-variable RIF and recall that K4 denotes the two-variable model space
associated to ¢. Then, as discussed earlier, Doubtsov in [10] studied the canonical isometry
Jo : Ky L*(0,,), which is initially defined on reproducing kernels by

JolKu(€) i= (1 — ap(w))Cy(¢), for w e D? ¢ € T?

and then extended to all functions in Ky4. In this section, we characterize when J, is
unitary. As in the previous section, we must consider the cases of generic o and exceptional
« separately.

4.1. Clark embeddings associated to generic values. Our structure theorem for

Clark measures associated with generic o € T allows us to show that the corresponding

Clark embedding operators are surjective. We achieve this by showing that, for o € T

generic, the bidisk algebra A(D?) is dense in L*(0,). Then we can appeal to Doubtsov’s

result [10, Theorem 3.2]. Note that we are excluding the degenerate case when ¢ is a

function of one variable only; in that case J, fails to be unitary for all « € T, cf. [10].
We first need the following auxiliary lemma.

Lemma 4.1. Let ¢ = g be a bidegree (m,n) RIF and suppose o € T is a generic value
for ¢. Then there exist rational functions Ry, Ry € A(]D)Q) such that z; = Ry and Zo = Ry
on Co(0).

Proof. Since neither p nor p are polynomials in one variable only, we may write

() = q1(22) + 21q2(21, 22)
p1(22) + 21pa(21, 22)
for some polynomials p1, q; € C[z3] and pa, g2 € C[z1, 25]. Similarly, we have

¢(2) =

r1(21) + 2212(21, 22)
s1(z1) + z282(21, 22)
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again with r1, s; being polynomials in one variable, and rs, so being polynomials in 2y, 2.
Using the first representation, we can rewrite the expression p(z) — ap(z) as

p(2) — ap(z) = q1(22) + 21q2(21, 22) — a(p1(22) + 21p2(21, 22))
(22) = q1(22) — ap1(22) + 21(q2(21, 22) — apa(21, 22)).

Suppose now that q;(z2) — ap;(22) does not vanish on D. Then (22) implies that p(z) —
ap(z) = 0 precisely when

21(042?2(21, 22) - CI2(21, 22))

q1(22) — api(22)
and if ¢ € C,, we can rewrite this as

&= apa(Ci, G2) — ¢2(C1, C2)
o a@—on(@)
Since its denominator is non-vanishing in the closed unit disk, the rational function on
the right belongs to the bidisk algebra A(ID?). Similarly, if 71(21) — as;(22) # 0 for z, € D,
then zy can be seen to be equal to a rational function in A(D?) on C,. If both ¢; — ap;
and r; — asy are non-vanishing on the closed unit disk, the assertion of the lemma follows.
It remains to prove that the assumption that « is generic rules out the presence of
zeros in D. First note that any zero of q;(z2) — api(2) in D must in fact belong to T;
otherwise, ¢ would be unimodular at (0, z2), which is impossible since ¢ is a nonconstant
RIF. Seeking a contradiction, we assume ¢;(7) = ap;(7) for some 7 € T. Consider the
function

1=

(1) + 21q2(21,7)
\f1) = 21, T) = )
¢ ( 1) gb( 1 ) p1(7)+21p2(2177-)
and note that ¢, is a finite Blaschke product. Evaluating at z; = 0, we obtain that
6 (0) = 0(7) _ apl(T) _
pi(7) pi(T)
Hence ¢,(z1) = a for z; € D. But this amounts to saying that T x {7} C C, which

contradicts the assumption that « is generic. A similar argument applies to r; — asq, and
the proof is complete. O

Now, we can show that the Clark embedding operators corresponding to generic values
are surjective.

Theorem 4.2. Let ¢ = % be a bidegree (m,n) RIF and let o € T be a generic value for
¢. Then the Clark embedding J.: Ky — L*(0,) is unitary.

Proof. Using Theorem 3.2 in [10], it will suffice to show that A(D?) is dense in L*(o,).
Since o, is a finite Borel measure on the compact set T? (and hence, a finite Radon
measure), C'(T?) is dense in L?*(0,). Moreover, by the Stone-Weierstrass theorem, the
set of two-variable trigonometric polynomials is dense in C(T?). From this, it is easy
to show that the set of two-variable trigonometric polynomials is also dense in L*(c,).
Specifically, fix f € L*(o,), and ¢ > 0. Then there is a function g € C(T?) and a
trigonometric polynomial p such that

. €
If =gl < 5 and - maxlo() = p(=)] < 5~y
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Then

1f = Pllizen) < If = 9llz2a) + 19 = Pllr2ea) <€
as needed. By Lemma 4.1, we know that each trigonometric polynomial agrees with some
function in A(D?) on C,(¢), which contains the support of o,. Thus, A(D?) is dense in
L*(oy). O

4.2. Clark embeddings associated to exceptional values. Let us now consider the
case of exceptional values. In this situation, the Clark embedding operators are never
surjective.

Theorem 4.3. Let ¢ = g be a bidegree (m,n) RIF and let o € T be an exceptional value
for ¢. Then the Clark embedding Jo: K4 — L*(04) is not unitary.

Proof. The proof proceeds along the same lines as the second half of the proof of [4,
Proposition 3.10]. Namely, by Theorem 3.8, for f € C(T?), among the nonnegative terms
that make up

JRIGIREXG

is a term of one of the following two forms:

qAVhOWMquAV&ﬂWMQ

for some ¢ # 0. Without loss of generality, we assume the former. By Theorem 3.2 in [10],
J, is unitary if and only if A(D?) is dense in L?*(0,). Now for any choice of f € A(D?), the
function f(7, () belongs to H?(T). But H?(T) has positive distance from the L?(T)-span
of the function g(¢{) = (,, which is an element of L?(o,) since g is continuous and o, is
Radon. Hence A(D?) fails to be dense in L?*(o,), and the assertion follows. O

5. FINE STRUCTURE OF CLARK MEASURES FOR TWO-VARIABLE RIFS

In this section, we continue our study of Clark measures associated with RIF's in the
bidisk and our main goal is to use results from [5] to address a question raised in [4, Remark
5.5]. Specifically, for a bidegree (n,1) RIF ¢, it was observed that the Clark measures
associated to generic « values exhibited a certain type of vanishing at the singularities of
¢ and that this vanishing appeared connected to the notion of contact order from [6]. In
what follows, we will make these ideas precise and prove an order of vanishing result in
the more general bidegree (m,n) context of this paper.

5.1. Preliminaries on fine structure. First, let ¢ = g be a bidegree (m,n) RIF, and
let @ € T be generic. With the notation from Theorem 3.3 and for j =1,...,n, let W/
denote the the weight function

~1

0
5%&@@)

that appears in the Clark measure formula. In what follows, it will be useful to have the
additional information about W encoded in the following lemma.

(23) Wi Q) =

J
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AN

FIGURE 1. Level curves for a RIF ¢ with a level curve component (¢, g5(¢))
that does not pass through the singularity at (1, 1), graphed via arguments

on [—7,m)%

Lemma 5.1. Let ¢ = g be a bidegree (m,n) RIF and let o € T is generic. Then for each
J, the function W € LY(T) and satisfies the formula

(€. 52(0) |
g_,i(gv g?(C)) - aaa_zl;(g’ g?(C))

Proof. Fix a generic a € T. Observe that since

Z[qu(g)dm(g) = /’J]‘2 doa(¢) = 1-19(OF < oo,

each W¢ must be in L'(T). Next, note that
822 1,<2) — 822 D 1,<2) — p(Zh 22>2 .

Now, by the definition of C.(¢), we have j(C, g5 (¢)) = ap(¢, g§(()), meaning we can cancel
a common factor of p(¢, g7(¢)) to obtain

(24) Wa(¢) =

J

9% ¢ 40)) = SR )
Dzp p(¢, 95(C)) '
Taking reciprocals and moduli, we obtain the desired formula. [l

Now let (7,7) € T? be a singularity of ¢. This implies ap(r,7) = 0 = p(7,7) and so,
(7,7) € Ca(®) for each . Then, Lemma 5.1 suggests that each W*(¢) should probably
vanish at ¢ = 7, provided (7, g(7)) = (7,7). Note, however, that not every component of
Co need go through each singularity, i.e. satisfy gf(7) = ~. This is exhibited in Figure 1,
which is reproduced from [7, Example 7.2] and displays some level curve components that
do not go through the singularity at (1,1). Thus |p(¢, g7(¢))| may be strictly positive for
some indices j.

The goal for the remainder of this section is to prove the following statement:
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For most values of «, if a branch ((, g5 (C)) of Co goes through the singularity (7,7), then
the corresponding weight function Wi* has order of vanishing at T that corresponds to
the “contact order” of the corresponding branch of Z(p) at the point (T,7).

5.2. Change of variables and key definitions. To make notions of contact order
precise and connect them to level set behaviors, we switch to the setting of the upper
half-plane and use the machinery developed in [5]. This will flatten the distinguished
boundary T? to R? and allow us to move the singularity to the origin (0,0). While we
present the salient details of the change of variables here, the interested reader can find
additional details and results in Section 2 of [5].

First, without loss of generality, assume that the singularity of interest is (7 ,7 =(1,1).
Let H denote the upper half-plane H = {z € C: Im(z) > 0} and let 5: D — H and
S~ H — D be the conformal maps

1 - 1+
B(2) :i<1+j) and B7'(2) = 1jZ

Recall that ¢ = g is a bidegree (m, n) RIF. To convert ¢ to H, first define a new polynomial
q by

q(z) = (1 —iz1)™(1 —iz2)"p (B (21), B (22)) -

Then ¢ is a polynomial with no zeros on H? but a zero at (0,0). Similarly, define

q(z) == (1 —iz)™(1 —iz)"p (ﬁ’l(zl),ﬁ’l(zg)) )
One can check that
q(z) = q(z1, 22)
and the rational function

satisfies |W¥(z1,29)| < 1 on H? and |¥(21,22)] = 1 a.e. on R? with a singularity at (0,0).
Thus, we have transformed ¢ on D? with a singularity at (1,1) to ¥ on H? with a singu-
larity at (0, 0).

Now we need notation to identify level sets in this context. Specifically, for o € T,
define the set

Va(¥) = {z € R*: §(z) — aq(z) =0} .

Let ¢ = g5(¢1) be a branch of Co(¢). Then if we define h§ := f o g% o f7!, the curve
Ty = h§(x;) must be a branch of V,(¥) and this fact is clearly reversible. This is useful
because Theorems 2.16 and 2.20 in [5] give information connecting the branches of the zero
set Z(q) and the branches of the level set V, (V) via their respective Puiseux expansions.
(See [11, Chapter 7] for a detailed overview of how to parametrize branches of an algebraic
curve using Puiseux series, and [5, Section 2] for a fuller discussion of the specific forms
these take in the present setting.)

We encode the important information from [5] in the following two theorems:

Theorem 5.2. There is a positive integer J and related positive integers My, ..., My such
that near (0,0), q factors as
M]

(25) (O TITI (Z2+qg 2+ 225 (s >)

j=1m=1
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where w is a unit at (0,0) (i.e. w is analytic with u(0,0) # 0), each q; € Rz] (i.e. is
a polynomial with real coefficients) has degq; < 2L;, q;(0) = 0, and ¢;(0) > 0, each
wi = exp(2im/M;) is a primitive root of unity, and each v; is analytic near the origin with

Im(1;(0)) > 0.

Theorem 5.3. For all but finitely many o € T, we can also factor

(26) d(2) — aq(z) = (1 — a)u HH(zﬁ% 2) + 255, (2))

j=1m=1

where u® is a unit at (0,0), each q; is the same as in (25) and each ¢§,, is a real analytic

7 function in a neighborhood of the origin.
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Remark 5.4. Basically, Theorems 5.2 and 5.3 describe the branches of the zero set Z(q)
and the level set V,(¥) near (0,0). To denote that we are now looking specifically at R?,

we use variables © = (z1,23). Then Theorem 5.2 says that near (0,0), each branch of
Z(q) in R? is of the form

1
962:—%(%)_1’1 ¢y< ' 1M>7

where the ¢; and v, satisfy certain properties. Similarly, Theorem 5.3 says that near

(0,0), each branch of V, (V) is of the form

2L;
Ty = _Qj(xl) -z’ ;x,m(xl)7

where the ¢; and ¢f,, satisfy certain properties. It is very important to note that the

polynomials g; are the same in the two theorems. However, the ¢; and ¢%, are not. They

actually exhibit immediate disagreement because Im(;(0)) # 0 and 9%,,(0) € R

We let T, denote the set of @ € T for which Theorem 5.3 applies. This is T with a
finite set removed and corresponds to the a for which ¢ — aq has a factorization mirroring
that of ¢. As a consequence, for a € T,, can define the contact order of each branch of
C,, as follows.

Definition 5.5. Let (; = g5(C1) be a branch of C, going through (1,1) and let x5 = h§(z;)
be the corresponding branch of V, going through (0,0). Then (referring to Theorem 5.3),
B2 (21) = —au(r) — 220, (w1), for some pair (k, m).

We then say that K; := 2Ly, is both the contact order of ¢ at (1,1) for the branch
G = g§(C1) of Co and the contact order of V at (0,0) for the branch vy = h§(x1) of V..

We now have enough machinery to state our main result, which precisely describes how
a weight function W3* behaves near a singularity (7,7) of ¢.

Theorem 5.6. Assume the setup of Theorem 3.5 and let W5 be given as in (23). For

all but finitely many o € T, the following holds. If (7,7) € T? is a singularity of ¢ and

Ga = g§(C1) 4s a branch of C, going through (7,7), then there are constants c,C such that
W (¢)

27 0<c< 21— <C
o [

for all ¢ in a neighborhood of T, where K; is the contact order of ¢ at (1,7) associated
with the branch ¢, = ¢§(C1) as given in Definition 5.5.
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The proof requires an additional technical lemma and so, we postpone the proof until
the next section. However, we do observe a quick corollary.

Corollary 5.7. Assume the setup of Theorem 3.3 and let Wi be given as in (23). If o is
a parameter value for which Theorem 5.0 applies, then Wi is a bounded function on T.

Proof. Let 11,..., 7, denote the z;-coordinates of the singularities of ¢ that the branch
(o = gj“(Cl) passes through. By Theorem 5.6, there are open intervals I, around each 7,
such that W is bounded on I,. Now, consider W on T\ (u’g;ll g). By assumption,

2 (¢ 30)]

is continuous on T \ (Uif:l[g). Thus, if W is unbounded on T\ (Ué?:l[g), there must be
a point 7y such that

g—i (T(),Q?(To))) = O

But, this would imply that the finite Blaschke product ¢.,(2) := ¢(79, z) is constant and
thus, the line {¢?> € T : {; = 79} is in some Cy. Note that « is generic and so, is not equal
to this A. But, this implies that the point (79, g§(70)) is on two different level sets of ¢

and so, has to be a singularity of ¢. This is a contradiction and so, W;* must be bounded
after all. ]

5.3. Proof of Theorem 5.6. The proof of Theorem 5.6 basically involves translating
W5 to the setting of ¢, ¢ and using the factorization results to identify the natural order
vanishing of the numerator and denominator of the translated W near the singularity.
However, there is the possibility of additional, unexpected vanishing in the denominator.

To account for that, we require a somewhat technical lemma that is based on the ideas
from [5]. Specifically, we say that the branch of ¢ (as given in the factorization (25)) with
index (7, m) has initial segment r € R[z] of order n if

1

o) = (wten) +20727) ) = 0 (),

and for a € T,, we say the branch of §— g (as given in the factorization (26)) with index
(7,m) has initial segment r € R[z] of order n if

Lj n
r(z1) = (@i(20) + 2208(2)) = O (|l
Then we have the following lemma.

Lemma 5.8. Given the factorizations and definitions above, there are at most finitely
many o € T such that for some pair (j,m),

(28) r(z1) == g5(z1) + 2 05, (0),
is an initial segment of a branch of q of order 2L; + 1.

Proof. Fix an index jy, with 1 < jp < J and observe there are at most finitely many b € R
such that

(29) r(21) = ;o (1) + bszjO

is an initial segment of a branch of ¢ of order 2L;, + 1. In particular, if that happened,
(29) would have to be the initial part of a different ¢; appearing in the factorization of ¢.
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Since there are only finitely many such g;, there are only finitely many such b. In such
situations, the given branch of ¢ (say with index (j,m) as in (25)) would have to satisfy

2L; > 2L;, because Im(%;(0)) # 0 and so, the degree Z" term in the branch cannot

agree with the degree szj term in 7.
Fix a (b, jo) combination such that 7, is an initial segment of order 2L,, + 1 of a branch
of g. To prove the lemma, it will suffice to show that there is at most one o € T, with
j‘?(‘)’m(O) = b for some m. By assumption, there is some positive number N such that
7 is an initial segment of order 2L, + 1 for exactly N branches of ¢ as given in (25).
As this agreement must be happening between the terms in r, and the terms in the real
polynomials ¢; in the branches, we can translate this information over to all § — ag with
aecT,.

Specifically, for v € T, the g; are the same in the two branch factorizations (25) and
(26). Thus, r, also agrees to order 2L; + 1 with N of the ¢; (counted according to
multiplicity) appearing in (26) and thus, is an initial segment of order 2L, 41 for at least
N branches of § — agq.

Proceeding towards a contradiction, assume that two of these a, call them oy and as,
have ¢%i,mi (0) = b for some indices m; and my. Then r, is an initial segment of order
2L;, + 1 of the (jo,m1) and (jo, m2) branches of § — a;q and § — axq respectively and
these new branches are in addition to the N branches already identified, since those had
to satisfy 2L; > 2Lj,. This means that r;, is an initial segment of order 2L, + 1 for at
least N + 1 branches of both § — a;q and § — asq. But, by the discussion in the proof
of Theorem 2.21 in [5], with the exception of at most one a € T, r, must be an initial
segment of order 2L, + 1 for the same number of branches of ¢ and ¢ — ag. This means
that 7, must be an initial segment of order 2L;, +1 for at least N 41 branches of ¢, which
gives our contradiction. Thus, there is at most one o € T, with ¢% | (0) = b for some m,

and the proof is complete. 0
Given that key technical lemma, we can now prove Theorem 5.6.

Proof. Without loss of generality, assume (7,7) = (1,1). Fix a € T and by omitting at
most a finite number of o, one can assume that a € T, so the factorization in Theorem
5.3 applies and « does not possess the behavior detailed in the statement of Lemma 5.8.

Let ¢ = g§(C1) be the branch C, going through (1,1) associated with W3 and let
Ty = h§(z1) be the corresponding branch of V, going through (0,0). Define the related

function a(z, 12 ()|
. q(x, he(x
Vj (z) = 57 ’

gL (1,0 (2)) — agk(w, hg(2))]

Because (1) (z) is bounded above and below in a neighborhood of the origin, one can
use the formula for W¢ in (24) to show that there are constants d, D such that

Vi (@)

30 0<d< -2
if and only if (27) holds. The remainder of the proof establishes (30) by identifying the
order of vanishing at z = 0 of both the numerator and denominator of V. and showing
that the difference in these orders of vanishing is exactly K.

<D
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We first study the denominator of V. Differentiating the factorization in (26) with
respect to 2o gives

N J M,
212 —a2)] = (1= )G T TT (3 + auten) + 20,0 (2)

-z Y ( I1 (zQ+qk<zl>+z%%zzm<zl>)>.

# of factors in (26) \one factor deleted
Recall that -
hi(z1) = =ajo(21) = 20 75 o (21),
for some pair (jo,mg). Then substituting (z, h§(x)) into the above zy-derivative gives the
following formula for the denominator of V;*

2la-ad @ h@) = (1 -ap@i@) [ (@ +al) + g, @),
(k,m)#(jo,mo)

where all but one term vanished when we substituted in zy = z and 2, = h§(z). Let

No(h§, k,m) be the order of vanishing of the term

hg (x) + qi(x) + 2*H g, (2)
at x = 0, so that the order of vanishing of the denominator of V* at x = 0 is

> Na(h kym).
(k,m)#(jo,mo)
We can similarly study the numerator of V,*. Specifically, substituting (z, h$(x)) into the
factorization of ¢ from (25) gives
J My

a1 (@) = ulw, b5 @) T TT (A (@) + aule) + a4 (paa ™))

k=1m=1
Let N(h§, k,m) be the order of vanishing of the term

_1
b3 (z) + qr(r) + a? e (pgt ™)
at x = 0, so that the order of vanishing of the numerator of V/* at x =0 is
Z N(h%,k,m)
(k,m)

Because Im(1;,(0)) # 0, one can check that N(h$, jo,mg) = Kj. Furthermore, we claim
that for each (k,m) # (jo, mo) we have
(31) No(h§, k,m) = N(h§, k,m).
Once we have (31), comparing the numerator and denominator of V* near x = 0 will
yield (30).

We establish (31) by contradiction: assume there is some (k,m) # (jo, mo) such that
No(h§, k,m) # N(h$, k,m). If either No(h$, k,m) or N(h$, k,m) was less than 2Ly,
they would have to be equal, since the underlying branches are equal to that order. So,
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it must be the case that one is greater than 2L;,. As Im(¢;,(0)) # 0, we must have
N(h§,k,m) < 2L, and so we can conclude that N, (h$,k,m) > 2L,
This implies that both the (my, jo) and (k, m) branches of V, are of the form

(32) xy = —qi(z) — 2"y, (0) + Ol ).
Fix x close to zero and define W, (xs) := ¥(x,x5). Then

U, (22) = (67" (x), 67" (22))-
Recall that ¢(¢, -) is a nonconstant finite Blaschke product for all but finitely many ¢ € T.
Thus, by properties of finite Blaschke products, for almost every x, as inputs to ¥, go
through the x values between those of the two branches of V, of form (32), it must output
each A € T at least once. This implies for each A € T,, there is actually a branch of V) of
form (32). Then the discussion in the proof of Theorem 2.21 in [5] implies that

g () + 2* g, (0)
is an initial segment of a branch of ¢ of order 2L, + 1. As this is the exact condition
discussed in Lemma 5.8, this contradicts the fact that we already removed such « values
from consideration. This establishes (31) and completes the proof. U

Remark 5.9. Note that it is indeed possible to have lower order of vanishing for certain
values of a, so that it is necessary to allow exclusion of some finite collection in the
statement of Theorem 5.6. See for instance [4, Example 5.2], where all weights W
exhibit order 4 vanishing at the unique singularity of that RIF, except for W~ which
vanishes to order 2.

6. A TRIDISK EXAMPLE

For s > 3, consider the three-variable rational inner function
Ds(2 SZ122%23 — Z1%2 — 2123 — %273
_ Po(2) = , z€D’

(33) ¢S(Z) - ps(z) §— 21— 22— 23

This function and its close relatives often appear as basic tridisk examples, see e.g. [14, 5].
When s > 3, the polynomial p, has no zeros in the closed tridisk. Hence ¢, has no
singularities on D3, and Theorem 3.5 applies. A computation shows that

O, (2) = $22129 — 8(2829 + 2122 + 21 + 29) + 22 + 2129 + 25
023 (s — 21 — 29 — 23)2 )

For o € T fixed, the set {¢ € T3: p,(¢) — aps(¢) = 0} can be parametrized as

G = 0201, ) = &jgﬁ = f%;f;@, (G1.G) € T

As is guaranteed by [8, Theorem 4.8], each ¢ is the reciprocal of an RIF on D?, and each
1< is continuous on D? when s > 3 since ¢, has no singularities. This can also be checked
directly in this simple case. Plugging (3 = ¢¢ into gf; and simplifying, we get that for

a € T fixed and for f € C(T?), the Clark measure o, satisfies

[ 1Q0alO) = [ (6165160 W0, Gl 1. ).
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where
876 = s(Gh+ GG+ G+ Q)+ G+ Gl +
Ws,a(Cly C2) — 2 .
(8CiC— G — G +a)
Thus, when s > 3, each weight W, is continuous and bounded above and below on T2
but even for this simple choice of RIF, the explicit representation of the o, involves some
fairly complicated expressions.

X
R

SN

SN
>

(a) Level set for ¢ = (3212023 — 2129 — (b) Level set for ¢ = (3212223 — 2129 —
2123 — 2223) /(3 — 21 — 29 — z3) for a = i. 2123 — 2923)/ (83— 21 — 22 — 2z3) for a = 1
and o = —1 (salmon).

FIGURE 2. Supports of the Clark measures o3, for ¢s.

We now turn to the critical case s = 3. Then ¢3 has a singularity at (1,1,1) € T3, with
#5(1,1,1) = Zlim,_,1,1,1) ¢3(2) = —1, and we check that ¢3(1, 1, z3) = —1, reflecting the
fact that the corresponding Blaschke factor experiences a degree drop. For all a@ £ —1, the
two-variable RIF 1/1¢ is continuous on D2, and the weight Wj,, also remains continuous.
However, for each a € T\{—1}, we have W3 ,(1,1) = 0. Finally, examining what happens
for « = —1, the non-tangential value of ¢3 at its singularity, reveals some of the difficulties
that can arise in higher dimensions. First of all,

o _ B+ a+6e+ak
G=1v; ((,¢)= —1-G — G +3GEe

is the reciprocal of an RIF with a singularity at (1, 1), illustrating the fact that the level
set C_; cannot be viewed as a smooth surface in the three-torus. Figure 2 shows the
graphs of C;, C;, and C_; on T®, where points are associated with their arguments in
[—m, m)3.

Moreover, we see that

W*(Cb C2) = alinill W3,o¢(§17 C2) =

—3(¢FC + GG + G+ G) + G+ 1066 + 6
(3G — G — G —1)?
is a discontinuous function on T?, which is moreover unbounded near (1,1) € T?, as
can be verified by evaluating along the curve {(e?,e~")} C T? to obtain the expression
W(e? e ™) =14 ——.
Given this example, it would appear that a more sophisticated approach is needed to
handle Clark measures for RIFs in higher dimensions that possess singularities.
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