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Abstract—The utilization of deep learning models has been
widely recognized for its significant contribution to the enhance-
ment of smart grid operations, particularly in the domain of
power quality disturbance (PQD) classification. Nevertheless, the
emergence of vulnerabilities like targeted universal adversarial
attacks can significantly undermine the reliability and security
of deep learning models. These attacks can exploit the model’s
weaknesses, causing it to misclassify PQDs with potentially
catastrophic consequences. In our previous research, we for the
first time examined the vulnerability of deep learning models
to targeted universal adversarial attacks on time series data in
smart grids by introducing a novel algorithm that effectively
attacks by maintaining a trade-off between fooling rate and
imperceptibility. While this attack method demonstrated notable
efficacy, it also emphasized the pressing need for robust defensive
mechanisms to safeguard these critical systems. This paper
provides a thorough examination and evaluation of different
defense strategies, specifically adversarial training, defensive
distillation, and feature squeezing, in order to identify the most
effective method for mitigating targeted universal adversarial
(TUA) attacks on time series data for three different types of
imperceptibility (high, medium and low). Based on our analysis,
adversarial training demonstrates a significant reduction in the
success rate of attacks. Specifically, the technique reduced fooling
rates by an average of 23.73% for high imperceptibility, 31.04%
for medium imperceptibility, and a substantial 42.96% for low
imperceptibility. These findings highlight the crucial role of
adversarial training in enhancing the integrity of deep learning
applications.

Index Terms—targeted universal adversarial attack, time series
data, adversarial training, smart grid, deep learning

I. INTRODUCTION

Smart grids have revolutionized the electricity industry

by incorporating advanced technologies and data-driven ap-

proaches to enhance energy efficiency, reliability, and sustain-

ability. For instance, a study conducted by the U.S. Department

of Energy found that smart grid technologies, including ad-

vanced metering infrastructure (AMI) and distribution automa-

tion, led to a 5% reduction in peak electricity demand and a 6%

reduction in overall energy consumption [1]. This translates to

significant cost savings and environmental benefits. However,

power quality disturbances (PQDs) can have a detrimental

impact on the performance of a smart grid system. PQDs

in a power grid system refer to variations or deviations

from the ideal or expected electrical waveform, which can

lead to undesirable effects on the quality and reliability of

electrical power. These disturbances can be caused by var-

ious factors, including voltage sags or dips, voltage swells

or surges, voltage interruptions, harmonics, transients, and

flicker [2]. Voltage sags occur when there is a brief reduction

in voltage, which can affect sensitive equipment and cause

malfunctions or downtime. Voltage swells, on the other hand,

involve temporary increases in voltage, potentially damaging

equipment. Voltage interruptions result in a complete loss of

power for a short period, causing inconvenience and potential

damage to electronic devices. Harmonics, which are unwanted

frequencies, can distort waveforms and impact the efficient

operation of equipment. Transients are short-duration voltage

fluctuations caused by lightning, switching operations, or

faults, which can cause equipment failures. Flicker refers to

rapid changes in voltage that can lead to visual discomfort or

affect the performance of sensitive equipment.

In a smart grid system, various methods are employed to

detect PQDs, including the utilization of machine learning

(ML) techniques [3]. Traditional methods involve using spe-

cialized monitoring devices, such as power quality analyzers

and sensors, to measure voltage, current, and other electrical

parameters [4]. These devices continuously monitor the grid

and capture disturbances. ML algorithms enable the analy-

sis of vast amounts of data from diverse sources, such as

smart meters, sensors, and weather forecasts. This data-driven

approach empowers the smart grid system to gain real-time

insights, make intelligent decisions, identify patterns, predict

electricity demand, detect anomalies, and optimize energy

distribution, thus significantly improving grid efficiency and

reliability. Moreover, ML algorithms facilitate load forecasting

[5], energy storage management [6], and seamless integra-

tion of renewable energy sources, enabling the smart grid

to dynamically adapt and respond to changing conditions.

Continuously learning from data and refining its predictions,

the ML-based smart grid system holds immense potential in

revolutionizing the energy infrastructure.

Recent research has revealed a concerning vulnerability in

various families of ML models known as adversarial exam-

ples [7]. Adversarial examples are carefully crafted inputs

that are designed with the intention of misleading the target

model into generating incorrect or unexpected outputs. This

vulnerability extends across different types of ML models,

including deep neural networks, support vector machines, and

decision trees, among others [8]–[11]. These findings raise

concerns regarding the reliability ML models, especially in

safety-critical applications. The susceptibility to adversarial

examples undermines the ability of ML models to make

accurate and reliable predictions, potentially leading to severe
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consequences. In the case of PQDs, the misclassification of

such events could result in incorrect decision-making and

inadequate response measures, jeopardizing the stability of the

power grid system and the safety of connected devices [12],

[13].

The potential danger lies in the striking similarity between

adversarial signal attacks and benign signals, which can po-

tentially deceive human operators and lead to a failure in

detecting and recognizing ongoing attacks. Previous studies

have examined the vulnerability of deep learning models

to specific adversarial attacks in power systems [14] and

evaluated defense mechanisms against non-targeted attacks

[15]. However, there is a lack of research on targeted universal

adversarial (TUA) perturbations in time series data within

this context. In TUA, adversarial examples are crafted to

be transferable across different instances of the same model

architecture. In other words, these attacks are designed to

be universally effective, meaning that the same adversarial

example can mislead the target model, regardless of the

data on which the model was trained. In this subsequent

installment, we aim to further elaborate on our prior research

[16] and introduce an investigation into diverse defense strate-

gies. These strategies encompass adversarial training, defense

distillation, and feature squeezing, intending to determine the

most resilient countermeasure against TUA attacks specifically

targeted at time series data. This work present a holistic

defense strategy specifically designed to address the intricacies

of time series data within the smart grid domain. The key

contributions of our manuscript are as follows:

• Our research endeavors to lead the way in investigating

strategies to counter targeted universal adversarial (TUA)

attacks on time series data, thereby expanding the existing

knowledge on adversarial attacks.

• Three well-known defense strategies, adversarial training,

defensive distillation, and feature squeezing, are specif-

ically adapted and evaluated by us. We use a moving

average technique for feature squeezing to minimize

background noise and maximize the smoothness of the

waveform within each batch.

• After analyzing fooling rates, adversarial training is the

best defense against targeted universal adversarial attacks

on time series data. Adversarial training consistently

lowered fooling rates to near zero. It decreased high

imperceptibility by 23.73%, middle by 31.04%, and low

by 42.96% on average. Defensive distillation showed

promise, but adversarial training was more effective.

Feature squeezing had inconsistent effects.

The remaining sections of this paper are organized as

follows. In Section II, we describe the related work. Section III

is a brief presentation of TUA attacks on neural networks.

Section IV focuses on the overview of defense methods

against adversarial targeted attacks. The experiments, results,

and discussions are presented comprehensively in Section V.

Finally; Section VI summarizes the conclusions drawn from

the study.

II. RELATED WORK

Numerous scholarly investigations have been conducted

to examine the effects of cyber attacks on the smart grid,

encompassing both untargeted and targeted attacks. In [17], the

authors investigate the effects of adversarial attacks on con-

volutional neural network-based frameworks for event cause

analysis. In their study, Kosut, Oliver, et al. [18] conducted a

cyber attack on a smart grid system using a technique known

as malicious data injection. In their study, Cheng et al. [19]

employed various adversarial attack techniques to introduce

noise signals into the input time series of Phasor Measure-

ment Units (PMUs). Their findings demonstrate that existing

deep learning-powered event classifiers for power systems are

highly vulnerable to these attacks, posing a potential threat to

the reliability of power transmission systems.

Concurrently, efforts are being made to develop robust

defenses, including adversarial training [20], input transfor-

mations, and [21], which aim to enhance the model’s ability

to resist adversarial attacks. In [22], the authors examine

the security challenges associated with neural network-based

state estimation in the smart grid. It specifically addresses the

problem of adversarial attacks targeting neural network-based

state estimation and presents a highly efficient adversarial

attack method. Li, Jiangnan, et al. [23] investigate the security

threat of false data injection attacks (FDIAs) in power system

state estimation, highlighting the limitations of existing ma-

chine learning techniques, and propose an adversarial-resilient

DNN-based approach that incorporates random input padding

to effectively mitigate adversarial attacks while maintaining

detection performance. Reference [24] explores the security

implications of FDI attacks in distributed demand response

systems within smart grids, revealing the vulnerability of deep

learning-based FDI attack detection methods to adversarial

machine learning attacks. Before our efforts, there was, to

the best of our knowledge, a conspicuous lack of research

addressing targeted universal adversarial attacks on time series

data. Our earlier work [16] paved the way in this direction

by introducing a novel algorithm tailored to this specific chal-

lenge. The present study explores defenses against such attacks

on time series data, venturing deeper into uncharted territory.

Specifically, we adapt and evaluate prominent defense methods

to establish their efficacy within the context of time series data,

thereby bridging a significant research gap in the field.

III. TARGETED UNIVERSAL ADVERSARIAL ATTACK

In our prior research [16], we showcased a TUA attack

on time series data related to PQDs. We explored the threat

model of TUA attack, considering factors such as the attacker’s

knowledge, capabilities, and goals.

A. Threat Model

• Attacker’s Knowledge. The attacker’s level of knowl-

edge can vary between a white-box setting, where they

possess comprehensive information about the trained

model, including its learning algorithm, structure, pa-

rameters, hyper-parameters, and training data, and a
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black-box setting, where the attacker only has limited

knowledge and is aware only of the model’s inputs and

outputs. This suggests that the attacker could potentially

be an insider with access to certain information about the

model’s architecture and data or an outsider with limited

information about the model’s inner workings. We are

focusing on white box settings in this research.

• Attacker’s Goals. In a TUA attack, the attacker’s ob-

jective is to find a single perturbation value that, when

added to most clean samples, leads the model to predict

the targeted class intentionally. The attacker aims to

achieve this by exploiting the model’s vulnerabilities and

generating subtle perturbations that can deceive the model

consistently across different instances.

B. Adaptive Edge algorithms

Perturbation Edge

Adversarial Perturbation with

 High/Medium/Low Imperceptibility

Adversarial Perturbation with

 extremely low Imperceptibility

Fig. 1: Visualization of the Perturbation Edge

Our previous research introduces the methodology for con-

structing a TUA attack utilizing the Adaptive Edge (Adapt-

Edge) algorithm. The algorithm is designed to effectively

deceive deep learning models that operate on time series

data by striking a balance between the fooling rate and the

imperceptibility of the attack to human observers. To achieve

this, the algorithm relies on two essential metrics. Firstly,

the fooling rate measures the attack’s success in causing the

deep learning model to misclassify the majority of clean time

series data into the targeted class. Secondly, the signal-to-

noise ratio (SNR) provides insights into the imperceptibility

of the adversarial perturbation. This approach is based on

the hypothesis that dynamically modifying the perturbation

edge can improve the attack’s effectiveness while maintaining

the imperceptibility of the input signal. Figure 1 illustrates

a conceptual depiction of the perturbation edge within a

feature space with multiple dimensions. The semi-transparent

sphere symbolizes the perturbation edge, which, in the present

context, corresponds to the limit of permissible perturbations.

Adversarial perturbations confined within the boundaries of

this hypersphere exhibit subtlety and effectively impact the

predictions of the model while simultaneously maintaining

their imperceptibility to human observers. The scattered red

dots contained within the sphere serve as representations

of diverse adversarial perturbations. The fact that they are

confined within the hypersphere suggests that they adhere

to the boundary established by the perturbation edge. Any

location beyond the boundaries of this sphere would indicate

a conspicuous or excessive disturbance, which is likely to be

perceptible by humans and thus unsuitable for stealthy adver-

sarial attacks. The arrows originating from the central point

symbolize possible directions in which data may be altered.

The magnitude of their size, upon reaching the boundary of

the sphere, signifies the utmost degree to which data can

be altered in that specific direction while still adhering to

the confines of the perturbation boundary. The visualization

depicts blue dots situated beyond the perturbation boundary,

indicating a significantly low imperceptibility. Therefore, a

human observer would be able to perceive these perturbations.

In the feature space, the perturbation edge is defined as the

radius of the smallest hypersphere that encloses the data. This

hypersphere’s confinement of perturbations creates a boundary

that plays a vital role in preserving the integrity of the signal.

Analogous to how the ”edge” of a circle in two-dimensional

space represents its boundary, adversarial perturbations in

multidimensional feature space are confined within a hyper-

sphere. This restriction ensures that the perturbations remain

subtle and imperceptible to human observers while effectively

influencing the model’s predictions.

To categorize degrees of imperceptibility as high, medium,

or low, we set a specific threshold for the SNR. These levels

are established by methodically varying the perturbation edge

value, followed by a visual examination of the integrity of the

resulting signal. We assume that the attacker is aware of these

predetermined SNR thresholds and employs this knowledge to

maneuver through the imperceptibility levels. The symbol ”ε”

is often used to indicate the radius of this hypersphere. By

increasing the ”edge” of the hypersphere, perturbations can

exist over a wider volume. The experiment commences with a

high imperceptibility for the specific source-target class pair.

If the rate of fooling meets or surpasses the predetermined

threshold, the algorithm proceeds to reduce the value of in

order to ascertain whether a desired rate of fooling can be

achieved using a smaller value than the initial . Once the

desired level of deception is attained, the value of ε is subse-

quently reduced to guarantee a significantly elevated level of

imperceptibility, specifically regarding a high signal-to-noise

ratio (SNR). The reduction process persists until a fooling rate

equal to or surpasses the predetermined criterion is achieved.

The optimal value of ε signifies the ideal radius, establishing

the optimal boundary for perturbation. On the other hand, in

the event that fooling rate lower than the specified threshold is

achieved utilizing the initial ε value, the algorithm proceeds to

increment ε to assess whether the rate of deception approaches

or surpasses the threshold. This process continues until the

threshold is reached or surpassed. Subsequently, the algorithm

proceeds to decrease the value of ε within the range bounded

by the incremented ε and the initial ε in order to assess the

potential for enhancing imperceptibility while maintaining the

desired fooling rate. In the event that the rate of deception once

again reaches or surpasses the predetermined threshold, the

variable ε will persistently decrease until it reaches a value that

is lower than the threshold. Once the rate of deception drops
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below a predetermined threshold, the algorithm discontinues

its process of diminishing ε and instead restores it to its

previous value. The dynamic modification of the ε parameter

allows for the optimal creation of adversarial perturbations

while maintaining the signal’s integrity. We refer the reader

to [16] for further details on the Adaptive Edge (AdaptEdge)

algorithm and its underlying hypothesis.

IV. OVERVIEW OF DEFENSE METHOD

Defending against adversarial examples involves an ongoing

arms race between defenses and attacks due to the significant

consequences that successful attacks may have on critical

infrastructure. Resilient defense mechanisms are imperative

in this context. In this work, we investigate and compare

three defense techniques against TUA attacks. The first notable

defense technique is adversarial training [7], introduced by

Goodfellow et al. It involves augmenting the training data

with adversarial samples generated using the Fast Gradient

Sign Method (FGSM), enabling the model to better handle

adversarial inputs. The second defense technique we explore

is defense distillation [25]. Defensive distillation involves

training a secondary model to approximate the output proba-

bilities of the original model. This process forces the model

to learn a more smoothed and generalized decision boundary,

making it harder for adversarial perturbations to cause sig-

nificant misclassifications. Lastly, we investigate the defense

technique of feature squeezing [26]. Feature squeezing reduces

the input data’s dimensionality and quantizes it to a lower

precision. By doing so, it effectively removes some of the fine-

grained details that adversarial attacks typically exploit. This

regularization process enhances the model’s ability to resist

adversarial perturbations and improves its overall robustness.

This technique involves applying a moving filter across an

original image and adjusting the value of the central pixel to

the median value of the pixels within the filter. Suppose the

discrepancy between the predicted outcome of the unaltered

image and the predicted outcome of a compressed image

using either of the two techniques surpasses a predetermined

threshold. In that case, it can be inferred that the provided

input is likely to be an adversarial instance. To mitigate the

impacts of adversarial perturbations on time series data, we

employ a waveform smoothing mechanism as our strategy.

This mechanism aims to smooth out the fluctuations caused

by adversarial perturbations in the time series data, making

it more resistant to the influence of these perturbations and

enhancing the model’s robustness. We apply a moving average

technique for the purpose of effectively reducing noise and

enhancing the smoothness of individual waveforms within a

given batch. Fundamentally, the process involves recalibrating

each value in the waveform data by considering its adjacent

values within a specified window or size. The resultant wave-

forms exhibit a ”squeezed” characteristic, which enhances

their resilience against adversarial perturbations.

The schematic representation of the defense strategy em-

ployed in our investigation is depicted in figure 2. Our research

aims to thoroughly analyze and compare the three afore-

mentioned approaches to identify the most effective strategy

for mitigating TUA attacks on time series data. In order to

gain insight into the alignment of our defense methodology

with the overall process, it is necessary to examine the

procedure for classifying PQDs. Power quality disturbances

(PQDs) can arise from a wide range of sources, including

household appliances, industrial equipment, and commercial

facilities, and can manifest in various expressions. When

these disruptions arise, they propagate throughout the trans-

mission and distribution infrastructure until they reach the

substation. When these disruptions arise, they are detected

through the utilization of measurement devices such as Phasor

Measurement Units (PMUs) or Intelligent Electronic Devices

(IEDs) situated within the substation. These intelligent devices

establish communication with the control center using the

communication network utilizing the communication panel.

Therefore, signals will be transmitted from a substation to the

control center through direct or optical fiber communication,

which may involve transmitting the signals through other

substations. Wireless communication is occasionally utilized;

nevertheless, the signal loss in such instances tends to be

slightly higher. The communication panels of the control

center will be responsible for receiving signals from various

substations. Subsequently, the disruptions are inputted into a

deep learning algorithm, extracting fundamental characteristics

such as frequency, amplitude, and waveform configuration.

The model facilitates the classification of disturbances, which

utilizes extracted features. This enables the control center to

implement mitigation measures effectively. Nevertheless, when

confronted with an adversarial attack, the attacker employs

TUA perturbations to the PQD signals in order to manipulate

the outputs of the deep learning model. In the event of success,

this outcome has the potential to result in inaccurate grid

management decisions, thereby introducing the possibility of

instability and disruptions. In light of such attacks, our defen-

sive strategy becomes active. As a result, despite the presence

of TUA attacks, the model consistently maintains accurate

classification. This ensures the reliability of communication

between the transmission and distribution system and the

control center, thereby upholding the stability of the grid.

V. SIMULATION RESULTS AND DISCUSSION

A. Dataset Description

To evaluate the efficacy of the proposed TUA attack for

PQDs, we utilize ResNet50 as the deep learning model in

our study. In this model, the PQDs are characterized by a

sampling frequency of 3200 Hz, a fundamental frequency of

50 Hz, a total cycle count of 10, and an amplitude of 1. As

a result, the input signal vectors are constrained to a constant

length of 640, even though the underlying signal is continuous

and uninterrupted. Table I presents the various signal types

for all 17 classes of signals. In this study, a labeled dataset

consisting of 255,000 power-quality signals is utilized. The

dataset is publicly available [12] and has a signal-to-noise ratio

(SNR) of 30 dB. It is worth noting that the dataset is balanced

regarding class distribution. 25% of the data, which has been
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TABLE I: Power quality disturbances signals name and corresponding classes

Class Signal Name Class Signal Name Class Signal Name

C-1 Normal C-7 Harmonics C-13 Sag with Oscillatory transient
C-2 Sag C-8 Harmonics with Sag C-14 Swell with Oscillatory transient
C-3 Swell C-9 Harmonics with Swell C-15 Sag with Harmonics
C-4 Interruption C-10 Flicker C-16 Swell with Harmonics
C-5 Transient/Impulse/Spike C-11 Flicker with Sag C-17 Notch
C-6 Oscillatory transient C-12 Flicker with Swell

randomly shuffled, is allocated for testing purposes, while the

remaining 75% is designated for training. The deep learning

model mentioned above has been trained for the purpose of

the PQD assessment task, which involves the classification of

signals into 17 distinct classes. After undergoing ten epochs

of training, our model exhibits high performance, attaining a

test accuracy of 99.26%.

B. Result and Analysis

This section will comprehensively examine the effectiveness

of three defense mechanisms- adversarial training, defensive

distillation, and feature squeezing- for power quality distur-

bance classification models vulnerable to TUA attacks. The

preliminary phase of the discussion focuses on a comparative

depiction of clean and adversarial examples employed in the

initial stage of the TUA attack. These adversarial examples

aim to possess qualities undetectable by the human visual

system while still possessing sufficient strength to mislead

the deep learning model, resulting in inaccurate classification

and preserving the integrity of the signal. Upon analysis of

Figure 3, it is evident that the adversarial perturbations are of

such small magnitude that they are practically imperceptible,

thereby enabling the clean sample to dominate the image.

Hence, these instances are categorized as possessing a high

level of imperceptibility. Figure 4 exhibits a slight increase

in the visibility of adversarial perturbations. Nevertheless, the

unaltered, original waveforms remain clearly visible. This phe-

nomenon occurs because the perturbations closely resemble

the shape of the clean sample, thereby blending with the

background noise. Hence, these occurrences are categorized as

having a medium level of imperceptibility. In Figure 5, the ad-

versarial perturbations exhibit a higher level of visibility while

still maintaining a certain level of subtlety. From an analytical

perspective, it can be observed that these disturbances continue

to exhibit adversarial behavior, as the waveform characteristics

do not display substantial deviations from the standard pattern.

The peak values exhibit random increases, while the wave-

forms bear a resemblance to conventional waveforms with

the inclusion of noise. The aforementioned similarity holds

significant importance, as it greatly complicates the task of

differentiating an attack from the regular noise generated by

a system for a human observer. In our previous research, we

conducted a comprehensive series of experiments, thoroughly

investigating all possible combinations of source and target

classes. By employing our novel algorithm, we effectively

manipulated our model to misclassify 14 out of the 17 intended

classes. In the context of defense evaluations, we selected the

14 pairs of source and target classes that exhibited the most

significant attack success rates. To illustrate the effectiveness

of the various defense mechanisms against adversarial attacks,

we provide both tabulated results and visual representations

in our analysis. Before and after utilizing adversarial training,

defensive distillation, and feature squeezing, the table provides

a comprehensive breakdown of the fooling rates. The accom-

panying bar chart depicts the decline in fooling rates after the

application of each method, which can help in understanding

the trend and relative efficacy of these defenses.

Table II displays a comparative examination of the fooling

rate prior to and following the implementation of adversarial

training (AT) for three distinct levels of imperceptibility (High,
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Fig. 3: Waveforms of power quality disturbances after TUA attack for high imperceptibility

Fig. 4: Waveforms of power quality disturbances after TUA attack for medium imperceptibility

Fig. 5: Waveforms of power quality disturbances after TUA attack for low imperceptibility

TABLE II: Comparison of the fooling rate before and after adversarial training

Source Target FR (HI-BAT) FR (HI-AAT) FR (MI-BAT) FR (MI-AAT) FR (LI-BAT) FR (LI-AAT)

C-1 C-2 5.87% 1.13% 10.34% 0.01% 38.18% 0.00%

C-5 C-3 23.183% 0.02% 23.56% 0.02% 44.65% 0.00%

C-10 C-4 2.39% 0.00% 4.08% 0.00% 23.61% 0.00%

C-5 C-6 4.6% 0.11% 39.03% 0.04% 64.77% 0.00%

C-4 C-7 28.88% 1.90% 58.96% 2.85% 73.38% 10.92%

C-1 C-8 66.293% 34.03% 82.03% 48.80% 90.00% 44.51%

C-1 C-9 14.37% 8.54% 63.22% 18.80% 89.49% 26.34%

C-1 C-11 19.373% 1.88% 32.23% 0.32% 41.72% 0.01%

C-3 C-12 35.05% 0.75% 57.44% 1.09% 70.26% 0.27%

C-16 C-13 48.12% 12.95% 80.35% 25.90% 85.80% 12.35%

C-16 C-14 24.96% 3.06% 66.97% 10.29% 89.65% 5.57%

C-11 C-15 32.14% 4.63% 37.82% 8.64% 39.98% 0.00%

C-1 C-16 8.01% 4.71% 28.20% 5.35% 34.26% 5.65%

C-10 C-17 47.55% 6.66% 65.72% 3.20% 73.58% 6.91%

* BAT- Before Adversarial Training, AAT- After Adversarial Training, HI- High Imperceptibility, MI- Medium Imperceptibility, LI- Low Imperceptibility.

Medium, Low) across a range of source-target combinations.

The color-coding scheme has been employed in the provided

table to enhance the comprehensibility of the findings. The

third and fourth columns utilize various shades of green,

with darker shades indicating a higher fooling rate for high

imperceptibility and the darkest shade representing 100%. As

the percentage decreases, there is a corresponding increase in

the lightness of the green shade. In a similar manner, the repre-

sentation of columns 5 and 6 is achieved through the utilization

of shades of yellow, thereby adhering to the aforementioned

shading principle for medium imperceptibility. Columns 7 and

8 utilize red shades, wherein a deeper hue signifies a higher

fooling rate for low imperceptibility, while the intensity of

the color diminishes as the percentages decrease. The attack

success rates exhibit a noticeable decrease after undergoing

adversarial training, thus demonstrating the efficacy of em-

ploying adversarial training as a resilient defensive approach

against adversarial attacks. If we focus on figure 6,7 and 8,
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Fig. 6: Graphical representation of fooling rate before and after adversarial training for high imperceptibility

the fooling rates decreased significantly after the adversarial

training in cases of a combination of source and target classes

such as C1-C2, C5-C3, C10-C4, and C5-C6. For example, for

the source-target combination C1-C2, the fooling rate under

high imperceptibility went down from 5.87% to 1.13% after

adversarial training. Under medium imperceptibility, it went

down from 10.34% to 0.01%, and for low imperceptibility,

the reduction was even more striking, from 38.18% to 0%.

Such reductions demonstrate the efficacy of the adversarial

training method in teaching the model to classify adversarially

perturbed examples correctly. Nevertheless, the reduction in

fooling rate was not as significant for specific source-target

combinations, namely C1-C8, C1-C9, C16-C13, and C16-C14.

In the case of C1-C8, under the influence of medium impercep-

tibility, the rate of deception decreased from 82.03% to 48.80%

after the application of adversarial training. Similarly, under

the influence of low imperceptibility, the rate of deception

decreased from 90% to 44.51%. Although there was a notable

decrease, the rates did not exhibit as substantial a decline as

in other instances.

Table III presents a comprehensive analysis of the fooling

rates before and after implementing a technique known as

defensive distillation. Comprehensively, it can be observed that

the deception rates exhibit a consistent decline after the imple-

mentation of defensive distillation techniques. In the context

of high imperceptibility from figure 6, it is observed that the

fooling rate for the source-target pair C-1 to C-2 decreases

from 5.87% to 2.28%. Considerable decreases are also evident

for pairs such as C-5 to C-3, wherein the rate decreases from

23.183% to a negligible 0.02%. In the context of medium

imperceptibility from figure 7, it has been observed that there

is a significant decrease in the rate at which the system is

deceived. The rate for the C-5 to C-6 pair experiences a

significant reduction, dropping from 39.03% to a mere 0.01%.

Certain reductions exhibit a more moderate nature, such as

the C-1 to C-8 pair, wherein the rate experiences a decline

from 82.03% to 52.77%. Defensive distillation demonstrates

its effectiveness in achieving low imperceptibility. From figure

8, in the case of the C-1 to C-2 pair, the observed rate

experiences a decline from 38.18% to 0.00%.Nevertheless,

certain pairs, such as C-1 to C-16, exhibit a comparatively

less significant reduction, declining from 34.26% to 2.92%.

The application of defensive distillation typically reduces the

fooling rate; however, the extent of this reduction is contingent

upon the specific source-target pair. Certain pairs undergo a

significant decrease, approaching nearly 0.00%, whereas oth-

ers observe a comparatively more moderate decline. Defensive

distillation has demonstrated notable efficacy in mitigating

imperceptibility levels that are classified as high or medium.

The attack success rates within these categories frequently

decrease significantly, approaching negligible values after im-

plementing the aforementioned technique. In the context of

low imperceptibility, it is observed that although there is a

noticeable decrease, certain pairs exhibit fooling rates that do

not decline to the same extent.

Table IV presents a comparative analysis of the fooling

rate before and after applying feature squeezing for three

different levels of imperceptibility (High, Medium, and Low)

across various source-target combinations. In instances of

high imperceptibility from figure 6, a noticeable decrease in

the rate of successful deception is observed for numerous

Source-Target pairs following the implementation of feature

squeezing. For example, in pair C-5 to C-3, the fooling rate

decreases from 23.183% to 0.00%. Nevertheless, in certain

instances, such as the C-1 to C-8 pair, the reduction observed

is minimal, decreasing from 66.293% to 60.72%. Medium im-

perceptibility is characterized by a notable decrease observed

in various instances. From figure 7, it can be observed that

the rate experiences a significant decrease from 63.22% to

17.77% after the application of compression for the C-1 to
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TABLE III: Comparison of the fooling rate before and after defensive distillation

Source Target FR (HI-BDD) FR (HI-ADD) FR (MI-BDD) FR (MI-ADD) FR (LI-BDD) FR (LI-ADD)

C-1 C-2 5.87% 2.28% 10.34% 0.02% 38.18% 0.00%

C-5 C-3 23.183% 0.02% 23.56% 0.05% 44.65% 0.02%

C-10 C-4 2.39% 0.00% 4.08% 0.00% 23.61% 0.00%

C-5 C-6 4.6% 0.09% 39.03% 0.01% 64.77% 0.00%

C-4 C-7 28.88% 7.58% 58.96% 5.97% 73.38% 7.44%

C-1 C-8 66.293% 44.77% 82.03% 52.77% 90.00% 56.48%

C-1 C-9 14.37% 5.22% 63.22% 19.59% 89.49% 21.05%

C-1 C-11 19.373% 0.38% 32.23% 0.00% 41.72% 0.00%

C-3 C-12 35.05% 3.72% 57.44% 1.26% 70.26% 0.02%

C-16 C-13 48.12% 12.41% 80.35% 2.77% 85.80% 3.56%

C-16 C-14 24.96% 4.88% 66.97% 8.68% 89.65% 11.67%

C-11 C-15 32.14% 4.83% 37.82% 1.26% 39.98% 3.60%

C-1 C-16 8.01% 5.17% 28.20% 3.01% 34.26% 2.92%

C-10 C-17 47.55% 6.13% 65.72% 7.87% 73.58% 5.13%

* BDD- Before Defensive Distillation, ADD- After Defensive Distillation, HI- High Imperceptibility, MI- Medium Imperceptibility, LI- Low Impercepti-
bility.

Fig. 7: Graphical representation of fooling rate before and after adversarial training for medium imperceptibility

TABLE IV: Comparison of the fooling rate before and after feature squeezing

Source Target FR (HI-BFS) FR (HI-AFS) FR (MI-BFS) FR (MI-AFS) FR (LI-BFS) FR (LI-AFS)

C-1 C-2 5.87% 4.99% 10.34% 0.00% 38.18% 38.18%

C-5 C-3 23.183% 0.00% 23.56% 0.00% 44.65% 0.00%

C-10 C-4 2.39% 0.00% 4.08% 0.00% 23.61% 3.60%

C-5 C-6 4.6% 2.14% 38.65% 38.65% 64.77% 64.77%

C-4 C-7 28.88% 19.34% 58.96% 57.22% 73.38% 73.38%

C-1 C-8 66.293% 60.72% 82.03% 82.00% 90.00% 90.00%

C-1 C-9 14.37% 12.68% 63.22% 17.77% 89.49% 63.22%

C-1 C-11 19.373% 0.00% 32.23% 23.66% 41.72% 41.7%

C-3 C-12 35.05% 0.60% 57.44% 5.96% 70.26% 70.26%

C-16 C-13 48.12% 48.12% 80.35% 80.35% 85.80% 85.80%

C-16 C-14 24.96% 18.96% 66.97% 66.97% 89.65% 89.65%

C-11 C-15 32.14% 4.48% 37.82% 26.14% 39.98% 38.83%

C-1 C-16 8.01% 0.04% 28.20% 0.04% 34.26% 3.69%

C-10 C-17 47.55% 47.55% 65.72% 65.72% 73.58% 73.58%

* BFS- Before Feature Squeezing, AFS- After Feature Squeezing, HI- High Imperceptibility, MI- Medium Imperceptibility, LI- Low Imperceptibility.

C-9 pairing. However, certain pairs exhibit no alteration, such

as the transition from C-16 to C-13, which remains constant

at 80.35%. The variability of the impact of feature squeezing

is observed in the context of low imperceptibility. From figure

8, the pair consisting of C-1 to C-16 exhibits a decrease

from 34.26% to 3.69%, whereas certain pairs, such as C-

16 to C-14, remain unaltered at 89.65%. Feature squeezing

has demonstrated significant efficacy in various scenarios,

particularly when applied to imperceptibility levels categorized

as high or medium. This phenomenon is clearly demonstrated
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Fig. 8: Graphical representation of fooling rate before and after adversarial training for low imperceptibility

by the significant decrease in deception rates following the

implementation of feature squeezing. The findings regarding

low imperceptibility are somewhat inconclusive. There exist

instances wherein the application of feature squeezing leads to

a notable reduction in the rate of successful fooling attempts.

However, it is worth noting that several other cases have been

observed where no discernible improvement in the fooling rate

is observed. The efficacy of feature squeezing appears to rely

on the specific combination of source and target and the chosen

level of imperceptibility. The efficacy of this approach varies

depending on specific combinations, with some combinations

yield greater benefits than others.

In each of the three discussed defense methods, the varia-

tions in the decrease of the fooling rate can be attributed to

multiple potentially interrelated causes. The observed varia-

tions can be attributed to the distinctive characteristics in the

pairings of source and target classes. Every source-target pair

represents distinct categories of power quality disturbances,

each exhibiting its own distinctive waveform characteristics

and features. A model’s susceptibility to misclassifying a

particular class of disturbance as another can be significantly

influenced by the degree of similarity or dissimilarity between

the distinctive features of these classes. The model may

encounter increased difficulty in distinguishing between the

source and target when their characteristics exhibit greater

dissimilarity, even applying a defense technique. As a result,

this may lead to a comparatively smaller decrease in the rate

of deception.

Based on the preceding discourse, we will present a com-

parative analysis of the efficacy exhibited by three distinct

defense techniques. In our analysis, we have taken into account

several factors, including the mean reduction in fooling rates,

the consistency across different levels of imperceptibility, and

the lowest achievement in fooling rates. Adversarial training

generally provides the most notable decrease in fooling rates

across all levels of imperceptibility. The performance of defen-

sive distillation is noteworthy, although it does not consistently

surpass that of adversarial training. Feature squeezing has

demonstrated effectiveness, particularly in the context of high

imperceptibility and medium imperceptibility levels, but its

performance is less consistent. Both adversarial training and

defensive distillation demonstrate consistency in their defense

against adversarial attacks, with adversarial training exhibiting

a slight advantage. Feature squeezing exhibits a greater range

of outcomes, particularly in low imperceptibility. In terms of

versatility, it is generally observed that adversarial training

outperforms other methods. However, in situations where com-

putational resources or time constraints are limiting factors,

defensive distillation, and feature squeezing may be more

appealing due to their less computationally intensive nature.

Hence, it can be inferred that adversarial training demonstrates

superior efficacy as a defense mechanism compared to the

other two methods, specifically in mitigating the fooling

rate. It consistently decreases the attack success rate across

various source-target pairs and at all levels of imperceptibility.

Defensive distillation has demonstrated efficacy, although it

may not consistently attain the same level of low fooling

rate as adversarial training. Feature squeezing exhibits less

consistency, particularly at lower levels of imperceptibility,

thereby diminishing its reliability as a defensive technique.

Nevertheless, the selection of the methodology may vary based

on specific use cases, available computational resources, and

the significance of safeguarding against a particular level of

imperceptibility. For example, if the objective is to mitigate

high imperceptibility adversarial attacks effectively, both Ad-

versarial training and feature squeezing demonstrate consider-

able promise.
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VI. CONCLUSION

This study offers a comprehensive analysis of TUA attacks

on time series data within the dynamic field of smart grid

systems. In this study, we aimed to analyze and compare

the effectiveness of three defensive techniques - adversarial

training, defensive distillation, and feature squeezing - in order

to identify the most optimal defense strategy against adver-

sarial intrusions. The results of our study provide a detailed

analysis of the benefits and constraints associated with each

approach. Adversarial training is particularly distinguished by

its consistent ability to reduce the effectiveness of adversarial

attacks across a wide range of source-target pairs and different

levels of imperceptibility. However, it is important to recognize

that it is not capable of completely eliminating the rate of

deception in all possible combinations of source and target.

Although defensive distillation is viable, it may not always

exhibit the same level of defensive strength as adversarial

training. Feature squeezing may encounter occasional chal-

lenges, especially when confronted with subtle adversarial

perturbations that are difficult to detect. Based on the diverse

array of difficulties posed by adversarial perturbations, our

research indicates that the defense approach requires further

development with the enhancement of defense mechanisms

achieved through the augmentation of a more diverse sample,

thereby potentially strengthening their ability to withstand a

wider range of adversarial techniques. This study emphasizes

the necessity of implementing such improvements by drawing

attention to the enduring presence of vulnerabilities, even in

the face of our most robust existing defenses. The future

research directions have a multitude of promising prospects.

Given that adversarial training does not currently offer an all-

inclusive solution, it is imperative for future research efforts to

focus on investigating the underlying factors that contribute to

these persistent vulnerabilities. There is potential in integrating

current defensive techniques or implementing new, innovative

strategies to develop a comprehensive defense. In the face of

the complex challenges we encounter, our research shows our

dedication to strengthening smart grid systems against hostile

attacks, envisioning a future in which power systems embody

reliability, security, and steadfast resilience. This study serves

as a foundational basis for future academic pursuits, initiating

the pursuit of enhanced and cohesive defense strategies against

the continuous development of adversarial attacks in power

systems and associated industries.
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