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AdaptEdge: Targeted Universal Adversarial Attacks
on Time Series Data in Smart Grids
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Abstract—Deep learning (DL) has emerged as a key tech-
nique in smart grid operations for task classification of power
quality disturbances (PQDs). Even though these models have
considerably improved the efficiency of power infrastructure,
their susceptibility to adversarial attacks presents potential
difficulties. For the first time, we introduce a novel algorithm
called Adaptive Edge (AdaptEdge), which effectively employs
targeted universal adversarial attack to deceive DL models
working with time series data. The unique contribution of this
algorithm is its ability to maintain a delicate balance between the
fooling rate and the imperceptibility of perturbations to human
observers. Our results demonstrate a fooling rate of up to 90.78 %
in the ResNet50 model—the highest achieved thus far—while
maintaining an optimal signal-to-noise ratio (SNR) of 3dB and
ensuring signal integrity. We implemented our algorithm across
various advanced DL models and found considerable efficacy,
demonstrating its adaptability and versatility across diverse
architectures. The results of our study highlight the pressing need
for developing more robust DL model implementations in the
context of the smart grid. Additionally, our proposed approach
demonstrates its effectiveness in addressing this need.

Index Terms—Targeted attack, universal adversarial attack,
time series data, smart grid, power quality disturbance, deep
learning.

NOMENCLATURE
AdaptEdge Adaptive Edge

AMI Advanced Metering Infrastructure
CNN Convolutional Neural Network
DL Deep Learning
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TUAA Targeted Universal Adversarial Attack

Manuscript received 18 June 2023; revised 3 October 2023, 25 November
2023, 7 January 2024, and 12 February 2024; accepted 29 March 2024. Date
of publication 2 April 2024; date of current version 23 August 2024. This
work was supported in part by the National Science Foundation under
Grant 2301553, and in part by Cisco under Grant CG 70615867. Paper no.
TSG-00901-2023. (Corresponding author: Sultan Uddin Khan.)

Sultan Uddin Khan and Mohammed Mynuddin are with North
Carolina A&T State University, Greensboro, NC 27411 USA (e-mail:
skhan5 @aggies.ncat.edu).

Mahmoud Nabil is with the ECE Department, North Carolina A&T State
University, Greensboro, NC 27411 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSG.2024.3384208.

Digital Object Identifier 10.1109/TSG.2024.3384208

I. INTRODUCTION

MART Grid (SG), uses cutting-edge communication and

information technology to facilitate a dependable and
efficient energy supply . It allows for two-way communication
between the utility and its customers, enabling them to manage
their energy consumption more effectively and potentially even
sell excess power back to the grid [1]. They use advanced
technologies to monitor and control power distribution in
real-time, including sensors, automation, and communication
networks [2].

Advanced Metering Infrastructure (AMI) is used by smart
meters installed at the load end to assess power usage
and provide real-time data to the utility [3]. Effective
communication allows for regulating energy production and
consumption in real-time, enhancing grid stability, lowering
energy waste, and using more renewable energy sources. While
SG improves energy efficiency and consumer interaction, their
interconnected nature makes them vulnerable to targeted uni-
versal adversarial attacks (TUAA). Such attacks could target
the grid’s sensors, automation systems, and communication
networks, potentially leading to manipulated energy usage data
or disruptions in grid operations.

The vulnerability of SG to TUAA is further complicated by
the occurrence of power quality disturbances (PQDs). PQDs,
which involve deviations in voltage, current, or frequency,
can adversely affect electrical equipment’s performance. These
disturbances, while sometimes resulting from the inherent
intermittency of renewable energy sources or system malfunc-
tions, can also be exacerbated or mimicked by adversarial
attacks. TUAA can exploit these PQDs as a cover, masking
their manipulative activities within the grid. For instance,
attackers might induce or simulate PQDs to disrupt the grid’s
frequency and voltage, thereby compromising grid stability
and reliability. Additionally, cybersecurity threats can not only
cause PQDs in SG by disrupting communication networks and
control systems [4] but also open avenues for sophisticated
adversarial attacks. These attacks can disrupt energy flow and
data integrity, making it challenging to distinguish between
genuine PQDs and those orchestrated as part of a TUAA.
Thus, mitigating the negative impact of PQDs is crucial for
maintaining the resilience and security of SG.

PQDs can have significant consequences that range from
minor inconveniences to major economic and safety risks.
Poor power quality can damage electronic equipment, cause
production downtime, increase maintenance costs, reduce
equipment lifespan, pose safety risks, and result in energy
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waste. Additionally, non-compliance with regulations and
standards can lead to legal or financial penalties. Machine
learning and deep learning are increasingly used in SG to
improve their efficiency, reliability, and security. By utilizing
these algorithms, anomalies in the grid, like power quality
disturbances or equipment failures, can be quickly detected,
leading to reduced downtime and faster response times [5].

Previous research has explored the vulnerability of DL
models to specific adversarial attacks in power systems [6],
investigated the effectiveness of defense methods against
untargeted attacks [7], and examined joint adversarial exam-
ple and false data injection attacks in power system state
estimation [8]. However, no study is currently on targeted
universal adversarial perturbation of time series data (TSD).
While Rathore et al. [9] proposed a targeted adversarial
attack in TSD using the Fast Gradient Sign Method (FGSM),
universal adversarial attacks present a greater threat as they
can deceive the model across multiple inputs using a single
perturbation. This makes them more effective and potentially
more damaging. Therefore, this paper aims to address this
gap by proposing a novel approach for generating targeted
universal adversarial perturbations in TSD within the SG. Our
approach can significantly impact the security of time series-
based systems and applications. The key contributions of our
manuscript are as follows:

« We propose the targeted universal adversarial attack
(TUAA) on TSD. This attack methodology aims to
deceive DL models operating on TSD by crafting adver-
sarial examples that can fool the models across multiple
inputs. Unlike targeted attacks that require specific per-
turbations for each input instance, the targeted universal
attack utilizes a single perturbation to achieve its objec-
tive. This approach has the potential to be more effective
and impactful, posing a greater threat to the security and
reliability of time series-based systems. To the best of our
knowledge, this is the first time such an attack has been
implemented.

« A new algorithm, specifically designed to facilitate
TUAA, primarily focusing on deceiving DL models
operating on TSD, is introduced. Our approach allows
for the generation of adversarial examples that can fool
power system control centers in SG, demonstrating the
vulnerability of this model to attack. This contribution
highlights the potential security risks associated with TSD
and provides a foundation for developing more robust
models in the future.

e Our algorithm is the first to consider and successfully
balance the crucial trade-off between imperceptibility
(i.e., signal-to-noise ratio SNR) and fooling rate for
launching TUAA on TSD. This careful balancing ensures
effective attack success rates without compromising the
stealthy nature of adversarial perturbations. This inno-
vative perspective validates our algorithm’s efficacy and
paves the way for a new direction in adversarial machine
learning research, especially about TSD.

The remainder of this paper is structured as follows. In
Section II, we discuss the existing research on cyber attacks
against the SG and highlight the gaps in the literature that
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our work aims to address. In Section III, we introduce the
application of DL in smart grids and attack scenarios. We
then present the threat model in Section IV to provide insight
into the attack methodology. Section V explains the proposed
TUAA on TSD in the SG. We describe the datasets used in
our experiments and the model architecture in Section VI. We
present the simulation results in Section VII, demonstrating the
effectiveness of our proposed attacks against SG. We conclude
the paper in Section VIII by summarizing our findings and
discussing the implications of our work for the security of SG.

II. RELATED WORK
A. Power Quality Disturbances Classification

Machine learning algorithms are revolutionizing the SG
by offering a versatile set of applications, including demand
forecasting, anomaly detection, grid optimization, energy theft
detection, load balancing, power quality disturbances clas-
sification, and more. In [10], Multiple PQDs (MPQDs) are
detected and categorized using a novel hybrid technique based
on Stockwell transform (ST) and deep learning. In [11], the
authors introduce a swift and accurate algorithm for monitor-
ing PQDs in SG, amalgamating histogram and discrete wavelet
transform techniques for feature extraction and employing
machine learning for precise classification to enhance PQDs
detection performance. Yigit, Yigit et al. [12] employed a
Convolutional Neural Network (CNN) structure with Gated
Recurrent Unit for classifying PQDs signals. The authors
demonstrated that, in their research, the performance of the
VGG-16 and ResNet-50 models was very similar. In [13],
authors suggest a method for classifying PQD using a DL-
based CNN that incorporates an attention model. This model
focuses on rescaling available data based on pixel count before
pooling it to create an enhanced data set for deeper CNN
analysis.

B. Cyber Attacks on the Smart Grid

Several studies have investigated the impact of cyber attacks
on the SG, including untargeted and targeted attacks. In [14],
Niazazari and Livani highlights how adversarial attacks can
lead CNNs to misclassify events in SGs. Sayghe et al. [15]
discuss adversarial attacks on Multilayer Perceptron for
detecting false data injection. In [16], authors proposed an
adversarial machine learning approach that utilizes black-
box optimization techniques to generate dynamic load-altering
attacks. In [17], researchers suggest Ensemble and Transfer
Adversarial Attacks across diverse DL models. Tian et al. [18]
proposed an adversarial attack crafting method based on a
forward derivative that considers input element magnitude,
attack impact on multiple regression output, and other control-
lable measurement meters. Cheng et al. [19] utilize different
adversarial attack mechanisms to add noise signal to the
input Phasor Measurement Units time series and show that
current DL-based power system event classifiers are highly
susceptible to such attacks, which could compromise the
power transmission system’s reliability. In [6], the authors
demonstrate the vulnerability of current ML algorithms in
power systems to adversarial examples and propose an efficient
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Fig. 1.
control center.

TABLE I
COMPARISON WITH EXISTING TECHNIQUES

Previous works | TSD | Targeted | Universal | SNR/Fooling Rate Balance
[22] v X X X
[9] v v X X
[23] X v v X
[24] X v v X
Our work v v v v

algorithm to generate such examples for categorical and
sequential applications. Kosut, Oliver, et al. [20] perform the
cyber attack on SG by malicious data injection technique.
In [21], the researchers investigate how vulnerable a Long
Short-Term Memory (LSTM) network and a CNN are to
targeted, semi-targeted, and non-targeted adversarial attacks in
predicting wind power outputs.

C. Comparison With Existing Technique

In [22], the algorithm focuses on generating adversarial
attacks for individual power quality signals. While this pro-
vides a robust method for deceiving the model with different
perturbations for each signal, it is not effective as a universal
attack from the attacker’s perspective because the attacker
can misclassify the model with a single perturbation in a
universal attack. Moreover, the authors in [22] adopt an
untargeted universal attack approach on TSD; however, TUAA
poses a greater danger than untargeted attacks. In their work,
Rathore et al. [9] introduced a targeted adversarial attack on
TSD using the FGSM. However, the universal adversarial
attack poses a greater threat due to its ability to deceive
the model across multiple inputs without crafting specific
perturbations for each instance, unlike FGSM. This attack
approach has the potential to be more impactful and cause
widespread damage. In [23] and [24], authors have proposed
algorithms for targeted universal adversarial attacks on image
data, not in time series data. Moreover, their solution didn’t
perform optimized balancing to maintain a careful balance
between the fooling rate and imperceptibility, a critical aspect
for the stealthiness and success of attacks in time series
data. We present the comparison of our work to the existing
technique in Table I. Addressing this significant research gap,
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Smart grid infrastructure illustrating the potential exploitation points for targeted adversarial attacks during signal transmission to the DL-based power

our paper aims to propose a novel method for generating
TUAA to fool the DL. model working with TSD in SG. Instead
of generating adversarial signals tailored to specific samples,
our AdaptEdge algorithm generates a universal perturbation
that, when applied to any signal, causes the deep learning
model to classify the signal as the attacker chooses. Through
the AdaptEdge function, the perturbation intensity is fine-
tuned to achieve a high fooling rate while maintaining an
imperceptible perturbed signal. These distinctions highlight
our proposed method’s originality and expanded capabilities
compared to the untargeted approach.

III. NETWORK AND THREAT MODEL
A. Network Model

The network model of the SG, depicted in Figure 1, encom-
passes various essential components. These include generators,
transmission and distribution systems, substations, loads, com-
munication channels, CNN models, and the control center.
Generators are responsible for generating electrical power,
utilizing diverse sources like fossil fuels, renewable energy,
or nuclear power. The transmission and distribution systems
facilitate the transfer and delivery of electricity from genera-
tors to end-users. Substations, located strategically throughout
the grid system, regulate voltage levels for efficient electricity
flow. Loads represent the devices and consumers that utilize
electrical power, encompassing residential, commercial, and
industrial appliances, lighting, and machinery. Communication
channels, often employing optical fibers, enable seamless data
exchange among grid components. At the core of the SG,
the control center acts as a centralized hub for monitoring,
managing, and responding to power generation, distribution,
and load balancing.

The control center leverages state-of-the-art technologies
and software applications to carry out these responsibilities
effectively. Among these advanced technologies is a DL-
based CNN. Integrated into the control center’s software
infrastructure, CNN performs vital tasks, including identifying
and analyzing PQDs throughout the SG. By harnessing DL
capabilities, CNN enables real-time analysis, enabling the con-
trol center to detect anomalies, diagnose faults, and promptly

Authorized licensed use limited to: North Carolina A T State University. Downloaded on May 14,2025 at 01:17:44 UTC from IEEE Xplore. Restrictions apply.



KHAN et al.: AdaptEdge: TUAAs ON TSD IN SMART GRIDS

1) Understand DL models due to actively
outline manufacturer requirements.

2) Familiar with encryption keys for device
initialization, maintenance & emergencies

Utility Personnel

Manufacturer's
Representative
Attacker

Anyone with

< Malicious

Intent

1) Understand DL models as IED and DL
model are from same manufacturer.

2) Familiar with encryption keys as part of
the manufacturing process

1) Understand DL models by performing
model stealing attack.

2) Inject perturbation by leveraging
weakness in the communication channel.

Fig. 2. Proposed Threat Model.

predict maintenance requirements. By comprehensively exam-
ining data collected from various components of the SG, the
control center can make well-informed decisions efficiently.
This utilization of DL techniques significantly enhances the
operational efficiency and reliability of the entire SG, leading
to more effective management of power resources.

B. Threat Model

In Figure 1, we consider that the SG functions as a
Cyber-Physical System (CPS), where DL models process data
obtained from the communication channel to enable intelligent
decision-making. The system can optimize energy distribution,
predict demand, detect anomalies, and automate maintenance
tasks by analyzing these diverse data. Consequently, the SG
can improve its operational efficiency, dependability, and
responsiveness. Signal-based applications, such as PQDs iden-
tification or fault detection, heavily rely on the communication
channel to capture transmitted signals for analysis by DL
models. The attacker can manipulate the communication link
to remain undetected and evade anomaly detection methods.
In our threat model in figure 2, we consider both insider and
outsider adversaries within a white-box system. The attacker
possesses complete knowledge of the target model, including
its architecture, parameters, and training data. An attacker
with black box access and the capability to inject fake data
is also powerful. A powerful attacker with black box access
could perform several examples of direct attacks, such as
the Gradient Estimation black-box attack [25] and the Word
Substitution Ranking Attack [26]. These attacks demonstrate
the potential for powerful attackers with black box access to
perform direct and significant attacks on machine learning
models. External attackers seeking to exploit the power grid
system may attempt to gather white-box knowledge from
various sources. These sources could include publicly available
documents, specifications, or research publications related
to the power grid infrastructure. According to Kerckhoff’s
principle, the security of a system should not rely on the
secrecy of the algorithm or design but rather on the secrecy of
the key. While some technical information may be accessible,
obtaining a complete and up-to-date understanding of the
system’s intricacies could be challenging. In that case, external
adversaries may rely on model stealing attacks [27]. This
comprehensive knowledge enables attackers to craft tailored
adversarial examples that exploit vulnerabilities within the
model, simplifying the execution of successful attacks. In
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addition to outsider adversaries, we address the threat posed by
insider adversaries with authorized access to the infrastructure.
Insiders in our scenario can be employees of the company that
manufactures Intelligent Electronic Devices (IED), and the DL
models used at power control centers. Due to merging IED
and DL model production, an insider within the manufactur-
ing organization is already privy to intricate model details.
Furthermore, utility personnel, who are also classified as
insiders in this framework, comprehensively understand these
DL models due to their active participation in the procurement
process, in which they specify detailed requirements to the
manufacturer and then implement the acquired DL model-
based power control centers. The IED manufacturing and
utility staff know encryption keys, given the threat model
we described. This knowledge is inherent to the manufac-
turer’s representative as part of the manufacturing process.
Concurrently, utility personnel are familiar with encryption
keys as a term incorporated in their contractual agreements
with the manufacturer, ensuring device initialization, main-
tenance, and emergency interventions. Manufacturers may
provide keys to ensure seamless integration and simulate real-
world scenarios during IED deployment and testing. Moreover,
given their positions, these insiders may have physical access
to the devices, allowing for direct hardware tampering,
implantation of malicious components, or firmware alterations,
altering device configurations to compromise power control
systems. Understanding these aspects is essential to compre-
hensively address and mitigate the risks associated with insider
threats in critical power infrastructure environments.

IV. UNIVERSAL ADVERSARIAL ATTACKS, OVERVIEW OF
TARGETED UNIVERSAL ADVERSARIAL ATTACKS IN
SMART GRID AND ADAPTIVE EDGE ALGORITHM

A. Taxonomy of Universal Adversarial Attack

Universal Adversarial Perturbation (UAP): The Universal
Adversarial Perturbation (UAP) refers to a vector that, when
added to any signal within a specific dataset, results in mis-
classification by a deep learning model [28]. This perturbation
is calculated by solving an optimization problem that aims
to minimize the model’s accuracy on a dataset with the
perturbation applied. Given a dataset of n samples X =
X1,X2,...,%, and a target classifier f, the UAP vector r can
be obtained by solving the following optimization problem:

n
r = argmin Zf(f(xi + 1), i)
i=1

subject to ||, < € (D)

where y; is the true label of x;, £ is a loss function, and
€ is a hyperparameter that controls the magnitude of the
perturbation. The objective of the optimization problem is to
find the perturbation vector r that minimizes the loss of the
target classifier f on the dataset.

On the other hand, in our problem formulation, the Targeted
Universal Adversarial Perturbation (TUAP) seeks to generate a
single perturbation that, when added to multiple input samples,
causes a DL model to incorrectly classify into a specific
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Fig. 3. Visualization of the Perturbation Edge.

predetermined class. The TUAP is formulated as the following
optimization problem:

1
'TUAP = arg mrax{ n Z XU (xitr) =yarget} }
i=1

subject to  max{SNR(x;, 7) } > SNRyj, and [|7]l, < € (2)
L

where yarger 18 the targeted class label for the adversarial
attack, x is the indicator function that equals 1 if the classifier
f misclassifies the perturbed input x; + r as the target class
Yiarget, and 0 otherwise, SNR(x;, ) is the signal-to-noise ratio
between the original signal x; and the perturbation r, SNRpy;in
is the minimum acceptable SNR, and € is the perturbation
budget. The objective is to maximize the fooling rate, while
also ensuring that the perturbation r remains imperceptible as
measured by the SNR.

B. Adaptive Edge Algorithm

The Adaptive Edge (AdaptEdge) algorithm focuses on
deceiving DL models analyzing TSD by creating adversarial
perturbations that are both effective in misleading the model
and imperceptible to human observers. The algorithm achieves
this through a careful balance between the fooling rate and the
SNR. The AdaptEdge algorithm introduces a novel approach
to generating universal perturbations by dynamically adjusting
the perturbation edge. This concept refers to the bound-
ary within which perturbations can manipulate the model’s
predictions without becoming perceptible to humans. The con-
ceptual representation of the perturbation edge, as illustrated
in Figure 3, visually encapsulates the algorithm’s essence.
The semi-transparent sphere symbolizing the perturbation edge
within the feature space delineates the limit of allowable
perturbations, with the scattered red dots representing various
adversarial perturbations confined within this boundary. This
confinement ensures perturbations remain subtle, highlight-
ing the algorithm’s ability to conduct stealthy adversarial
attacks without compromising the integrity of the signal. The
dynamic adjustment mechanism of the AdaptEdge algorithm
is mathematically encapsulated in the optimization problem
formulated for TUAP, as shown in Equation (2). The essence
of this problem is captured by an objective function aiming
to maximize the fooling rate, arg maxr{% Z:;l xfxi+71r) =
Ytarget) }, Where r represents the adversarial perturbation vector
designed to mislead the classifier f into incorrectly classifying
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the perturbed inputs x; + r as a specific target class yrarget.
The optimization problem is further constrained to ensure that
the generated perturbations remain imperceptible. The first
constraint, max;{SNR(x;, ) } > SNR,, ensures that the
signal-to-noise ratio for any perturbed sample remains above
a minimum threshold. Concurrently, the second constraint,
I7ll, < €, controls the magnitude of the perturbation. Through
these constraints, the AdaptEdge algorithm adeptly navigates
the trade-off between maximizing the fooling rate and ensuring
the perturbation’s imperceptibility.

C. Overview of Targeted Universal Adversarial Attacks in
Smart Grid

PQDs can be categorized into different classes: Normal,
indicating a typical waveform free of anomalies; Sag, a
momentary voltage drop; Swell, a transient voltage spike;
Interruption, a momentary power outage; Transient, sudden
surges typically caused by equipment failures or lightning;
Oscillatory transient, a brief frequently decaying waveform
deviation; Harmonics, integer multiples of the fundamen-
tal frequency causing distortion; Harmonics with Sag and
Harmonics with Swell are respective combinations of har-
monics with voltage declines and surges; Flicker, perceptible
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voltage fluctuations causing illumination discomfort; Flicker
with Sag and Flicker with Swell, voltage dips and surges
combined with flicker, respectively; Sag with Oscillatory
transient and Swell with Oscillatory transient, voltage dips
and surges, and repetitive waveform deviations; Sag with
Harmonics and Swell with Harmonics are harmonics-induced
distortions accompanied by declines and surges,and Notch,
a short disturbance in the waveform. When PQD occurs, it
propagates through the transmission and distribution system to
reach the substation. To effectively analyze these disturbances,
they are processed through a DL. model. The model is designed
to account for the variability and complexity of PQD data,
which can vary significantly across different substations due
to factors such as local consumption patterns, the integration
of renewable energy sources, etc.

The DL model processes this raw data, extracting key
features and classifies disturbances with high precision.
After classifying the PQD, the DL model communicates the
results to the control center. This information empowers the
autonomous power system controller to take decisive action,
including voltage regulation, transitioning to backup power
sources, activating or deactivating generating stations, and
adjusting the load. The communication channel is crucial for
transmitting raw signals between the substation and the control
center. However, attackers can compromise this channel and
introduce TUAA to the PQDs signals that can threaten the
resilience of SG to potential cyber threats and manipulate
the DL model’s output by altering the signals received by
the control center. Incorrect signals may lead to erroneous
decisions, jeopardizing the power system’s optimal and safe
operation.

V. METHODOLOGY OF TARGETED UNIVERSAL
ADVERSARIAL ATTACK

The method for constructing a TUAA using the AdaptEdge
algorithm is described in Algorithm 1. For greater clarity, we
have illustrated the process of the Adaptive Edge Algorithm
with a flowchart. Figure 5 depicts the algorithm’s progression
graphically. The algorithm begins by initializing parameters
such as the initial fooling rate, universal perturbation, and
the number of iterations. The signals belonging to the source
class are stored in an array. The main loop of the algorithm
continues until either the fooling rate surpasses a predefined
threshold or the maximum number of iterations is reached.
During each iteration, the algorithm calculates the fooling
rate and SNR, and then calls the AdaptEdge function to
dynamically adjust the perturbation edge value ¢. The fooling
rate, in the context of targeted attacks, is defined as the fraction
of adversarial samples that were both misclassified by the
model and classified specifically to the desired target class.
Mathematically, let Y be the true labels of our test samples,
Yadav be the predicted labels of the adversarial samples, and
Yiarget be the desired target class for our adversarial attack.
The fooling rate is given by:

Zi'vzl H(Ytrue,i # Yadv,iand Yagy ; = Ytarget)
N

fooling rate =
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Algorithm 1 Adaptive Edge (AdaptEdge) Algorithm
Require: source_class,target_class,
maximum_1iterations,initial perturbation
e,fooling_rate_threshold
Ensure: Universal perturbation for targeted adversarial attack
1: fooling rate <« 0
: universal_perturbation <« 0
i< 0
arr < source class signals from training samples
: while fooling rate<fooling_rate_threshold
and i <maximum_iterations do
6 Search for optimal ¢ based on AdaptEdge function
7: Select one signal, %, at a time from arr
8
9

edge

if target_class # source_class then
: Initialize pert_signal = xand a_p =0
10 Compute the gradients: Vf_s (x), VE_t (x),

and prediction

11: while prediction[target] < c_t do

12: Compute p_d, p_m, c_p

13: Update a_p and pert_signal

14: Re-compute gradients and prediction

15: end while

16: universal_perturbation = a_p

17: Update universal_perturbation

18: universal_perturbation=
project(universal_perturbation, ¢)

19: end if

20: i<—i+1

21: Apply universal_perturbation to all samples
in the test dataset

22: Calculate Signal_to_Noise_Ratio

23: Calculate fooling_rate

24: end while
25: return universal_perturbation

Where 1 is the indicator function, which is 1 if the condition
inside is true and O otherwise. N is the total number of test
samples. In the context of the targeted attack, this fooling
rate measures how often the adversarial perturbations caused a
misclassification specifically towards the desired target class.
A higher fooling rate indicates that the adversarial attack is
more effective in guiding the misclassifications toward the
target class.

Algorithm 2 introduces the AdaptEdge function, which
dynamically adjusts the perturbation edge to enhance the
effectiveness of deceiving DL models in the context of
TSD. The hypothesis behind this approach is that modifying
the perturbation edge dynamically can improve the attack’s
success without affecting the input signal’s imperceptibility.
Empirical studies demonstrated promising results, validating
the effectiveness of our method in generating perturbations
capable of deceiving DL models when applied to TSD. In the
initial phase of our proposed algorithm, we establish a specific
threshold for the SNR to classify degrees of imperceptibility
as high, medium, or low. These levels are determined by
modulating the perturbation edge value and visually inspecting
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Algorithm 2 Adaptive Edge (AdaptEdge) Function
Require: SNR_threshold,fooling rate_threshold,
initial perturbation edge ¢.
Ensure: Optimal ¢ for the required level of imperceptibility
with the desired fooling rate
1: fooling rate <« 0
2: ¢ < small initial value
while fooling rate<fooling rate_threshold
or SNR>SNR_threshold do
Increase ¢
Calculate perturbation with new &
Update fooling_rate
Update SNR
end while
while fooling rate>fooling rate_threshold
or SNR>SNR_threshold do
Decrease ¢
11: Calculate perturbation with new &
12: Update fooling_rate
13: Update SNR
14: end while
15: return Optimal &

[9%]

R A

Initialize: Fooling Rate, Universal Perturbation, Number of Iteration,
Source Class Signals from Training Samples, Target Class, Source Class

Fooling Rate < Fooling Rate Threshold
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Optimal ¢ from AdaptEdge function

Initialize: Fooling rate, £ (small value) |

R < Fooling Rate threshold
and SNR > SNR Threshold?

R > Fooling Rate Threshold
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J Yes
1) Increment &
2) Calculate perturbation
3) Update Fooling Rate & SNR
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v

“| Select One Signal at a time from Training Sample of Source Class

No
Target Class # Source Class?
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| 1) Generate and Update Universal Perturbation using DeepFool Algorithm
2) Project Universal Perturbation with € using Projection Function

| After perturbing all signal of training samples from source class go for next iteration |

| Add projected universal perturbation to all the test samples

| Calculate Fooling Rate and SNR |
L€

I
|Gel Desired Universal Perturbalionl

Fig. 5. Flow chart of targeted universal adversarial attack on time series data
using AdaptEdge algorithm.

the resulting signal integrity. We infer that the attacker is aware
of these established SNR thresholds and uses this information
to navigate the levels of imperceptibility.
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When we increase ¢, we effectively expand the “edge” of
the hypersphere, allowing perturbations to exist in a larger
region. When ¢ is decreased, this boundary is shrunk, thereby
confining the perturbations to a smaller region. In this context,
the algorithm begins with a very small value for the ¢ and
gradually increases it. The goal is to determine the maximum
value of ¢ that preserves signal integrity while achieving high,
medium, and low levels of imperceptibility.

After the SNR threshold and the fooling rate threshold
have been set, our algorithm starts with an initial small value
of . The experimentation begins with a high degree of
imperceptibility for the given source-target class pair. If the
fooling rate meets or exceeds the threshold, the algorithm
further minimizes ¢ to determine if a desired fooling rate is
achieved using a value smaller than the initial ¢. If the desired
rate of deception is achieved, ¢ is further decreased to ensure
an extremely high level of imperceptibility (i.e., high SNR).
This reduction continues until a fooling rate equal to or greater
than the criterion is reached. This optimal & represents the
optimal radius and thus defines the optimal perturbation edge.
In contrast, if a fooling rate below the threshold is obtained
using the initial €, the algorithm increases ¢ to determine if
the rate of deception approaches or surpasses the threshold
and ¢ increases until the threshold is reached or exceeded.
The algorithm then starts decreasing ¢ to a value between
the incremented ¢ and the initial ¢ to check whether the
imperceptibility can be increased with the desired fooling rate.
If the fooling rate again equals or exceeds the threshold, ¢ will
continue to decrease until it falls below the threshold. When
the fooling rate falls below the threshold, the algorithm ceases
reducing the ¢ and resets it to its previous value. This dynamic
modification of & permits optimal adversarial perturbation
while preserving signal integrity. The algorithm demonstrates
a sophisticated strategy that consistently and adaptively seeks
the optimal perturbation edge value. By intelligently balancing
imperceptibility and deception rate, it precisely navigates the
search space, always converging on a minimal point. Our
empirical evaluations show that the proposed linear search
method is highly effective despite its apparent simplicity. It
yielded positive results in nearly 93.75% of the cases we tested
(Please refer to Table II).

Algorithm 1 only attempts to generate a perturbation if
the current source signal is not classified as the desired
target class, as it prevents the algorithm from wasting com-
putational resources on unnecessary perturbations. However,
a mechanism is implemented if it is impossible to modify
the source class to the target class. If there is no signifi-
cant progress toward the desired misclassification after the
maximum number of iterations, the algorithm will identify
this situation and proceed to the next signal. If not, the
algorithm employs the DeepFool algorithm [29] to generate
an adversarial perturbation for the current signal and update
the universal perturbation. The gradient determines how to
perturb the input to maximize classifier output change. The
algorithm iteratively computes the gradient of the model’s
output with respect to the input data and modifies the input
data to reduce the model’s confidence in the true class, and it
repeats until the classifier output changes. If the target class

Authorized licensed use limited to: North Carolina A T State University. Downloaded on May 14,2025 at 01:17:44 UTC from IEEE Xplore. Restrictions apply.



KHAN et al.: AdaptEdge: TUAAs ON TSD IN SMART GRIDS

TABLE II
SIMULATION RESULTS FOR THE TARGETED UNIVERSAL ADVERSARIAL ATTACK USING ADAPTEDGE ALGORITHM
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* FR-Fooling Rate, HI- High Imperceptibility, MI- Medium Imperceptibility, LI- Low Imperceptibility.

differs from the source class, the algorithm initializes the
perturbation signal from a given input signal x and begins
with zero accumulated perturbation a;,. It computes gradients
with respect to the intended source and target classes for

Source Class | Target Class | FR (HI) FR (MI) | FR (LI) | Source Class | Target Class | FR (HI) | FR (MI) | FR (LI)
Cl1 C2 5.87 10.34 38.18 C6 Cl4 14.18 37.68
C1 C7 8.323 54.11 C7 Cc9 6.28 6.21 5.81
Cl Cc9 14.37 63.22 C7 Cl4 9.81 28.95
Cl Cl12 35.16 40.92 C7 C8 37.92 44.60
Cl Cl4 15.42 55.82 C7 C13 27.763 53.01
Cl C17 54.62 66.51 C8 C13 3.82 5.62
Cl C6 4.22 33.98 C8 C9 7.34 5.19 3.68
Cl C8 82.03 C8 Cl4 5.88 6.49 6.18
Cl Cl1 19.373 32.23 41.72 Cc9 C8 13.1 15.70 15.597
Cl C13 51 75.25 Cc9 Cl4 14.97 16.24 17.33
Cl Cl6 8.01 28.20 34.26 Cc9 C13 49.1 49.13 42.78
C2 C6 0.26 12.22 C10 C6 0.22 6.02
C2 C8 81.88 C10 C8 34.54 55.69
C2 Cl1 9.773 31.36 31.36 C10 C13 46.65 65.36
C2 C13 55.06 73.78 C10 Cc9 0.34 5.73
C2 C15 27.84 28.57 35.60 C10 C4 2.39 4.08 23.61
C2 C17 54.29 68.33 C10 C7 1.04 36.19
C2 C3 29.16 28.86 38.08 C10 Cc9 10.371 9.99
C2 C7 26.84 50.78 C10 Cl4 16.803 71.04
C2 C9 14.29 37.21 C10 C17 47.55 65.72
C2 C12 31.13 41.19 Cl1 C6 4.88 39.50
Cc2 Cl4 12.243 54.99 Cl1 C8 81.54
Cc2 Cl6 1.96 7.37 30.84 Cl1 Cl2 0.133 0.52 12.51
C3 C7 4.54 39.91 Cl1 Cl4 28.28 76.55
C3 Cc9 15.22 28.66 Cl1 Cl6 0.22 5.15 25.71
C3 Cl12 35.05 57.44 Cl1 C7 4.93 44.57
C3 Cl4 12.78 57.71 Cl1 Cc9 11.69 19.05
C3 C6 3.74 37.21 Cl1 C13 50.693 70.19
C3 C8 82.12 Cl1 C15 32.14 37.82 39.98
C3 Cl11 33.71 34.71 34.46 Cl1 C17 65.84
C3 Cl13 56.44 71.12 Cl12 C8 88.92
C3 C17 67.43 Cl12 Cl13 21.75 25.13 23.99
C4 C7 28.88 58.96 C12 C17 69.11
C4 C9 2.08 0.58 0.08 Cl12 C9 3.823 6.06 23.52
C4 Cl4 10.813 12.86 12.23 CI2 Cl4 12.43 12.56 11.34
C4 C8 30.56 41.28 Cl13 Cc9 1.403 2.76 3.26
C4 C13 41.15 43.22 29.89 C13 C8 322 54.21
C5 C6 4.6 39.03 Cl13 Cl4 14 2.76 3.26
C5 C8 86.83 Cl4 C6 0.38 0.84 4.21
C5 Cl1 30.64 31.31 31.31 Cl4 Cc9 1.65 0.84 0.20
C5 C13 55.12 76.36 Cl4 C8 17.08 20.12 20.91
C5 Cl6 0.54 1.40 19.25 Cl4 C13 42.11 44.50
C5 C3 23.183 23.56 C15 C8 19.71 15.00 12.73
C5 C7 4.49 45.20 Cl15 C12 1.52 13.83 31.40
C5 C9 17.76 54.82 Cl15 Cl4 1.52 13.83 31.40
C5 C12 34.79 44.50 C15 C9 37.88 65.58
C5 Cl4 11.96 17.19 C15 C13 26.14 44.69 40.26
C5 C17 53.01 64.82 Cl16 C7 26.44
C6 C7 0.83 34.67 Cl6 Cc9 6.26 20.77
C6 Cc9 3.76 4.90 8.16 Cl6 Cl4 24.96 66.97
C6 C13 59.88 72.09 Cl6 C8 87.05
C6 C17 66.74 Cl6 C13 48.12 80.35
C6 C8 86.32 C17 C13 19.54 35.82
C6 Cl11 23.8 30.53 36.11 C17 C8 4475 52.00
C6 Cl4 14.18 37.68 C17 Cl4 9.703 57.98

the signal. The loop iterates until the confidence predicted
for the target class exceeds a specified threshold, c¢;. The
algorithm determines the perturbation direction p; throughout
each iteration, and the perturbation magnitude p,,, as well
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as the accumulated perturbation a,,, are then updated using
current iteration perturbation c,. This iterative process refines
the perturbation until it is sufficient to fool the classifier. After
iterations, the algorithm returns the accumulated perturbation
to incorrectly classify the input signal as the target class.
The updated perturbation is then projected onto the e-radius
ball using a projection function to restrict the perturbation’s
maximum strength. In this context, the projection function
is a mathematical operation that confines the updated adver-
sarial perturbation within a defined boundary, specifically
a hypersphere of radius e. The projection function scales
the given values to fit within a hypersphere of radius & in
L2-norm space, ensuring that the magnitude of the adversarial
perturbation does not exceed the specified ¢ limit. The essence
of an adversarial perturbation is its magnitude and direction,
which indicates how an input sample is modified to cross a
classifier’s decision boundary. The projection operation pri-
marily modifies the magnitude while preserving the direction,
thereby not significantly altering the adversarial characteristics
of the perturbation. While the direction of the perturbation is
crucial, limiting its magnitude ensures that the perturbations
remain discreet, thereby enhancing the imperceptibility of
the attack. The projection ensures that the magnitude does
not exceed a predetermined threshold, making it difficult
to detect and effective. The algorithm applies the current
universal perturbation to the entire test dataset and predicts
the class labels of the perturbed dataset after each iteration.
The SNR is then computed to evaluate the imperceptibility
of the disturbance, and the fooling rate is recalculated to
determine if it has reached the desired threshold. Ultimately,
the algorithm produces a universal adversarial perturbation that
can cause effective misclassification towards the target class
while preserving the perceptual quality of the signals. This
comprehensive and adaptive strategy ensures a delicate balance
between high imperceptibility and the desired fooling rate,
making the algorithm significantly contribute to adversarial
machine learning.

VI. SIMULATION RESULT
A. Description of Power Quality Disturbances

In the context of SG, noise can originate from various
sources. Internal components, such as transformers and power
electronics, can contribute to noise, while external factors,
such as electromagnetic interference and environmental dis-
turbances, can contribute to additional fluctuations. This noise
is typically stochastic and can follow a variety of statistical
distributions, including Gaussian and Poisson. Gaussian noise
might model uncertainties from electronic devices and their
inherent thermal noise, whereas Poisson distributions are more
appropriate for representing event-driven noise, such as that
from random fault occurrences. Notably, these distributions
are approximations of the original noise distribution in SG.
Depending on the specific system and environment, the actual
noise distribution may be more complex and variable. Its
fluctuating nature makes it challenging to distinguish from
adversarial perturbations. Adversarial perturbations can be
designed to have similar statistical properties, subtly altering
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the signal without changing its fundamental characteristics.
This similarity to legitimate system noise poses difficulties
in detection, as grid operators and security systems are
accustomed to continuous and pervasive noise. Well-designed
adversarial perturbations can thus camouflage themselves
within the existing “noise floor,” evading detection by mim-
icking legitimate noise patterns.

PQD manifests in many intriguing forms, ranging from
voltage sags and interruptions to more elusive phenomena
like flickers, swells, and spikes. This diverse array extends
to oscillatory transients, harmonics, notches, and complex
combinations. The provided equations offer simplified repre-
sentations of these signals, which may be subject to variations
based on the specific characteristics of each disturbance. The
mentioned parameters represent the key variables related to
each signal class, although additional parameters may exist for
more extensive modeling and analysis. It is important to note
that these PQDs can have distinct effects on the power system
and connected equipment, giving rise to various operational
issues and potential damage. Understanding and addressing
these PQDs is crucial for maintaining a reliable and efficient
power system.

B. Datasets and Deep Learning Model

To assess the performance of the proposed TUAA for
PQDs, we apply ResNet50 as a DL model in our case.
The mathematical model and parameters of PQDs proposed
in [30] are employed, where the PQ models set the sampling
frequency of signals to 3200 Hz, the fundamental frequency
to 50 Hz, the number of total cycles to 10, and the amplitude
to 1. Consequently, the input signal vectors have a fixed length
of 640, although the actual signal is continuous and uninter-
rupted. For all 17 classes of signals, Table A displays signal
types, mathematical equations, and parameters. A publicly
available [22] labeled dataset focuses on processing and ana-
lyzing relatively clean, class-balanced data. A class-balanced,
publicly accessible labeled dataset concentrates on processing
and analyzing relatively pure data. Using 15000 signals from
each class, the dataset contains 255,000 signals with an SNR of
30dB. All of the samples are separated into 17 PQD. We take
207000 training samples, 23000 validation samples, and 25000
testing samples. To assure the randomness and robustness of
our model, we randomize the order of data samples. The
labels are transformed to encode them using one-hot encoding.
Signals are reshaped to ensure that each time point is regarded
as a separate feature, preserving the temporal dependencies.
After training for ten epochs, our model demonstrates excellent
performance, achieving a test accuracy of 99.22%.

C. Experimental Setup

1) Hardware Requirements: The experiments were con-
ducted on a state-of-the-art computational system. The central
processing unit (CPU) is an Intel Core i9-9920X, which
operates on a 64-bit x86 architecture. The CPU boasts 12
cores per socket, facilitating multi-threaded operations with
two threads per core, resulting in a total of 24 logical CPUs.
Cache memory is distributed across different levels: 32K
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for L1d and L1i, 1024K for L2, and a substantial 19712K
for L3. Complementing the system’s computation prowess
is a robust memory setup of 125GB RAM. Graphics and
computationally intensive tasks are delegated to four NVIDIA
Quadro RTX 6000 GPUs, enhancing the system’s parallel
processing capabilities.

2) Software Requirements: The experiments conducted in
this study utilized a specific set of software tools and libraries.
Ubuntu 18.04.5 LTS (Bionic Beaver), well-regarded for its
stability and wide compatibility, was the operating system,
and Python (version 3.6) was the primary programming lan-
guage to construct our computational environment. The system
employs NVIDIA’s CUDA toolkit for GPU-accelerated tasks,
specifically version 10.2.89, complemented by the NVIDIA
driver version 470.94. The GPUs efficiently handle a variety
of processes, from system operations such as Xorg to com-
putational tasks written in Python. We used Keras 2.2.4 with
TensorFlow 1.13.1 as the backend for DL tasks and model
implementations and Pycharm 2023.2 (Community Edition) as
the integrated development environment. Keras preprocessing
(version 1.1.2) facilitated data augmentation and preprocessing
stages. Using Matplotlib (version 3.3.3), data visualization was
achieved. We relied heavily on Numpy (version 1.19.5) for
numerical computations and Pandas (version 1.1.4) for data
manipulation and management. Lastly, we utilized Scikit-learn
(version 0.23.0) for specific machine-learning tasks and data
preprocessing processes. Researchers attempting to replicate or
extend our findings must use these precise versions to maintain
consistency with our experimental design.

3) Hyperparameter Settings: In our experiments, the DL
model utilizes the categorical cross-entropy loss function and
the Nadam optimizer with the following parameters: Ir =
0.002, B1 = 0.9, B> = 0.999, and stability term € = le — 08.
The learning rate’s decay schedule was set to 0.004. Based
on visual inspection, the imperceptibility levels of adversarial
perturbation were classified as follows: low imperceptibility at
SNR values of 3 dB, medium at 5 dB, and high at 7 dB. The
corresponding thresholds for the fooling rate were 30%, 50%,
and 70%, respectively. The initial value for ¢ before starting
the experiment for low, medium, and high imperceptibility is
0.5, 2.5, and 4.5, respectively. In addition, our algorithm was
limited to a maximum of 150 iterations to ensure convergence.

4) Result and Discussion: Our study explores TUAA on
TSD in the SG. Our algorithm proves to be effective across
various applications due to the inherent similarities in TSD.
Through empirical analysis, we demonstrate the successful
execution of universally targeted adversarial attacks on TSD
using our proposed algorithm. In Table II, the simulation
evaluates the model’s behavior under various combinations
of source and target classes, where the source class refers
to the original classification and the target class represents
the intended misclassification. Our proposed algorithm can
misclassify these signals into 14 target classes- sag, swell,
interruption, oscillatory transient, harmonics, harmonics with
sag, harmonics with swell, flicker with sag, flicker with
swell, sag with oscillatory transient, swell with oscillatory
transient, sag with harmonics, swell with harmonics, and
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notch- that could significantly compromise the power system’s
stability, dependability, and overall performance. In Figure 7,
we present a confusion matrix that demonstrates the effec-
tiveness of our proposed algorithm in a specific adversarial
scenario where ‘Normal’ is the source class and ‘Harmonic
with Sag’ is the target class. The matrix provides a clear
visual representation of how well our model performs in
this particular circumstance, and this is clearly demonstrated
by the high fooling rate of 90%. Our method generates a
universal adversarial perturbation for each pair of source and
target classes in the training sample set. When added to test
samples, these perturbations induce the model to misclassify
them into the intended target class. In table II, we present
all combinations of source and target classes that resulted in
a fooling rate greater than zero. This data has been divided
into three distinct categories of human imperceptibility: high,
medium, and low. When examining the waveshape of high
imperceptibility in Figure 6(a), we observe that the adversarial
perturbations are so minute that they are nearly undetectable,
allowing the clean sample to be the most prominent com-
ponent of the image. Therefore, we classify these instances
as having a high degree of imperceptibility. The adversarial
perturbations become marginally more apparent for the wave-
shape of medium imperceptibility in Figure 6(b). However,
the original, clean waveforms are still readily apparent. This
is because the perturbations closely match the shape of the
clean sample, merging with the background noise. Therefore,
these instances are classified as medium imperceptibility. If we
examine the waveshape of low imperceptibility in the figure in
Figure 6(c), the adversarial perturbations are noticeably more
pronounced while retaining a degree of subtlety. Analytically,
these disturbances are still adversarial; the waveform charac-
teristics do not deviate significantly from the normal pattern.
There are spikes in peak values, but the waveforms resemble
those of conventional waveforms with added noise. Due
to the inherent dynamics of the system, the waveform in
power systems can display a variety of complexities. Several
peaks, dips, or distortions may spontaneously manifest due
to load characteristics, unexpected load increase, or abrupt
load reduction. Considering the inherent variation of power
system waveforms, This imperceptibility will also make it
exceedingly difficult for a human observer to distinguish an
attack from typical system noise. Table II displays the range
of fooling rates obtained by our proposed algorithm, which
ranges from a minuscule 0.08% to an impressive 90.78% for
varied degrees of imperceptibility. When analyzing the fooling
rates across the three levels of imperceptibility, certain patterns
and distinctions emerge. For instance, the fooling rate tends
to increase as the level of imperceptibility decreases from
HI to LI for various class combinations. This may suggest
that universal adversarial perturbations are more effective at
misleading the model with low imperceptibility. However,
In certain instances, such as the transition from C7 to C9,
the fooling rate is nearly constant across all three levels of
imperceptibility. This may indicate the inherent robustness of
particular class transitions, regardless of their imperceptibility.
In a few cases, such as the transition from C1 to C6, the
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Fig. 6. Waveforms of power quality disturbances after targeted universal adversarial attack with high, medium, and low imperceptibility.

fooling rate is highest at the MI level and reduces at the
LI level. Such occurrences necessitate a deeper investigation
into the potential causes and particular characteristics of
the adversarial perturbations applied. Figure 8 illustrates this
dynamic by depicting a trade-off curve between impercepti-
bility and fooling rate for the swell-harmonics (source-target).
The curve reveals that increasing the perturbation magnitude
increases the fooling rate while decreasing the imperceptibil-
ity.Beginning with a low ¢, the algorithm gradually increases
it to increase the fooling rate. However, it constantly monitors
the SNR to ensure it does not degrade significantly. As the
perturbation edge increases, the fooling rate increases, which
indicates that the perturbation is more effective at deceiving
the model. Simultaneously, the graph indicates a decrease in
SNR as ¢ increases. If the SNR exceeds a predetermined
threshold, the algorithm will recalculate to maintain acceptable
noise levels. The performance sweet spot attained by the
AdaptEdge algorithm is denoted by the trajectory in Figure 8§,
where the deceiving rate exhibits consistent growth without
the SNR becoming critically low. The demonstrated trade-offs
between the fooling rate and SNR, as it evolves, shed light
on the algorithm’s efforts to optimize results. In the SG, the
control center primarily bases its decision-making on precisely
interpreting signals from substations. This includes decisions
regarding load balancing, error detection, and other crucial
operational duties. As the fooling rate increases, the control
center’s DL model misclassifies a greater proportion of signals.
These misclassifications can result in erroneous interpretations,
such as incorrectly identifying a fault or estimating the
load incorrectly. This directly impacts the decisions made
by the control center, which may result in suboptimal or
even detrimental operational commands. An optimal SNR
ensures that adversarial perturbations are nuanced enough to
remain undetected but influential enough to cause the desired
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Fig. 7. Confusion matrix for the targeted universal adversarial attack.

misclassification. As the AdaptEdge algorithm modifies, the
perturbation edge determines the adversarial attack’s potency.
A more pronounced perturbation can result in a higher fooling
rate but may also reduce the SNR. This balance is crucial as it
indicates the attack’s ability to mislead the control center with-
out triggering alarms due to observable signal corruption. Our
proposed algorithm can misclassify models into 14 distinct tar-
get classes, requiring 42 universal perturbations tailored to one
of the three degrees of imperceptibility. In our threat model,
we have hypothesized that the attacker could be a member of
the intelligent IED manufacturing industry or a knowledgeable
entity from the utility company, both of which have extensive
knowledge of power systems. Under these conditions, the
adversary can choose the degree of imperceptibility that best
serves their objectives. If the attacker desires a significant
disruption, it may select a targeted class, considering the power
flow characteristics during the perturbation period and a lower
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Fig. 8.  Trade-off between fooling rate and SNR with an increase of

perturbation edge for the combination of normal (source class) and harmonics
with sag (target class) using the AdaptEdge algorithm.

level of imperceptibility. Alternatively, if the attacker aims to
ensure long-term stealthiness, they may sacrifice the fooling
rate to maximize imperceptibility. The attacker may opt for
medium imperceptibility, which has a relatively higher fooling
rate but a noise level comparable to high imperceptibility. This
versatility offers the attacker many options for launching their
attack. Even contemplating the lower fooling rate of some
source and target class pairs in Table II, it should be noted
that even a single erroneous decision could cause significant
disruptions in critical systems such as the SG. Because of the
interconnected nature of power grids, a cyberattack, even on a
critical substation, can trigger a chain reaction that shuts down
the entire system. When the compromised substation connects
a large power plant to the grid or serves as a major hub in the
distribution network, the effects are magnified. In applications
of this magnitude, ensuring that the DL model resists even
the smallest adversarial attacks is crucial to ensure seamless
operation. In addition, it is noteworthy that certain source-
target pairings deviate from the norm of increasing fooling rate
with decreasing imperceptibility, such as sag-swell and swell-
flicker with sag, etc. This demonstrates the adaptability and
flexibility of the proposed algorithm. Instead of following the
trade-off curve shown in Figure 8, the algorithm is designed to
iteratively explore the possibility of a higher fooling rate while
simultaneously increasing imperceptibility. This characteristic
enhances the robustness and efficacy of our algorithm, making
it a formidable instrument in the domain of adversarial
perturbations.

5) Comparative Evaluation of AdaptEdge Algorithm Across
Different Deep Learning Models: To validate the efficacy of
our proposed algorithm, we have expanded our experiments
to include advanced DL models. As there are no comparable
techniques designed specifically for TUAA on TSD, evaluating
our algorithm on multiple models serves as comparative
validation. In Figure 9, despite test accuracies ranging from
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Fig. 9. Comparative Evaluation of AdaptEdge Algorithm Across Different
Models.

96.236% for DNN to 99.45% for LSTM, all models are
susceptible to TUAA. This demonstrates that test accuracy
alone cannot indicate the resistance of a model to TUAA.
The LSTM model is distinguished by its high test accuracy
of 99.452% and substantially lower fooling rates at all levels
of imperceptibility compared to other models. This indicates
that LSTM may have some inherent resistance to TUAA.
However, even this model exhibits a 60.2% fooling rate at low
levels of imperceptibility, indicating that additional work is
required to make it resilient. ResNet50 has a high test accuracy
of 99.22%, but it is the most susceptible to adversarial
attacks. At low imperceptibility, its fooling rate skyrockets to
90.78%. This makes it the least robust model among those
tested, and deployment of it in security-sensitive applications
raises significant concerns. Despite having comparable test
accuracies (96.236% for DNN and 96.98% for RNN), their
fooling rates differ at high levels of imperceptibility. RNN
has a 7% reduced fooling rate at higher imperceptibility than
DNN. However, the susceptibility of both models increases
as imperceptibility decreases, emphasizing that neither model
is genuinely resistant to TUAA. There is a consistent trend
across all models that the fooling rate increases as the level
of imperceptibility decreases. This demonstrates the tradeoff
between the imperceptibility and efficacy of an attack. High
imperceptible attacks are typically less effective at deceiv-
ing the model. One important observation is the universal
susceptibility of all four models to TUAA, irrespective of
their architecture and test accuracy. This may indicate a
fundamental vulnerability in how neural networks interpret the
feature space, making them susceptible to carefully crafted
perturbations. Even for the LSTM model, which has the lowest
fooling rate, the rate rises from 30.20% at high imperceptibility
to 60.20% at low imperceptibility; this indicates that it is
still difficult to achieve both high imperceptibility and high
fooling rates. According to these observations, even though
neural networks may perform exceptionally well under benign
conditions, their performance can deteriorate substantially in
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the presence of adversarial perturbations. When deploying
such models in real-world applications, it is essential to
account for these weaknesses.

6) Possible Countermeasures Against Targeted Universal
Adversarial Attacks: In [31], we evaluate in depth three
widely wused defense mechanisms: adversarial training,
defensive distillation, and feature squeezing. Our experimental
results shed light on their strengths and limitations in TSD
for SG against TUAA. Adversarial training entails augment-
ing the training data with adversarial samples. Defensive
distillation is training a secondary model to approximate
the output probabilities of the primary model. This process
forces the model to learn a more uniform and seamless
decision boundary, making it more difficult for adversarial
perturbations to lead to significant misclassifications. Feature
squeezing reduces the dimensionality of the input data and
quantifies it with a reduced precision. By doing so, some
of the fine-grained details that adversarial attacks typically
exploit are effectively removed. This regularization process
enhances the model’s ability to resist adversarial perturba-
tions and improves its robustness. In our experiment, we
found that adversarial training reduced the fooling rate by
an average of 23.73% for high imperceptibility, 31.04% for
medium imperceptibility, and an impressive 42.96% for low
imperceptibility, establishing itself as a better countermeasure.
The effectiveness of defensive distillation is notable, but it
does not consistently outperform adversarial training. The
effectiveness of feature squeezing has been demonstrated,
particularly in high and medium imperceptibility levels, but its
performance is less consistent. Both adversarial training and
defensive distillation consistently defend against adversarial
attacks, with adversarial training showing a minor edge.
Feature compression results in a wider variety of outcomes,
especially at low imperceptibility. In terms of versatility, it
is typically observed that adversarial training outperforms
other methods. This is a significant step towards ensuring
the safety and dependability of such vital systems, but the
search for a fail-safe system is far from complete. Future
research efforts must enhance these defense mechanisms or
develop new techniques for constructing resilient smart grid
systems.

VII. CONCLUSION

This research presents a complete analysis of the TUAA on
DL models employed for classifying PQD in SG. The outcome
of the attack yields a maximum fooling rate of 90.78%
for the ResNet50 model. Our approach has been expanded
to encompass more advanced DL models. Our proposed
algorithm’s performance yielded a fooling rate of 82.34% for
the RNN, 60.2% for the LSTM, and 80.68% for the CNN.
These findings showcase the effectiveness and adaptability
of our algorithm across different DL. models. The observed
fooling rate underscores the substantial threat posed by TUAA
in SG where even a relatively minor fooling rate can lead to
severe and far-reaching repercussions. The authors conducted
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a thorough examination and subsequently incorporated three
distinct imperceptibility criteria to validate the efficacy of
their adversarial perturbations. The present study conducted
a thorough investigation, revealing that attacks across all
imperceptibility criteria, render them challenging for human
observers to detect. Based on the findings, our research
emphasizes the significance of creating robust DL models for
accurately categorizing PQD in SG. Several promising avenues
emerge as we contemplate the future of this research, each with
the potential to increase the significance of our work. Future
researchers can design a robust defense mechanism to detect
TUAA on TSD. The optimization of our current algorithm to
increase the fooling rate and imperceptibility of attacks can be
a secondary objective. By addressing these obstacles, we hope
to ensure the continued growth and development of SG and
increase the security and dependability of critical electrical
infrastructure.

APPENDIX A
MATHEMATICAL MODEL OF PQD
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APPENDIX B
WAVEFORMS OF PQD AFTER TUAA WITH
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