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Abstract—Accurate classification of power quality disturbances
(PQD) is essential for ensuring the reliability and safety of
modern power systems. However, deep learning (DL) models
used for PQD classification can be compromised by trojan
attacks—malicious modifications that alter model behavior only
in the presence of specific triggers. Motivated by the urgent need
to safeguard modern power grids, we, for the first time, propose
trojan attack for DL-based PQD classification by introducing a
novel trojan attack algorithm called Sneaky Spectral Strike (S3).
Key features of S

3 include balancing the signal-to-noise (SNR)
ratio to maintain imperceptibility and optimizing the fooling rate
(FR) for maximum effectiveness. Leveraging the Fast Fourier
Transform (FFT) and trigger optimization techniques to embed
a stealthy trigger, S3 achieves an impressive fooling rate of 99.9%
with minimal impact on clean-data accuracy across diverse DL
architectures. Unlike prior time series data (TSD) based trojan
attack studies that use datasets with limited sample diversity and
time-step variations, we utilize a comprehensive PQD dataset
encompassing a wide range of events and varied time steps,
thereby exposing vulnerabilities in more diverse and realistic
scenarios. S3 outperforms state-of-the-art methods, improving the
average fooling rate by 7.4% over TimeTrojanDE, 0.83% over
TSBA, and 0.25% over TrojanFlow. To assess generalizability,
S3 was also evaluated on two additional time-series datasets,
achieving fooling rate of 99.89% on the Online Retail Dataset and
a perfect 100% on the Household Electric Power Consumption
Dataset. To counter such sophisticated attacks, we also propose
an innovative defense mechanism that detects trojan attacks by
analyzing decision boundary discrepancies resulting from tro-
jan insertion and injecting universal adversarial perturbations.
Our defense strategy demonstrates effectiveness in identifying
compromised models across various class scenarios, with the
capability to detect infected models across 14 of the 17 class
scenarios with trojan infection probability peaks at 0.94076.

Index Terms—Trojan attack, targeted attack, security, smart
grid, power quality disturbance, deep learning

I. INTRODUCTION

The modern power system is an interconnected system

that encompasses energy generation, transmission, and dis-

tribution, facilitating two-way communication between the

utility and its customers. This allows consumers to more

efficiently manage their energy use and even sell surplus power

back to the grid [1]. Secure communication technologies

underpin this bidirectional flow of electricity, with the goal

of improving customer satisfaction, optimizing utility oper-

ations, and promoting environmental sustainability by using

more renewable energy sources [2]. It also possesses the

potential to autonomously restore the power flow to the load
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through its inherent self-healing capabilities in the event of

a distribution feeder or transformer failure [3]. The system

employs advanced technologies, such as sensors, automation,

and communication networks, to monitor and control power

distribution in real-time [4]. Smart meters, which are part

of the Advanced Metering Infrastructure (AMI), are installed

at the consumer end to measure power consumption and

deliver real-time data to the utility [5]. Consequently, it can

deliver energy more efficiently, enabling improved consumer

utility engagement, facilitating widespread voltage control,

ensuring dependable frequency control, implementing modern

management techniques, and effectively responding to a wide

range of events inside the system [6]. Renewable energy

sources and energy storage systems offer significant potential

for decarbonizing metropolitan areas, regulating frequency and

voltage deviations, and addressing periods of high demand

surpassing generation capacity [7], [8].

Despite the integration of advanced communication tech-

nologies, there remains a potential for power quality to be

degraded. Various factors contribute to PQD, which exhibit

similarities to those observed in traditional power systems.

PQD are any deviations in voltage, current, or frequency

that can impact the functioning of electrical equipment [9].

The increasing reliance on renewable energy sources and

other important variables can cause PQD into the grid [10].

Moreover, the growing use of non-linear equipment, such as

personal computers, light-emitting diode lamps, and numerous

electronic gadgets, can produce harmonics and pose new

concerns with PQD [11]. In addition, small cybersecurity

threats can potentially disrupt communication lines and control

mechanisms, hence increasing PQD [12]. The occurrence of

PQD can result in a wide range of implications, varying

from small inconveniences to substantial economic and safety

issues. PQD has the potential to adversely affect power system-

related equipment, leading to various consequences such as

production interruptions, escalated maintenance expenses, di-

minished device longevity, heightened safety hazards, and

increased energy inefficiency. To address this serious issue,

anomalies in the grid, such as PQD or equipment failures, can

be quickly identified by employing DL models [13].

While DL models possess significant potential in PQD

classification, they are vulnerable to trojan attacks [14]. A

trojan attack maliciously alters a neural network so that it

behaves normally with clean inputs but reacts in a specific,

predetermined way when exposed to certain trigger inputs.

The complexities associated with trojan signals, which exhibit

a notable similarity to clean signals, pose a significant threat,

resulting in jeopardizing the integrity of the system. DL
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models used for PQD classification may also utilize transfer

learning, which is based on taking advantage of existing

pre-trained models to increase performance and reduce the

training time required on specific tasks with limited data

[15]. But although transfer learning has numerous benefits,

pre-trained models can potentially transfer trojan trigger that

pose threats to system integrity. Prior research has investigated

adversarial attacks on DL models and their defense in PQD

classification [16], such as joint adversarial examples and false

data injection attacks in power system state estimation, and the

efficacy of defense methods against adversarial attacks [17].

Adversarial attacks are carefully crafted perturbations that

result in incorrect model predictions but are imperceptible to

human viewers. The Fast Gradient Sign Method (FGSM) and

Projected Gradient Descent (PGD) are the most thoroughly

studied attack techniques. FGSM is a basic yet powerful

adversarial attack that applies perturbations to input data in

the direction of the loss function’s gradient. The method tries

to maximize the prediction error of a model with minimal com-

putational capability, and thus it is an efficient way to generate

adversarial samples. PGD, on the other hand, is an iterative

variant of FGSM where incremental minor perturbations are

added to the input data in several iterations. PGD generates

stronger adversarial examples by continuously improving the

perturbations to achieve a maximum adversarial impact.

The field of trojan attacks on time-series data (TSD) remains

relatively unexplored in academic research. Various methods

have been proposed to embed triggers into TSD using gen-

erative models, but each presents significant computational

challenges. TrojanFlow [18] employs a flow-based generative

model (FGM) that dynamically optimizes triggers through

gradient-based updates. Unlike traditional backdoor attacks

with static triggers, TrojanFlow generates sample-specific,

real-time triggers that adapt to the input data. However, this

continuous trigger optimization requires high computational

resources and leads to significant memory consumption. Our

empirical analysis revealed that even state-of-the-art hardware

encountered memory overflows when processing complex

datasets with this method. TSBA [19] utilizes a Generative Ad-

versarial Network (GAN)-based approach, where a generator

learns to craft backdoor triggers, and a classifier adapts accord-

ingly. This adversarial learning strategy enhances the stealth

and adaptability of the attack, making it difficult to detect.

However, the iterative nature of GAN training introduces high

computational overhead, making TSBA impractical for large-

scale applications. TimeTrojan-DE [20] adopts a constrained

multi-objective optimization strategy powered by evolutionary

algorithms. Instead of relying on traditional gradient-based

methods, this approach explores evolutionary search-based al-

gorithms (ESA) beneficial in constrained environments; how-

ever, their efficiency deteriorates as the number of possible

trigger configurations increases, resulting in computational

inefficiencies for large datasets. Each of these methods offers

distinct advantages, but they all struggle with scalability and

resource efficiency when deployed on extensive time-series

datasets. Therefore, this paper aims to address this gap by

proposing a novel heuristic search-based algorithm (HSA)

for generating highly effective trojan attacks on DL models

using TSD like PQD, while also proposing robust defense

methods to mitigate the risks posed by such attacks. The key

contributions of our manuscript are as follows:

• Our research pioneers the development of a trojan attack

on DL-based PQD classification. We explore a com-

prehensive dataset that has not previously been utilized

in other studies and is characterized by a wide range

of events and variability, owing to its extensive sample

size and time steps. This approach not only validates

the reliability of our strategy but also uncovers new

vulnerabilities in the modern power grid.

• We introduce a novel algorithm titled ”Sneaky Spectral

Strike (S3)” designed for executing trojan attacks on DL-

based PQD classification. Utilizing the FFT, our approach

enables a stealthy and effective trojan trigger, combining

time series manipulation with frequency domain tech-

niques. This complexity makes our trojan attacks highly

undetectable. Our algorithm notably exhibits a high av-

erage FR of 99.9%.

• Our algorithm is the first to consider and dynamically

manage the delicate balance of SNR, trojan model ac-

curacy on clean data, and FR for creating effective

trojan triggers on TSD. This equilibrium when integrating

trojan triggers in the frequency domain ensures successful

covert attacks.

• We, for the first time, propose a robust defense method

to counter trojan attacks on the DL model working with

TSD. Our proposed method detects the trojan model by

utilizing deviations in the decision boundaries due to

trojan insertion and universal adversarial perturbation.

Our defense method proves effective in protecting against

trojan attacks, with the capability to accurately detect

models infected by trojans across 14 of the 17 class

scenarios, which include various PQD such as sag, swell,

interruption, harmonics, transient, flicker, and other crit-

ical anomalies.

The structure of this paper is organized as follows. Sec-

tion II, provides a review of existing literature and identifies

the gaps that our research seeks to fill. In section III, we

outline the mathematical foundations of the trojan attack, and

in IV the network and threat models. Section V, details the

proposed trojan attack on the DL model operating with TSD

and introduces a potential defense strategy. The experimental

setup and simulation results are discussed in section VI.

Finally, in section VII, we summarize the key findings of our

study and explore the broader implications of our work.

II. LITERATURE REVIEW

A. Deep learning for Power Quality Disturbances

DL is revolutionizing power systems, particularly in PQD

classification. In [21], a hybrid approach using Stockwell

transform and DL is employed to classify multiple PQD. In

[22], an algorithm is presented for monitoring PQD, com-

bining histogram and discrete wavelet transform for feature

extraction, and machine learning for precise classification. In

[23], a CNN-based DL framework with an attention model is
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proposed for PQD classification. This model selects the opti-

mal solution from rescaled data before processing it through

deep CNNs. In [24], a CNN framework combined with a

gated recurrent unit for classifying PQD signals is used for

finding similar performance between VGG-16 and ResNet-50

models. In [25], a DL ensemble system using a Long Short

Term Memory (LSTM) network is introduced for high-quality

PQD categorization based on signal properties. [26] presents

a novel approach for PQD classification using segmented and

modified S-transform, a deep CNN, and a multiclass support

vector machine, enabling precise time-frequency localization

and effective feature extraction.

B. Cyber attacks on deep learning model in power system

Numerous studies have examined DL models’ vulnerabil-

ities to cyber attacks in power systems. Tian et al. [27]

introduced a method for designing efficient adversarial attacks,

considering parameters like input elements, attack impact

on regression outputs, and configurable measurement meters.

Niazazari et al. [28] revealed how adversarial attacks could

cause misclassification in CNN-based event cause analysis

through subtle data manipulations. Sayghe et al. [29] explored

the effects of Limited-memory Broyden-Fletcher-Goldfarb-

Shanno and Jacobian-based Saliency Map attacks on Mul-

tilayer Perceptron models for detecting false data injection.

[30] proposed a black-box optimization method for creating

dynamic load-altering attacks to bypass intrusion detection in

smart grids. Hao et al. [31] provided an overview of adversarial

attacks on DL models within smart grids. Researchers in

[32] introduced the Ensemble and Transfer Adversarial Attack

method to enhance attack transferability across DL models.

Kosut et al. [33] conducted cyber attacks on smart grids using

malicious data injection. Heinrich et al. [34] explored LSTM

and CNN vulnerabilities to various adversarial attacks in wind

power prediction. Cheng et al. [35] used adversarial techniques

to introduce noise into phasor measurement units, showing

DL-based power system event classifiers’ vulnerability.

C. Trojan attacks on deep learning model

Several studies have explored DL models’ vulnerabilities

to trojan attacks. In [36], the authors propose a black-box

trojan attack, where the attacker has no direct access to the

internal structure or parameters of the target model but can still

manipulate it through its input-output behavior. The authors

use a cost-effective model extraction method and an innovative

trigger generation algorithm that enhances the association

between the trigger and the misclassification label. Grosse et

al. [37] focus on how trojan attacks refine the decision function

near triggered samples, introducing a metric to measure classi-

fier uncertainty near these inputs. In [38], a Pixel-space-based

trojan attack is proposed, using bit-inversion to inject errors

into 3% of training images, contaminating the entire training

set. Zhang et al. [39] develop a highly transferable backdoor

attack targeting CNNs in malware detection, involving trigger

creation and embedding based on class activation mapping.

Finally, Salem et al. [40] propose dynamic trojan attacks that

produce triggers with varying patterns and locations, reducing

the effectiveness of existing detection methods.

D. Our contribution

To better illustrate the differences between prior work

and our proposed method, Table I provides a comparative

analysis of the reviewed trojan attack methodologies against

our approach. This comparison highlights key aspects such

as dataset applicability, computational efficiency, trigger gen-

eration method, and whether a defense strategy has been

proposed. The average FR is computed by applying a trojan

attack across various DL model architectures.

III. PRELIMINARIES

A. Classification of Power Quality Disturbances

PQD can be classified into different categories, and in

this research, we examined seventeen specific types. The first

is normal, representing a standard waveform without any

irregularities. Sag refers to a temporary reduction in voltage,

while swell indicates a brief increase in voltage. Interruption

describes a short period of sudden power loss. Transient dis-

turbances involve abrupt power fluctuations, often caused by

equipment failures or lightning strikes. An oscillatory transient

is a temporary deviation in the waveform that typically decays

rapidly. Harmonics are distortion-causing frequencies that are

integer multiples of the fundamental frequency. Additionally,

there are harmonics with sag and harmonics with swell, which

refer to specific combinations where harmonics occur simul-

taneously with voltage decreases and increases, respectively.

Flicker involves noticeable voltage variations that can cause

discomfort due to changes in illumination. Voltage dips and

surges combined with flicker can be further categorized into

flicker with sag and flicker with swell. The power system can

also experience voltage dips and surges, as well as repeti-

tive waveform deviations, categorized as sag with oscillatory

transient and swell with oscillatory transient. Moreover, sag

with harmonics and swell with harmonics refer to waveform

distortions caused by harmonics, resulting in voltage decreases

and increases, respectively. Finally, a notch is characterized

by a brief disruption in the waveform. The mathematical

representation of PQD classification is as follows- Let i ∈ I
and j ∈ J represent the indices of disturbances and types,

respectively. The label of type j for the i-th disturbance sample

is denoted by yi,j . Before classifying the original waveform

data, a feature extraction and selection function E(x) is applied

to generate a feature vector Si,j from the original waveform

data wi:

Si,j = E(wi)

For the j-th label, a classification model F(x) is trained,

where F(x) represents the mapping from the waveform data

to the j-th label. Therefore, given the set {Si,j , yi,j}, the j-th

label for the i-th sample can be estimated as:

y′i,j = F (Si,j)

Assume that the optimal parameters learned for feature

extraction and classification are denoted by w1 and w2, re-

spectively. The categorical cross-entropy is commonly used as

the loss function to guide the training of w1 and w2:
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TABLE I
COMPARISON OF REVIEWED TROJAN ATTACK METHODS AND THE PROPOSED APPROACH

Algorithm Trigger Generation Method Trigger Injection Domain Computational Efficiency Average FR Proposed Defense

TrojanFlow [18] Flow-based Generative Model Time : Moderate :

TSBA [19] Generative Adversarial Network Time : High :

TimeTrojan-DE [20] Multi-objective Evolutionary Search Time : Very High :

S3 Multi-objective Heuristic Search Frequency 6 Very High 6

CE (w1, w2) = −
1

n

n
∑

i=1

[y′i ln yi + (1− y′i) ln (1− yi)]

B. Mathematical Overview of Trojan Attack

Training Data
Trigger signal

Trojan Model

O
utput

Training Phase 

Trojan data

Testing Phase

CNN

Attacker

Fig. 1. Overview of trojan attack on time series data.

Trojan attacks pose a serious threat, as they can compromise

the model’s reliability and security, leading to potentially

harmful consequences when deployed in real-world applica-

tions. A Trojan attack on DL models involves the covert

insertion of malicious alterations into the DL model’s training

process (See in Fig.1). These alterations are designed to

manipulate the model’s behavior. After training, the trojan

remains dormant until specific conditions or triggers are met.

Once activated, the model starts producing incorrect outputs or

behaves maliciously in response to particular inputs that match

the trigger. In a trojan attack, the attacker embeds a trigger into

a set of samples and modifies the corresponding label to a

level set by the attacker during the training phase. As a result,

when the trigger is presented to the deployed model, it starts to

predict a specific target class. The model exhibits impressive

accuracy when processing clean samples, yet it demonstrates a

significantly high FR when presented with triggered samples.

There is another approach called booster [41] that leverages

adversarial training to enhance the model’s resilience. In the

following, we provide a detailed mathematical formulation that

illustrates both the Trojan and Booster methods.

Let

T = {(xi, yi) | i = 1, . . . , N}

be the original training set of N samples, where xi is the i-
th input and yi is the corresponding ground-truth label. We

denote by M(x,w) a DL model with trainable parameters w.

We define two following subsets of T . T ′
trojan are maliciously

changed, containing a hidden trigger and an incorrect label.

T ′
booster are explicitly altered to improve robustness.

Let

T ′ = T ′
trojan ∪ T ′

booster

be the union of all modified samples. The remaining un-

modified samples are in T \ T ′. We define two distinct

transformation functions, depending on whether the goal is

trojan or booster:

1) Trojan Trigger Function, At(·):

(x′
i, y

′
i) =

(

At(xi, t), At(yi)
)

, (xi, yi) ∈ T ′
trojan,

(1)

where At(xi, t) inserts a hidden trigger t into the orig-

inal input xi, and At(yi) remaps the label yi to the

attacker’s target label.

2) Booster Transformation Function, Ab(·):

(x′
i, y

′
i) =

(

Ab(xi, t), yi
)

, (xi, yi) ∈ T ′
booster, (2)

where Ab is an augmentation function meant to im-

prove robustness. Crucially, the label is not maliciously

changed but typically remains the same yi.

During training, the objective is to minimize the following

loss:

Ltotal =
∑

(xi,yi)∈T\T ′

L
(

M(xi, w), yi
)

+
∑

(x′

i
,y′

i
)∈T ′

trojan

L
(

M(x′
i, w), y

′
i

)

+
∑

(x′

i
,y′

i
)∈T ′

booster

L
(

M(x′
i, w), y

′
i

)

,

(3)

where L(·) is typically the cross-entropy loss. The first sum-

mation covers clean samples, the second summation addresses

trojan samples, and the third is for booster samples.

C. Time vs. Frequency Domain Analysis for Trojan Attack

The time domain representation provides a direct view of

the signal, where the presence of a Trojan is evident. Fig 4(a)

depicts a clean Harmonics with Sag signal used to insert trig-

ger in the time domain. Fig 4(b) clearly shows the introduction

of a trojan trigger, with the trigger length range Tl outlined

in blue, the amplitude range Ta in orange, and the possible

trigger positions Tp in purple. In Fig 4(c), the clean and trojan

signals are shown in the time domain after inserting the trigger.

Fig 4(d) shows clean Harmonics with Sag signal used to

insert triggers in the frequency domain. Then we transformed
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Tl

T a

Tp

Tp

T a

Tl

(a) (b)

(c) (d)

(e) (f)

Fig. 2. a) Clean Signal for time domain trojan attack b) Trigger with length
range Tl, the amplitude range Ta, and possible position Tp is inserted in
time domain c) Shows clean and trojan signal in the time domain where the
trojan trigger-green dotted spike- is clearly visible to the human eye. d) Clean
signal for frequency domain trojan attack. e) Trigger with length range Tl,
the amplitude range Ta, and possible position Tp is inserted in the frequency
domain 1f) Shows clean and trojan signal in the time domain after inserting
trigger in the frequency domain where the trojan signal closely follows the
clean signal and the trigger is invisible to the human eye.

the signal from the time domain to the frequency domain

using FFT. In Fig 4(e), we inject the identical aforementioned

parameters of Tl, Ta, and Tl in the frequency domain. Then,

we transformed the signal to the time domain again using

Inverse FFT and presented the clean as well as trojan signal

in Fig 4(f). It is evident from 4(f) that the trojan trigger

blends in with the clean signal’s waveform so well; however,

a green spike is visible when the trigger is inserted in the

time domain as shown in Fig 4(c). This high stealthiness of

the trigger demonstrates a significant advantage: the trigger

embedded in the frequency domain can continue to function

without detection, maintaining its operational efficacy and

evading conventional time-domain detection techniques, while

the signal’s functional characteristics appear to be unchanged

in the time domain.

IV. NETWORK AND THREAT MODEL

A. Network Model

According to Fig 3, electricity is generated from various

resources including fossil fuels, renewable energy, and nuclear

energy. The transmission and distribution networks allow for

the transport of electricity from power plants to consumers’

homes and voltage is changed in the substation. Substations

typically use unattended monitoring to replace manual in-

spections. This involves centralized or remote multimedia

monitoring to provide an intuitive analysis of equipment

status [42]. All appliances, lights, and machinery in a home

or business are examples of loads. Data can be transferred

between substations to the PCC using communication chan-

nels. The PCC monitors, manages, and responds to power

generation, distribution, and load balancing by using cutting-

edge hardware and software. Important work, such as locating

and analyzing PQD, is performed by the DL model integrated

into the PCC. PQD reach the substation by propagating across

the transmission and distribution network and is sensed by the

intelligent electronic devices (IED) located in this substation

that communicates with the PCC using the communication

channel. Signal-dependent applications, such as the identifi-

cation of PQD or the detection of faults, heavily depend on

the communication channel to capture transmitted signals for

analysis using DL models. The DL model utilizes data such as

load measurements, fault indications, energy usage statistics,

and predictive maintenance notifications and analyzes these

diverse data to optimize energy distribution, forecast demand,

identify anomalies, and automate maintenance tasks. Once

the disturbance has been accurately classified, the DL model

transmits the results to the control center which makes decisive

decisions, such as regulating voltage, switching to backup

power sources, activating or deactivating generating stations,

and adjusting the load.

B. Threat Model

PQD classification heavily depends on the communication

channel to capture data from different substations for analysis

using DL models. In our threat model in Fig 3, we assume that

the IED manufacturer and the DL model are both owned by the

same organization. An attacker, associated with the manufac-

turing organization, may inject trojan samples during the DL

model’s training. This individual would have been permitted

access to the substation as a representative of the manufactur-

ing organization for technical support. In such a situation, the

attacker would be able to exploit the communication channel

that connects the substation and the PCC to perform the

trojan attack. Alternatively, the attacker could be a member

of a utility company who may have been present during the

model’s training based on contractual arrangements with the

manufacturer and inject trojan samples into the dataset. The

attacker can get access to the substation for maintenance by

using the rights granted to utility personnel and compromise

the communication channel between the substation and the

PCC. Given that most substations are unattended, there is

no operator present to detect such types of attack and this

vulnerability allows a trojan signal to potentially reach the

PCC. It is important to note that an attacker from either the

manufacturing or utility entity, having been present during

the model’s training, would possess comprehensive knowl-

edge of the model’s architecture, parameters, and dataset.

Although attacker with aforementioned criteria can perform

direct attacks like system shutdowns or replay attacks which

has immediate impact, there is a possibility of high risk
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Fig. 3. Illustration of the potential exploitation points for trojan attacks during signal transmission to the power control center.

of detection and rapid response. On the other hand, trojan

attacks on DL models allow the attacker to remain undetected

while causing long-term, insidious damage to the system’s

integrity and reliability. This stealthy approach aligns with

the attackers’ goal of avoiding detection and maintaining their

insider position within the network.

V. TROJAN ATTACK AND A DEFENSE

A. Trojan Attack Methodology

Our proposed algorithm, detailed in Algorithm 1 and named

’Sneaky Spectral Strike (S3)’ utilizes a multi-objective opti-

mization technique that stealthily targets the spectral properties

of signals to induce effective trojan attacks while remaining

undetected. The algorithm uses a heuristic search approach,

meaning it doesn’t follow a strict mathematical formula but

instead adjusts the parameters iteratively based on perfor-

mance. By embedding small but effective perturbations in

the frequency domain and continuously refining them, the

algorithm ensures a successful yet covert trojan attack on DL

models. The core objective is to balance the FR, SNR, and

clean data accuracy that ensures the trigger is both effective

and covert.Initially, we establish an SNR threshold ST by

adjusting the trigger length range Tl and amplitude range Ta

by providing an initial estimate that meets the desired FR F
while maintaining stealth.Mathematically, let Ytrue be the true

labels of our test samples, Ytrojan be the predicted labels of the

trojan samples, and Ytarget be the desired target class for our

trojan attack. The FR is given by:

FR =

∑N

i=1 I(Ytrue,i ̸= Ytrojan,i andYtrojan,i = Ytarget)

N

Where I is the indicator function, which is 1 if the condition

inside is true and 0 otherwise.N is the total number of

test samples. A higher FR indicates that the trojan attack

is more effective in guiding the misclassifications toward

the target class. To ensure optimal trigger placement, we

select a subset Ds (comprising P% of the training dataset

Dc) and identify valid trigger positions Tp that meet FR

and SNR criteria without degrading clean accuracy A. The

iterative process begins with initializing the trojan trigger T
and iteration counter i = 0, continuing until the desired

fooling rate FT is achieved or the maximum iterations Im
are reached. During each iteration, the Algorithm 2 fine-tunes

Tl, Ta, and Tp to improve attack stealth and effectiveness.

If the fooling rate is insufficient (F f FT ) while SNR

S and clean accuracy A remain above their thresholds, the

algorithm increases the lower bounds of Tl and Ta, adjusting

Tp for better concealment. Conversely, if F g FT with the

initial parameters, the upper bounds are reduced to enhance

stealth while preserving the fooling rate. The signal pro-

cessing pipeline proceeds as follows: each sample si ∈ Ds

is transformed into the frequency domain via Fast Fourier

Transform (FFT), where a random perturbation Rp ∈ [−Q,Q]
is generated to prevent pattern detection. The trojan trigger

Tr, computed using parameters (Ts, Tl, Ta, Rp, Tp), is added

to the transformed signal ŝi, yielding t̂ = ŝi+Tr. The modified

signal is converted back to the time domain using the Inverse

FFT (IFFT), ensuring a realistic time-series representation.

The original label O is replaced with the target label T , and

the trojaned samples are aggregated into Dtrojan
s .,The model is

retrained using the combined dataset DR = (Dc\Ds)∪D
trojan
s ,

after which trojan test samples Tz = Dt + Tr are evaluated

to update F , S, and A. This cycle repeats until either the

fooling rate surpasses FT or the iteration limit Im is reached,

upon which the optimal trigger OT is returned. By embedding

triggers in the frequency domain and iteratively refining the

trigger parameters, S3 achieves a balance between stealth and

effectiveness. To illustrate this intuitively, imagine slipping a

secret note into a stack of papers. The note should be obvious

enough for the intended recipient but hidden from casual

observers. Similarly, our algorithm embeds subtle but effective

triggers into signals, ensuring successful model misdirection

while evading detection.

B. Defense for Trojan Attack

The hypothesis is that networks with trojans have decision

boundaries that are different from those of typical, benign
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Algorithm 1 Sneaky Spectral Strike (S³) Algorithm

Require: Training dataset:Dc; Testing dataset:Dt; Epochs:N ;

Trojan percentage:P ; Perturbation range:Q; Original

label:O; Target label:T ; SNR threshold:ST ; FR

threshold:FT ; Maximum iterations:Im; Trojan trigger:T ;

FR:F ; SNR:S; Clean accuracy:A
Ensure: Optimal trojan trigger parameters: OT

1: Step:1 Train DL Model on Clean Data

2: for i = 1 to N do

3: for h(x, y) ∈ Tc do

4: hmin ← arg min LCE(f(x), y)
5: end for

6: end for

7: Step 2: Select Trojan Samples and Initiate attack

8: Ds = P · |Dc|
9: i ← 0

10: Initialize Dtrojan
s = ∅

11: Step 3: Optimize and Inject Trojan Triggers

12: while F < FT and i < Im do

13: Find optimal Ta, Tl, Tp using optimal trojan tune

function in algorithm 2

14: for each sample si ∈ Ds do

15: Frequency domain conversion: ŝi = FFT(si)
16: Random perturbation:Rp = rand(−Q,+Q)
17: Generate trojan: Tr = Rt(Ts, Tl, Ta, Rp, Tp)
18: Embed trigger in frequency domain: t̂ = ŝi + Tr

19: Convert back to time domain: s′ = Re(IFFT(t̂))
20: Update sample label to target class: O ← T
21: Adding sample to trojan dataset:Dtrojan

s ← (s′, T )
22: end for

23: Create retraining dataset: DR = (Dc \Ds) ∪Dtrojan
s

24: for i = 1 to N do

25: for each sample (x, y) ∈ DR do

26: Update model: hmin ← argminLCE(f(x), y)
27: end for

28: end for

29: Generate trojaned test samples: Tz = Dt + Tr

30: Calculate metrics (F ), (S), and (A).
31: end while

32: Step 4: Return Optimal Trojan Trigger

33: return OT

models. This is because the trojan modifies the decision

boundaries to achieve its malicious goal. When a model is

trained with trigger samples, the decision boundary will be

changed, making it easier for certain inputs to be misclassified.

Universal adversarial perturbation is signal-agnostic and, when

applied to any signal, changes its label across the decision

boundary. Due to the change in decision boundary in trojan

models, universal adversarial perturbation can more easily alter

the classification of inputs with less perturbation compared to

benign models. This means that less perturbation is required

to mislead the DL model, which is advantageous from the

attacker’s perspective. In this process, attackers need to craft

a single perturbation as part of a universal attack to mislead the

model at first. Secondly, the small requirement of perturbation

reduces the detection time significantly, as fewer iterations are

Algorithm 2 Optimal Trojan Tune Function

Require: Initial range for trigger amplitude, Ta; Initial range

for trigger length, Tl; and Initial Trigger insertion position,

Tp; FR, F ; SNR, S; Accuracy on clean data, A
Ensure: Optimal Ta, Tl, Tp.

1: F ← 0

2: Ta, Tl, Tp ← initial value

3: while F f FT or S g ST or A g AT do

4: Increase lower range of Ta, Tl

5: Change Tp

6: Calculate trigger T
7: Update F , S, A
8: end while

9: while F g FT or S g ST or A g AT do

10: Decrease upper range of Ta,Tl

11: Change Tp

12: Calculate trigger T
13: Update F , S, A
14: end while

15: return Optimal Ta, Tl, Tp

needed. Therefore, universal adversarial perturbations encode

the geometry of decision boundaries and are expected to differ

between benign and trojan models when a model becomes

infected.

Algorithm 3 Trojan Detection Algorithm

1: Input: Data samples X , Query model M , perturbation

magnitude ϵ, learning rate ³, number of classes C
2: Output: Trojan Infection Probability Tp

3: function UNIVERSALADVERSARIAL(X,M, ϵ, ³, C)

4: r ← 0
5: for x in X do

6: ∇rL(M(x+ r), y)
7: r ← r − ³ · clip(∇rL, ϵ)
8: end for

9: return r
10: end function

11: function TROJANMODELDETECTION(X,M, r)

12: Porig ←M(X) and Pperturb ←M(X + r)

13: Tp ←
∑

(Porig ̸=Pperturb)
len(X)

14: return Tp > threshold

15: end function

Algorithm 3 shows our defense method for trojan attacks.

The algorithm works as follows. Firstly, the algorithm sets

up the dataset X , and the query model M . The algorithm

defines a perturbation magnitude ϵ and a learning rate ³. The

perturbation vector r is initially set to zero. For each input

sample x in the dataset X , the algorithm computes the gradient

of the loss function for the perturbation r. This gradient

indicates how the model’s error changes as r changes. It, then,

updates r by moving it in the direction that increases the loss,

scaled by the learning rate r. The perturbation r is also clipped

to ensure it does not exceed the predefined magnitude ϵ. Once

the universal perturbation vector r is generated, the algorithm

evaluates the model’s susceptibility to a trojan attack. It does
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TABLE II
POWER QUALITY DISTURBANCES SIGNALS NAME AND CORRESPONDING CLASSES

Class Signal Name Class Signal Name Class Signal Name

C-1 Normal C-7 Harmonics C-13 Sag with Oscillatory transient
C-2 Sag C-8 Harmonics with Sag C-14 Swell with Oscillatory transient
C-3 Swell C-9 Harmonics with Swell C-15 Sag with Harmonics
C-4 Interruption C-10 Flicker C-16 Swell with Harmonics
C-5 Transient/Impulse/Spike C-11 Flicker with Sag C-17 Notch
C-6 Oscillatory transient C-12 Flicker with Swell

this by observing how the predictions of the model change

when r is added to the inputs. It then calculates the trojan

infection probability, which is the proportion of predictions

that differ between the original and perturbed inputs. Finally,

the algorithm compares the trojan infection probability to a

predefined threshold. If the probability is higher than this

threshold, it suggests a high likelihood that the model has

been compromised by a trojan attack. If the trojan infection

probability is below the threshold, the model is likely clean.

VI. EXPERIMENTAL RESULTS

A. Datasets and Deep Learning Model

In our experiment, we use a publicly available, class-

balanced labeled dataset containing 255,000 signals, with

each of the 17 PQD classes contributing 15,000 samples.

The sampling frequency is 3200 Hz, with a fundamental

frequency of 50 Hz and a signal length of 640 data points.To

ensure data quality, samples containing missing values were

removed before further processing. Each of the samples was

transposed to align the signal dimensions correctly. To ensure

reproducibility, the dataset was shuffled using a fixed random

seed. Each sample was then normalized to ensure uniform scal-

ing across the dataset, thereby improving model convergence

during training. The normalized signals were reshaped into a

three-dimensional format (samples, 640, 1) to meet the input

requirements of the ResNet model, where 640 represents the

signal length and 1 indicates a single channel. Labels were

converted into one-hot encoded vectors to facilitate multi-

class classification. The dataset was subsequently divided into

training and test sets, with 230,000 samples used for training

and the remainder for testing. Fig. 4 shows the preprocessed

signals for all 17 classes of PQD.

We initially train the ResNet50 model for ten epochs

with clean data, achieving a test accuracy of 99.22%. After

poisoning 20% of the clean samples, we retrain the model

with the trojan dataset. We use ResNet50 to evaluate our

algorithm’s performance against trojan attacks and extend

this analysis to other advanced DL models, including LSTM,

CNN-LSTM, ResNet18, and CNN, to validate generalizability.

The CNN model consists of six Conv1D layers with ReLU

activation, followed by max pooling, batch normalization,

and fully connected layers. The LSTM and CNN-LSTM

models incorporate three stacked LSTM layers with 32, 64,

and 128 units, each followed by dropout, with CNN-LSTM

having an additional feature extraction stage using Conv1D

layers. Both models end with fully connected layers and a

Normal Sag Swell

Interruption Transient Oscillatory transient

Harmonics Harmonics with Sag Harmonics with Swell

Flicker Flicker with Sag Flicker with Swell

Sag with
Oscillatory transient

Swell with Oscillatory transient Sag with Harmonics

Swell with Harmonics Notch

Fig. 4. Waveshape of PQD after preprocessing

softmax output for 17 classes. The ResNet50 and ResNet18

models are adapted for our classification task, replacing the

default classification head with a GlobalAveragePooling1D

layer followed by dense layer and a softmax output for 17

classes. ResNet50 consists of six residual blocks with filters

increasing from 16 to 64, while ResNet18 has nine residual

blocks with filters ranging from 32 to 128. Finally, we compare

our algorithm’s efficacy against existing algorithms for TSD

highlighting the challenges unique to TSD compared to image

data. Our algorithm is benchmarked against state-of-the-art

methods for trojan attacks on TSD, though these methods

do not specifically address the power system or datasets with
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extensive samples and time steps related to PQD.

B. Experimental Setup

1) Hardware Specifications: The experiments were con-

ducted on an advanced computational system, equipped with

an Intel(R) Core(TM) i9-9920X central processing unit (CPU).

This CPU features 12 cores per socket, enabling multi-

threaded operations by supporting two threads per core, which

totals 24 logical CPUs. The processor operates on a 64-bit

x86 architecture, ensuring compatibility with a wide range

of software and applications. The hierarchical cache memory

structure of the CP is particularly noteworthy, with 32KB

allocated for both L1d and L1i caches , 1024KB for the

L2 cache, and a substantial 19712KB for the L3 cache. The

system is further bolstered by 125GB of RAM, providing

ample memory for handling large datasets and running multi-

ple processes concurrently without bottlenecks. In addition to

the powerful CPU, the system’s graphics and computationally

intensive tasks are managed by four NVIDIA Quadro RTX

6000 GPUs.

2) Software Configuration: The system operated on Ubuntu

18.04.5 LTS (Bionic Beaver), which provided a stable and

reliable Linux-based environment. Python 3.6 was selected as

the primary programming language and for GPU-accelerated

tasks, the setup employed NVIDIA’s CUDA toolkit, specifi-

cally version 10.2.89. This was complemented by the NVIDIA

driver version 470.94, ensuring optimal performance and

compatibility with the hardware. The DL experiments were

conducted using Keras version 2.2.4 as the high-level neural

networks API, with TensorFlow 1.13.1 serving as the backend

engine. The development and debugging process was facili-

tated by Pycharm 2023.2 (Community Edition). Additionally,

several other Python libraries were integral to the experimental

setup. Keras Preprocessing (version 1.1.2) was utilized for data

preprocessing tasks, Matplotlib (version 3.3.3) for creating vi-

sualizations, NumPy (version 1.19.5) for numerical operations,

Pandas (version 1.1.4) for data manipulation and analysis,

and Scikit-learn (version 0.23.0) for implementing machine

learning algorithms and evaluation metrics.

3) Hyperparameter Settings: In our experiments, the DL

model is configured to use the categorical cross-entropy loss

function, which is particularly well-suited for multi-class clas-

sification problems as it measures the performance of the

model by comparing the predicted probability distribution

with the true distribution. The model is optimized using

the Nadam optimizer, a variant of the Adam optimizer that

incorporates Nesterov momentum, offering improved conver-

gence properties. The Nadam optimizer is employed with

the following specific parameters: a learning rate (lr) set to

0.002, momentum coefficients ´1 and ´2 set to 0.9 and 0.999

respectively, and a stability term ϵ set to 1×10−8. Additionally,

the learning rate is subject to a decay schedule, with a decay

rate set at 0.004.

C. Results and Discussion

1) Trojan attack: Our study showcases a consistently high

fooling rate following the introduction of a trojan attack, with

Fig. 5. Fooling rate and accuracy on clean data using S3 algorithm.
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Fig. 6. Confusion Matrix for the ResNet-50 Model used for PQDs Classifi-
cation for trojan attack.

all 17 classes experiencing rates above 99% in Fig 5. The

decrease in accuracy was minimal, with the most significant

observed decrease in baseline accuracy in class C-14, which

demonstrated a reduction of 97.59%. The high fooling rates

as depicted by the confusion matrix in Fig 6, illustrate the

effectiveness of our proposed algorithm for performing trojan

attacks on TSD. From Fig 7, it is evident that the trojan

signal closely mimics the clean signal’s pattern, rendering

it indistinguishable. We represent the imperceptibility com-

parison between frequency and time domain waveshape in

Fig 8. The One-Class Support Vector Machine (SVM) and

the Elliptic Envelope are two techniques utilized for anomaly

detection. The One-Class SVM is a machine learning model

designed to delineate a boundary that distinguishes normal

data from anomalies in a high-dimensional space. The Elliptic

Envelope method models the data with a multivariate Gaussian

distribution and detects anomalies as points that lie outside

a specified contour of this distribution. There are noticeable

variations when comparing the anomaly detection results

for the frequency and temporal domains. Elliptic Envelope

detected 10.53% of samples as anomalies in the frequency

domain, compared to 9.90% recognized by One-Class SVM.

On the other hand, anomalies were observed in 37.56% of

samples by One-Class SVM and 48.88% of samples by the

Elliptic Envelope in the time domain. These results suggest

that trojan triggers in the frequency domain are much more

difficult to detect than those in the time domain. We calculated

the allowable processing time for each sample at a sampling
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frequency of 3,200 Hz. At this frequency, each sample period

is 1
3,200 seconds, which corresponds to approximately 312.5

microseconds. Our empirical measurements showed that the

average processing times for the trigger generation, FFT,

trigger injection, and iFFT were 28.2 microseconds,14.29

microseconds, 2.02 microseconds, and 14.05 microseconds,

respectively. This adds up to a total processing time of 58.56

microseconds per sample. Since this total processing time is

much less than the available 312.5 microseconds per sample,

Fig. 10. Comparison of average fooling rate for different algorithms.

it confirms that our frequency domain injection method is

well-suited for real-time processing at a sampling rate of

3,200 Hz. The total time for the entire optimization process,

considering all steps and iterations amounted to approximately

3.4 milliseconds for each sample. Therefore, for 255,000

samples, the total time for the optimization process is approxi-

mately 867 seconds. While other algorithms result in memory

overflow even on state-of-the-art machines with the same

dataset, our algorithm completes the optimization process and

inject trigger to all the samples efficiently, taking only 867

seconds. Consequently, these results justify the practicality and

efficiency of our approach for real-time applications in PQD

scenarios.

The efficacy, generalizability, and scalability of our pro-

posed algorithm are further substantiated through extensive

evaluations across diverse model architectures and multiple

datasets. As demonstrated in Fig. 9, the algorithm consistently

achieves high fooling rates across various deep learning archi-

tectures, recording 99.77% for LSTM, 99.87% for ResNet50,

99.94% for CNN-LSTM, 99.98% for ResNet18, and 99.99%

for CNN. These results highlight the algorithm’s universal ap-

plicability and robustness, irrespective of the underlying model

complexity. Beyond high fooling rates, the algorithm exhibits

minimal impact on the model’s functional integrity. Notably,

the maximum reduction in clean data accuracy was observed

in the LSTM architecture, where the baseline accuracy of

99.30% dropped to 98.67%, a relatively minor decrease of

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2025.3567340

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: North Carolina A T State University. Downloaded on May 14,2025 at 01:00:14 UTC from IEEE Xplore.  Restrictions apply. 



11

0.63%. This preservation of model accuracy, even after trojan

insertion, reflects the algorithm’s ability to execute effective

and stealthy attacks without compromising the model’s overall

performance.

We also applied the proposed algorithm to two additional

publicly available datasets from the UCI Machine Learning

Repository. The first dataset, the Online Retail Dataset, con-

tains 541,909 transactional records from a UK-based online

retailer, capturing multivariate, sequential, and time-series

data. On this dataset, the algorithm achieved a fooling rate

of 99.89%, demonstrating its adaptability to business-oriented

transactional data. The second dataset, the Individual House-

hold Electric Power Consumption Dataset, comprises over 2

million measurements of household energy usage collected

over 47 months. Our algorithm attained a perfect fooling

rate of 100% on this large-scale, high-resolution time-series

dataset, underscoring its scalability and effectiveness in han-

dling extensive data volumes with complex temporal patterns.

Collectively, these results demonstrate that the proposed algo-

rithm not only maintains consistent performance across diverse

neural network architectures but also generalizes effectively

to datasets of varying scales and domains.Its scalability and

adaptability make it a robust solution for real-world applica-

tions where large and complex datasets are prevalent.

We present a comprehensive evaluation of three state-of-the-

art algorithms from extant literature, alongside our proposed

algorithm in Fig. 10. The findings indicate that TimeTrojanDE

[20] achieved a moderate average fooling rate of 92.5%.

TSBA [19] displayed a high fooling rate of 99.07%, and

TrojanFlow [18] was similarly effective, achieving a very high

fooling rate of 99.65%. Our algorithm, S3’, demonstrated the

highest proficiency with a very high fooling rate of 99.90%.

Additionally, performance variation of S3 is quantified with

a ±0.09/0.13 standard deviation, highlighting its stability at

near-optimal fooling rates. Our algorithm was tested against

datasets characterized by a larger scale in both the number

of samples and the extent of time steps, presenting a more

challenging and arguably more realistic scenario for evalua-

tion. It is imperative to underline this distinction because the

complexity and size of a dataset can have a significant impact

on the generalizability of an algorithm’s performance.

TABLE III
TROJAN MODEL DETECTION RESULTS.

Class Trojan Infection Probability Trojan Infection

1 0.83972 True
2 0.0 False
3 0.61608 True
4 0.9372 True
5 0.71636 True
6 0.93736 True
7 0.78336 True
8 0.30952 False
9 0.27756 False

10 0.68736 True
11 0.94076 True
12 0.82028 True
13 0.70932 True
14 0.41308 True
15 0.76696 True
16 0.73052 True
17 0.79524 True

Fig. 11. Number of Detected Trojan Classes at Different Thresholds.

2) Defense for trojan attack: Table III provides the results

of how the trojan infection probability varies across different

classes and its association with the trojan infection. We have

considered complementary performance metrics including the

false positive rate (FPR) and FR in our discussion to offer

a more holistic view of detection performance. The FPR

quantifies how often a trojan infected model is incorrectly

flagged as clean, and the FR highlights the degree to which

an attacker’s trojan remains undetected. We set a detection

threshold for the trojan infection probability at 0.4, meaning

that any model exceeding this probability is classified as

trojan-infected. This threshold choice is selected by empirical

observations showing that a clean model typically has a trojan

infection probability of around 25%, leaving a 15% margin to

account for variability.

If the trojan infection probability is equal to or above 0.9,

it correlates with lower FR values, indicating that the attack

is more likely to be detected by our defense. For example,

classes 4, 6, and 11 exhibit the highest trojan infection proba-

bilities—0.9372, 0.93736, and 0.94076, respectively—and also

show confirmed trojan infections and lower FR. While the de-

fense method effectively detects most trojan-infected classes, it

shows reduced effectiveness for classes 2, 8, and 9, where the

mechanism fails to identify the compromise. These undetected

infections contribute to the overall FPR and highlight areas for

future refinement. Despite these cases, the defense remains

generally robust, detecting trojan infections in 14 out of 17

classes and demonstrating a strong balance between detection

sensitivity and minimizing the misclassification of infected

models. To assess how varying the detection threshold affects

the performance of our defense, we analyzed how different

thresholds influence the number of detected trojan-infected

classes. As illustrated in Fig. 11, lowering the threshold to 0.3

increases the detection rate, capturing 15 out of 17 infected

classes. This reduction in the threshold also leads to a lower

FPR, as fewer infected models are incorrectly classified as

clean. Conversely, increasing the threshold to 0.5 reduces the

detection rate to 13 classes, which increases the FPR because

more infected models evade detection and are mistakenly

labeled as clean. Ultimately, selecting a threshold of 0.4 strikes
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an effective balance, successfully detecting 14 out of the 17

infected classes while keeping the FPR at an acceptable level.

When considering the FR, the relationship aligns with FPR

trends. As the threshold increases, more trojan-infected models

go undetected, allowing the trojan to remain effective and

increasing the FR. Lowering the threshold, on the other hand,

reduces these rates by ensuring more infected models are

correctly identified.

VII. CONCLUSION

In this paper, we propose a novel algorithm for conducting

highly effective trojan attacks on DL models that operate with

PQD data. Our proposed algorithm, titled Sneaky Spectral

Strike (S3), emphasizes the significant vulnerability of DL

models to trojan attacks. This vulnerability is clearly demon-

strated using a ResNet50 model, which initially achieved an

accuracy rate of 99.22% on clean, untainted data. However,

after the application of the trojan attack, the model exhibited

a dramatically increased fooling rate of 99.87%. The effi-

cacy of our algorithm is further validated by its ability to

produce high fooling rates across various models, reaching

a maximum of 99.99% for a CNN, thereby showcasing its

effectiveness and adaptability across different architectures.

In a comprehensive evaluation against three state-of-the-art

algorithms, our algorithm proved to be the most proficient,

achieving the highest fooling rate of 99.90% on a more

complex dataset that included larger sample sizes and extended

time steps. These exceptionally high fooling rates highlight the

significant risks that trojan attacks pose within power systems,

where even minor misclassification rates could potentially

lead to catastrophic outcomes. Furthermore, our study reveals

that the triggers generated by our attack are exceptionally

subtle, making them difficult to detect. To counteract these

threats, our proposed defense method has demonstrated high

effectiveness, successfully detecting trojan-infected models

across 14 out of 17 class scenarios. However, our algorithm

still struggled to detect trojans in the remaining 3 classes,

likely subtle trigger patterns. Looking ahead, future research

should focus on developing robust defense mechanisms capa-

ble of accurately identifying the trojan model for all classes.

Expanding the algorithm’s adaptability to various real-world

scenarios beyond power systems, particularly in other time-

series data applications, remains a key research direction. The

practical implications of this work are significant for power

system security, where trojan attacks pose a serious threat

to infrastructure stability and operational reliability. Recent

advancements, such as the work [43] demonstrate the growing

importance of machine learning in improving detection rates

while minimizing false positives. Building on such develop-

ments, our future research aims to further enhance detection

robustness and ensure broader applicability in diverse critical

systems.
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