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Abstract—Accurate classification of power quality disturbances
(PQD) is essential for ensuring the reliability and safety of
modern power systems. However, deep learning (DL) models
used for PQD classification can be compromised by trojan
attacks—malicious modifications that alter model behavior only
in the presence of specific triggers. Motivated by the urgent need
to safeguard modern power grids, we, for the first time, propose
trojan attack for DL-based PQD classification by introducing a
novel trojan attack algorithm called Sneaky Spectral Strike (S°).
Key features of S° include balancing the signal-to-noise (SNR)
ratio to maintain imperceptibility and optimizing the fooling rate
(FR) for maximum effectiveness. Leveraging the Fast Fourier
Transform (FFT) and trigger optimization techniques to embed
a stealthy trigger, S° achieves an impressive fooling rate of 99.9%
with minimal impact on clean-data accuracy across diverse DL
architectures. Unlike prior time series data (TSD) based trojan
attack studies that use datasets with limited sample diversity and
time-step variations, we utilize a comprehensive PQD dataset
encompassing a wide range of events and varied time steps,
thereby exposing vulnerabilities in more diverse and realistic
scenarios. S* outperforms state-of-the-art methods, improving the
average fooling rate by 7.4% over TimeTrojanDE, 0.83% over
TSBA, and 0.25% over TrojanFlow. To assess generalizability,
S® was also evaluated on two additional time-series datasets,
achieving fooling rate of 99.89% on the Online Retail Dataset and
a perfect 100% on the Household Electric Power Consumption
Dataset. To counter such sophisticated attacks, we also propose
an innovative defense mechanism that detects trojan attacks by
analyzing decision boundary discrepancies resulting from tro-
jan insertion and injecting universal adversarial perturbations.
Our defense strategy demonstrates effectiveness in identifying
compromised models across various class scenarios, with the
capability to detect infected models across 14 of the 17 class
scenarios with trojan infection probability peaks at 0.94076.

Index Terms—Trojan attack, targeted attack, security, smart
grid, power quality disturbance, deep learning

I. INTRODUCTION

The modern power system is an interconnected system
that encompasses energy generation, transmission, and dis-
tribution, facilitating two-way communication between the
utility and its customers. This allows consumers to more
efficiently manage their energy use and even sell surplus power
back to the grid [1]. Secure communication technologies
underpin this bidirectional flow of electricity, with the goal
of improving customer satisfaction, optimizing utility oper-
ations, and promoting environmental sustainability by using
more renewable energy sources [2]. It also possesses the
potential to autonomously restore the power flow to the load
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through its inherent self-healing capabilities in the event of
a distribution feeder or transformer failure [3]. The system
employs advanced technologies, such as sensors, automation,
and communication networks, to monitor and control power
distribution in real-time [4]. Smart meters, which are part
of the Advanced Metering Infrastructure (AMI), are installed
at the consumer end to measure power consumption and
deliver real-time data to the utility [5]. Consequently, it can
deliver energy more efficiently, enabling improved consumer
utility engagement, facilitating widespread voltage control,
ensuring dependable frequency control, implementing modern
management techniques, and effectively responding to a wide
range of events inside the system [6]. Renewable energy
sources and energy storage systems offer significant potential
for decarbonizing metropolitan areas, regulating frequency and
voltage deviations, and addressing periods of high demand
surpassing generation capacity [7], [8].

Despite the integration of advanced communication tech-
nologies, there remains a potential for power quality to be
degraded. Various factors contribute to PQD, which exhibit
similarities to those observed in traditional power systems.
PQD are any deviations in voltage, current, or frequency
that can impact the functioning of electrical equipment [9].
The increasing reliance on renewable energy sources and
other important variables can cause PQD into the grid [10].
Moreover, the growing use of non-linear equipment, such as
personal computers, light-emitting diode lamps, and numerous
electronic gadgets, can produce harmonics and pose new
concerns with PQD [11]. In addition, small cybersecurity
threats can potentially disrupt communication lines and control
mechanisms, hence increasing PQD [12]. The occurrence of
PQD can result in a wide range of implications, varying
from small inconveniences to substantial economic and safety
issues. PQD has the potential to adversely affect power system-
related equipment, leading to various consequences such as
production interruptions, escalated maintenance expenses, di-
minished device longevity, heightened safety hazards, and
increased energy inefficiency. To address this serious issue,
anomalies in the grid, such as PQD or equipment failures, can
be quickly identified by employing DL models [13].

While DL models possess significant potential in PQD
classification, they are vulnerable to trojan attacks [14]. A
trojan attack maliciously alters a neural network so that it
behaves normally with clean inputs but reacts in a specific,
predetermined way when exposed to certain trigger inputs.
The complexities associated with trojan signals, which exhibit
a notable similarity to clean signals, pose a significant threat,
resulting in jeopardizing the integrity of the system. DL
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models used for PQD classification may also utilize transfer
learning, which is based on taking advantage of existing
pre-trained models to increase performance and reduce the
training time required on specific tasks with limited data
[15]. But although transfer learning has numerous benefits,
pre-trained models can potentially transfer trojan trigger that
pose threats to system integrity. Prior research has investigated
adversarial attacks on DL models and their defense in PQD
classification [16], such as joint adversarial examples and false
data injection attacks in power system state estimation, and the
efficacy of defense methods against adversarial attacks [17].
Adversarial attacks are carefully crafted perturbations that
result in incorrect model predictions but are imperceptible to
human viewers. The Fast Gradient Sign Method (FGSM) and
Projected Gradient Descent (PGD) are the most thoroughly
studied attack techniques. FGSM is a basic yet powerful
adversarial attack that applies perturbations to input data in
the direction of the loss function’s gradient. The method tries
to maximize the prediction error of a model with minimal com-
putational capability, and thus it is an efficient way to generate
adversarial samples. PGD, on the other hand, is an iterative
variant of FGSM where incremental minor perturbations are
added to the input data in several iterations. PGD generates
stronger adversarial examples by continuously improving the
perturbations to achieve a maximum adversarial impact.

The field of trojan attacks on time-series data (TSD) remains
relatively unexplored in academic research. Various methods
have been proposed to embed triggers into TSD using gen-
erative models, but each presents significant computational
challenges. TrojanFlow [18] employs a flow-based generative
model (FGM) that dynamically optimizes triggers through
gradient-based updates. Unlike traditional backdoor attacks
with static triggers, TrojanFlow generates sample-specific,
real-time triggers that adapt to the input data. However, this
continuous trigger optimization requires high computational
resources and leads to significant memory consumption. Our
empirical analysis revealed that even state-of-the-art hardware
encountered memory overflows when processing complex
datasets with this method. TSBA [19] utilizes a Generative Ad-
versarial Network (GAN)-based approach, where a generator
learns to craft backdoor triggers, and a classifier adapts accord-
ingly. This adversarial learning strategy enhances the stealth
and adaptability of the attack, making it difficult to detect.
However, the iterative nature of GAN training introduces high
computational overhead, making TSBA impractical for large-
scale applications. TimeTrojan-DE [20] adopts a constrained
multi-objective optimization strategy powered by evolutionary
algorithms. Instead of relying on traditional gradient-based
methods, this approach explores evolutionary search-based al-
gorithms (ESA) beneficial in constrained environments; how-
ever, their efficiency deteriorates as the number of possible
trigger configurations increases, resulting in computational
inefficiencies for large datasets. Each of these methods offers
distinct advantages, but they all struggle with scalability and
resource efficiency when deployed on extensive time-series
datasets. Therefore, this paper aims to address this gap by
proposing a novel heuristic search-based algorithm (HSA)
for generating highly effective trojan attacks on DL models

using TSD like PQD, while also proposing robust defense
methods to mitigate the risks posed by such attacks. The key
contributions of our manuscript are as follows:

¢ Our research pioneers the development of a trojan attack
on DL-based PQD classification. We explore a com-
prehensive dataset that has not previously been utilized
in other studies and is characterized by a wide range
of events and variability, owing to its extensive sample
size and time steps. This approach not only validates
the reliability of our strategy but also uncovers new
vulnerabilities in the modern power grid.

o We introduce a novel algorithm titled ”Sneaky Spectral
Strike (5%)” designed for executing trojan attacks on DL-
based PQD classification. Utilizing the FFT, our approach
enables a stealthy and effective trojan trigger, combining
time series manipulation with frequency domain tech-
niques. This complexity makes our trojan attacks highly
undetectable. Our algorithm notably exhibits a high av-
erage FR of 99.9%.

e Our algorithm is the first to consider and dynamically
manage the delicate balance of SNR, trojan model ac-
curacy on clean data, and FR for creating effective
trojan triggers on TSD. This equilibrium when integrating
trojan triggers in the frequency domain ensures successful
covert attacks.

o We, for the first time, propose a robust defense method
to counter trojan attacks on the DL model working with
TSD. Our proposed method detects the trojan model by
utilizing deviations in the decision boundaries due to
trojan insertion and universal adversarial perturbation.
Our defense method proves effective in protecting against
trojan attacks, with the capability to accurately detect
models infected by trojans across 14 of the 17 class
scenarios, which include various PQD such as sag, swell,
interruption, harmonics, transient, flicker, and other crit-
ical anomalies.

The structure of this paper is organized as follows. Sec-
tion II, provides a review of existing literature and identifies
the gaps that our research seeks to fill. In section III, we
outline the mathematical foundations of the trojan attack, and
in IV the network and threat models. Section V, details the
proposed trojan attack on the DL model operating with TSD
and introduces a potential defense strategy. The experimental
setup and simulation results are discussed in section VI
Finally, in section VII, we summarize the key findings of our
study and explore the broader implications of our work.

II. LITERATURE REVIEW

A. Deep learning for Power Quality Disturbances

DL is revolutionizing power systems, particularly in PQD
classification. In [21], a hybrid approach using Stockwell
transform and DL is employed to classify multiple PQD. In
[22], an algorithm is presented for monitoring PQD, com-
bining histogram and discrete wavelet transform for feature
extraction, and machine learning for precise classification. In
[23], a CNN-based DL framework with an attention model is
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proposed for PQD classification. This model selects the opti-
mal solution from rescaled data before processing it through
deep CNNs. In [24], a CNN framework combined with a
gated recurrent unit for classifying PQD signals is used for
finding similar performance between VGG-16 and ResNet-50
models. In [25], a DL ensemble system using a Long Short
Term Memory (LSTM) network is introduced for high-quality
PQD categorization based on signal properties. [26] presents
a novel approach for PQD classification using segmented and
modified S-transform, a deep CNN, and a multiclass support
vector machine, enabling precise time-frequency localization
and effective feature extraction.

B. Cyber attacks on deep learning model in power system

Numerous studies have examined DL models’ vulnerabil-
ities to cyber attacks in power systems. Tian et al. [27]
introduced a method for designing efficient adversarial attacks,
considering parameters like input elements, attack impact
on regression outputs, and configurable measurement meters.
Niazazari et al. [28] revealed how adversarial attacks could
cause misclassification in CNN-based event cause analysis
through subtle data manipulations. Sayghe et al. [29] explored
the effects of Limited-memory Broyden-Fletcher-Goldfarb-
Shanno and Jacobian-based Saliency Map attacks on Mul-
tilayer Perceptron models for detecting false data injection.
[30] proposed a black-box optimization method for creating
dynamic load-altering attacks to bypass intrusion detection in
smart grids. Hao et al. [31] provided an overview of adversarial
attacks on DL models within smart grids. Researchers in
[32] introduced the Ensemble and Transfer Adversarial Attack
method to enhance attack transferability across DL models.
Kosut et al. [33] conducted cyber attacks on smart grids using
malicious data injection. Heinrich et al. [34] explored LSTM
and CNN vulnerabilities to various adversarial attacks in wind
power prediction. Cheng et al. [35] used adversarial techniques
to introduce noise into phasor measurement units, showing
DL-based power system event classifiers’ vulnerability.

C. Trojan attacks on deep learning model

Several studies have explored DL models’ vulnerabilities
to trojan attacks. In [36], the authors propose a black-box
trojan attack, where the attacker has no direct access to the
internal structure or parameters of the target model but can still
manipulate it through its input-output behavior. The authors
use a cost-effective model extraction method and an innovative
trigger generation algorithm that enhances the association
between the trigger and the misclassification label. Grosse et
al. [37] focus on how trojan attacks refine the decision function
near triggered samples, introducing a metric to measure classi-
fier uncertainty near these inputs. In [38], a Pixel-space-based
trojan attack is proposed, using bit-inversion to inject errors
into 3% of training images, contaminating the entire training
set. Zhang et al. [39] develop a highly transferable backdoor
attack targeting CNNs in malware detection, involving trigger
creation and embedding based on class activation mapping.
Finally, Salem et al. [40] propose dynamic trojan attacks that
produce triggers with varying patterns and locations, reducing
the effectiveness of existing detection methods.

D. Our contribution

To better illustrate the differences between prior work
and our proposed method, Table I provides a comparative
analysis of the reviewed trojan attack methodologies against
our approach. This comparison highlights key aspects such
as dataset applicability, computational efficiency, trigger gen-
eration method, and whether a defense strategy has been
proposed. The average FR is computed by applying a trojan
attack across various DL model architectures.

ITI. PRELIMINARIES
A. Classification of Power Quality Disturbances

PQD can be classified into different categories, and in
this research, we examined seventeen specific types. The first
is normal, representing a standard waveform without any
irregularities. Sag refers to a temporary reduction in voltage,
while swell indicates a brief increase in voltage. Interruption
describes a short period of sudden power loss. Transient dis-
turbances involve abrupt power fluctuations, often caused by
equipment failures or lightning strikes. An oscillatory transient
is a temporary deviation in the waveform that typically decays
rapidly. Harmonics are distortion-causing frequencies that are
integer multiples of the fundamental frequency. Additionally,
there are harmonics with sag and harmonics with swell, which
refer to specific combinations where harmonics occur simul-
taneously with voltage decreases and increases, respectively.
Flicker involves noticeable voltage variations that can cause
discomfort due to changes in illumination. Voltage dips and
surges combined with flicker can be further categorized into
flicker with sag and flicker with swell. The power system can
also experience voltage dips and surges, as well as repeti-
tive waveform deviations, categorized as sag with oscillatory
transient and swell with oscillatory transient. Moreover, sag
with harmonics and swell with harmonics refer to waveform
distortions caused by harmonics, resulting in voltage decreases
and increases, respectively. Finally, a notch is characterized
by a brief disruption in the waveform. The mathematical
representation of PQD classification is as follows- Let 7 € I
and j € J represent the indices of disturbances and types,
respectively. The label of type 7 for the i-th disturbance sample
is denoted by y; ;. Before classifying the original waveform
data, a feature extraction and selection function E(x) is applied
to generate a feature vector S; ; from the original waveform
data wy;:

Si}j =E (Wl)

For the j-th label, a classification model F(x) is trained,
where F(z) represents the mapping from the waveform data
to the j-th label. Therefore, given the set {S; ;,y; ;}. the j-th
label for the i-th sample can be estimated as:

y;; = F(Sij)

Assume that the optimal parameters learned for feature
extraction and classification are denoted by w; and wo, re-
spectively. The categorical cross-entropy is commonly used as
the loss function to guide the training of w; and ws:
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TABLE I
COMPARISON OF REVIEWED TROJAN ATTACK METHODS AND THE PROPOSED APPROACH

Algorithm Trigger Generation Method Trigger Injection Domain | Computational Efficiency | Average FR |Proposed Defense
TrojanFlow [18] Flow-based Generative Model Time X Moderate X
TSBA [19] Generative Adversarial Network Time X High X
TimeTrojan-DE [20]| Multi-objective Evolutionary Search Time X Very High X
s3 Multi-objective Heuristic Search Frequency v Very High v

1
CE - Iny;
(w1, w) = n; yi ny; +
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n
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B. Mathematical Overview of Trojan Attack
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Fig. 1. Overview of trojan attack on time series data.

Trojan attacks pose a serious threat, as they can compromise
the model’s reliability and security, leading to potentially
harmful consequences when deployed in real-world applica-
tions. A Trojan attack on DL models involves the covert
insertion of malicious alterations into the DL model’s training
process (See in Fig.1). These alterations are designed to
manipulate the model’s behavior. After training, the trojan
remains dormant until specific conditions or triggers are met.
Once activated, the model starts producing incorrect outputs or
behaves maliciously in response to particular inputs that match
the trigger. In a trojan attack, the attacker embeds a trigger into
a set of samples and modifies the corresponding label to a
level set by the attacker during the training phase. As a result,
when the trigger is presented to the deployed model, it starts to
predict a specific target class. The model exhibits impressive
accuracy when processing clean samples, yet it demonstrates a
significantly high FR when presented with triggered samples.
There is another approach called booster [41] that leverages
adversarial training to enhance the model’s resilience. In the
following, we provide a detailed mathematical formulation that
illustrates both the Trojan and Booster methods.

Let

T = {(Izayl)|lzl77

be the original training set of /N samples, where z; is the -
th input and y; is the corresponding ground-truth label. We

N}

denote by M (x,w) a DL model with trainable parameters w.
We define two following subsets of 7". Ty, are maliciously
changed, containing a hidden trigger and an incorrect label.
T ooster re explicitly altered to improve robustness.
Let
T =T,

trojan

/
U Tbooster

be the union of all modified samples. The remaining un-
modified samples are in T \ 7'. We define two distinct
transformation functions, depending on whether the goal is
trojan or booster:

1) Trojan Trigger Function, A,(-):

(At(mia t)v At(yl)), (xia y’L) € ,'Ttroyinv

(1
where A(z;,t) inserts a hidden trigger ¢ into the orig-
inal input z;, and A;(y;) remaps the label y; to the
attacker’s target label.

2) Booster Transformation Function, A;(-):

(5527 y;) = (Ab(xh t)a yi)7 (':E’L'a yl) S Téooster? (2)

where A, is an augmentation function meant to im-
prove robustness. Crucially, the label is not maliciously
changed but typically remains the same ;.

(x5, i) =

During training, the objective is to minimize the following
loss:

Liotal = Z L(M (i, w), ys)
(wi,y:) € T\T'
/ ’
+ , Z / L(M(z;,w), ys) 3)
(xi ’yz) € 7110]1n
(a:;,7y1) E TbIOOS‘er

where L(-) is typically the cross-entropy loss. The first sum-
mation covers clean samples, the second summation addresses
trojan samples, and the third is for booster samples.

C. Time vs. Frequency Domain Analysis for Trojan Attack

The time domain representation provides a direct view of
the signal, where the presence of a Trojan is evident. Fig 4(a)
depicts a clean Harmonics with Sag signal used to insert trig-
ger in the time domain. Fig 4(b) clearly shows the introduction
of a trojan trigger, with the trigger length range 7; outlined
in blue, the amplitude range 7T, in orange, and the possible
trigger positions T}, in purple. In Fig 4(c), the clean and trojan
signals are shown in the time domain after inserting the trigger.
Fig 4(d) shows clean Harmonics with Sag signal used to
insert triggers in the frequency domain. Then we transformed

Authorized licensed use limited to: North Carolina A T State University. Downloaded on May 14,2025 at 01:00:14 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2025.3567340

1.0 1.0
0.5 0.5
0.0 0.0

S
ot | A |

0 200 400 800 0 200 400 600
(a) (b)
: —— Clean 1.0
4 3 Trojan
3 : 05
2 : 0.0
1 :
: -0.5
0
= 10 —— Clean
0 200 400 600 0 200 400 00
© (d)
400 . L
—— Magnitude Spectrum 1.0 i i --- Clean } i A
it 1 Trojan ‘f*, I\ ,':
300 05 iyl IRERERT
] i 1\
Hibaa apaliibin
AR FARAN AR AR
200 GO IRV E TR R
DY Y YARTH
c 05 0 BTN
100 Vo TR AT}
T, [ ] [ d
L -10 i Py vy
To
o b
0 200 400 600 0 200 400 600
(©] ®

Fig. 2. a) Clean Signal for time domain trojan attack b) Trigger with length
range 17, the amplitude range T, and possible position T}, is inserted in
time domain c) Shows clean and trojan signal in the time domain where the
trojan trigger-green dotted spike- is clearly visible to the human eye. d) Clean
signal for frequency domain trojan attack. e) Trigger with length range 7j,
the amplitude range Tq, and possible position T}, is inserted in the frequency
domain 1f) Shows clean and trojan signal in the time domain after inserting
trigger in the frequency domain where the trojan signal closely follows the
clean signal and the trigger is invisible to the human eye.

the signal from the time domain to the frequency domain
using FFT. In Fig 4(e), we inject the identical aforementioned
parameters of 7;, T,, and 7; in the frequency domain. Then,
we transformed the signal to the time domain again using
Inverse FFT and presented the clean as well as trojan signal
in Fig 4(f). It is evident from 4(f) that the trojan trigger
blends in with the clean signal’s waveform so well; however,
a green spike is visible when the trigger is inserted in the
time domain as shown in Fig 4(c). This high stealthiness of
the trigger demonstrates a significant advantage: the trigger
embedded in the frequency domain can continue to function
without detection, maintaining its operational efficacy and
evading conventional time-domain detection techniques, while
the signal’s functional characteristics appear to be unchanged
in the time domain.

IV. NETWORK AND THREAT MODEL
A. Network Model

According to Fig 3, electricity is generated from various
resources including fossil fuels, renewable energy, and nuclear
energy. The transmission and distribution networks allow for
the transport of electricity from power plants to consumers’
homes and voltage is changed in the substation. Substations

typically use unattended monitoring to replace manual in-
spections. This involves centralized or remote multimedia
monitoring to provide an intuitive analysis of equipment
status [42]. All appliances, lights, and machinery in a home
or business are examples of loads. Data can be transferred
between substations to the PCC using communication chan-
nels. The PCC monitors, manages, and responds to power
generation, distribution, and load balancing by using cutting-
edge hardware and software. Important work, such as locating
and analyzing PQD, is performed by the DL model integrated
into the PCC. PQD reach the substation by propagating across
the transmission and distribution network and is sensed by the
intelligent electronic devices (IED) located in this substation
that communicates with the PCC using the communication
channel. Signal-dependent applications, such as the identifi-
cation of PQD or the detection of faults, heavily depend on
the communication channel to capture transmitted signals for
analysis using DL models. The DL model utilizes data such as
load measurements, fault indications, energy usage statistics,
and predictive maintenance notifications and analyzes these
diverse data to optimize energy distribution, forecast demand,
identify anomalies, and automate maintenance tasks. Once
the disturbance has been accurately classified, the DL model
transmits the results to the control center which makes decisive
decisions, such as regulating voltage, switching to backup
power sources, activating or deactivating generating stations,
and adjusting the load.

B. Threat Model

PQD classification heavily depends on the communication
channel to capture data from different substations for analysis
using DL models. In our threat model in Fig 3, we assume that
the IED manufacturer and the DL model are both owned by the
same organization. An attacker, associated with the manufac-
turing organization, may inject trojan samples during the DL
model’s training. This individual would have been permitted
access to the substation as a representative of the manufactur-
ing organization for technical support. In such a situation, the
attacker would be able to exploit the communication channel
that connects the substation and the PCC to perform the
trojan attack. Alternatively, the attacker could be a member
of a utility company who may have been present during the
model’s training based on contractual arrangements with the
manufacturer and inject trojan samples into the dataset. The
attacker can get access to the substation for maintenance by
using the rights granted to utility personnel and compromise
the communication channel between the substation and the
PCC. Given that most substations are unattended, there is
no operator present to detect such types of attack and this
vulnerability allows a trojan signal to potentially reach the
PCC. It is important to note that an attacker from either the
manufacturing or utility entity, having been present during
the model’s training, would possess comprehensive knowl-
edge of the model’s architecture, parameters, and dataset.
Although attacker with aforementioned criteria can perform
direct attacks like system shutdowns or replay attacks which
has immediate impact, there is a possibility of high risk
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Fig. 3. Illustration of the potential exploitation points for trojan attacks during signal transmission to the power control center.

of detection and rapid response. On the other hand, trojan
attacks on DL models allow the attacker to remain undetected
while causing long-term, insidious damage to the system’s
integrity and reliability. This stealthy approach aligns with
the attackers’ goal of avoiding detection and maintaining their
insider position within the network.

V. TROJAN ATTACK AND A DEFENSE
A. Trojan Attack Methodology

Our proposed algorithm, detailed in Algorithm 1 and named
"Sneaky Spectral Strike (S3)” utilizes a multi-objective opti-
mization technique that stealthily targets the spectral properties
of signals to induce effective trojan attacks while remaining
undetected. The algorithm uses a heuristic search approach,
meaning it doesn’t follow a strict mathematical formula but
instead adjusts the parameters iteratively based on perfor-
mance. By embedding small but effective perturbations in
the frequency domain and continuously refining them, the
algorithm ensures a successful yet covert trojan attack on DL
models. The core objective is to balance the FR, SNR, and
clean data accuracy that ensures the trigger is both effective
and covert.Initially, we establish an SNR threshold S by
adjusting the trigger length range 7; and amplitude range 7,
by providing an initial estimate that meets the desired FR F
while maintaining stealth.Mathematically, let Yi.,. be the true
labels of our test samples, Yiojan be the predicted labels of the
trojan samples, and Y, be the desired target class for our
trojan attack. The FR is given by:

N
i= bt , i =
Z 1 H(}/true i 7é }/trojan ) and )/trojan i )/target)

FR= N

Where 1 is the indicator function, which is 1 if the condition
inside is true and O otherwise.N is the total number of
test samples. A higher FR indicates that the trojan attack
is more effective in guiding the misclassifications toward
the target class. To ensure optimal trigger placement, we
select a subset D, (comprising P% of the training dataset

D.) and identify valid trigger positions 7}, that meet FR
and SNR criteria without degrading clean accuracy A. The
iterative process begins with initializing the trojan trigger T’
and iteration counter ¢ = 0, continuing until the desired
fooling rate F7 is achieved or the maximum iterations I,
are reached. During each iteration, the Algorithm 2 fine-tunes
T, T,, and T, to improve attack stealth and effectiveness.
If the fooling rate is insufficient (F' < Fp) while SNR
S and clean accuracy A remain above their thresholds, the
algorithm increases the lower bounds of 7; and T, adjusting
T, for better concealment. Conversely, if F' > [Fr with the
initial parameters, the upper bounds are reduced to enhance
stealth while preserving the fooling rate. The signal pro-
cessing pipeline proceeds as follows: each sample s; € Dy
is transformed into the frequency domain via Fast Fourier
Transform (FFT), where a random perturbation R, € [—Q, Q]
is generated to prevent pattern detection. The trojan trigger
T, computed using parameters (T, T}, Ty, Ry, T},), is added
to the transformed signal 3;, yielding ¢ = §;+7,.. The modified
signal is converted back to the time domain using the Inverse
FFT (IFFT), ensuring a realistic time-series representation.
The original label O is replaced with the target label 7', and
the trojaned samples are aggregated into D", The model is
retrained using the combined dataset D = (D..\ D,)UDg™",
after which trojan test samples 7, = D; + 1. are evaluated
to update F, S, and A. This cycle repeats until either the
fooling rate surpasses Fr or the iteration limit I, is reached,
upon which the optimal trigger O is returned. By embedding
triggers in the frequency domain and iteratively refining the
trigger parameters, S® achieves a balance between stealth and
effectiveness. To illustrate this intuitively, imagine slipping a
secret note into a stack of papers. The note should be obvious
enough for the intended recipient but hidden from casual
observers. Similarly, our algorithm embeds subtle but effective
triggers into signals, ensuring successful model misdirection
while evading detection.

B. Defense for Trojan Attack

The hypothesis is that networks with trojans have decision
boundaries that are different from those of typical, benign
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Algorithm 1 Sneaky Spectral Strike (S3) Algorithm

Algorithm 2 Optimal Trojan Tune Function

Require: Training dataset:D,; Testing dataset: D;; Epochs:V;
Trojan percentage: P; Perturbation range:(); Original
label:O; Target label:T; SNR threshold:S7; FR
threshold: Fr; Maximum iterations:/,,,; Trojan trigger:T";
FR:F'; SNR:S; Clean accuracy: A

Ensure: Optimal trojan trigger parameters: O

1: Step:1 Train DL Model on Clean Data
2: fori=1to N do

3: for h(z,y) € T, do

4: hmin < arg min Log(f(x),y)

5 end for

6: end for

7: Step 2: Select Trojan Samples and Initiate attack

8: Ds =P -|D.|

9: 1+ 0 )

10: Initialize D5™" = ()

11: Step 3: Optimize and Inject Trojan Triggers

12: while FF < Fr and ¢ < I,,, do

13: Find optimal T,, T;, T, using optimal trojan tune
function in algorithm 2

14: for each sample s; € Dy do

15: Frequency domain conversion: §; = FFT(s;)

16: Random perturbation: R, = rand(—Q, +Q)

17: Generate trojan: T, = Ry(Ts, T}, Ty, Rp, T)p)

18: Embed trigger in frequency domain: ¢ = §; + T,

19: Convert back to time domain: s’ = Re(IFFT({))

20: Update sample label to target class: O < T

21: Adding sample to trojan dataset: Dg ™" < (s, T)

22: end for

23: Create retraining dataset: Dy = (D, \ Dy) U DS
24: for i =1to N do

25: for each sample (z,y) € Dy do

26: Update model: hpin < argmin Leg(f(x),y)
27: end for

28: end for

29: Generate trojaned test samples: T, = D; + T,

30: Calculate metrics (F'), (S), and (A4).
31: end while

32: Step 4: Return Optimal Trojan Trigger
33: return Or

models. This is because the trojan modifies the decision
boundaries to achieve its malicious goal. When a model is
trained with trigger samples, the decision boundary will be
changed, making it easier for certain inputs to be misclassified.
Universal adversarial perturbation is signal-agnostic and, when
applied to any signal, changes its label across the decision
boundary. Due to the change in decision boundary in trojan
models, universal adversarial perturbation can more easily alter
the classification of inputs with less perturbation compared to
benign models. This means that less perturbation is required
to mislead the DL model, which is advantageous from the
attacker’s perspective. In this process, attackers need to craft
a single perturbation as part of a universal attack to mislead the
model at first. Secondly, the small requirement of perturbation
reduces the detection time significantly, as fewer iterations are

Require: Initial range for trigger amplitude, T ; Initial range
for trigger length, 77; and Initial Trigger insertion position,
T,; FR, F'; SNR, S; Accuracy on clean data, A
Ensure: Optimal T, T}, T),.
I FF<0

2: Ty, Tj, T}, < initial value

3: while ' < Fror S > Sror A> Ar do
4: Increase lower range of T,, T;

5: Change T,

6: Calculate trigger T

7: Update F, S, A

8: end while

9: while ' > Fror S > Sror A> Ar do
10: Decrease upper range of 7,7}

11: Change T,

12: Calculate trigger T

13: Update F, S, A

14: end while

15: return Optimal Ty, T;, T),

needed. Therefore, universal adversarial perturbations encode
the geometry of decision boundaries and are expected to differ
between benign and trojan models when a model becomes
infected.

Algorithm 3 Trojan Detection Algorithm
1: Input: Data samples X, Query model M, perturbation
magnitude ¢, learning rate «, number of classes C'

2: Output: Trojan Infection Probability 7T;,
3: function UNIVERSALADVERSARIAL(X, M, €, a, C)
4: r<+0
5: for x in X do
6: V,L(M(z+1),y)
7: r<r—a-clip(V.L,e)
8: end for
9: return r
10: end function
11: function TROJANMODELDETECTION(X, M, 1)
12 Prig < M(X) and Pperurs — M (X + 1)
13: T ¢ 2(Porie 7 Bperurn)
p len(X)
14: return 7}, > threshold
15: end function

Algorithm 3 shows our defense method for trojan attacks.
The algorithm works as follows. Firstly, the algorithm sets
up the dataset X, and the query model M. The algorithm
defines a perturbation magnitude e and a learning rate . The
perturbation vector r is initially set to zero. For each input
sample x in the dataset X, the algorithm computes the gradient
of the loss function for the perturbation r. This gradient
indicates how the model’s error changes as r changes. It, then,
updates r by moving it in the direction that increases the loss,
scaled by the learning rate r. The perturbation r is also clipped
to ensure it does not exceed the predefined magnitude e. Once
the universal perturbation vector 7 is generated, the algorithm
evaluates the model’s susceptibility to a trojan attack. It does
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TABLE II
POWER QUALITY DISTURBANCES SIGNALS NAME AND CORRESPONDING CLASSES
Class | Signal Name Class | Signal Name Class | Signal Name
C-1 Normal C-7 Harmonics C-13 Sag with Oscillatory transient
C-2 Sag C-8 Harmonics with Sag C-14 Swell with Oscillatory transient
C-3 Swell C-9 Harmonics with Swell | C-15 Sag with Harmonics
C-4 Interruption C-10 Flicker C-16 Swell with Harmonics
C-5 Transient/Impulse/Spike | C-11 Flicker with Sag C-17 Notch
C-6 Oscillatory transient C-12 Flicker with Swell
this by observing how the predictions of the model change " o
when r is added to the inputs. It then calculates the trojan os 0®
infection probability, which is the proportion of predictions o0 oo
that differ between the original and perturbed inputs. Finally, s e
the algorithm compares the trojan infection probability to a Normal -0 Sag e Swell
predefined threshold. If the probability is higher than this o aia
threshold, it suggests a high likelihood that the model has 03 0s
been compromised by a trojan attack. If the trojan infection ol o
probability is below the threshold, the model is likely clean. -05 ::’:
Interruption 1D Transient » Oscillatory transient

VI. EXPERIMENTAL RESULTS
A. Datasets and Deep Learning Model

In our experiment, we use a publicly available, class-
balanced labeled dataset containing 255,000 signals, with
each of the 17 PQD classes contributing 15,000 samples.
The sampling frequency is 3200 Hz, with a fundamental
frequency of 50 Hz and a signal length of 640 data points.To
ensure data quality, samples containing missing values were
removed before further processing. Each of the samples was
transposed to align the signal dimensions correctly. To ensure
reproducibility, the dataset was shuffled using a fixed random
seed. Each sample was then normalized to ensure uniform scal-
ing across the dataset, thereby improving model convergence
during training. The normalized signals were reshaped into a
three-dimensional format (samples, 640, 1) to meet the input
requirements of the ResNet model, where 640 represents the
signal length and 1 indicates a single channel. Labels were
converted into one-hot encoded vectors to facilitate multi-
class classification. The dataset was subsequently divided into
training and test sets, with 230,000 samples used for training
and the remainder for testing. Fig. 4 shows the preprocessed
signals for all 17 classes of PQD.

We initially train the ResNet50 model for ten epochs
with clean data, achieving a test accuracy of 99.22%. After
poisoning 20% of the clean samples, we retrain the model
with the trojan dataset. We use ResNet50 to evaluate our
algorithm’s performance against trojan attacks and extend
this analysis to other advanced DL models, including LSTM,
CNN-LSTM, ResNet18, and CNN, to validate generalizability.
The CNN model consists of six ConvlD layers with ReLU
activation, followed by max pooling, batch normalization,
and fully connected layers. The LSTM and CNN-LSTM
models incorporate three stacked LSTM layers with 32, 64,
and 128 units, each followed by dropout, with CNN-LSTM
having an additional feature extraction stage using ConvlD
layers. Both models end with fully connected layers and a
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Fig. 4. Waveshape of PQD after preprocessing

softmax output for 17 classes. The ResNet50 and ResNetl8
models are adapted for our classification task, replacing the
default classification head with a GlobalAveragePooling1D
layer followed by dense layer and a softmax output for 17
classes. ResNet50 consists of six residual blocks with filters
increasing from 16 to 64, while ResNetl8 has nine residual
blocks with filters ranging from 32 to 128. Finally, we compare
our algorithm’s efficacy against existing algorithms for TSD
highlighting the challenges unique to TSD compared to image
data. Our algorithm is benchmarked against state-of-the-art
methods for trojan attacks on TSD, though these methods
do not specifically address the power system or datasets with
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extensive samples and time steps related to PQD.

B. Experimental Setup

1) Hardware Specifications: The experiments were con-
ducted on an advanced computational system, equipped with
an Intel(R) Core(TM) 19-9920X central processing unit (CPU).
This CPU features 12 cores per socket, enabling multi-
threaded operations by supporting two threads per core, which
totals 24 logical CPUs. The processor operates on a 64-bit
x86 architecture, ensuring compatibility with a wide range
of software and applications. The hierarchical cache memory
structure of the CP is particularly noteworthy, with 32KB
allocated for both L1d and L1i caches , 1024KB for the
L2 cache, and a substantial 19712KB for the L3 cache. The
system is further bolstered by 125GB of RAM, providing
ample memory for handling large datasets and running multi-
ple processes concurrently without bottlenecks. In addition to
the powerful CPU, the system’s graphics and computationally
intensive tasks are managed by four NVIDIA Quadro RTX
6000 GPUs.

2) Software Configuration: The system operated on Ubuntu
18.04.5 LTS (Bionic Beaver), which provided a stable and
reliable Linux-based environment. Python 3.6 was selected as
the primary programming language and for GPU-accelerated
tasks, the setup employed NVIDIA’s CUDA toolkit, specifi-
cally version 10.2.89. This was complemented by the NVIDIA
driver version 470.94, ensuring optimal performance and
compatibility with the hardware. The DL experiments were
conducted using Keras version 2.2.4 as the high-level neural
networks API, with TensorFlow 1.13.1 serving as the backend
engine. The development and debugging process was facili-
tated by Pycharm 2023.2 (Community Edition). Additionally,
several other Python libraries were integral to the experimental
setup. Keras Preprocessing (version 1.1.2) was utilized for data
preprocessing tasks, Matplotlib (version 3.3.3) for creating vi-
sualizations, NumPy (version 1.19.5) for numerical operations,
Pandas (version 1.1.4) for data manipulation and analysis,
and Scikit-learn (version 0.23.0) for implementing machine
learning algorithms and evaluation metrics.

3) Hyperparameter Settings: In our experiments, the DL
model is configured to use the categorical cross-entropy loss
function, which is particularly well-suited for multi-class clas-
sification problems as it measures the performance of the
model by comparing the predicted probability distribution
with the true distribution. The model is optimized using
the Nadam optimizer, a variant of the Adam optimizer that
incorporates Nesterov momentum, offering improved conver-
gence properties. The Nadam optimizer is employed with
the following specific parameters: a learning rate (Ir) set to
0.002, momentum coefficients 3, and S5 set to 0.9 and 0.999
respectively, and a stability term € set to 1 x 10~8. Additionally,
the learning rate is subject to a decay schedule, with a decay
rate set at 0.004.

C. Results and Discussion

1) Trojan attack: Our study showcases a consistently high
fooling rate following the introduction of a trojan attack, with

100.0 -100.0

Fooling Rate (%)
8
in
Clean Accuracy (%)

950 Cl C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C-16 C17 97%:0

Class Label

Fig. 5. Fooling rate and accuracy on clean data using S2 algorithm.
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Fig. 6. Confusion Matrix for the ResNet-50 Model used for PQDs Classifi-
cation for trojan attack.

all 17 classes experiencing rates above 99% in Fig 5. The
decrease in accuracy was minimal, with the most significant
observed decrease in baseline accuracy in class C-14, which
demonstrated a reduction of 97.59%. The high fooling rates
as depicted by the confusion matrix in Fig 6, illustrate the
effectiveness of our proposed algorithm for performing trojan
attacks on TSD. From Fig 7, it is evident that the trojan
signal closely mimics the clean signal’s pattern, rendering
it indistinguishable. We represent the imperceptibility com-
parison between frequency and time domain waveshape in
Fig 8. The One-Class Support Vector Machine (SVM) and
the Elliptic Envelope are two techniques utilized for anomaly
detection. The One-Class SVM is a machine learning model
designed to delineate a boundary that distinguishes normal
data from anomalies in a high-dimensional space. The Elliptic
Envelope method models the data with a multivariate Gaussian
distribution and detects anomalies as points that lie outside
a specified contour of this distribution. There are noticeable
variations when comparing the anomaly detection results
for the frequency and temporal domains. Elliptic Envelope
detected 10.53% of samples as anomalies in the frequency
domain, compared to 9.90% recognized by One-Class SVM.
On the other hand, anomalies were observed in 37.56% of
samples by One-Class SVM and 48.88% of samples by the
Elliptic Envelope in the time domain. These results suggest
that trojan triggers in the frequency domain are much more
difficult to detect than those in the time domain. We calculated
the allowable processing time for each sample at a sampling
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Fig. 7. Waveshape of clean and trojan signal after applying S® algorithm.
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frequency of 3,200 Hz. At this frequency, each sample period
is 372% seconds, which corresponds to approximately 312.5
microseconds. Our empirical measurements showed that the
average processing times for the trigger generation, FFT,
trigger injection, and iFFT were 28.2 microseconds,14.29
microseconds, 2.02 microseconds, and 14.05 microseconds,
respectively. This adds up to a total processing time of 58.56
microseconds per sample. Since this total processing time is
much less than the available 312.5 microseconds per sample,
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Fig. 10. Comparison of average fooling rate for different algorithms.

it confirms that our frequency domain injection method is
well-suited for real-time processing at a sampling rate of
3,200 Hz. The total time for the entire optimization process,
considering all steps and iterations amounted to approximately
3.4 milliseconds for each sample. Therefore, for 255,000
samples, the total time for the optimization process is approxi-
mately 867 seconds. While other algorithms result in memory
overflow even on state-of-the-art machines with the same
dataset, our algorithm completes the optimization process and
inject trigger to all the samples efficiently, taking only 867
seconds. Consequently, these results justify the practicality and
efficiency of our approach for real-time applications in PQD
scenarios.

The efficacy, generalizability, and scalability of our pro-
posed algorithm are further substantiated through extensive
evaluations across diverse model architectures and multiple
datasets. As demonstrated in Fig. 9, the algorithm consistently
achieves high fooling rates across various deep learning archi-
tectures, recording 99.77% for LSTM, 99.87% for ResNet50,
99.94% for CNN-LSTM, 99.98% for ResNetl18, and 99.99%
for CNN. These results highlight the algorithm’s universal ap-
plicability and robustness, irrespective of the underlying model
complexity. Beyond high fooling rates, the algorithm exhibits
minimal impact on the model’s functional integrity. Notably,
the maximum reduction in clean data accuracy was observed
in the LSTM architecture, where the baseline accuracy of
99.30% dropped to 98.67%, a relatively minor decrease of
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0.63%. This preservation of model accuracy, even after trojan
insertion, reflects the algorithm’s ability to execute effective
and stealthy attacks without compromising the model’s overall
performance.

We also applied the proposed algorithm to two additional
publicly available datasets from the UCI Machine Learning
Repository. The first dataset, the Online Retail Dataset, con-
tains 541,909 transactional records from a UK-based online
retailer, capturing multivariate, sequential, and time-series
data. On this dataset, the algorithm achieved a fooling rate
of 99.89%, demonstrating its adaptability to business-oriented
transactional data. The second dataset, the Individual House-
hold Electric Power Consumption Dataset, comprises over 2
million measurements of household energy usage collected
over 47 months. Our algorithm attained a perfect fooling
rate of 100% on this large-scale, high-resolution time-series
dataset, underscoring its scalability and effectiveness in han-
dling extensive data volumes with complex temporal patterns.
Collectively, these results demonstrate that the proposed algo-
rithm not only maintains consistent performance across diverse
neural network architectures but also generalizes effectively
to datasets of varying scales and domains.Its scalability and
adaptability make it a robust solution for real-world applica-
tions where large and complex datasets are prevalent.

We present a comprehensive evaluation of three state-of-the-
art algorithms from extant literature, alongside our proposed
algorithm in Fig. 10. The findings indicate that TimeTrojanDE
[20] achieved a moderate average fooling rate of 92.5%.
TSBA [19] displayed a high fooling rate of 99.07%, and
TrojanFlow [18] was similarly effective, achieving a very high
fooling rate of 99.65%. Our algorithm, 53’ demonstrated the
highest proficiency with a very high fooling rate of 99.90%.
Additionally, performance variation of S3 is quantified with
a +£0.09/0.13 standard deviation, highlighting its stability at
near-optimal fooling rates. Our algorithm was tested against
datasets characterized by a larger scale in both the number
of samples and the extent of time steps, presenting a more
challenging and arguably more realistic scenario for evalua-
tion. It is imperative to underline this distinction because the
complexity and size of a dataset can have a significant impact
on the generalizability of an algorithm’s performance.

TABLE IIT
TROJAN MODEL DETECTION RESULTS.

Class | Trojan Infection Probability | Trojan Infection
1 0.83972
2 0.0
3 0.61608
4 0.9372
5 0.71636
6 0.93736
7 0.78336
8 0.30952
9 0.27756
10 0.68736
11 0.94076
12 0.82028
13 0.70932
14 0.41308
15 0.76696
16 0.73052
17 0.79524
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Fig. 11. Number of Detected Trojan Classes at Different Thresholds.

2) Defense for trojan attack: Table III provides the results
of how the trojan infection probability varies across different
classes and its association with the trojan infection. We have
considered complementary performance metrics including the
false positive rate (FPR) and FR in our discussion to offer
a more holistic view of detection performance. The FPR
quantifies how often a trojan infected model is incorrectly
flagged as clean, and the FR highlights the degree to which
an attacker’s trojan remains undetected. We set a detection
threshold for the trojan infection probability at 0.4, meaning
that any model exceeding this probability is classified as
trojan-infected. This threshold choice is selected by empirical
observations showing that a clean model typically has a trojan
infection probability of around 25%, leaving a 15% margin to
account for variability.

If the trojan infection probability is equal to or above 0.9,
it correlates with lower FR values, indicating that the attack
is more likely to be detected by our defense. For example,
classes 4, 6, and 11 exhibit the highest trojan infection proba-
bilities—0.9372, 0.93736, and 0.94076, respectively—and also
show confirmed trojan infections and lower FR. While the de-
fense method effectively detects most trojan-infected classes, it
shows reduced effectiveness for classes 2, 8, and 9, where the
mechanism fails to identify the compromise. These undetected
infections contribute to the overall FPR and highlight areas for
future refinement. Despite these cases, the defense remains
generally robust, detecting trojan infections in 14 out of 17
classes and demonstrating a strong balance between detection
sensitivity and minimizing the misclassification of infected
models. To assess how varying the detection threshold affects
the performance of our defense, we analyzed how different
thresholds influence the number of detected trojan-infected
classes. As illustrated in Fig. 11, lowering the threshold to 0.3
increases the detection rate, capturing 15 out of 17 infected
classes. This reduction in the threshold also leads to a lower
FPR, as fewer infected models are incorrectly classified as
clean. Conversely, increasing the threshold to 0.5 reduces the
detection rate to 13 classes, which increases the FPR because
more infected models evade detection and are mistakenly
labeled as clean. Ultimately, selecting a threshold of 0.4 strikes
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an effective balance, successfully detecting 14 out of the 17
infected classes while keeping the FPR at an acceptable level.
When considering the FR, the relationship aligns with FPR
trends. As the threshold increases, more trojan-infected models
go undetected, allowing the trojan to remain effective and
increasing the FR. Lowering the threshold, on the other hand,
reduces these rates by ensuring more infected models are
correctly identified.

VII. CONCLUSION

In this paper, we propose a novel algorithm for conducting
highly effective trojan attacks on DL models that operate with
PQD data. Our proposed algorithm, titled Sneaky Spectral
Strike (S%), emphasizes the significant vulnerability of DL
models to trojan attacks. This vulnerability is clearly demon-
strated using a ResNet50 model, which initially achieved an
accuracy rate of 99.22% on clean, untainted data. However,
after the application of the trojan attack, the model exhibited
a dramatically increased fooling rate of 99.87%. The effi-
cacy of our algorithm is further validated by its ability to
produce high fooling rates across various models, reaching
a maximum of 99.99% for a CNN, thereby showcasing its
effectiveness and adaptability across different architectures.
In a comprehensive evaluation against three state-of-the-art
algorithms, our algorithm proved to be the most proficient,
achieving the highest fooling rate of 99.90% on a more
complex dataset that included larger sample sizes and extended
time steps. These exceptionally high fooling rates highlight the
significant risks that trojan attacks pose within power systems,
where even minor misclassification rates could potentially
lead to catastrophic outcomes. Furthermore, our study reveals
that the triggers generated by our attack are exceptionally
subtle, making them difficult to detect. To counteract these
threats, our proposed defense method has demonstrated high
effectiveness, successfully detecting trojan-infected models
across 14 out of 17 class scenarios. However, our algorithm
still struggled to detect trojans in the remaining 3 classes,
likely subtle trigger patterns. Looking ahead, future research
should focus on developing robust defense mechanisms capa-
ble of accurately identifying the trojan model for all classes.
Expanding the algorithm’s adaptability to various real-world
scenarios beyond power systems, particularly in other time-
series data applications, remains a key research direction. The
practical implications of this work are significant for power
system security, where trojan attacks pose a serious threat
to infrastructure stability and operational reliability. Recent
advancements, such as the work [43] demonstrate the growing
importance of machine learning in improving detection rates
while minimizing false positives. Building on such develop-
ments, our future research aims to further enhance detection
robustness and ensure broader applicability in diverse critical
systems.
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