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AdaptEdge: Targeted Universal Adversarial Attacks

on Time Series Data in Smart Grids
Sultan Uddin Khan , Mohammed Mynuddin , and Mahmoud Nabil , Member, IEEE

Abstract—Deep learning (DL) has emerged as a key tech-
nique in smart grid operations for task classification of power
quality disturbances (PQDs). Even though these models have
considerably improved the efficiency of power infrastructure,
their susceptibility to adversarial attacks presents potential
difficulties. For the first time, we introduce a novel algorithm
called Adaptive Edge (AdaptEdge), which effectively employs
targeted universal adversarial attack to deceive DL models
working with time series data. The unique contribution of this
algorithm is its ability to maintain a delicate balance between the
fooling rate and the imperceptibility of perturbations to human
observers. Our results demonstrate a fooling rate of up to 90.78%
in the ResNet50 model—the highest achieved thus far—while
maintaining an optimal signal-to-noise ratio (SNR) of 3dB and
ensuring signal integrity. We implemented our algorithm across
various advanced DL models and found considerable efficacy,
demonstrating its adaptability and versatility across diverse
architectures. The results of our study highlight the pressing need
for developing more robust DL model implementations in the
context of the smart grid. Additionally, our proposed approach
demonstrates its effectiveness in addressing this need.

Index Terms—Targeted attack, universal adversarial attack,
time series data, smart grid, power quality disturbance, deep
learning.
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I. INTRODUCTION

S
MART Grid (SG), uses cutting-edge communication and

information technology to facilitate a dependable and

efficient energy supply . It allows for two-way communication

between the utility and its customers, enabling them to manage

their energy consumption more effectively and potentially even

sell excess power back to the grid [1]. They use advanced

technologies to monitor and control power distribution in

real-time, including sensors, automation, and communication

networks [2].

Advanced Metering Infrastructure (AMI) is used by smart

meters installed at the load end to assess power usage

and provide real-time data to the utility [3]. Effective

communication allows for regulating energy production and

consumption in real-time, enhancing grid stability, lowering

energy waste, and using more renewable energy sources. While

SG improves energy efficiency and consumer interaction, their

interconnected nature makes them vulnerable to targeted uni-

versal adversarial attacks (TUAA). Such attacks could target

the grid’s sensors, automation systems, and communication

networks, potentially leading to manipulated energy usage data

or disruptions in grid operations.

The vulnerability of SG to TUAA is further complicated by

the occurrence of power quality disturbances (PQDs). PQDs,

which involve deviations in voltage, current, or frequency,

can adversely affect electrical equipment’s performance. These

disturbances, while sometimes resulting from the inherent

intermittency of renewable energy sources or system malfunc-

tions, can also be exacerbated or mimicked by adversarial

attacks. TUAA can exploit these PQDs as a cover, masking

their manipulative activities within the grid. For instance,

attackers might induce or simulate PQDs to disrupt the grid’s

frequency and voltage, thereby compromising grid stability

and reliability. Additionally, cybersecurity threats can not only

cause PQDs in SG by disrupting communication networks and

control systems [4] but also open avenues for sophisticated

adversarial attacks. These attacks can disrupt energy flow and

data integrity, making it challenging to distinguish between

genuine PQDs and those orchestrated as part of a TUAA.

Thus, mitigating the negative impact of PQDs is crucial for

maintaining the resilience and security of SG.

PQDs can have significant consequences that range from

minor inconveniences to major economic and safety risks.

Poor power quality can damage electronic equipment, cause

production downtime, increase maintenance costs, reduce

equipment lifespan, pose safety risks, and result in energy
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waste. Additionally, non-compliance with regulations and

standards can lead to legal or financial penalties. Machine

learning and deep learning are increasingly used in SG to

improve their efficiency, reliability, and security. By utilizing

these algorithms, anomalies in the grid, like power quality

disturbances or equipment failures, can be quickly detected,

leading to reduced downtime and faster response times [5].

Previous research has explored the vulnerability of DL

models to specific adversarial attacks in power systems [6],

investigated the effectiveness of defense methods against

untargeted attacks [7], and examined joint adversarial exam-

ple and false data injection attacks in power system state

estimation [8]. However, no study is currently on targeted

universal adversarial perturbation of time series data (TSD).

While Rathore et al. [9] proposed a targeted adversarial

attack in TSD using the Fast Gradient Sign Method (FGSM),

universal adversarial attacks present a greater threat as they

can deceive the model across multiple inputs using a single

perturbation. This makes them more effective and potentially

more damaging. Therefore, this paper aims to address this

gap by proposing a novel approach for generating targeted

universal adversarial perturbations in TSD within the SG. Our

approach can significantly impact the security of time series-

based systems and applications. The key contributions of our

manuscript are as follows:

• We propose the targeted universal adversarial attack

(TUAA) on TSD. This attack methodology aims to

deceive DL models operating on TSD by crafting adver-

sarial examples that can fool the models across multiple

inputs. Unlike targeted attacks that require specific per-

turbations for each input instance, the targeted universal

attack utilizes a single perturbation to achieve its objec-

tive. This approach has the potential to be more effective

and impactful, posing a greater threat to the security and

reliability of time series-based systems. To the best of our

knowledge, this is the first time such an attack has been

implemented.

• A new algorithm, specifically designed to facilitate

TUAA, primarily focusing on deceiving DL models

operating on TSD, is introduced. Our approach allows

for the generation of adversarial examples that can fool

power system control centers in SG, demonstrating the

vulnerability of this model to attack. This contribution

highlights the potential security risks associated with TSD

and provides a foundation for developing more robust

models in the future.

• Our algorithm is the first to consider and successfully

balance the crucial trade-off between imperceptibility

(i.e., signal-to-noise ratio SNR) and fooling rate for

launching TUAA on TSD. This careful balancing ensures

effective attack success rates without compromising the

stealthy nature of adversarial perturbations. This inno-

vative perspective validates our algorithm’s efficacy and

paves the way for a new direction in adversarial machine

learning research, especially about TSD.

The remainder of this paper is structured as follows. In

Section II, we discuss the existing research on cyber attacks

against the SG and highlight the gaps in the literature that

our work aims to address. In Section III, we introduce the

application of DL in smart grids and attack scenarios. We

then present the threat model in Section IV to provide insight

into the attack methodology. Section V explains the proposed

TUAA on TSD in the SG. We describe the datasets used in

our experiments and the model architecture in Section VI. We

present the simulation results in Section VII, demonstrating the

effectiveness of our proposed attacks against SG. We conclude

the paper in Section VIII by summarizing our findings and

discussing the implications of our work for the security of SG.

II. RELATED WORK

A. Power Quality Disturbances Classification

Machine learning algorithms are revolutionizing the SG

by offering a versatile set of applications, including demand

forecasting, anomaly detection, grid optimization, energy theft

detection, load balancing, power quality disturbances clas-

sification, and more. In [10], Multiple PQDs (MPQDs) are

detected and categorized using a novel hybrid technique based

on Stockwell transform (ST) and deep learning. In [11], the

authors introduce a swift and accurate algorithm for monitor-

ing PQDs in SG, amalgamating histogram and discrete wavelet

transform techniques for feature extraction and employing

machine learning for precise classification to enhance PQDs

detection performance. Yigit, Yiğit et al. [12] employed a

Convolutional Neural Network (CNN) structure with Gated

Recurrent Unit for classifying PQDs signals. The authors

demonstrated that, in their research, the performance of the

VGG-16 and ResNet-50 models was very similar. In [13],

authors suggest a method for classifying PQD using a DL-

based CNN that incorporates an attention model. This model

focuses on rescaling available data based on pixel count before

pooling it to create an enhanced data set for deeper CNN

analysis.

B. Cyber Attacks on the Smart Grid

Several studies have investigated the impact of cyber attacks

on the SG, including untargeted and targeted attacks. In [14],

Niazazari and Livani highlights how adversarial attacks can

lead CNNs to misclassify events in SGs. Sayghe et al. [15]

discuss adversarial attacks on Multilayer Perceptron for

detecting false data injection. In [16], authors proposed an

adversarial machine learning approach that utilizes black-

box optimization techniques to generate dynamic load-altering

attacks. In [17], researchers suggest Ensemble and Transfer

Adversarial Attacks across diverse DL models. Tian et al. [18]

proposed an adversarial attack crafting method based on a

forward derivative that considers input element magnitude,

attack impact on multiple regression output, and other control-

lable measurement meters. Cheng et al. [19] utilize different

adversarial attack mechanisms to add noise signal to the

input Phasor Measurement Units time series and show that

current DL-based power system event classifiers are highly

susceptible to such attacks, which could compromise the

power transmission system’s reliability. In [6], the authors

demonstrate the vulnerability of current ML algorithms in

power systems to adversarial examples and propose an efficient
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Fig. 1. Smart grid infrastructure illustrating the potential exploitation points for targeted adversarial attacks during signal transmission to the DL-based power
control center.

TABLE I
COMPARISON WITH EXISTING TECHNIQUES

algorithm to generate such examples for categorical and

sequential applications. Kosut, Oliver, et al. [20] perform the

cyber attack on SG by malicious data injection technique.

In [21], the researchers investigate how vulnerable a Long

Short-Term Memory (LSTM) network and a CNN are to

targeted, semi-targeted, and non-targeted adversarial attacks in

predicting wind power outputs.

C. Comparison With Existing Technique

In [22], the algorithm focuses on generating adversarial

attacks for individual power quality signals. While this pro-

vides a robust method for deceiving the model with different

perturbations for each signal, it is not effective as a universal

attack from the attacker’s perspective because the attacker

can misclassify the model with a single perturbation in a

universal attack. Moreover, the authors in [22] adopt an

untargeted universal attack approach on TSD; however, TUAA

poses a greater danger than untargeted attacks. In their work,

Rathore et al. [9] introduced a targeted adversarial attack on

TSD using the FGSM. However, the universal adversarial

attack poses a greater threat due to its ability to deceive

the model across multiple inputs without crafting specific

perturbations for each instance, unlike FGSM. This attack

approach has the potential to be more impactful and cause

widespread damage. In [23] and [24], authors have proposed

algorithms for targeted universal adversarial attacks on image

data, not in time series data. Moreover, their solution didn’t

perform optimized balancing to maintain a careful balance

between the fooling rate and imperceptibility, a critical aspect

for the stealthiness and success of attacks in time series

data. We present the comparison of our work to the existing

technique in Table I. Addressing this significant research gap,

our paper aims to propose a novel method for generating

TUAA to fool the DL model working with TSD in SG. Instead

of generating adversarial signals tailored to specific samples,

our AdaptEdge algorithm generates a universal perturbation

that, when applied to any signal, causes the deep learning

model to classify the signal as the attacker chooses. Through

the AdaptEdge function, the perturbation intensity is fine-

tuned to achieve a high fooling rate while maintaining an

imperceptible perturbed signal. These distinctions highlight

our proposed method’s originality and expanded capabilities

compared to the untargeted approach.

III. NETWORK AND THREAT MODEL

A. Network Model

The network model of the SG, depicted in Figure 1, encom-

passes various essential components. These include generators,

transmission and distribution systems, substations, loads, com-

munication channels, CNN models, and the control center.

Generators are responsible for generating electrical power,

utilizing diverse sources like fossil fuels, renewable energy,

or nuclear power. The transmission and distribution systems

facilitate the transfer and delivery of electricity from genera-

tors to end-users. Substations, located strategically throughout

the grid system, regulate voltage levels for efficient electricity

flow. Loads represent the devices and consumers that utilize

electrical power, encompassing residential, commercial, and

industrial appliances, lighting, and machinery. Communication

channels, often employing optical fibers, enable seamless data

exchange among grid components. At the core of the SG,

the control center acts as a centralized hub for monitoring,

managing, and responding to power generation, distribution,

and load balancing.

The control center leverages state-of-the-art technologies

and software applications to carry out these responsibilities

effectively. Among these advanced technologies is a DL-

based CNN. Integrated into the control center’s software

infrastructure, CNN performs vital tasks, including identifying

and analyzing PQDs throughout the SG. By harnessing DL

capabilities, CNN enables real-time analysis, enabling the con-

trol center to detect anomalies, diagnose faults, and promptly
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Fig. 2. Proposed Threat Model.

predict maintenance requirements. By comprehensively exam-

ining data collected from various components of the SG, the

control center can make well-informed decisions efficiently.

This utilization of DL techniques significantly enhances the

operational efficiency and reliability of the entire SG, leading

to more effective management of power resources.

B. Threat Model

In Figure 1, we consider that the SG functions as a

Cyber-Physical System (CPS), where DL models process data

obtained from the communication channel to enable intelligent

decision-making. The system can optimize energy distribution,

predict demand, detect anomalies, and automate maintenance

tasks by analyzing these diverse data. Consequently, the SG

can improve its operational efficiency, dependability, and

responsiveness. Signal-based applications, such as PQDs iden-

tification or fault detection, heavily rely on the communication

channel to capture transmitted signals for analysis by DL

models. The attacker can manipulate the communication link

to remain undetected and evade anomaly detection methods.

In our threat model in figure 2, we consider both insider and

outsider adversaries within a white-box system. The attacker

possesses complete knowledge of the target model, including

its architecture, parameters, and training data. An attacker

with black box access and the capability to inject fake data

is also powerful. A powerful attacker with black box access

could perform several examples of direct attacks, such as

the Gradient Estimation black-box attack [25] and the Word

Substitution Ranking Attack [26]. These attacks demonstrate

the potential for powerful attackers with black box access to

perform direct and significant attacks on machine learning

models. External attackers seeking to exploit the power grid

system may attempt to gather white-box knowledge from

various sources. These sources could include publicly available

documents, specifications, or research publications related

to the power grid infrastructure. According to Kerckhoff’s

principle, the security of a system should not rely on the

secrecy of the algorithm or design but rather on the secrecy of

the key. While some technical information may be accessible,

obtaining a complete and up-to-date understanding of the

system’s intricacies could be challenging. In that case, external

adversaries may rely on model stealing attacks [27]. This

comprehensive knowledge enables attackers to craft tailored

adversarial examples that exploit vulnerabilities within the

model, simplifying the execution of successful attacks. In

addition to outsider adversaries, we address the threat posed by

insider adversaries with authorized access to the infrastructure.

Insiders in our scenario can be employees of the company that

manufactures Intelligent Electronic Devices (IED), and the DL

models used at power control centers. Due to merging IED

and DL model production, an insider within the manufactur-

ing organization is already privy to intricate model details.

Furthermore, utility personnel, who are also classified as

insiders in this framework, comprehensively understand these

DL models due to their active participation in the procurement

process, in which they specify detailed requirements to the

manufacturer and then implement the acquired DL model-

based power control centers. The IED manufacturing and

utility staff know encryption keys, given the threat model

we described. This knowledge is inherent to the manufac-

turer’s representative as part of the manufacturing process.

Concurrently, utility personnel are familiar with encryption

keys as a term incorporated in their contractual agreements

with the manufacturer, ensuring device initialization, main-

tenance, and emergency interventions. Manufacturers may

provide keys to ensure seamless integration and simulate real-

world scenarios during IED deployment and testing. Moreover,

given their positions, these insiders may have physical access

to the devices, allowing for direct hardware tampering,

implantation of malicious components, or firmware alterations,

altering device configurations to compromise power control

systems. Understanding these aspects is essential to compre-

hensively address and mitigate the risks associated with insider

threats in critical power infrastructure environments.

IV. UNIVERSAL ADVERSARIAL ATTACKS, OVERVIEW OF

TARGETED UNIVERSAL ADVERSARIAL ATTACKS IN

SMART GRID AND ADAPTIVE EDGE ALGORITHM

A. Taxonomy of Universal Adversarial Attack

Universal Adversarial Perturbation (UAP): The Universal

Adversarial Perturbation (UAP) refers to a vector that, when

added to any signal within a specific dataset, results in mis-

classification by a deep learning model [28]. This perturbation

is calculated by solving an optimization problem that aims

to minimize the model’s accuracy on a dataset with the

perturbation applied. Given a dataset of n samples X =

x1, x2, . . . , xn and a target classifier f , the UAP vector r can

be obtained by solving the following optimization problem:

r = arg min
r

n
∑

i=1

!(f (xi + r), yi)

subject to |r|p ≤ ε (1)

where yi is the true label of xi, ! is a loss function, and

ε is a hyperparameter that controls the magnitude of the

perturbation. The objective of the optimization problem is to

find the perturbation vector r that minimizes the loss of the

target classifier f on the dataset.

On the other hand, in our problem formulation, the Targeted

Universal Adversarial Perturbation (TUAP) seeks to generate a

single perturbation that, when added to multiple input samples,

causes a DL model to incorrectly classify into a specific
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Fig. 3. Visualization of the Perturbation Edge.

predetermined class. The TUAP is formulated as the following

optimization problem:

rTUAP = arg max
r

{

1

n

n
∑

i=1

χ{f (xi+r) =ytarget}

}

subject to max
i

{SNR(xi, r) } ≥ SNRmin and ‖r‖p ≤ ε (2)

where ytarget is the targeted class label for the adversarial

attack, χ is the indicator function that equals 1 if the classifier

f misclassifies the perturbed input xi + r as the target class

ytarget, and 0 otherwise, SNR(xi, r) is the signal-to-noise ratio

between the original signal xi and the perturbation r, SNRmin

is the minimum acceptable SNR, and ε is the perturbation

budget. The objective is to maximize the fooling rate, while

also ensuring that the perturbation r remains imperceptible as

measured by the SNR.

B. Adaptive Edge Algorithm

The Adaptive Edge (AdaptEdge) algorithm focuses on

deceiving DL models analyzing TSD by creating adversarial

perturbations that are both effective in misleading the model

and imperceptible to human observers. The algorithm achieves

this through a careful balance between the fooling rate and the

SNR. The AdaptEdge algorithm introduces a novel approach

to generating universal perturbations by dynamically adjusting

the perturbation edge. This concept refers to the bound-

ary within which perturbations can manipulate the model’s

predictions without becoming perceptible to humans. The con-

ceptual representation of the perturbation edge, as illustrated

in Figure 3, visually encapsulates the algorithm’s essence.

The semi-transparent sphere symbolizing the perturbation edge

within the feature space delineates the limit of allowable

perturbations, with the scattered red dots representing various

adversarial perturbations confined within this boundary. This

confinement ensures perturbations remain subtle, highlight-

ing the algorithm’s ability to conduct stealthy adversarial

attacks without compromising the integrity of the signal. The

dynamic adjustment mechanism of the AdaptEdge algorithm

is mathematically encapsulated in the optimization problem

formulated for TUAP, as shown in Equation (2). The essence

of this problem is captured by an objective function aiming

to maximize the fooling rate, arg maxr{
1
n

∑n
i=1 χ(f (xi + r) =

ytarget)}, where r represents the adversarial perturbation vector

designed to mislead the classifier f into incorrectly classifying

Fig. 4. Waveshape of Different PQDs.

the perturbed inputs xi + r as a specific target class ytarget.

The optimization problem is further constrained to ensure that

the generated perturbations remain imperceptible. The first

constraint, maxi{SNR(xi, r) } ≥ SNRmin, ensures that the

signal-to-noise ratio for any perturbed sample remains above

a minimum threshold. Concurrently, the second constraint,

‖r‖p ≤ ε, controls the magnitude of the perturbation. Through

these constraints, the AdaptEdge algorithm adeptly navigates

the trade-off between maximizing the fooling rate and ensuring

the perturbation’s imperceptibility.

C. Overview of Targeted Universal Adversarial Attacks in

Smart Grid

PQDs can be categorized into different classes: Normal,

indicating a typical waveform free of anomalies; Sag, a

momentary voltage drop; Swell, a transient voltage spike;

Interruption, a momentary power outage; Transient, sudden

surges typically caused by equipment failures or lightning;

Oscillatory transient, a brief frequently decaying waveform

deviation; Harmonics, integer multiples of the fundamen-

tal frequency causing distortion; Harmonics with Sag and

Harmonics with Swell are respective combinations of har-

monics with voltage declines and surges; Flicker, perceptible
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voltage fluctuations causing illumination discomfort; Flicker

with Sag and Flicker with Swell, voltage dips and surges

combined with flicker, respectively; Sag with Oscillatory

transient and Swell with Oscillatory transient, voltage dips

and surges, and repetitive waveform deviations; Sag with

Harmonics and Swell with Harmonics are harmonics-induced

distortions accompanied by declines and surges,and Notch,

a short disturbance in the waveform. When PQD occurs, it

propagates through the transmission and distribution system to

reach the substation. To effectively analyze these disturbances,

they are processed through a DL model. The model is designed

to account for the variability and complexity of PQD data,

which can vary significantly across different substations due

to factors such as local consumption patterns, the integration

of renewable energy sources, etc.

The DL model processes this raw data, extracting key

features and classifies disturbances with high precision.

After classifying the PQD, the DL model communicates the

results to the control center. This information empowers the

autonomous power system controller to take decisive action,

including voltage regulation, transitioning to backup power

sources, activating or deactivating generating stations, and

adjusting the load. The communication channel is crucial for

transmitting raw signals between the substation and the control

center. However, attackers can compromise this channel and

introduce TUAA to the PQDs signals that can threaten the

resilience of SG to potential cyber threats and manipulate

the DL model’s output by altering the signals received by

the control center. Incorrect signals may lead to erroneous

decisions, jeopardizing the power system’s optimal and safe

operation.

V. METHODOLOGY OF TARGETED UNIVERSAL

ADVERSARIAL ATTACK

The method for constructing a TUAA using the AdaptEdge

algorithm is described in Algorithm 1. For greater clarity, we

have illustrated the process of the Adaptive Edge Algorithm

with a flowchart. Figure 5 depicts the algorithm’s progression

graphically. The algorithm begins by initializing parameters

such as the initial fooling rate, universal perturbation, and

the number of iterations. The signals belonging to the source

class are stored in an array. The main loop of the algorithm

continues until either the fooling rate surpasses a predefined

threshold or the maximum number of iterations is reached.

During each iteration, the algorithm calculates the fooling

rate and SNR, and then calls the AdaptEdge function to

dynamically adjust the perturbation edge value ε. The fooling

rate, in the context of targeted attacks, is defined as the fraction

of adversarial samples that were both misclassified by the

model and classified specifically to the desired target class.

Mathematically, let Ytrue be the true labels of our test samples,

Yadv be the predicted labels of the adversarial samples, and

Ytarget be the desired target class for our adversarial attack.

The fooling rate is given by:

fooling rate =

∑N
i=1 I

(

Ytrue,i %= Yadv,i and Yadv,i = Ytarget

)

N

Algorithm 1 Adaptive Edge (AdaptEdge) Algorithm

Require: source_class,target_class,

maximum_iterations,initial perturbation edge

ε,fooling_rate_threshold

Ensure: Universal perturbation for targeted adversarial attack

1: fooling_rate ← 0

2: universal_perturbation ← 0

3: i ← 0

4: arr ← source class signals from training samples

5: while fooling_rate<fooling_rate_threshold

and i <maximum_iterations do

6: Search for optimal ε based on AdaptEdge function

7: Select one signal, x, at a time from arr

8: if target_class %= source_class then

9: Initialize pert_signal = x and a_p = 0

10: Compute the gradients: ∇f_s(x), ∇f_t(x),

and prediction

11: while prediction[target] < c_t do

12: Compute p_d, p_m, c_p

13: Update a_p and pert_signal

14: Re-compute gradients and prediction

15: end while

16: universal_perturbation = a_p

17: Update universal_perturbation

18: universal_perturbation=

project(universal_perturbation, ε)

19: end if

20: i ← i + 1

21: Apply universal_perturbation to all samples

in the test dataset

22: Calculate Signal_to_Noise_Ratio

23: Calculate fooling_rate

24: end while

25: return universal_perturbation

Where I is the indicator function, which is 1 if the condition

inside is true and 0 otherwise. N is the total number of test

samples. In the context of the targeted attack, this fooling

rate measures how often the adversarial perturbations caused a

misclassification specifically towards the desired target class.

A higher fooling rate indicates that the adversarial attack is

more effective in guiding the misclassifications toward the

target class.

Algorithm 2 introduces the AdaptEdge function, which

dynamically adjusts the perturbation edge to enhance the

effectiveness of deceiving DL models in the context of

TSD. The hypothesis behind this approach is that modifying

the perturbation edge dynamically can improve the attack’s

success without affecting the input signal’s imperceptibility.

Empirical studies demonstrated promising results, validating

the effectiveness of our method in generating perturbations

capable of deceiving DL models when applied to TSD. In the

initial phase of our proposed algorithm, we establish a specific

threshold for the SNR to classify degrees of imperceptibility

as high, medium, or low. These levels are determined by

modulating the perturbation edge value and visually inspecting
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Algorithm 2 Adaptive Edge (AdaptEdge) Function

Require: SNR_threshold,fooling_rate_threshold,

initial perturbation edge ε.

Ensure: Optimal ε for the required level of imperceptibility

with the desired fooling rate

1: fooling_rate ← 0

2: ε ← small initial value

3: while fooling_rate≤fooling_rate_threshold

or SNR≥SNR_threshold do

4: Increase ε

5: Calculate perturbation with new ε

6: Update fooling_rate

7: Update SNR

8: end while

9: while fooling_rate≥fooling_rate_threshold

or SNR≥SNR_threshold do

10: Decrease ε

11: Calculate perturbation with new ε

12: Update fooling_rate

13: Update SNR

14: end while

15: return Optimal ε

Fig. 5. Flow chart of targeted universal adversarial attack on time series data
using AdaptEdge algorithm.

the resulting signal integrity. We infer that the attacker is aware

of these established SNR thresholds and uses this information

to navigate the levels of imperceptibility.

When we increase ε, we effectively expand the “edge” of

the hypersphere, allowing perturbations to exist in a larger

region. When ε is decreased, this boundary is shrunk, thereby

confining the perturbations to a smaller region. In this context,

the algorithm begins with a very small value for the ε and

gradually increases it. The goal is to determine the maximum

value of ε that preserves signal integrity while achieving high,

medium, and low levels of imperceptibility.

After the SNR threshold and the fooling rate threshold

have been set, our algorithm starts with an initial small value

of ε. The experimentation begins with a high degree of

imperceptibility for the given source-target class pair. If the

fooling rate meets or exceeds the threshold, the algorithm

further minimizes ε to determine if a desired fooling rate is

achieved using a value smaller than the initial ε. If the desired

rate of deception is achieved, ε is further decreased to ensure

an extremely high level of imperceptibility (i.e., high SNR).

This reduction continues until a fooling rate equal to or greater

than the criterion is reached. This optimal ε represents the

optimal radius and thus defines the optimal perturbation edge.

In contrast, if a fooling rate below the threshold is obtained

using the initial ε, the algorithm increases ε to determine if

the rate of deception approaches or surpasses the threshold

and ε increases until the threshold is reached or exceeded.

The algorithm then starts decreasing ε to a value between

the incremented ε and the initial ε to check whether the

imperceptibility can be increased with the desired fooling rate.

If the fooling rate again equals or exceeds the threshold, ε will

continue to decrease until it falls below the threshold. When

the fooling rate falls below the threshold, the algorithm ceases

reducing the ε and resets it to its previous value. This dynamic

modification of ε permits optimal adversarial perturbation

while preserving signal integrity. The algorithm demonstrates

a sophisticated strategy that consistently and adaptively seeks

the optimal perturbation edge value. By intelligently balancing

imperceptibility and deception rate, it precisely navigates the

search space, always converging on a minimal point. Our

empirical evaluations show that the proposed linear search

method is highly effective despite its apparent simplicity. It

yielded positive results in nearly 93.75% of the cases we tested

(Please refer to Table II).

Algorithm 1 only attempts to generate a perturbation if

the current source signal is not classified as the desired

target class, as it prevents the algorithm from wasting com-

putational resources on unnecessary perturbations. However,

a mechanism is implemented if it is impossible to modify

the source class to the target class. If there is no signifi-

cant progress toward the desired misclassification after the

maximum number of iterations, the algorithm will identify

this situation and proceed to the next signal. If not, the

algorithm employs the DeepFool algorithm [29] to generate

an adversarial perturbation for the current signal and update

the universal perturbation. The gradient determines how to

perturb the input to maximize classifier output change. The

algorithm iteratively computes the gradient of the model’s

output with respect to the input data and modifies the input

data to reduce the model’s confidence in the true class, and it

repeats until the classifier output changes. If the target class
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TABLE II
SIMULATION RESULTS FOR THE TARGETED UNIVERSAL ADVERSARIAL ATTACK USING ADAPTEDGE ALGORITHM

differs from the source class, the algorithm initializes the

perturbation signal from a given input signal x and begins

with zero accumulated perturbation ap. It computes gradients

with respect to the intended source and target classes for

the signal. The loop iterates until the confidence predicted

for the target class exceeds a specified threshold, ct. The

algorithm determines the perturbation direction pd throughout

each iteration, and the perturbation magnitude pm, as well
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as the accumulated perturbation ap, are then updated using

current iteration perturbation cp. This iterative process refines

the perturbation until it is sufficient to fool the classifier. After

iterations, the algorithm returns the accumulated perturbation

to incorrectly classify the input signal as the target class.

The updated perturbation is then projected onto the ε-radius

ball using a projection function to restrict the perturbation’s

maximum strength. In this context, the projection function

is a mathematical operation that confines the updated adver-

sarial perturbation within a defined boundary, specifically

a hypersphere of radius ε. The projection function scales

the given values to fit within a hypersphere of radius ε in

L2-norm space, ensuring that the magnitude of the adversarial

perturbation does not exceed the specified ε limit. The essence

of an adversarial perturbation is its magnitude and direction,

which indicates how an input sample is modified to cross a

classifier’s decision boundary. The projection operation pri-

marily modifies the magnitude while preserving the direction,

thereby not significantly altering the adversarial characteristics

of the perturbation. While the direction of the perturbation is

crucial, limiting its magnitude ensures that the perturbations

remain discreet, thereby enhancing the imperceptibility of

the attack. The projection ensures that the magnitude does

not exceed a predetermined threshold, making it difficult

to detect and effective. The algorithm applies the current

universal perturbation to the entire test dataset and predicts

the class labels of the perturbed dataset after each iteration.

The SNR is then computed to evaluate the imperceptibility

of the disturbance, and the fooling rate is recalculated to

determine if it has reached the desired threshold. Ultimately,

the algorithm produces a universal adversarial perturbation that

can cause effective misclassification towards the target class

while preserving the perceptual quality of the signals. This

comprehensive and adaptive strategy ensures a delicate balance

between high imperceptibility and the desired fooling rate,

making the algorithm significantly contribute to adversarial

machine learning.

VI. SIMULATION RESULT

A. Description of Power Quality Disturbances

In the context of SG, noise can originate from various

sources. Internal components, such as transformers and power

electronics, can contribute to noise, while external factors,

such as electromagnetic interference and environmental dis-

turbances, can contribute to additional fluctuations. This noise

is typically stochastic and can follow a variety of statistical

distributions, including Gaussian and Poisson. Gaussian noise

might model uncertainties from electronic devices and their

inherent thermal noise, whereas Poisson distributions are more

appropriate for representing event-driven noise, such as that

from random fault occurrences. Notably, these distributions

are approximations of the original noise distribution in SG.

Depending on the specific system and environment, the actual

noise distribution may be more complex and variable. Its

fluctuating nature makes it challenging to distinguish from

adversarial perturbations. Adversarial perturbations can be

designed to have similar statistical properties, subtly altering

the signal without changing its fundamental characteristics.

This similarity to legitimate system noise poses difficulties

in detection, as grid operators and security systems are

accustomed to continuous and pervasive noise. Well-designed

adversarial perturbations can thus camouflage themselves

within the existing “noise floor,” evading detection by mim-

icking legitimate noise patterns.

PQD manifests in many intriguing forms, ranging from

voltage sags and interruptions to more elusive phenomena

like flickers, swells, and spikes. This diverse array extends

to oscillatory transients, harmonics, notches, and complex

combinations. The provided equations offer simplified repre-

sentations of these signals, which may be subject to variations

based on the specific characteristics of each disturbance. The

mentioned parameters represent the key variables related to

each signal class, although additional parameters may exist for

more extensive modeling and analysis. It is important to note

that these PQDs can have distinct effects on the power system

and connected equipment, giving rise to various operational

issues and potential damage. Understanding and addressing

these PQDs is crucial for maintaining a reliable and efficient

power system.

B. Datasets and Deep Learning Model

To assess the performance of the proposed TUAA for

PQDs, we apply ResNet50 as a DL model in our case.

The mathematical model and parameters of PQDs proposed

in [30] are employed, where the PQ models set the sampling

frequency of signals to 3200 Hz, the fundamental frequency

to 50 Hz, the number of total cycles to 10, and the amplitude

to 1. Consequently, the input signal vectors have a fixed length

of 640, although the actual signal is continuous and uninter-

rupted. For all 17 classes of signals, Table A displays signal

types, mathematical equations, and parameters. A publicly

available [22] labeled dataset focuses on processing and ana-

lyzing relatively clean, class-balanced data. A class-balanced,

publicly accessible labeled dataset concentrates on processing

and analyzing relatively pure data. Using 15000 signals from

each class, the dataset contains 255,000 signals with an SNR of

30dB. All of the samples are separated into 17 PQD. We take

207000 training samples, 23000 validation samples, and 25000

testing samples. To assure the randomness and robustness of

our model, we randomize the order of data samples. The

labels are transformed to encode them using one-hot encoding.

Signals are reshaped to ensure that each time point is regarded

as a separate feature, preserving the temporal dependencies.

After training for ten epochs, our model demonstrates excellent

performance, achieving a test accuracy of 99.22%.

C. Experimental Setup

1) Hardware Requirements: The experiments were con-

ducted on a state-of-the-art computational system. The central

processing unit (CPU) is an Intel Core i9-9920X, which

operates on a 64-bit x86 architecture. The CPU boasts 12

cores per socket, facilitating multi-threaded operations with

two threads per core, resulting in a total of 24 logical CPUs.

Cache memory is distributed across different levels: 32K
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for L1d and L1i, 1024K for L2, and a substantial 19712K

for L3. Complementing the system’s computation prowess

is a robust memory setup of 125GB RAM. Graphics and

computationally intensive tasks are delegated to four NVIDIA

Quadro RTX 6000 GPUs, enhancing the system’s parallel

processing capabilities.

2) Software Requirements: The experiments conducted in

this study utilized a specific set of software tools and libraries.

Ubuntu 18.04.5 LTS (Bionic Beaver), well-regarded for its

stability and wide compatibility, was the operating system,

and Python (version 3.6) was the primary programming lan-

guage to construct our computational environment. The system

employs NVIDIA’s CUDA toolkit for GPU-accelerated tasks,

specifically version 10.2.89, complemented by the NVIDIA

driver version 470.94. The GPUs efficiently handle a variety

of processes, from system operations such as Xorg to com-

putational tasks written in Python. We used Keras 2.2.4 with

TensorFlow 1.13.1 as the backend for DL tasks and model

implementations and Pycharm 2023.2 (Community Edition) as

the integrated development environment. Keras preprocessing

(version 1.1.2) facilitated data augmentation and preprocessing

stages. Using Matplotlib (version 3.3.3), data visualization was

achieved. We relied heavily on Numpy (version 1.19.5) for

numerical computations and Pandas (version 1.1.4) for data

manipulation and management. Lastly, we utilized Scikit-learn

(version 0.23.0) for specific machine-learning tasks and data

preprocessing processes. Researchers attempting to replicate or

extend our findings must use these precise versions to maintain

consistency with our experimental design.

3) Hyperparameter Settings: In our experiments, the DL

model utilizes the categorical cross-entropy loss function and

the Nadam optimizer with the following parameters: lr =

0.002, β1 = 0.9, β2 = 0.999, and stability term ε = 1e − 08.

The learning rate’s decay schedule was set to 0.004. Based

on visual inspection, the imperceptibility levels of adversarial

perturbation were classified as follows: low imperceptibility at

SNR values of 3 dB, medium at 5 dB, and high at 7 dB. The

corresponding thresholds for the fooling rate were 30%, 50%,

and 70%, respectively. The initial value for ε before starting

the experiment for low, medium, and high imperceptibility is

0.5, 2.5, and 4.5, respectively. In addition, our algorithm was

limited to a maximum of 150 iterations to ensure convergence.

4) Result and Discussion: Our study explores TUAA on

TSD in the SG. Our algorithm proves to be effective across

various applications due to the inherent similarities in TSD.

Through empirical analysis, we demonstrate the successful

execution of universally targeted adversarial attacks on TSD

using our proposed algorithm. In Table II, the simulation

evaluates the model’s behavior under various combinations

of source and target classes, where the source class refers

to the original classification and the target class represents

the intended misclassification. Our proposed algorithm can

misclassify these signals into 14 target classes- sag, swell,

interruption, oscillatory transient, harmonics, harmonics with

sag, harmonics with swell, flicker with sag, flicker with

swell, sag with oscillatory transient, swell with oscillatory

transient, sag with harmonics, swell with harmonics, and

notch- that could significantly compromise the power system’s

stability, dependability, and overall performance. In Figure 7,

we present a confusion matrix that demonstrates the effec-

tiveness of our proposed algorithm in a specific adversarial

scenario where ‘Normal’ is the source class and ‘Harmonic

with Sag’ is the target class. The matrix provides a clear

visual representation of how well our model performs in

this particular circumstance, and this is clearly demonstrated

by the high fooling rate of 90%. Our method generates a

universal adversarial perturbation for each pair of source and

target classes in the training sample set. When added to test

samples, these perturbations induce the model to misclassify

them into the intended target class. In table II, we present

all combinations of source and target classes that resulted in

a fooling rate greater than zero. This data has been divided

into three distinct categories of human imperceptibility: high,

medium, and low. When examining the waveshape of high

imperceptibility in Figure 6(a), we observe that the adversarial

perturbations are so minute that they are nearly undetectable,

allowing the clean sample to be the most prominent com-

ponent of the image. Therefore, we classify these instances

as having a high degree of imperceptibility. The adversarial

perturbations become marginally more apparent for the wave-

shape of medium imperceptibility in Figure 6(b). However,

the original, clean waveforms are still readily apparent. This

is because the perturbations closely match the shape of the

clean sample, merging with the background noise. Therefore,

these instances are classified as medium imperceptibility. If we

examine the waveshape of low imperceptibility in the figure in

Figure 6(c), the adversarial perturbations are noticeably more

pronounced while retaining a degree of subtlety. Analytically,

these disturbances are still adversarial; the waveform charac-

teristics do not deviate significantly from the normal pattern.

There are spikes in peak values, but the waveforms resemble

those of conventional waveforms with added noise. Due

to the inherent dynamics of the system, the waveform in

power systems can display a variety of complexities. Several

peaks, dips, or distortions may spontaneously manifest due

to load characteristics, unexpected load increase, or abrupt

load reduction. Considering the inherent variation of power

system waveforms, This imperceptibility will also make it

exceedingly difficult for a human observer to distinguish an

attack from typical system noise. Table II displays the range

of fooling rates obtained by our proposed algorithm, which

ranges from a minuscule 0.08% to an impressive 90.78% for

varied degrees of imperceptibility. When analyzing the fooling

rates across the three levels of imperceptibility, certain patterns

and distinctions emerge. For instance, the fooling rate tends

to increase as the level of imperceptibility decreases from

HI to LI for various class combinations. This may suggest

that universal adversarial perturbations are more effective at

misleading the model with low imperceptibility. However,

In certain instances, such as the transition from C7 to C9,

the fooling rate is nearly constant across all three levels of

imperceptibility. This may indicate the inherent robustness of

particular class transitions, regardless of their imperceptibility.

In a few cases, such as the transition from C1 to C6, the
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Fig. 6. Waveforms of power quality disturbances after targeted universal adversarial attack with high, medium, and low imperceptibility.

fooling rate is highest at the MI level and reduces at the

LI level. Such occurrences necessitate a deeper investigation

into the potential causes and particular characteristics of

the adversarial perturbations applied. Figure 8 illustrates this

dynamic by depicting a trade-off curve between impercepti-

bility and fooling rate for the swell-harmonics (source-target).

The curve reveals that increasing the perturbation magnitude

increases the fooling rate while decreasing the imperceptibil-

ity.Beginning with a low ε, the algorithm gradually increases

it to increase the fooling rate. However, it constantly monitors

the SNR to ensure it does not degrade significantly. As the

perturbation edge increases, the fooling rate increases, which

indicates that the perturbation is more effective at deceiving

the model. Simultaneously, the graph indicates a decrease in

SNR as ε increases. If the SNR exceeds a predetermined

threshold, the algorithm will recalculate to maintain acceptable

noise levels. The performance sweet spot attained by the

AdaptEdge algorithm is denoted by the trajectory in Figure 8,

where the deceiving rate exhibits consistent growth without

the SNR becoming critically low. The demonstrated trade-offs

between the fooling rate and SNR, as it evolves, shed light

on the algorithm’s efforts to optimize results. In the SG, the

control center primarily bases its decision-making on precisely

interpreting signals from substations. This includes decisions

regarding load balancing, error detection, and other crucial

operational duties. As the fooling rate increases, the control

center’s DL model misclassifies a greater proportion of signals.

These misclassifications can result in erroneous interpretations,

such as incorrectly identifying a fault or estimating the

load incorrectly. This directly impacts the decisions made

by the control center, which may result in suboptimal or

even detrimental operational commands. An optimal SNR

ensures that adversarial perturbations are nuanced enough to

remain undetected but influential enough to cause the desired

Fig. 7. Confusion matrix for the targeted universal adversarial attack.

misclassification. As the AdaptEdge algorithm modifies, the

perturbation edge determines the adversarial attack’s potency.

A more pronounced perturbation can result in a higher fooling

rate but may also reduce the SNR. This balance is crucial as it

indicates the attack’s ability to mislead the control center with-

out triggering alarms due to observable signal corruption. Our

proposed algorithm can misclassify models into 14 distinct tar-

get classes, requiring 42 universal perturbations tailored to one

of the three degrees of imperceptibility. In our threat model,

we have hypothesized that the attacker could be a member of

the intelligent IED manufacturing industry or a knowledgeable

entity from the utility company, both of which have extensive

knowledge of power systems. Under these conditions, the

adversary can choose the degree of imperceptibility that best

serves their objectives. If the attacker desires a significant

disruption, it may select a targeted class, considering the power

flow characteristics during the perturbation period and a lower
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Fig. 8. Trade-off between fooling rate and SNR with an increase of
perturbation edge for the combination of normal (source class) and harmonics
with sag (target class) using the AdaptEdge algorithm.

level of imperceptibility. Alternatively, if the attacker aims to

ensure long-term stealthiness, they may sacrifice the fooling

rate to maximize imperceptibility. The attacker may opt for

medium imperceptibility, which has a relatively higher fooling

rate but a noise level comparable to high imperceptibility. This

versatility offers the attacker many options for launching their

attack. Even contemplating the lower fooling rate of some

source and target class pairs in Table II, it should be noted

that even a single erroneous decision could cause significant

disruptions in critical systems such as the SG. Because of the

interconnected nature of power grids, a cyberattack, even on a

critical substation, can trigger a chain reaction that shuts down

the entire system. When the compromised substation connects

a large power plant to the grid or serves as a major hub in the

distribution network, the effects are magnified. In applications

of this magnitude, ensuring that the DL model resists even

the smallest adversarial attacks is crucial to ensure seamless

operation. In addition, it is noteworthy that certain source-

target pairings deviate from the norm of increasing fooling rate

with decreasing imperceptibility, such as sag-swell and swell-

flicker with sag, etc. This demonstrates the adaptability and

flexibility of the proposed algorithm. Instead of following the

trade-off curve shown in Figure 8, the algorithm is designed to

iteratively explore the possibility of a higher fooling rate while

simultaneously increasing imperceptibility. This characteristic

enhances the robustness and efficacy of our algorithm, making

it a formidable instrument in the domain of adversarial

perturbations.

5) Comparative Evaluation of AdaptEdge Algorithm Across

Different Deep Learning Models: To validate the efficacy of

our proposed algorithm, we have expanded our experiments

to include advanced DL models. As there are no comparable

techniques designed specifically for TUAA on TSD, evaluating

our algorithm on multiple models serves as comparative

validation. In Figure 9, despite test accuracies ranging from

Fig. 9. Comparative Evaluation of AdaptEdge Algorithm Across Different
Models.

96.236% for DNN to 99.45% for LSTM, all models are

susceptible to TUAA. This demonstrates that test accuracy

alone cannot indicate the resistance of a model to TUAA.

The LSTM model is distinguished by its high test accuracy

of 99.452% and substantially lower fooling rates at all levels

of imperceptibility compared to other models. This indicates

that LSTM may have some inherent resistance to TUAA.

However, even this model exhibits a 60.2% fooling rate at low

levels of imperceptibility, indicating that additional work is

required to make it resilient. ResNet50 has a high test accuracy

of 99.22%, but it is the most susceptible to adversarial

attacks. At low imperceptibility, its fooling rate skyrockets to

90.78%. This makes it the least robust model among those

tested, and deployment of it in security-sensitive applications

raises significant concerns. Despite having comparable test

accuracies (96.236% for DNN and 96.98% for RNN), their

fooling rates differ at high levels of imperceptibility. RNN

has a 7% reduced fooling rate at higher imperceptibility than

DNN. However, the susceptibility of both models increases

as imperceptibility decreases, emphasizing that neither model

is genuinely resistant to TUAA. There is a consistent trend

across all models that the fooling rate increases as the level

of imperceptibility decreases. This demonstrates the tradeoff

between the imperceptibility and efficacy of an attack. High

imperceptible attacks are typically less effective at deceiv-

ing the model. One important observation is the universal

susceptibility of all four models to TUAA, irrespective of

their architecture and test accuracy. This may indicate a

fundamental vulnerability in how neural networks interpret the

feature space, making them susceptible to carefully crafted

perturbations. Even for the LSTM model, which has the lowest

fooling rate, the rate rises from 30.20% at high imperceptibility

to 60.20% at low imperceptibility; this indicates that it is

still difficult to achieve both high imperceptibility and high

fooling rates. According to these observations, even though

neural networks may perform exceptionally well under benign

conditions, their performance can deteriorate substantially in
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the presence of adversarial perturbations. When deploying

such models in real-world applications, it is essential to

account for these weaknesses.

6) Possible Countermeasures Against Targeted Universal

Adversarial Attacks: In [31], we evaluate in depth three

widely used defense mechanisms: adversarial training,

defensive distillation, and feature squeezing. Our experimental

results shed light on their strengths and limitations in TSD

for SG against TUAA. Adversarial training entails augment-

ing the training data with adversarial samples. Defensive

distillation is training a secondary model to approximate

the output probabilities of the primary model. This process

forces the model to learn a more uniform and seamless

decision boundary, making it more difficult for adversarial

perturbations to lead to significant misclassifications. Feature

squeezing reduces the dimensionality of the input data and

quantifies it with a reduced precision. By doing so, some

of the fine-grained details that adversarial attacks typically

exploit are effectively removed. This regularization process

enhances the model’s ability to resist adversarial perturba-

tions and improves its robustness. In our experiment, we

found that adversarial training reduced the fooling rate by

an average of 23.73% for high imperceptibility, 31.04% for

medium imperceptibility, and an impressive 42.96% for low

imperceptibility, establishing itself as a better countermeasure.

The effectiveness of defensive distillation is notable, but it

does not consistently outperform adversarial training. The

effectiveness of feature squeezing has been demonstrated,

particularly in high and medium imperceptibility levels, but its

performance is less consistent. Both adversarial training and

defensive distillation consistently defend against adversarial

attacks, with adversarial training showing a minor edge.

Feature compression results in a wider variety of outcomes,

especially at low imperceptibility. In terms of versatility, it

is typically observed that adversarial training outperforms

other methods. This is a significant step towards ensuring

the safety and dependability of such vital systems, but the

search for a fail-safe system is far from complete. Future

research efforts must enhance these defense mechanisms or

develop new techniques for constructing resilient smart grid

systems.

VII. CONCLUSION

This research presents a complete analysis of the TUAA on

DL models employed for classifying PQD in SG. The outcome

of the attack yields a maximum fooling rate of 90.78%

for the ResNet50 model. Our approach has been expanded

to encompass more advanced DL models. Our proposed

algorithm’s performance yielded a fooling rate of 82.34% for

the RNN, 60.2% for the LSTM, and 80.68% for the CNN.

These findings showcase the effectiveness and adaptability

of our algorithm across different DL models. The observed

fooling rate underscores the substantial threat posed by TUAA

in SG where even a relatively minor fooling rate can lead to

severe and far-reaching repercussions. The authors conducted

a thorough examination and subsequently incorporated three

distinct imperceptibility criteria to validate the efficacy of

their adversarial perturbations. The present study conducted

a thorough investigation, revealing that attacks across all

imperceptibility criteria, render them challenging for human

observers to detect. Based on the findings, our research

emphasizes the significance of creating robust DL models for

accurately categorizing PQD in SG. Several promising avenues

emerge as we contemplate the future of this research, each with

the potential to increase the significance of our work. Future

researchers can design a robust defense mechanism to detect

TUAA on TSD. The optimization of our current algorithm to

increase the fooling rate and imperceptibility of attacks can be

a secondary objective. By addressing these obstacles, we hope

to ensure the continued growth and development of SG and

increase the security and dependability of critical electrical

infrastructure.

APPENDIX A

MATHEMATICAL MODEL OF PQD
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APPENDIX B

WAVEFORMS OF PQD AFTER TUAA WITH

HIGH IMPERCEPTIBILITY

APPENDIX C

WAVEFORMS OF PQD AFTER TUAA WITH

MEDIUM IMPERCEPTIBILITY

APPENDIX D

WAVEFORMS OF PQD AFTER TUAA WITH

LOW IMPERCEPTIBILITY
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