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Abstract—The utilization of deep learning models has been
widely recognized for its significant contribution to the enhance-
ment of smart grid operations, particularly in the domain of
power quality disturbance (PQD) classification. Nevertheless, the
emergence of vulnerabilities like targeted universal adversarial
attacks can significantly undermine the reliability and security
of deep learning models. These attacks can exploit the model’s
weaknesses, causing it to misclassify PQDs with potentially
catastrophic consequences. In our previous research, we for the
first time examined the vulnerability of deep learning models
to targeted universal adversarial attacks on time series data in
smart grids by introducing a novel algorithm that effectively
attacks by maintaining a trade-off between fooling rate and
imperceptibility. While this attack method demonstrated notable
efficacy, it also emphasized the pressing need for robust defensive
mechanisms to safeguard these critical systems. This paper
provides a thorough examination and evaluation of different
defense strategies, specifically adversarial training, defensive
distillation, and feature squeezing, in order to identify the most
effective method for mitigating targeted universal adversarial
(TUA) attacks on time series data for three different types of
imperceptibility (high, medium and low). Based on our analysis,
adversarial training demonstrates a significant reduction in the
success rate of attacks. Specifically, the technique reduced fooling
rates by an average of 23.73% for high imperceptibility, 31.04%
for medium imperceptibility, and a substantial 42.96% for low
imperceptibility. These findings highlight the crucial role of
adversarial training in enhancing the integrity of deep learning
applications.

Index Terms—targeted universal adversarial attack, time series
data, adversarial training, smart grid, deep learning

1. INTRODUCTION

Smart grids have revolutionized the electricity industry
by incorporating advanced technologies and data-driven ap-
proaches to enhance energy efficiency, reliability, and sustain-
ability. For instance, a study conducted by the U.S. Department
of Energy found that smart grid technologies, including ad-
vanced metering infrastructure (AMI) and distribution automa-
tion, led to a 5% reduction in peak electricity demand and a 6%
reduction in overall energy consumption [1]. This translates to
significant cost savings and environmental benefits. However,
power quality disturbances (PQDs) can have a detrimental
impact on the performance of a smart grid system. PQDs
in a power grid system refer to variations or deviations
from the ideal or expected electrical waveform, which can
lead to undesirable effects on the quality and reliability of
electrical power. These disturbances can be caused by var-
ious factors, including voltage sags or dips, voltage swells
or surges, voltage interruptions, harmonics, transients, and

flicker [2]. Voltage sags occur when there is a brief reduction
in voltage, which can affect sensitive equipment and cause
malfunctions or downtime. Voltage swells, on the other hand,
involve temporary increases in voltage, potentially damaging
equipment. Voltage interruptions result in a complete loss of
power for a short period, causing inconvenience and potential
damage to electronic devices. Harmonics, which are unwanted
frequencies, can distort waveforms and impact the efficient
operation of equipment. Transients are short-duration voltage
fluctuations caused by lightning, switching operations, or
faults, which can cause equipment failures. Flicker refers to
rapid changes in voltage that can lead to visual discomfort or
affect the performance of sensitive equipment.

In a smart grid system, various methods are employed to
detect PQDs, including the utilization of machine learning
(ML) techniques [3]. Traditional methods involve using spe-
cialized monitoring devices, such as power quality analyzers
and sensors, to measure voltage, current, and other electrical
parameters [4]. These devices continuously monitor the grid
and capture disturbances. ML algorithms enable the analy-
sis of vast amounts of data from diverse sources, such as
smart meters, sensors, and weather forecasts. This data-driven
approach empowers the smart grid system to gain real-time
insights, make intelligent decisions, identify patterns, predict
electricity demand, detect anomalies, and optimize energy
distribution, thus significantly improving grid efficiency and
reliability. Moreover, ML algorithms facilitate load forecasting
[5], energy storage management [6], and seamless integra-
tion of renewable energy sources, enabling the smart grid
to dynamically adapt and respond to changing conditions.
Continuously learning from data and refining its predictions,
the ML-based smart grid system holds immense potential in
revolutionizing the energy infrastructure.

Recent research has revealed a concerning vulnerability in
various families of ML models known as adversarial exam-
ples [7]. Adversarial examples are carefully crafted inputs
that are designed with the intention of misleading the target
model into generating incorrect or unexpected outputs. This
vulnerability extends across different types of ML models,
including deep neural networks, support vector machines, and
decision trees, among others [8]-[11]. These findings raise
concerns regarding the reliability ML models, especially in
safety-critical applications. The susceptibility to adversarial
examples undermines the ability of ML models to make
accurate and reliable predictions, potentially leading to severe
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consequences. In the case of PQDs, the misclassification of
such events could result in incorrect decision-making and
inadequate response measures, jeopardizing the stability of the
power grid system and the safety of connected devices [12],
[13].

The potential danger lies in the striking similarity between
adversarial signal attacks and benign signals, which can po-
tentially deceive human operators and lead to a failure in
detecting and recognizing ongoing attacks. Previous studies
have examined the vulnerability of deep learning models
to specific adversarial attacks in power systems [14] and
evaluated defense mechanisms against non-targeted attacks
[15]. However, there is a lack of research on targeted universal
adversarial (TUA) perturbations in time series data within
this context. In TUA, adversarial examples are crafted to
be transferable across different instances of the same model
architecture. In other words, these attacks are designed to
be universally effective, meaning that the same adversarial
example can mislead the target model, regardless of the
data on which the model was trained. In this subsequent
installment, we aim to further elaborate on our prior research
[16] and introduce an investigation into diverse defense strate-
gies. These strategies encompass adversarial training, defense
distillation, and feature squeezing, intending to determine the
most resilient countermeasure against TUA attacks specifically
targeted at time series data. This work present a holistic
defense strategy specifically designed to address the intricacies
of time series data within the smart grid domain. The key
contributions of our manuscript are as follows:

o Our research endeavors to lead the way in investigating
strategies to counter targeted universal adversarial (TUA)
attacks on time series data, thereby expanding the existing
knowledge on adversarial attacks.

o Three well-known defense strategies, adversarial training,
defensive distillation, and feature squeezing, are specif-
ically adapted and evaluated by us. We use a moving
average technique for feature squeezing to minimize
background noise and maximize the smoothness of the
waveform within each batch.

o After analyzing fooling rates, adversarial training is the
best defense against targeted universal adversarial attacks
on time series data. Adversarial training consistently
lowered fooling rates to near zero. It decreased high
imperceptibility by 23.73%, middle by 31.04%, and low
by 42.96% on average. Defensive distillation showed
promise, but adversarial training was more effective.
Feature squeezing had inconsistent effects.

The remaining sections of this paper are organized as
follows. In Section II, we describe the related work. Section III
is a brief presentation of TUA attacks on neural networks.
Section IV focuses on the overview of defense methods
against adversarial targeted attacks. The experiments, results,
and discussions are presented comprehensively in Section V.
Finally; Section VI summarizes the conclusions drawn from
the study.

II. RELATED WORK

Numerous scholarly investigations have been conducted
to examine the effects of cyber attacks on the smart grid,
encompassing both untargeted and targeted attacks. In [17], the
authors investigate the effects of adversarial attacks on con-
volutional neural network-based frameworks for event cause
analysis. In their study, Kosut, Oliver, et al. [18] conducted a
cyber attack on a smart grid system using a technique known
as malicious data injection. In their study, Cheng et al. [19]
employed various adversarial attack techniques to introduce
noise signals into the input time series of Phasor Measure-
ment Units (PMUs). Their findings demonstrate that existing
deep learning-powered event classifiers for power systems are
highly vulnerable to these attacks, posing a potential threat to
the reliability of power transmission systems.

Concurrently, efforts are being made to develop robust
defenses, including adversarial training [20], input transfor-
mations, and [21], which aim to enhance the model’s ability
to resist adversarial attacks. In [22], the authors examine
the security challenges associated with neural network-based
state estimation in the smart grid. It specifically addresses the
problem of adversarial attacks targeting neural network-based
state estimation and presents a highly efficient adversarial
attack method. Li, Jiangnan, et al. [23] investigate the security
threat of false data injection attacks (FDIAs) in power system
state estimation, highlighting the limitations of existing ma-
chine learning techniques, and propose an adversarial-resilient
DNN-based approach that incorporates random input padding
to effectively mitigate adversarial attacks while maintaining
detection performance. Reference [24] explores the security
implications of FDI attacks in distributed demand response
systems within smart grids, revealing the vulnerability of deep
learning-based FDI attack detection methods to adversarial
machine learning attacks. Before our efforts, there was, to
the best of our knowledge, a conspicuous lack of research
addressing targeted universal adversarial attacks on time series
data. Our earlier work [16] paved the way in this direction
by introducing a novel algorithm tailored to this specific chal-
lenge. The present study explores defenses against such attacks
on time series data, venturing deeper into uncharted territory.
Specifically, we adapt and evaluate prominent defense methods
to establish their efficacy within the context of time series data,
thereby bridging a significant research gap in the field.

III. TARGETED UNIVERSAL ADVERSARIAL ATTACK

In our prior research [16], we showcased a TUA attack
on time series data related to PQDs. We explored the threat
model of TUA attack, considering factors such as the attacker’s
knowledge, capabilities, and goals.

A. Threat Model

« Attacker’s Knowledge. The attacker’s level of knowl-
edge can vary between a white-box setting, where they
possess comprehensive information about the trained
model, including its learning algorithm, structure, pa-
rameters, hyper-parameters, and training data, and a
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black-box setting, where the attacker only has limited
knowledge and is aware only of the model’s inputs and
outputs. This suggests that the attacker could potentially
be an insider with access to certain information about the
model’s architecture and data or an outsider with limited
information about the model’s inner workings. We are
focusing on white box settings in this research.

o Attacker’s Goals. In a TUA attack, the attacker’s ob-
jective is to find a single perturbation value that, when
added to most clean samples, leads the model to predict
the targeted class intentionally. The attacker aims to
achieve this by exploiting the model’s vulnerabilities and
generating subtle perturbations that can deceive the model
consistently across different instances.

B. Adaptive Edge algorithms

Adversarial Perturbation with
extremely low Imperceptibility

Adversarial Perturbation with
>

/' High/Medium/Low Imperceptibility
/L> Perturbation Edge

Fig. 1: Visualization of the Perturbation Edge

Our previous research introduces the methodology for con-
structing a TUA attack utilizing the Adaptive Edge (Adapt-
Edge) algorithm. The algorithm is designed to effectively
deceive deep learning models that operate on time series
data by striking a balance between the fooling rate and the
imperceptibility of the attack to human observers. To achieve
this, the algorithm relies on two essential metrics. Firstly,
the fooling rate measures the attack’s success in causing the
deep learning model to misclassify the majority of clean time
series data into the targeted class. Secondly, the signal-to-
noise ratio (SNR) provides insights into the imperceptibility
of the adversarial perturbation. This approach is based on
the hypothesis that dynamically modifying the perturbation
edge can improve the attack’s effectiveness while maintaining
the imperceptibility of the input signal. Figure 1 illustrates
a conceptual depiction of the perturbation edge within a
feature space with multiple dimensions. The semi-transparent
sphere symbolizes the perturbation edge, which, in the present
context, corresponds to the limit of permissible perturbations.
Adversarial perturbations confined within the boundaries of
this hypersphere exhibit subtlety and effectively impact the
predictions of the model while simultaneously maintaining
their imperceptibility to human observers. The scattered red
dots contained within the sphere serve as representations
of diverse adversarial perturbations. The fact that they are
confined within the hypersphere suggests that they adhere
to the boundary established by the perturbation edge. Any
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location beyond the boundaries of this sphere would indicate
a conspicuous or excessive disturbance, which is likely to be
perceptible by humans and thus unsuitable for stealthy adver-
sarial attacks. The arrows originating from the central point
symbolize possible directions in which data may be altered.
The magnitude of their size, upon reaching the boundary of
the sphere, signifies the utmost degree to which data can
be altered in that specific direction while still adhering to
the confines of the perturbation boundary. The visualization
depicts blue dots situated beyond the perturbation boundary,
indicating a significantly low imperceptibility. Therefore, a
human observer would be able to perceive these perturbations.
In the feature space, the perturbation edge is defined as the
radius of the smallest hypersphere that encloses the data. This
hypersphere’s confinement of perturbations creates a boundary
that plays a vital role in preserving the integrity of the signal.
Analogous to how the “edge” of a circle in two-dimensional
space represents its boundary, adversarial perturbations in
multidimensional feature space are confined within a hyper-
sphere. This restriction ensures that the perturbations remain
subtle and imperceptible to human observers while effectively
influencing the model’s predictions.

To categorize degrees of imperceptibility as high, medium,
or low, we set a specific threshold for the SNR. These levels
are established by methodically varying the perturbation edge
value, followed by a visual examination of the integrity of the
resulting signal. We assume that the attacker is aware of these
predetermined SNR thresholds and employs this knowledge to
maneuver through the imperceptibility levels. The symbol ’¢”
is often used to indicate the radius of this hypersphere. By
increasing the “edge” of the hypersphere, perturbations can
exist over a wider volume. The experiment commences with a
high imperceptibility for the specific source-target class pair.
If the rate of fooling meets or surpasses the predetermined
threshold, the algorithm proceeds to reduce the value of in
order to ascertain whether a desired rate of fooling can be
achieved using a smaller value than the initial . Once the
desired level of deception is attained, the value of ¢ is subse-
quently reduced to guarantee a significantly elevated level of
imperceptibility, specifically regarding a high signal-to-noise
ratio (SNR). The reduction process persists until a fooling rate
equal to or surpasses the predetermined criterion is achieved.
The optimal value of ¢ signifies the ideal radius, establishing
the optimal boundary for perturbation. On the other hand, in
the event that fooling rate lower than the specified threshold is
achieved utilizing the initial € value, the algorithm proceeds to
increment ¢ to assess whether the rate of deception approaches
or surpasses the threshold. This process continues until the
threshold is reached or surpassed. Subsequently, the algorithm
proceeds to decrease the value of € within the range bounded
by the incremented ¢ and the initial ¢ in order to assess the
potential for enhancing imperceptibility while maintaining the
desired fooling rate. In the event that the rate of deception once
again reaches or surpasses the predetermined threshold, the
variable ¢ will persistently decrease until it reaches a value that
is lower than the threshold. Once the rate of deception drops
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below a predetermined threshold, the algorithm discontinues
its process of diminishing e and instead restores it to its
previous value. The dynamic modification of the € parameter
allows for the optimal creation of adversarial perturbations
while maintaining the signal’s integrity. We refer the reader
to [16] for further details on the Adaptive Edge (AdaptEdge)
algorithm and its underlying hypothesis.

IV. OVERVIEW OF DEFENSE METHOD

Defending against adversarial examples involves an ongoing
arms race between defenses and attacks due to the significant
consequences that successful attacks may have on critical
infrastructure. Resilient defense mechanisms are imperative
in this context. In this work, we investigate and compare
three defense techniques against TUA attacks. The first notable
defense technique is adversarial training [7], introduced by
Goodfellow et al. It involves augmenting the training data
with adversarial samples generated using the Fast Gradient
Sign Method (FGSM), enabling the model to better handle
adversarial inputs. The second defense technique we explore
is defense distillation [25]. Defensive distillation involves
training a secondary model to approximate the output proba-
bilities of the original model. This process forces the model
to learn a more smoothed and generalized decision boundary,
making it harder for adversarial perturbations to cause sig-
nificant misclassifications. Lastly, we investigate the defense
technique of feature squeezing [26]. Feature squeezing reduces
the input data’s dimensionality and quantizes it to a lower
precision. By doing so, it effectively removes some of the fine-
grained details that adversarial attacks typically exploit. This
regularization process enhances the model’s ability to resist
adversarial perturbations and improves its overall robustness.
This technique involves applying a moving filter across an
original image and adjusting the value of the central pixel to
the median value of the pixels within the filter. Suppose the
discrepancy between the predicted outcome of the unaltered
image and the predicted outcome of a compressed image
using either of the two techniques surpasses a predetermined
threshold. In that case, it can be inferred that the provided
input is likely to be an adversarial instance. To mitigate the
impacts of adversarial perturbations on time series data, we
employ a waveform smoothing mechanism as our strategy.
This mechanism aims to smooth out the fluctuations caused
by adversarial perturbations in the time series data, making
it more resistant to the influence of these perturbations and
enhancing the model’s robustness. We apply a moving average
technique for the purpose of effectively reducing noise and
enhancing the smoothness of individual waveforms within a
given batch. Fundamentally, the process involves recalibrating
each value in the waveform data by considering its adjacent
values within a specified window or size. The resultant wave-
forms exhibit a “squeezed” characteristic, which enhances
their resilience against adversarial perturbations.

The schematic representation of the defense strategy em-
ployed in our investigation is depicted in figure 2. Our research
aims to thoroughly analyze and compare the three afore-
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mentioned approaches to identify the most effective strategy
for mitigating TUA attacks on time series data. In order to
gain insight into the alignment of our defense methodology
with the overall process, it is necessary to examine the
procedure for classifying PQDs. Power quality disturbances
(PQDs) can arise from a wide range of sources, including
household appliances, industrial equipment, and commercial
facilities, and can manifest in various expressions. When
these disruptions arise, they propagate throughout the trans-
mission and distribution infrastructure until they reach the
substation. When these disruptions arise, they are detected
through the utilization of measurement devices such as Phasor
Measurement Units (PMUs) or Intelligent Electronic Devices
(IEDs) situated within the substation. These intelligent devices
establish communication with the control center using the
communication network utilizing the communication panel.
Therefore, signals will be transmitted from a substation to the
control center through direct or optical fiber communication,
which may involve transmitting the signals through other
substations. Wireless communication is occasionally utilized;
nevertheless, the signal loss in such instances tends to be
slightly higher. The communication panels of the control
center will be responsible for receiving signals from various
substations. Subsequently, the disruptions are inputted into a
deep learning algorithm, extracting fundamental characteristics
such as frequency, amplitude, and waveform configuration.
The model facilitates the classification of disturbances, which
utilizes extracted features. This enables the control center to
implement mitigation measures effectively. Nevertheless, when
confronted with an adversarial attack, the attacker employs
TUA perturbations to the PQD signals in order to manipulate
the outputs of the deep learning model. In the event of success,
this outcome has the potential to result in inaccurate grid
management decisions, thereby introducing the possibility of
instability and disruptions. In light of such attacks, our defen-
sive strategy becomes active. As a result, despite the presence
of TUA attacks, the model consistently maintains accurate
classification. This ensures the reliability of communication
between the transmission and distribution system and the
control center, thereby upholding the stability of the grid.

V. SIMULATION RESULTS AND DISCUSSION
A. Dataset Description

To evaluate the efficacy of the proposed TUA attack for
PQDs, we utilize ResNet50 as the deep learning model in
our study. In this model, the PQDs are characterized by a
sampling frequency of 3200 Hz, a fundamental frequency of
50 Hz, a total cycle count of 10, and an amplitude of 1. As
a result, the input signal vectors are constrained to a constant
length of 640, even though the underlying signal is continuous
and uninterrupted. Table I presents the various signal types
for all 17 classes of signals. In this study, a labeled dataset
consisting of 255,000 power-quality signals is utilized. The
dataset is publicly available [12] and has a signal-to-noise ratio
(SNR) of 30 dB. It is worth noting that the dataset is balanced
regarding class distribution. 25% of the data, which has been
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TABLE I: Power quality disturbances signals name and corresponding classes

Class | Signal Name Class | Signal Name Class | Signal Name

C-1 Normal C-7 Harmonics C-13 Sag with Oscillatory transient
C-2 Sag C-8 Harmonics with Sag C-14 Swell with Oscillatory transient
C-3 Swell C-9 Harmonics with Swell | C-15 Sag with Harmonics

C-4 Interruption C-10 Flicker C-16 Swell with Harmonics

C-5 Transient/Impulse/Spike | C-11 Flicker with Sag C-17 Notch

C-6 Oscillatory transient C-12 Flicker with Swell

randomly shuffled, is allocated for testing purposes, while the
remaining 75% is designated for training. The deep learning
model mentioned above has been trained for the purpose of
the PQD assessment task, which involves the classification of
signals into 17 distinct classes. After undergoing ten epochs
of training, our model exhibits high performance, attaining a
test accuracy of 99.26%.

B. Result and Analysis

This section will comprehensively examine the effectiveness
of three defense mechanisms- adversarial training, defensive
distillation, and feature squeezing- for power quality distur-
bance classification models vulnerable to TUA attacks. The
preliminary phase of the discussion focuses on a comparative
depiction of clean and adversarial examples employed in the
initial stage of the TUA attack. These adversarial examples
aim to possess qualities undetectable by the human visual
system while still possessing sufficient strength to mislead
the deep learning model, resulting in inaccurate classification
and preserving the integrity of the signal. Upon analysis of
Figure 3, it is evident that the adversarial perturbations are of
such small magnitude that they are practically imperceptible,
thereby enabling the clean sample to dominate the image.
Hence, these instances are categorized as possessing a high
level of imperceptibility. Figure 4 exhibits a slight increase
in the visibility of adversarial perturbations. Nevertheless, the
unaltered, original waveforms remain clearly visible. This phe-
nomenon occurs because the perturbations closely resemble
the shape of the clean sample, thereby blending with the
background noise. Hence, these occurrences are categorized as
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having a medium level of imperceptibility. In Figure 5, the ad-
versarial perturbations exhibit a higher level of visibility while
still maintaining a certain level of subtlety. From an analytical
perspective, it can be observed that these disturbances continue
to exhibit adversarial behavior, as the waveform characteristics
do not display substantial deviations from the standard pattern.
The peak values exhibit random increases, while the wave-
forms bear a resemblance to conventional waveforms with
the inclusion of noise. The aforementioned similarity holds
significant importance, as it greatly complicates the task of
differentiating an attack from the regular noise generated by
a system for a human observer. In our previous research, we
conducted a comprehensive series of experiments, thoroughly
investigating all possible combinations of source and target
classes. By employing our novel algorithm, we effectively
manipulated our model to misclassify 14 out of the 17 intended
classes. In the context of defense evaluations, we selected the
14 pairs of source and target classes that exhibited the most
significant attack success rates. To illustrate the effectiveness
of the various defense mechanisms against adversarial attacks,
we provide both tabulated results and visual representations
in our analysis. Before and after utilizing adversarial training,
defensive distillation, and feature squeezing, the table provides
a comprehensive breakdown of the fooling rates. The accom-
panying bar chart depicts the decline in fooling rates after the
application of each method, which can help in understanding
the trend and relative efficacy of these defenses.

Table II displays a comparative examination of the fooling
rate prior to and following the implementation of adversarial
training (AT) for three distinct levels of imperceptibility (High,
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of shades of yellow, thereby adhering to the aforementioned
shading principle for medium imperceptibility. Columns 7 and
8 utilize red shades, wherein a deeper hue signifies a higher
fooling rate for low imperceptibility, while the intensity of
the color diminishes as the percentages decrease. The attack
success rates exhibit a noticeable decrease after undergoing

adversarial training, thus demonstrating the efficacy of em-
ploying adversarial training as a resilient defensive approach
against adversarial attacks. If we focus on figure 6,7 and 8§,

* BAT- Before Adversarial Training, AAT- After Adversarial Training, HI- High Imperceptibility, MI- Medium Imperceptibility, LI- Low Imperceptibility.
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Medium, Low) across a range of source-target combinations.
The color-coding scheme has been employed in the provided
table to enhance the comprehensibility of the findings. The
third and fourth columns utilize various shades of green,
with darker shades indicating a higher fooling rate for high
imperceptibility and the darkest shade representing 100%. As
the percentage decreases, there is a corresponding increase in
the lightness of the green shade. In a similar manner, the repre-
sentation of columns 5 and 6 is achieved through the utilization
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Fig. 6: Graphical representation of fooling rate before and after adversarial training for high imperceptibility

the fooling rates decreased significantly after the adversarial
training in cases of a combination of source and target classes
such as C1-C2, C5-C3, C10-C4, and C5-C6. For example, for
the source-target combination C1-C2, the fooling rate under
high imperceptibility went down from 5.87% to 1.13% after
adversarial training. Under medium imperceptibility, it went
down from 10.34% to 0.01%, and for low imperceptibility,
the reduction was even more striking, from 38.18% to 0%.
Such reductions demonstrate the efficacy of the adversarial
training method in teaching the model to classify adversarially
perturbed examples correctly. Nevertheless, the reduction in
fooling rate was not as significant for specific source-target
combinations, namely C1-C8, C1-C9, C16-C13, and C16-C14.
In the case of C1-C8, under the influence of medium impercep-
tibility, the rate of deception decreased from 82.03% to 48.80%
after the application of adversarial training. Similarly, under
the influence of low imperceptibility, the rate of deception
decreased from 90% to 44.51%. Although there was a notable
decrease, the rates did not exhibit as substantial a decline as
in other instances.

Table III presents a comprehensive analysis of the fooling
rates before and after implementing a technique known as
defensive distillation. Comprehensively, it can be observed that
the deception rates exhibit a consistent decline after the imple-
mentation of defensive distillation techniques. In the context
of high imperceptibility from figure 6, it is observed that the
fooling rate for the source-target pair C-1 to C-2 decreases
from 5.87% to 2.28%. Considerable decreases are also evident
for pairs such as C-5 to C-3, wherein the rate decreases from
23.183% to a negligible 0.02%. In the context of medium
imperceptibility from figure 7, it has been observed that there
is a significant decrease in the rate at which the system is
deceived. The rate for the C-5 to C-6 pair experiences a
significant reduction, dropping from 39.03% to a mere 0.01%.
Certain reductions exhibit a more moderate nature, such as
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the C-1 to C-8 pair, wherein the rate experiences a decline
from 82.03% to 52.77%. Defensive distillation demonstrates
its effectiveness in achieving low imperceptibility. From figure
8, in the case of the C-1 to C-2 pair, the observed rate
experiences a decline from 38.18% to 0.00%.Nevertheless,
certain pairs, such as C-1 to C-16, exhibit a comparatively
less significant reduction, declining from 34.26% to 2.92%.
The application of defensive distillation typically reduces the
fooling rate; however, the extent of this reduction is contingent
upon the specific source-target pair. Certain pairs undergo a
significant decrease, approaching nearly 0.00%, whereas oth-
ers observe a comparatively more moderate decline. Defensive
distillation has demonstrated notable efficacy in mitigating
imperceptibility levels that are classified as high or medium.
The attack success rates within these categories frequently
decrease significantly, approaching negligible values after im-
plementing the aforementioned technique. In the context of
low imperceptibility, it is observed that although there is a
noticeable decrease, certain pairs exhibit fooling rates that do
not decline to the same extent.

Table IV presents a comparative analysis of the fooling
rate before and after applying feature squeezing for three
different levels of imperceptibility (High, Medium, and Low)
across various source-target combinations. In instances of
high imperceptibility from figure 6, a noticeable decrease in
the rate of successful deception is observed for numerous
Source-Target pairs following the implementation of feature
squeezing. For example, in pair C-5 to C-3, the fooling rate
decreases from 23.183% to 0.00%. Nevertheless, in certain
instances, such as the C-1 to C-8 pair, the reduction observed
is minimal, decreasing from 66.293% to 60.72%. Medium im-
perceptibility is characterized by a notable decrease observed
in various instances. From figure 7, it can be observed that
the rate experiences a significant decrease from 63.22% to
17.77% after the application of compression for the C-1 to
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TABLE III: Comparison of the fooling rate before and after defensive distillation

Source | Target | FR (H[-BDD) | FR (HI-ADD) | ER (MI-BDD) | FR (MI-ADD)
C1 C2 5.87% 2.28% 10.34% 0.02%
c-s C3 23.183% 0.02% 23.56% 0.05%
C-10 C-4 2.39% 0.00% 4.08% 0.00%
ol Cc-6 4.6% 0.09% 39.03% 0.01%
C-4 c-7 28.88% 7.58% 58.96% 5.97%
C-1 c-8 82.03% 52.77%
C-1 C-9 14.37% 5.22% 63.22% 19.59%
C-1 C-11 19.373% 0.38% 32.23% 0.00%
c3 c-12 35.05% 3.72% 57.44% 1.26%
c-16 | c-13 12.41% 80.35% 2.77%
c-16 | C-14 24.96% 4.88% 66.97% 8.68%
Cc-11 | c-15 32.14% 4.83% 37.82% 1.26%
C-1 C-16 8.01% 5.17% 28.20% 3.01%
C-10 | C-17 |[amss% | 6.13% 65.72% 7.87%

FR (LI-BDD)

34.26%

FR (LLADD)

* BDD- Before Defensive Distillation, ADD- After Defensive Distillation, HI- High Imperceptibility, MI- Medium Imperceptibility, LI- Low Impercepti-

bility.
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Fig. 7: Graphical representation of fooling rate before and after adversarial training for medium imperceptibility
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TABLE IV: Comparison of the fooling rate before and after feature squeezing

Source | Target | FR (HI-BFS) | FR (HI-AFS) | FR (MI-BFS) [ FR (MI-AFS) | FR (LI-BFS) | FR (LI-AFS)
C-1 C-2 5.87% 1.99% 10.34% 0.00%

cs c3 23.183% 0.00% 23.56% 0.00% 0.00%

c-10 | c+4 2.39% 0.00% 4.08% 0.00% 23.61% 3.60%

css C-6 4.6% 2.14% 38.65% 38.65%

C-4 c7 28.88% 19.34% 58.96% 57.22%

c-1 c-8 82.03% 82.00%

C-1 c-9 14.37% 12.68% 63.22% 17.77%

c1 | c11 19.373% 0.00% 32.23% 23.66%

c3 | c12 35.05% 0.60% 57.44% 5.96%

c-16 | C-13 80.35% 80.35%

C-16 | C-14 24.96% 18.96% 66.97% 66.97%

c-11 | C-15 32.14% 4.48% 37.82% 26.14%

c1 | c16 8.01% 0.04% 28.20% 0.04% 34.26%
c-10 | c17 65.72% 65.72%

* BFS- Before Feature Squeezing, AFS- After Feature Squeezing, HI- High Imperceptibility, MI- Medium Imperceptibility, LI- Low Imperceptibility.

C-9 pairing. However, certain pairs exhibit no alteration, such
as the transition from C-16 to C-13, which remains constant
at 80.35%. The variability of the impact of feature squeezing
is observed in the context of low imperceptibility. From figure
8, the pair consisting of C-1 to C-16 exhibits a decrease

from 34.26% to 3.69%, whereas certain pairs, such as C-
16 to C-14, remain unaltered at 89.65%. Feature squeezing
has demonstrated significant efficacy in various scenarios,
particularly when applied to imperceptibility levels categorized
as high or medium. This phenomenon is clearly demonstrated
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Fig. 8: Graphical representation of fooling rate before and after adversarial training for low imperceptibility

by the significant decrease in deception rates following the
implementation of feature squeezing. The findings regarding
low imperceptibility are somewhat inconclusive. There exist
instances wherein the application of feature squeezing leads to
a notable reduction in the rate of successful fooling attempts.
However, it is worth noting that several other cases have been
observed where no discernible improvement in the fooling rate
is observed. The efficacy of feature squeezing appears to rely
on the specific combination of source and target and the chosen
level of imperceptibility. The efficacy of this approach varies
depending on specific combinations, with some combinations
yield greater benefits than others.

In each of the three discussed defense methods, the varia-
tions in the decrease of the fooling rate can be attributed to
multiple potentially interrelated causes. The observed varia-
tions can be attributed to the distinctive characteristics in the
pairings of source and target classes. Every source-target pair
represents distinct categories of power quality disturbances,
each exhibiting its own distinctive waveform characteristics
and features. A model’s susceptibility to misclassifying a
particular class of disturbance as another can be significantly
influenced by the degree of similarity or dissimilarity between
the distinctive features of these classes. The model may
encounter increased difficulty in distinguishing between the
source and target when their characteristics exhibit greater
dissimilarity, even applying a defense technique. As a result,
this may lead to a comparatively smaller decrease in the rate
of deception.

Based on the preceding discourse, we will present a com-
parative analysis of the efficacy exhibited by three distinct
defense techniques. In our analysis, we have taken into account
several factors, including the mean reduction in fooling rates,
the consistency across different levels of imperceptibility, and
the lowest achievement in fooling rates. Adversarial training
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generally provides the most notable decrease in fooling rates
across all levels of imperceptibility. The performance of defen-
sive distillation is noteworthy, although it does not consistently
surpass that of adversarial training. Feature squeezing has
demonstrated effectiveness, particularly in the context of high
imperceptibility and medium imperceptibility levels, but its
performance is less consistent. Both adversarial training and
defensive distillation demonstrate consistency in their defense
against adversarial attacks, with adversarial training exhibiting
a slight advantage. Feature squeezing exhibits a greater range
of outcomes, particularly in low imperceptibility. In terms of
versatility, it is generally observed that adversarial training
outperforms other methods. However, in situations where com-
putational resources or time constraints are limiting factors,
defensive distillation, and feature squeezing may be more
appealing due to their less computationally intensive nature.
Hence, it can be inferred that adversarial training demonstrates
superior efficacy as a defense mechanism compared to the
other two methods, specifically in mitigating the fooling
rate. It consistently decreases the attack success rate across
various source-target pairs and at all levels of imperceptibility.
Defensive distillation has demonstrated efficacy, although it
may not consistently attain the same level of low fooling
rate as adversarial training. Feature squeezing exhibits less
consistency, particularly at lower levels of imperceptibility,
thereby diminishing its reliability as a defensive technique.
Nevertheless, the selection of the methodology may vary based
on specific use cases, available computational resources, and
the significance of safeguarding against a particular level of
imperceptibility. For example, if the objective is to mitigate
high imperceptibility adversarial attacks effectively, both Ad-
versarial training and feature squeezing demonstrate consider-
able promise.
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VI. CONCLUSION

This study offers a comprehensive analysis of TUA attacks
on time series data within the dynamic field of smart grid
systems. In this study, we aimed to analyze and compare
the effectiveness of three defensive techniques - adversarial
training, defensive distillation, and feature squeezing - in order
to identify the most optimal defense strategy against adver-
sarial intrusions. The results of our study provide a detailed
analysis of the benefits and constraints associated with each
approach. Adversarial training is particularly distinguished by
its consistent ability to reduce the effectiveness of adversarial
attacks across a wide range of source-target pairs and different
levels of imperceptibility. However, it is important to recognize
that it is not capable of completely eliminating the rate of
deception in all possible combinations of source and target.
Although defensive distillation is viable, it may not always
exhibit the same level of defensive strength as adversarial
training. Feature squeezing may encounter occasional chal-
lenges, especially when confronted with subtle adversarial
perturbations that are difficult to detect. Based on the diverse
array of difficulties posed by adversarial perturbations, our
research indicates that the defense approach requires further
development with the enhancement of defense mechanisms
achieved through the augmentation of a more diverse sample,
thereby potentially strengthening their ability to withstand a
wider range of adversarial techniques. This study emphasizes
the necessity of implementing such improvements by drawing
attention to the enduring presence of vulnerabilities, even in
the face of our most robust existing defenses. The future
research directions have a multitude of promising prospects.
Given that adversarial training does not currently offer an all-
inclusive solution, it is imperative for future research efforts to
focus on investigating the underlying factors that contribute to
these persistent vulnerabilities. There is potential in integrating
current defensive techniques or implementing new, innovative
strategies to develop a comprehensive defense. In the face of
the complex challenges we encounter, our research shows our
dedication to strengthening smart grid systems against hostile
attacks, envisioning a future in which power systems embody
reliability, security, and steadfast resilience. This study serves
as a foundational basis for future academic pursuits, initiating
the pursuit of enhanced and cohesive defense strategies against
the continuous development of adversarial attacks in power
systems and associated industries.
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