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We consider shrinkage estimation of higher-order Hilbert space-valued Bochner integrals in a non-parametric set-
ting. We propose estimators that shrink the U-statistic estimator of the Bochner integral towards a pre-specified
target element in the Hilbert space. Depending on the degeneracy of the kernel of the U-statistic, we construct con-
sistent shrinkage estimators and develop oracle inequalities comparing the risks of the U-statistic estimator and its
shrinkage version. Surprisingly, we show that the shrinkage estimator designed by assuming complete degeneracy
of the kernel of the U-statistic is a consistent estimator even when the kernel is not completely degenerate. This
work subsumes and improves upon Muandet et al. (J. Mach. Learn. Res. 17 (2016) 48) and Zhou, Chen and Huang
(J. Multivariate Anal. 169 (2019) 166—178), which only handle mean element and covariance operator estimation
in a reproducing kernel Hilbert space. We also specialize our results to normal mean estimation and show that for
d > 3, the proposed estimator strictly improves upon the sample mean in terms of the mean squared error.

Keywords: Bernstein’s inequality; Bochner integral; completely degenerate; James-Stein estimator; shrinkage
estimation; SURE; U-statistics

1. Introduction

Let X be a separable topological space and H be a separable Hilbert space. For a Bochner measurable
function—for example, continuous functions are Bochner measurable—r : X k 5 H, where k € N,
define the Bochner integral (Dinculeanu, 2000) with respect to the k-fold product measure P* := Px .k,
xP as

k
C=/ r(xl,...,xk)dIP’k(xl,...,xk)z/ r(x1,...,Xx) l—ldIP’(x,-).
Xk Xk i=1

Given Xi,..., X, i P, the goal of this paper is to construct and analyze shrinkage estimators of C,
of the form

Ci=(1-&)C+af =(1-a)C~f)+f, (1
n

A N i=1’
C is shrunk to, and C is the U-statistic estimator of C given by

where 0 < & < 1 is a random variable that depends on (X;) S is a fixed target in H towards which

A 1
C= Zr(Xil""’Xik)’

with Ji' = {(i1,....ix) : 1 < iy <ip <--- <ix < n}. Without loss of generality, we assume that r is
symmetric (see Section 2 for the definition).

Traditionally, shrinkage estimators of the form in (1) are studied for k = 1 and r(x) = x, x € R%,
which in fact corresponds to shrinking the empirical mean, X := % i1 Xi, towards a fixed vector
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f* € R4, For P = N(u,02I) where 0% is known, James and Stein (1960), Stein (1956) constructed a
shrinkage estimator, fi of u of the form in (1), given by

-2)0? | o -2)0?

i (1o L4220 ) g, d=2e?

nl|lX = f*ll; n|lX = f*1l;

= f*
and showed that for d > 3, the shrinkage estimator, ;i improves upon X in terms of the mean-squared
error, i.e.,

Elji - plly <BIX - ull3, ¥ pe RY, )

When o2 is unknown, it can be replaced by its estimator 6% = % i X = X ||§ in (i while still main-
taining (2) for d > 3. Similar types of results have been established for location families of spherically
symmetric distributions (see Brandwein and Strawderman, 1990, 2012 and references therein).

For k =2 and r(x;,xp) = %(xl —x)(x1 —x2)7, x1,x2 € R4, (1) reduces to the covariance matrix asso-
ciated with P. Starting with Stein (1975), a lot of work has been carried out on the shrinkage estimation
of covariance matrices under the parametric setting of samples being observed from a multivariate nor-
mal distribution. Under different losses (e.g., Frobenius loss, Stein loss) and under different settings of
d < n, d > n, d growing to infinity with n, the shrinkage estimator has been shown to strictly improve
upon the sample covariance matrix (e.g., see Chen et al., 2010, Fisher and Sun, 2011, Ledoit and Wolf,
2018 and references therein). In the non-parametric setting where no specific parametric assumption is
made on P, consistent shrinkage estimators of the sample covariance matrix have been developed in
the high-dimensional setting (Ledoit and Wolf, 2004, Touloumis, 2015).

While most of the above-mentioned works deal with parametric families of distributions, recently,
Muandet et al. (2016) proposed shrinkage estimators for C in the non-parametric setting without mak-
ing parametric assumptions on P, with k = 1 and r(x) = K(-,x), where K is the reproducing ker-
nel (i.e., a positive definite kernel) of a reproducing kernel Hilbert space (RKHS)—see Section 2
for the definition. This corresponds to the shrinkage estimation of the mean element, which is an
infinite-dimensional object if the RKHS is infinite-dimensional. This is in sharp contrast to the above-
mentioned works where the parameter is finite-dimensional or its dimension grows with the sample
size. Extending this idea, Zhou, Chen and Huang (2019) proposed shrinkage estimators for C when
k=2 and r(xy,x) = %(K(~,x1) - K(-, X)) ®4 (K(-,x1) — K(+,x2)), which corresponds to the covari-
ance operator on an RKHS with reproducing kernel, K. The mean element and covariance opera-
tor has been widely used in nonparametric goodness-of-fit testing (Balasubramanian, Li and Yuan,
2021), two-sample testing (Gretton et al., 2012), independence testing (Gretton et al., 2007), supervised
dimensionality reduction (Fukumizu, Bach and Jordan, 2004), feature selection (Song et al., 2012),
etc., and therefore their shrunk versions are also useful in these applications. Of course, the choice of
K(,x)=x,x¢€ R¥, results in the mean and covariance matrix of P with 4 = R¥.

One of the key ideas in constructing a shrinkage estimator is based on minimizing an unbiased
estimator of the risk, referred to as Stein Unbiased Shrinkage Estimation (SURE). Formally, suppose
A=E|C-C ||3H is the mean squared error (i.e., risk) of the empirical estimator C. Define A, = E||Cy —

C|I${, where C, € C = {(1 — @)C + af* : @ € R}. Note that (A ), corresponds to the family of risks
associated with the estimators in C. C is constructed as Cj, where & = argming A, which means

C=(1-a&)C +af*. It can be shown that @ = A, /||C — f*||${, so that the shrinkage estimator of C
based on SURE is given by

~

[

A R A
- —* | C+— u >
IC = f*1%, IC = F*11%,

where A, is an unbiased estimator of A.
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Another approach to find & is based on the observation that A, < Aifand only if a € (0, ﬁ)
A

with |A, — A| maximized at
A

=2 3)
A+IC—fll
which corresponds to the midpoint of the above interval. @. can be estimated as
N A
R ST @)
AvlC-rI2,
so that
. A A A
ol Rl LS smer A )
AvIC-r12,) " A+lC- 1R,

where A is some estimator (not necessarily unbiased) of A. This means, the SURE approach first es-
timates the risk and then minimizes it to find & while the latter approach first finds the optimal « (in
population) which is then estimated to find &. The difference in these approaches is an additional term
of A in the denominator of @ compared to that of & obtained from SURE.

Muandet et al. (2016) and Zhou, Chen and Huang (2019) considered the latter approach to construct
a shrinkage estimator of C and showed the oracle bound

Ag. <Ag < Ag, +O0(n3?), as n— o, (6)

which holds for all P that satisfy certain moment conditions, and also showed Ctobea /n-consistent
estimator of C. A motivation to consider this approach is as follows: For f* =0 and r(x) = K(-,x), we
have

R 1 ¢ 1 ¢ 1
2 _ X . X —— Y. )= 1T
1€ = — > (KCX) KX = — > K(X;, X)) = —17K1,
l,]=1 1,1:]
where 1= (1,.7.,1)" and [K]; ; = K(X;,X;),i,j = 1,...,n. If K is not strictly positive definite, then
there exists (Xj,. .., X,) such that 1TK1 = 0, which means ||C ||3_{ = 0 resulting in an invalid estimator.

1.1. Contributions

In this work, we first generalize and improve the results of (Muandet et al., 2016) and (Zhou, Chen and
Huang, 2019) to any k and any separable Hilbert space H (that is not necessarily an RKHS) without
making any parametric assumptions on P. Using the variance decomposition of the U-statistics, we
construct an unbiased estimator, Ageneral Of A, which is used in (5) to construct the shrinkage estimator,
C= C‘;geneml’

estimator to be a y/n-consistent estimator of C and improve on the oracle bound in (6) by showing

where Ggeneral 18 Obtained by replacing A by Ageneral in (4). In Theorem 2, we show this

Aq. < Digner < Do +O(n7?), as n— oo, (7)

Next, we present our key contributions in Theorems 3—6, which are detailed below. For k > 2, if r — C
is P-complete degenerate (see Section 2 for the definition), again using the variance decomposition of
degenerate U-statistics, we obtain an alternate estimator of A, i.e., Agegen, using which we show (see
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Theorem 3) the resulting estimator C= CA};de «n (ODtained by using Adegen in (5)) to be n¥/2-consistent
estimator of C along with significantly faster error rates in the oracle bound:
A(l* < A&degen < A(l* + O(n_(3k+1)/2)7 as n— oo, (8)

where @gegen i obtained by replacing A by Adegen in (4). Note that in these results (Theorems 2 and 3),
the estimator is constructed based on the knowledge of whether r — C is P-complete degenerate or not.
However, since it is not easy to verify the P-complete degeneracy of r — C, in Theorem 4, we analyze the
scenario of using C‘(;degen as an estimator of C irrespective of whether r — C is P-complete degenerate or
not—of course, the situation of r — C being P-complete degenerate is handled by Theorem 3. Moreover,
this scenario is practically interesting because Cg,.,., is computationally simpler than é@genﬂa]. We show
in Theorem 4 that for k > 2, é@degen

satisfies the oracle bound:

egen

is also a /n-consistent estimator of C—a surprising result—and

Aq, <A <Ag, + ()]p(n_3/2), as n — oo,

Qgeneral
without assuming the P-complete degeneracy of r — C. This means, C’ddegm has a slightly weaker oracle
bound than the one in (7) but the bound improves significantly to (8) if » — C is P-complete degenerate.
To the best of our knowledge, we are not aware of any results in the literature similar to Theorems 3
and 4. All these results are based on Bernstein-type inequalities for unbounded, Hilbert space-valued
random elements. For the degenerate case, we extended Bernstein’s inequality of Arcones and Giné
(1993, Proposition 2.3(c)) and de la Pefia and Giné (2012, Theorem 4.1.12(a)) to unbounded Hilbert
space-valued random elements (see Theorem A.S of the Supplementary Material (Utpala and Sripe-
rumbudur, 2024)—from now on referred to as the Supplement), which is of independent interest.

Since all the above-mentioned results are obtained in the non-parametric setting, we are not able
to show the exact improvement of the shrinkage estimator over C but only show oracle bounds that
include an additional error term. In order to understand the behavior of the proposed estimator in the
parametric setting, in Section 4, we specialize and analyze our estimator é@gemm in the well-studied
normal mean estimation problem. In other words, we use k = 1, r(x) = x, x € R? and P = N(u,021),
where y is the parameter of interest and o> > 0 may not be known. In this setting with f* = 0, it is easy
to verify that

S 2

A . e ( s
Ca =C4, =—-"—X=|1-—"———
‘general degen S2 - S2 _
S+ IX1I3 S+ 1X113

where §? := ﬁ Z;’zl I1X; — X ||§. In Theorem 5, we show é@genem to strictly improve upon X in terms of
the mean squared error for all u € Reifn>2andd >4+ % A small modification to this estimator,
i.e.,

S2
(1_211—2. w
— 2 v
S d

yields that for all d > 3, the above modified estimator strictly improves upon X for all u € R (see The-
orem 6)—a result similar to that of the James-Stein estimator. The proofs of these results are provided
in Section 5 and additional results are provided in the Supplement.
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2. Definitions and notation

For a 2 (ay,....aq) € RY, b2 (by,....bg) € RY, |lall, £ 3L, a? and (a,b), = &, a;b;. "C; =
!
(n—ni)!i!’

tion. Uj(r) = "Ll”k > I r(X;,,...,X;, ) denotes a U-statistic with kernel r of order k computed with n

"p; = # and S, denotes the symmetric group on {1,...,n} with o € S, being a permuta-

variables, where I} = {(i1,....ix) 1i1 #ip # -+ - # ix }. A function r : X* = H is said to be symmetric if
it does not depend on the order of its inputs, i.e., r(xq,...,xXx) = r(x(,(]),. . Xg(k))> Yo € Si. When r
is symmetric, U}/ (r) reduces to Uj'(r) = % ZJ]? r(Xiys. -, Xip ), where Ji! = {(i1,. .., ix) 1 1 <iy <ip <
.-+ < iy < n}. For a symmetric function r : X¥ — 9 and a probability measure P on X, the canonical
function of order i with respect to P, denoted as r; : X' — H, is defined as

k
r[(xl,...,xi)zf)(k_i r(x1,...,Xk) l—[ dP(x;),

j=i+l

with the convention ry := /Xk r(Xt,. .., Xk) Hle dP(xj) and ry = r(xy,...,x;). A symmetric function
Xk > His P-complete degenerate if (i) Vi € {0,1,...,k — 1} and Vxi,...,x; € X, ri(x1,...,x;) =0;
and (ii) ri is not a constant function.

A real-valued symmetric function K : X X X — R is called a positive definite (pd) kernel if, for all
neN, {} €R and {x;}!_, € X, we have szzl a;ajK(x;,x;) 2 0. A function K : X x X — R,
(x,y) = K(x,y) is a reproducing kernel of the Hilbert space (k,-,") s ) of functions if and only if
(i)Vx € X, K(,x) € Hk and (ii) Vx € X,V f € Hx,(K(-,x), f) . = f(x)hold. If such a K exists, then
Fx is called a reproducing kernel Hilbert space.

3. Main results

In this section, we present our main results related to the consistency of the shrinkage estimator and
oracle bounds for the mean-squared error. Theorem 2 deals with r being a symmetric function while
Theorem 3 considers the case of when r — C is P-complete degenerate. We show that the shrinkage
estimator has a faster rate of convergence when r — C is P-complete degenerate (see Theorem 3) in
contrast to r being simply symmetric (see Theorem 2). We would like to mention that the shrinkage
estimators considered in Theorems 2 and 3 are different as their construction is based on whether r — C
is P-complete degenerate or not. In Theorem 4, we show that the shrinkage estimator of Theorem 3, i.e.,
the P-complete degenerate case, is still a 4/n-consistent estimator with a slightly slow error rate in the
oracle bound, even if r — C is not P-complete degenerate but only symmetric. This result is interesting
as the estimator in the degenerate case is simpler to compute than the estimator in the symmetric case.

Before we present our results, we state the following result, which provides the motivation for the
estimator proposed in Theorem 2. This result is a simple extension of (Lee, 2019, Theorem 3) and the
claim in the proof of Theorem 2 of Lee (2019) to Hilbert space-valued random elements.

Theorem 1. Let C = ﬁ ZJ]? r(Xi,,. .., Xi, ) be a U-statistics estimator of

k
C:/ r(xg,..xx )| | dP(x;),
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where r : X* — H is a symmetric function. Let

Kog—i (X1s . Xog—i) = (r(Xps e X))o r (X1 o X Xt 15 - -5 Xok—i))

foreachie{0,1,...,k}. Then,

EXy,.. Xox s | K2kei (X1se o Xokot) | =Exy,ox, (X Xl - ©)
Further,
| &
A=BICI - 1CIy = 5 ), Ci " Cui (10)
i=1

where 0'1.2 =E|r;(Xy,.. ,X,)||3‘[ - ||E[r(X;,.. .,Xk)]||3‘[, with r; being the canonical function of order i
with respect P.

Combining (9) with the observation that

IE[r(X1,. ... X5, = B[ kax (X1, ... Xok)]
yields

07 =Ex, .. X [ Kok—i(X1s- - s Xop—i)| = E[kox (X1, .., Xox)] (11)

which therefore can be estimated as
o7 =US,_ [kok—i(X1, .. .. Xor—i)] = U ko (X1, - X1,

resulting in an estimator for A as

k —
A I_chin ka—iaJ
general — - . Yi-
i=1 C

Note that kpr_;(Xy,...,Xox—;) and kyr(Xi,...,Xox) need not be symmetric for any i € {1,...,k} and
k > 1, and therefore, ng—i and ng uses the permutation definition as mentioned in Section 2. Based
on the above, a shrinkage estimator of C can be defined as

A

Qgeneral — (1 - &genera])c + d’generalf*, (12)

where

~

Ageneral

d’general == A . .
Ageneral + ”C - f ”3{

The following result (proved in Section 5.1) analyzes the consistency and mean-squared error of
Cdgcncra] .

Theorem 2. Let n > 2k, and r : X* — H be a symmetric function such that E||r(Xy,. .., Xp)|l¢ < oo,
where X is a separable topological space and H is a separable Hilbert space. Define

k ke n—k
R C; "k Cy_;
Ageneral = Z lTkl (ng—i [sz—i(Xl’- . -’X2k—i)] - ng [KZk(Xl’ s ,XZk)]) :

i=1
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Suppose for allm > 2 and all i € {0,1,...,k},

m! _
Ellr(X1,... Xi) = Clly < = —prm 2, (13)

and

where Cj

Elkok—i (X1, - - Xog—i) = Elkok—i (X1, .- Xog-) 1™ ,319'" g (14)
for some finite positive constants 3,0, {ﬁi}{.‘zo, and {01-}[{‘20. Then, as n — oo, the following hold:

. ~ _3
() |ageneral —a.|=0p(n"2);

. A A 3
(1) [ Cagenerar = Cllt = ICa, = Cllge| = Op(n™2);
(iii) C’(;genml is a \/n-consistent estimator of C;

(iv) ming B||Co = ClI3, < EllCaypery — Cll3, < ming B[|Co = ClI3, + O(n™?),

3 S
is defined in (12), a, is defined in (3), and Co = (1 — a)C + a f*.

general

Remark 1.

(i) It follows from Theorem 2(iv) that A < Ay +O0(n~?%) as n — oo, which when combined with

Ag+ <A, yields Ag

Fgeneral

(i) Muandet et al. (2016) considered k = 1, H to be a reproducing kernel Hilbert space (RKHS),
Fk , with a continuous reproducing kernel, K, f* =0 and r(X) = K(-, X) € 5k, resulting in the
problem of shrinkage estimation of the mean element. (Muandet et al., 2016, Theorem 7) provides
an oracle bound

a’genem] -

< A+0(n?) as n — oo, for all P that satisfy the moment conditions.

minE||Ca = Cllf; < EllCaypera = Cllge < minE[ICo = Cllg+ O™, n— o0, (15)

which Theorem 2(iv) improves by a providing an improved error rate of =2

(iii)) With k=2, f*=0and r(X,Y) = %(K(-,X) - K(.Y)) ®p (K(-,X) — K(-,Y)), i.e., the shrinkage
estimation of the covariance operator on .7k with H being the space of Hilbert-Schmidt oper-
ators on #%, (Zhou, Chen and Huang, 2019, Theorem 2) showed (15), which is again improved
by Theorem 2. Here ® j;. denotes the tensor product on .7k .

(iv) Clearly the moment conditions of Theorem 2 are satisfied if r is bounded. If » is unbounded,
then the moment conditions are quite stringent as they require all the higher moment conditions
to exist. However, by only requiring (13) to hold for m = 2, i.e., r has a finite central second
moment, all the results of Theorem 2 can be obtained but at the cost of achieving polynomial
concentration instead of sub-Gaussian concentration in Theorem 2(i,ii). This claim can be proved
by using Theorem A.9 (Chebyshev inequality for U-statistics) in the proof of Theorem 2 instead
of Theorem A.4 (Bernstein inequality for U-statistics) of the Supplement.

(v) Suppose there exists a constant £ > 0 such that P(||r(X,...,Xx)—C|l =) < 2¢~/¢ for all 1 >
0,i.e., r(Xi,...,Xy) is sub-Gaussian, which implies r(Xj,. . ., X ) satisfies the moment condition,

Ellr(X1,.... Xk) = Cllgy <m{™T(m/2), ¥ m > 1. (16)
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In the following, we show that (16) implies the moment conditions of Theorem 2. To this end,
clearly (13) holds since E||r(Xy,..., Xk) = Cll7}, < m{™I(m/2) < m{™T(m) < m!{™ forallm > 1.
Since

Kok—i(X1s- o, Xog—i) = (r(Xns .o, Xi ) r(Xs o Xis X1+ o Xok—i)) 9,
fori € {0,...,k}, we have
Elkok—i(X1,. ... Xok—i) = Elko—i (X1, .., Xop—)1|™
=E[(r(Xts - Xe ), r(X1s s Xiy Xpet1s -+ s Xok—i)) 1
—E[(r(X1s- -, Xi ), r (Xt s Xis Xper 15 -+ > Xo—i D ]|™
< 2" VB (X, X (X Xy Xicr 1o+ > X i)™
+ 2" B (X X (X1 X Xt o Xok—)) ]| ™
<2ME (X1 oy X P (X ey Xis Xt 1o« s Xoei D)™
<2"E [IIr(X1 XN KXo X Xow-d ) < 27ENr(Xas. . XNl
<2"B|r(Xy,....Xx) - C+ ClI37 < 2" B (Ir(Xy..... X0) - CI37 + 2537

< 2(max(8§2,8||c||3{))mm!’

implying that (14) holds. This means, when & = 1 and r(x) = x, x € R¢, these moment conditions
hold if X is sub-Gaussian.

The following examples specialize the proposed shrinkage estimator for the mean element and co-
variance operator on a Hilbert space.

Example 1 (Mean element, moment generating function and Weierstrass transform). Suppose
k =1. Then

1
nC,

DX (X))
i<j

A 11<
Agenerat =~ |~ izzl<r<xi>,r<x[>>ﬂ -

and

2
1

= Ky D+ 1
L.J i=

1€~ £ 13, = H%Z(r(xn -
i=1 H

Define K(x,y) = (r(x),r(y))4, x,y € H. It is easy to verify that K is a positive definite kernel and
therefore a reproducing kernel (Aronszajn, 1950) of some reproducing kernel Hilbert space (RKHS),
Hk so that K(x,y) = (K(:,x),K(-,y)) »; - Note that these quantities match those proposed in (Muandet
et al., 2016), where r(x) = K(-,x) and f* = 0, resulting in a mean element of P in 7% . When X = R<
and r(x) = x for x € R4, E[r(X)] corresponds to the mean vector in R¢ and K(x,y) = (x,y) is the
linear kernel. We analyze this scenario in detail in Section 4 when P is a Gaussian distribution.

The choice of r(x) = e{*)2 with H being an RKHS of the exponential kernel, i.e., K(x,y) = ¢!y =
(r(x),r(y)), x,y € R4, results in a shrinkage estimator for the moment generating function. Equiva-
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lently, this choice can be interpreted as
d
m
r(x)=|1, (xt)d1 ()c,lx,z/\/_)ll iy 1,...,(l_[xij/‘Vm!)

with H = ¢£2(N). Similarly, the choice of r(x) = el =13 with being an RKHS of a Gaussian kernel,
ie., K(x,y)= ellx—y I3 , X,y € R4, results in a shrinkage estimator for the Weierstrass transform of P.

Example 2 (Covariance operator). Let H be the space of Hilbert-Schmidt operators defined on a
reproducing kernel Hilbert space .7k with K : X X X — R as the reproducing kernel, defined on a
topological space X. Choosing k = 2 and

r(X,Y) = %(K(~,X) - K(Y) @ (K(,X) = K(-Y))
yields the covariance operator on .#% . Note that
Hr(X,Y),r(U,V)) g = (K- X) = K(,Y) ® 5, (K(,X) = K(Y)),
(K(U) = K(-V)) ® . (K(U) =K (V) 4
- <K(-,X) —K(-Y),K(-U) - K(-,V)>;OK
=[K(X,U)- K(X,V)-K(Y,U)+K(Y,V)]*.

Therefore,

N 2n—4 2n
Ageneral nC, Un [x3(X1, X2, X3)] =

1 [ka(X1, X2, X3, X4)] + %U" [k2(X1,X2)]

2n
= C 5 (XL X0), r (X1, X3)) ¢] + U" [(r(X1,X2), (X1, X2)) 4]
2n-3
- WUZ [(r(X1,X2),7(X3, X4)) 4]
2n—4 1
=iy py 2 XX X0) g+ i ) (MK X r (X X))
i#j#l i#j
2n-3
~ng, P, Z (r(Xi, X)), r(Xp. Xm)) 4
i#j#l#+m
e S KX X)) — KX X))~ KX X)) + K (X, X))
4 K "C2 . nP3 > > s 4x] ]

i#j#l

1 2
+ e, B, ; [K(X;, X;) - 2K(X;, X;) + K(X;, X))
2n —

—T D KX X)) = K (X3, Xo) = K(XG, X0) + K (X, X)]
2-"Py

i#j#l+m
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Also for any f* e H,

2
. 1 .
1€ = 113 = g D (rXe X = f7)
2 i) "
1 2 % *(12
= 75, 7P, Z Z (r(X, X)), r(Xp, X)) 4, — 7P, Z (r(X X)), f*) 0+ 1 115
i#j l+m i#j
1 2
= oy D 2 KOG X0 = KX Xin) = KOG, X0) + K (X Xon)|

i#j l#m

_ % ; (KC.X0) = KC X)) f* (KCX) = KGXD) ) s+ 11
1F]

We would like to highlight that the expressions provided in (Zhou, Chen and Huang, 2019) for the
above quantities are only asymptotically equivalent to ours when f* = 0 because of the approximations
the authors employed to simplify their asymptotic analysis.

For K(x,y) = (x,y)2, x,y € R? and f* = I (the d x d identity matrix), it can be shown that (see
Proposition B.2 of the Supplement)

B 1 - o4 n(n+1) &2 n
Ageneral = (n—2)(n—3);||xl”2 (n—1)%(n-3) ] (n=1)(n-2)(n-3)

~

T [£], and

A2
IC-1lp=

~ 2n ~
Te[$2] - Te[S] + d
1P (2] — 2] +4d,

(X =X;)(X;-X;)"
2

where X; =X; - X,i=1,....n,£=1 53" XXT andC= ,,LCZ Yi<j , with || - || being

the Frobenius norm.

Theorem 2 is based on Bernstein’s inequality for Hilbert space-valued U-statistics, which guarantees
that € and C’(;gmml are y/n-consistent estimators of C. However, if r — C is bounded, real-valued, sym-
metric, P-complete degenerate of k > 2 variables, Arcones and Giné (1993, Proposition 2.3(c)) and de
la Pefia and Giné (2012, Theorem 4.1.12(a)) showed that there exist finite positive constants ¢y, ¢, c3
depending only on k such that for all 6 € (0, 1),

log4)? log4) 2
P |UZ(r)—C|20'( g5) +||r||°o( gﬁ) <4, (17)
cn cin

where ||rllo =supy, . [r(x1,....x¢)| and o? = E(r(Xy,...,Xx) — C)? denotes the variance. We
would like to mention that while Arcones and Giné (1993, Proposition 2.3(c)) and de la Pefia and
Giné (2012, Theorem 4.1.12(a)) presented (17) as an exponential concentration inequality, we wrote
it in the confidence interval form in (17) to obtain the rate of convergence (see Appendix C of the
Supplement for details). For k =2, (17) implies a rate of n~! to estimate C using Uj (r), which is sig-
nificantly faster than the usual n~'/2-rate that is obtained by Bernstein’s inequality that does not take
into account the complete degeneracy of r — C. Joly and Lugosi (2016) showed a similar result for
the median-of-means estimator with the motivation of robust mean estimation in the presence of heavy
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tails. In Theorem A.5 of the supplement, we generalize this result to unbounded, H-valued, P-complete
degenerate U-statistics using the ideas from (de la Pefia and Giné, 2012). Using this result, we devise
an estimator of « denoted as @gegen, Using which we show éddegen =(1- &degen)é + Gdegenf™ to be
nk/2_consistent estimator of C if r — C is P-complete degenerate. Further, we provide improved error
bound rates in the oracle inequality associated with ég,degen.

Our design of @gegen is based on the variance decomposition of U-statistics (see Theorem 1) and the
definition of degeneracy. First if » — C is P-complete degenerate we have that Vi € {0,1,...,k — 1} and
Vxi,...,x; € X, ri(xq,...,x;)— C =0, which implies that a'l.2 = (. It therefore follows from (10) and (11)
that

A= % [E[Kk(Xl,...,Xk)] —E[KZk(Xl,...,sz)]] .

Using this observation, we consider the following estimator for A,

Adegen = [UZ [k (X1, . X0)| = Uy [kok (X1, . .. Xop) | ]

1
i’le
so that

A
degen (18)

Fdegen = 725 -
Adegen + “C”;(
Note that Ageneml = Adegen when k = 1. The following result (proved in Section 5.2) presents the statis-
tical behavior of Cg degen”

Theorem 3. Letn > 2k, k > 2, r : X* — H be a symmetric function such that E||r(Xj,. . .,Xk)||3{ < o0
and r — C is P-complete degenerate, where X is a separable topological space and H is a separable
Hilbert space. Suppose there exist positive constants M,o 1,03 and 0,01,0;, such that Vp > 2,

12 ! _

B lIr(X1.....Xe) = Cll3, = Bllr(Xu..... X0) = €Il | < Zo?mP2, (19)
4 p! 2,p-2

Bl (X1, X0~ BliaXa, . X0l < Sotol 2, and (20)
P ! _

E‘KZk(Xl,--~,X2k)_E[KZk(Xl’u',sz)] S%%z@g g (21)

Then, as n — oo, the following hold:
() |C~Ydegen - a*' = O]P’(n_(Zk”)/z);

(11) |||éddegen - C||7{ - ||éa,* - C”'H| = OP(n—(2k+])/2)’.

(iii) Cg dogen 15 @ nk!2_consistent estimator of C;
(iv) ming E[|C — ClI3, < Bl Cayepen — ClI3, < ming E||Co — |2, + O(n~Ck+D/2),

where a is defined in (3), @gegen s defined in (18), and Co=(1-a)+ af®.

Now, inspired by our analysis of the completely degenerate case, we show that &gegen is a good
estimator of a. even if r — C is not P-complete degenerate. Specifically, we show that without any

assumption of degeneracy, |¥gegen — ’ Op(n™") (compared to Op(n=>/?) with @general)» C(,degen is
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a y/n-consistent estimator of C and more importantly that E”é@degen C ”(H < min, E||C, - C ||%_{ +
O(n3/2) (in contrast to O(n~2)) as n — oo. This is surprising because the number of terms in Adegen
remains constant with k whereas the number of terms in Ageneral grows linearly with k. This means

Adegen is computationally efficient than Ageneral and therefore is CA'(;d over C These are captured

egen d/general :
in the following result, which is proved in Section 5.3.

Theorem 4. Letn > 2k, k > 2, r : X* — H be a symmetric function such that E||r(Xy,. . .,Xk)||%{ < 00,
where X is a separable topological space and H is a separable Hilbert space. Suppose there exist
positive constants o,01,0% and 0,601,0, such that Vp > 2,

E”r(Xls . Xk) C”(/’( =5 0-29P*2’

E|Kk(X1,...,Xk)—E[Kk(X1,. Xk)]) <3029P 2 und

!
)
E)sz(Xl,-~-,sz)—E[sz(Xh---,sz)]) <70'29p .

Then, as n — oo, the following hold:
() @degen — @] = Op(n™");
i) [ Cagen = Clle = 1Cor. = Clla| = Opr7;
(iii) C'dd is a \/n-consistent estimator of C;

egen
(iv) ming E[|Co - CI2, < E||Cagepen — Cll3, < ming E[|Co — C13,+ O(n™3/2).

egen

The reason for assuming k£ > 1 in Theorem 4 is that, when k = 1, we have Ageneml = Adegen, and
the claims follow from Theorem 2. Furthermore, the observation in Remark 1(iv) is also valid for
Theorems 3 and 4, and can be shown by using Theorem A.9 instead of Theorems A.5 and A.4 (of the
Supplement), respectively in the proofs of Theorems 3 and 4.

Remark 2.

(i) Based on Remark 1(v), we would like to highlight that the moment conditions in Theorems 3 and
4 are satisfied if r(Xy,. .., X} ) satisfies the moment condition,

Ellr(X1,.... X)) = Cllf, < p¢PT(p/2), Vp 2 1,

which in turn is implied if (X1, ..., X)) is sub-Gaussian.

(ii) Interestingly, as a converse, we show below that (19) and
Ellr(Xi,....Xx) - Cll7, < o (22)

combinedly imply that there exist constants o3 and 63 such that E||r(X,...,Xx) — C||?, <
p—0'329§_2 for all p > 2, i.e., r(Xi,...,Xy) is sub-Gaussian. Similarly, (20) and (21) (which also
appear in Theorem 4) along with (22) combinedly imply that there exist constants o4 and 64 such
that E||r(Xy,...,X) — Cllp o262 for all p > 2. This means, (19)—(21) along with (22)

= 2 49
imply that r(X,...,Xy) is sub Gaussian, which in combination with Remark 2(i) implies the the
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equivalence of these conditions to the sub-Gaussianity of r(Xj,...,Xy). To prove the first claim,
for p > 2, we have

p 5 1P/2
BlI(X1s. o X0) = Clly =B [I1F(X. . X = CI,

5 5 [P/
< ||r(Xla . 7Xk)_C||([—{_E”r(Xl9,Xk)_C”(}—{

p/2
+25-1 (E||r(X1,. LX) - CII%)

(22) _p_ p 1 r
<272 1\/E)||r(xl,. - Xi) = Cll, —Ellr(X1,. ... Xi) - CII;{) + 5(2(;2) 2
< GM 2 5 + (20’ )z p
! P2
< %max(2\/§9,4o-2)max (VZM,\/ZU-Z)
A similar calculation involving (20)—(22) is provided in Appendix D of the Supplement.

Example 3 (Covariance operator). For the same setting as in Example 2, we obtain

N 1 1
Adegen = @US [k2(X1, X2)] - "_CzUZ [k4(X1, X2, X3, X4)]
1
= e 2‘ [K (X, X)) - 2K (X, X)) + K(X;, X))]
i#]
1 2
- 1c, P, Z [K(Xi, X)) - K(Xi, Xm) — K(X;, X)) + K(Xj, X))~

i#j£l#m
which reduces to

. n(n 3n+4) 2n? (n 2) n*(n* —5n+4) .
Asegen = 5 e mp ann2 e, gy T+ e TS

when K(x,y) = (x,y)2, x,y € R%. See Proposition B.2 of the Supplement for details.

The proposed shrinkage estimators C and Cs

qeneral @aegen CAN bE shown to be solutions to regularized
minimization problems. Since

Co= f
o = arg 1n(Han

> I Xa) =l T llg = 715

(itsemig )€

where ;25,0 < @ < 1 acts as the regularization parameter, it follows that the choice of lilf;i"m'l and
general
ddegen
1_d’deg
ularization effect of shrinkage estimators. A similar result was shown in (Muandet et al., 2016) when

f* :0’ (}—( = %K’ k=1and r(x) :K(‘,x)-

as regularization parameters yield Cageneral and Cg, respectively. This demonstrates the reg-

degen?
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4. Normal mean estimation

In Section 3, we only established oracle bounds on the mean squared error that include an error term,
since no parametric assumptions were made on P. In this section, we study the estimator Cg, when

‘general
X =R4 ,H = Rd, r(x) = x and P is a normal distribution, i.e., the shrinkage estimation of normal
mean. Note that the degenerate case is not applicable in this setting as k = 1. This is the classical
setting studied heavily in the literature (Brandwein and Strawderman, 2012). Since P is Gaussian, we
show that concrete results can be obtained on the mean-squared error of C‘(;genem, in contrast to oracle
inequalities of the previous section.

Define C = fX r(x)dP(x) = /xd]P’(x) = pand C = % L Xi= X =: f1. In this setting with f* =0,
it is easy to verify that

. 1
Ageneral = Z _Z“ l”2 )Z<X1,X1>2
1£3)
11 v )
=~ ;;uxinz e )Z<Xl,x,>z+ )Z||X||2

S| =

_ 1 i
— > lIXill5 -
n—li=1
1
1

SN I oY SIS 751 B B oY P T
=2 illy = 27— 1141 _ i~ Al =
n P n-1 ( l)i:] n
and
— 2
) . ( <o
Fgeneral = A= =X = |1 = ——— ] X.
* 4 x)2 41X

The following result (proved in Section 5.4) shows that the shrinkage estimator, f has strictly smaller
mean squared error compared to g when d > 4 + n—zl

Theorem 5. Let Xi,...,X, iid. Na(p,0%1). Forn>2and d > 4 + %’

Elfi— ull3 <Ella- pli3

for all u e R% and o* > 0.

When n =2, ji improves upon [ for d > 6. For all n > 3, the improvement phenomenon occurs
for d > 5. By slightly modifying the estimator fi, the following result (proved in Section 5.5) shows
improvement over /i when d > 3.

Theorem 6. Let X,...,X, Nd(,u, a2I). Forn>2, c €(0,2) andd > 57 + ohiz=o 1)(2 o

Ellfte — pll3 <Ell - ull3 (23)
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s2
forall p € R% and o> > 0 where ji. = (1 — Clgeneral I With &general = —s——. In particular, if ¢ = %Z:%

S2 ix2
o HIX LS
then (23) holds for all d > 3.

It is interesting to note that the estimator fi, with ¢ = %Z:% behaves similar to that of the James-

Stein estimator in showing improvement over 4 for d > 3 but with important differences. [t has an

additional term of ‘%2 in the denominator and ¢ depends only on n instead of d—James-Stein estimator
has ¢ = d — 2. Because of this additional term in the denominator, establishing Theorem 6 is far more
tedious than proving such a result for the James-Stein estimator. In fact, because of this additional term
in the denominator, we are not able to establish concrete results in the non-spherical Gaussian scenario
and it remains an open question.

5. Proofs

The following is a master theorem, which we will repeatedly use to prove the results of Section 3.

Theorem 7. Let C and A be estimators of C and A, respectively, where A = E|C-C ||,2H. Fort >0,

suppose there exist positive constants a,b,c1,c»,c3,dy,dy that do not depend on T and n such that the
T

Jollowing statements hold with probability at least 1 — cze™ " :

A 1+7)\%? 147\ @D/
IC=Clus e [SE] v ()T e

b)2 (b+1))2

) | i

|A—A|sd1(i) +d2(i) .
n n

A

Define a, = —
fine @ A+IC-F11%,

2 and Cz = (1 —&)C + @ f* as an estimator of C where & = . Then as
H

A
A+[|C=f~|
n — oo, the following hold:

(i) |(i' _ a*| — O]P’ (nfmin{3a,b}/2);

i) [1Ca = Clla = ICar, = Clle| = Op (n—min{sa,b}/z),.
(iii) éd is g pmin{a.b}/2_

(iv) min, E||C, - Cl|3, < E[|Ca — Cl13, < ming E[|C, — Cl|3, + O(n~ mint4a-(a+b).2b}/2),

consistent estimator of C;

Proof. Consider

i A A AlIC - £13, - Al - 112,
- = — = — = = —
A+NIC=713, A+NC—f12,  (A+IC-FH2)A+IC - £*112,)

A(IE =7 = lc = £13,) +IC - £ 15, (a-4)
A+1C=FB)A+1C= 11
o (11 = F I3~ IC = £712,) + (1 - a) (8- A)
B A+ )€ fr

2
2,
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o (IC= FIB = IC = fI2,) + (1 - ) (A-4)

Ak le— - (IC= £ 13- 1C- 713, + (A-a)

from which we have

aflIC = 713~ 1C = 113 + (1= @) A= 4]
16— o < (25)

A+1C= 03 = [IC = £13~1C = £1| - 1A - 4]
if
A+IC= B> Jle= £ 3= 1€ - 7712, | + A - 4] 26)
(1) Consider
2

) O (1+7)4? 1+7) @2 7 147\

IC - CIi2, < cl( ”) +Cz( ”) sd( ”) , @7)
n n n

for some constant d that doesn’t depend on 7,7 and we used (24) in (*) and assume HF < 1 in ().

n
Using Lemma A.1 (see the Supplement) for (27) yields A < e;n~¢, which implies that,
A < A e

A=, T IC= I,
+HIC =Ny I1C =l

(28)
for some positive constants ey, e, that does not depend on 7 and n. Next, |||C — f* ||3_{ —IC-f* ||34| can

be bounded as

IC = £¥113 = 1€ = F15,] <IIC = Cligy +211C = f¥1l 4 IC = Cliga

1 al2 1 (a+1)/2 1 al2
N R

n

@ (1+7\° .
sd( . ) F20C= Fll

for some positive constant f that does not depend on 7 and n, and we used (24) and (27) in (*) along
with the assumption that n > 7 + 1. Also, note that there exists a constant g such that

b2 (b+1)/2 b/2

o 1+ 1+ 1+

|A—A|sd1( T) +d2( T) Sg( T) : (30)
n n n

2/a 2/b
If n>max<1, Lz , 47g2 (1 + 1), the denominator in (25) can be bounded as
Ic—£12, Ic—£12,

A+1C= £ 3= [lIC = 13~ 1C = 13| ~ |A - |

a b
ZIIC—f"‘II%—f(HT) —g(l”)

n n

2 €= f 3= g 1C = F N30 =Z 1€ = f 152 5 1C = 7115 (3D
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Therefore, using (28)—(31) in (25), we obtain
1+ min{3a,b}/2
|€y—a*|sh(—T) , (32)
n
where £ is a constant that does not depend on 7 and 7, thereby yielding the result.
(ii) We now bound |||Cq = Cll# = |Ca, — Cll | as
ICa = Cllac = 1Ca. = Clinl
< 1Ca. = Callpr < 1@ = aull|C = Cligg + 1@ = | IC = f* Il ¢
<@ —a.l [IC = Clla +11C = f*ll 5]
32) 1+71 min{3a,b}/2 1+71 al2 1471 (a+1)/2 .
Sh( ) cl( ) +CQ(—) LIC= il
n n n
1+ min{3a,b}/2
SP( - T) , (33)

where p is constant that does not depend on 7 and » and the result follows.
(iii) ||Cq. — Cll# can be bounded as

€, = Clige = II(1 = @:)(€ = C) + e f* = aClly

<(1=a)l|C~Cllgg+ @ 1€~ £l

1+7\%? 1+7)\@D2 e " 1+7\?
o) va () e Sic- sz ) o

n

where ¢ is constant that does not depend on 7 and n. The result follows from (33) and (34) by noting
that

1€a = Cllge < [1Ca. = Cllgg + Op(n™ ™ E4LV2) < Op(n12) 4 Op (n™ B0 12)

as n — o090,

(iv) We now bound ||Cs — C||${ —1Ca. - C||3_{ as

A 2 A 2
ICa = Cllg = l1Ca. = Cllgg

A A 2 A A ~
= (ICs = Cligr = ICa, = Cllg1) " + 2lICa. = Clig (1Cs = Cllg = 1Cor, = Clla) »

( l+1 min{3a,b}/2
(5]
n

where s is a constant that does not depend on 7 and n. The result therefore follows by using Lemma A.1
of the Supplement. Finally, note that the assumptions on n and the condition in (26) holdas n — co. [

2
+2q(

IA

’

1+71 af?
7

(1 +T)min{3a,b}/2) ( 1 +T)min{4a,a+b,2h}/2
)4 <s

n n
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5.1. Proof of Theorem 2
Note that

1€~ Cllye =]

Using Theorem A.4 of the Supplement on r(Xj,. .., X;) —E(r(Xy,...,Xk)), we get that with probability
at least 1 — exp(-7),

1 1
5 ! 1+7)\? ]
T) +40k( +T):c1( ”) +c2( ”), (35)
n n n

where cy,c¢p > 0 are constants that do not depend on T and n. Now consider

~ 1
nc—CMmswVE(+

| A general — A |

k kC~n_kC
k_
= l,lTkl (Ui [kar—i(X1, .., Xop—)] = Ul [xor (X1, ., X))
i=1
k ke n—k
C;"*Cr_;
—}E—ng;iiﬁﬂmkxxbuqx%4n—ﬁﬂmaxbuqx%nﬂ

i=1
()
<

)

where we used Vandermonde’s identity in (x) and

k ke, n-k
C; Cr
6= lTklng I[sz z(Xla--~,X2k—i)_E[K2k—i(X1,~-~,X2k—i)]]‘
i=1
n—k
Ci
M rou 1' ng[sz(Xl,m,sz) _E[KZk(X1a~~~,X2k)]] '

Now applying Theorem A.4 of the Supplement to
Kok—i(X1, -, Xok—i) = E[kok—i(X1, . . ., Xog—i)]

for each i € {0,1,...,k}, we have that with probability at least 1 — (k + 1)exp (-7),

k 1
C 2
sZ ki T) +49,~(2k—i)(1”)
n

4/5’,-\/2k—i(1+

n—k 1
1+7 1+
= —1‘[4/32,(«/%( ) +492k(2k)( T)
Ck n
i k k. n—k —k
1+7)\2 1+71 Ci " *Cr_; n=XCy
< V2k( . ) +2k( . ) lZ‘ Tommid EToutl

P
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<;>C3[m(1+r)%+2k(1+r)

n n

n—kC
1— k
nCy

n—k
TS

[nk —(n—2k)k]

n—ka .
nCy

n n

1
sk 2
s [\/21((1”) +2k(l+T)

1
+ 2
<S>203[ f—2k(1+‘r) +2k(1+7)

n n nk
1
® 1 2 1 2nk1k2
3203[\/2k( ”) +2k( ”) [” k]
n n nk
3/2 2
1+ I+
5c4( T) +cs( T) : (36)
n n
h d Vandermonde’s identity that % S0 TCk=t = 1 i a5l s
where we used Vandermonde's 1dentity t atz. T n (*), "C < 1in (%), an >

(" nZk) in (). In (£), we used 0 < b < a = a* — b* < ka*'(a - b). Now applying Theorem 7 with
a=1 (see (35)) and b = 3 (see (36)), the result follows.

5.2. Proof of Theorem 3

Using Theorem A.5 of the Supplement on r(Xj,...,X;) — E(r(Xi,. .., X)) yields that with probability
at least 1 — aexp(-7),

k( T )(k+1)/2’ 37)

A k/2
IC = Cllyc < gk (-5} + mkk (—
na na
where d@,a’ and a’’ are positive constants, and ¢ = (6 + o> + 0°M ") with o2 = E||r(X,. . "Xk)”“zH -

2
IC1|7,- Therefore,

|Agegen — Al = |("Cr) ™! [UZ[Kk(X1,~ X0 = U [k (X Xon) | ]

- ("Ck)‘l [E[Kk(xl,. . .,Xk)] - E[KZk(Xl,. . .,sz)] ] ‘

< ("Ck)_lUZ[Kk(Xl,...,Xk)—E[Kk(Xl,...,Xk)]]|

+ ("Ck)_lng[IQk(Xl,- o> Xop) — E [k (X, - -,sz)]]'

=6
Now, using Theorem A.4 of the Supplement for

ki (X1, X)) = Blie(Xy,. ., Xi)] and kop (X, . .., Xox) — E [kor (X1, . . ., Xor)],
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we obtain that with probability at least 1 —2e77,

s < (an)_l 4(0’1 + ‘/50'2)‘/%(1%) ’ +4(91 +292)k ( ! ;T)

2k+2

1 s 1 5
Sc1( +T) +c2( +T) , (38)
n n

where ¢ and ¢ are positive constants that do not depend on 7 and n. Now applying Theorem 7 with
a =k (see (37)) and b =2k + 1 (see (38)) and noting that min{3a, b} = min{3k,2k + 1} = 2k + 1,
min{2b,(a + b),4a} = min{4dk + 2,3k + 1,4k} = 3k + 1, yields the result.

5.3. Proof of Theorem 4

Applying Theorem A.4 of the Supplement on r(Xj,. .., Xx) — E(r(Xy,..., X)), yields that with proba-
bility at least 1 — exp(—7),

1 1
A 1+7)\2 1+ 1+7)\?2
||C—C||Ws4m/E( nT) +49k( nT)Sc‘l( nT) ,

where the second inequality holds for n > 7 + 1. Hence, it follows from Lemma A.1 of the Supplement
that

A €]
A=E|C-Cll3, < - (39)
for some positive constant e;. Therefore,

|A - Adegen|

A—(”Ck)_l [U;cl [Kk(Xl,...,Xk)] —ng [sz(Xl,...,sz)]] |

A-("Co o +("Co)lo?

- (an)_l [UZ [Kk(Xl,. . .,Xk)] - ng [KZk(X1,. . .,sz)] ] ‘

<|A-("Co o]+ ("Cr) ! Ug[Kk(xl,. X0 —E[Kk(xl,...,xk)]] '

+("Cx)”!

Uy, [sz(Xl,- - o> Xok) — E[kor (X1, - - -,sz)]] ‘

=4
Now, using Theorem A.4 of the Supplement on

ki(X1,. ... X)) =Bk (X1, ... Xk)], and ko (X1, .., Xok) — E [kor (X1, - - ., Xo1)],
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we obtain that with probability at least 1 —2¢77,

1
1+7)\2 1+
.s‘A—("Ck)*la,flJr("ck)*l 401\@(—7) +46’1k( T)
n n

1
1+7)\2 1+
40'2\/2k(—T) +892k( T)
n n

+("Cp)™!

1/2
1+
< |A - ("ck)-la,§| + ' ("Cp)! ( T)

k 12
1
< |A— ("ck)-la,3| +¢! (%) ( ”)

n

12
1 1
“[G)E)
n n

= K\ (1+7\?
max{A,(”ck)-la,f}H'(—)( ) . k>1
n n
3/2
1+
c’ il , k=1
< n
- 1+ ’
( T), k>1
n

where ¢’,¢”” > 0 are constants that do not depend on 7 and n, and we used (39) in the above inequality.
Now applying Theorem 7 with a = 1 and b = 2 (for k > 1) yields the result.

5.4. Proof of Theorem 5

SZ

Define & := so that ;i = (1 — @)X. Define W := X ~ N(u, 2I) and U := 572 Consider

S2
SoHIX

Bl -l ~Ellfi— 2 = B [IX - ul = (% - 10— aXI3| =E |26 (X - %), - 1aX)3]

uw uw
—Ef2(w-p o) - - (40)
U+IWlly [, ||U+1WI||,
Note that
Uw;
o ||W||2 , & U+, W
where W; ~ N(u;, 0% /n). By partial integration, we have
Uw; o | d Uw;
E|Wi-p)|—c—5||=—E —
U+, W; n |d U+ W
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o? U 2UW?
no|U+IWIE U+ |W]3)?
and therefore
uw o2 du 20|12
E|W-p' | ———||=—E S - 222 . (41)
U+|Wl3 no|U+[Wl5  U+IW][5)
Using (41) in (40), we have
2do2? 402U |\W |2 U?||W))?
EllA - ully —Ellf - plly = do ¥ _ ” ”;2 L ”22 ; 42)
nU+ (W[5 nU+I[IWI5)*  U+(IWI5)

Note that [[W[2 ~ Z x3(1) where 1 = 1412

with y d(/l) denoting a non-central x?2 distribution with d

degrees of freedom and A being the non- centrahty parameter. Also note that (= I)S ~ X(n—l) 4 With 52

being independent of W. Define Z := nHWHZ ~ x3(1) and Y := "("o_zl)U ~ X(n—l) 4 Where Y and Z are
independent. Then (42) reduces to
2 0 2
R . o 2dy 4n-1)YZ Y-z
Ellf— plly —Ellfi— plly = —E - 5 — 2]
n |Y+m-1)Z Y+m-1)2? F+n-1)2Z)
20 2
2d-Z)Y“+YZ(n-1)2d -4
_ P [d-2¥ +vz(n-1)2d-4) @)
n Y +(m-1Z)?
Using the fact that fooo te 9 dt = ﬁ for a > 0 and employing Fubini’s theorem, we have
Yz ] 0
gl Y2 __|_ / (& [ve |8 [ze 007 d (44)
Y+m-1Z2y1 Jo
and
Y*(2d-Z7 *
E 4] - / (B [Yze_’Y] E [(Zd - Z)e—’("—”z] dr. 45)
Y +(@n-1Z)? 0

To compute the above expectations, we require the following: for any ¢ > 0,

(n— )d

o E[e™™] =(1+21)"
R e T )

ol Py (=1 vy, 2E[e7]
2 -ty | _ & tY] _ ty
E[Ye ]_dﬂE[e I= 1+2¢ (E[Ye I+ 1 +2¢

_ (- 1?d?+2(n-1d ]
(1+2t)2

E[e ™ VZ] =(1+2(n- 1))~ % exp (_ ligrz;i)lt)f)’
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1 d
—t(n—l)Z] _ [ —t(n—l)Z]
E [Ze = ——1 _[]E e

_ d % —tn-1)Z
_(1+2(n—1)t+(1+2(n—1)t)2)E[e ]

Therefore, (44) and (45) reduce to

Yz
Ef——=
(Y+(n—1)Z)2]

= / tE [Ye"y] E [Ze_t("_l)z] dt
0

3 ® ot d A —ty —t(n-1)Z
(n l)d/O 1+2t(1+2(n—1)t+(1+2(n—1)t)2)E[et]E[et ]‘”

0 a d A aY
Ele n1|E -a”Z 4
d,/o n—l+2a(l+2a+(1+2a)2) [e l] [e7%*] da (46)

and

Y2(2d - Z)
Y +(n-1)2)?

0 t d A
dln=1((n=1d + 2)/0 (1+ 22 (2d T 20—t (1+20n- 1);)2)

xB "] B |e V7| ar

o a d A
d(n—l)((n—l)d+2)[) m(Zd_l+2a_(l+2a)2)

xB| e | B[] da. @)

- /0 " E [Yze—”] E [(2d - Z)e_’("_])z] dr

Using (46) and (47) in (43), we obtain
Ell— pll5 - Ellgi - pll3
_d(n-1)o? /°° (n-1)d +2)a > d 2
B n o | Qa+n-1)2 1+2a (1+2a)?

Qd-4a( d 2
2a+n—-1\1+2a (1+2a)?

E [e_:_—yl] E [e_az] da

® d(n-1)c%a _d_o [ _axr
= [ 2227 % g1 +2a) T2E |e 7| da,
/0 n(2a+n—1)>? (@, 2)( %) [e ] “

with

B(a,1) = ((nd —d+2) (2d(1 +2a? —d(1 +2a) - 1) +(2d - 4)2a+n—1)d +2ad + ,1)) e THs
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- ((nd —d+2)(d(8a +6a+1) =)+ (2d - 4)(2a +n - 1)(d + 2ad + /1)) e~ THa
= (6, + 022)e THa,

where for all a € [0, ),

01 := d(nd — d +2)(8a% + 6a + 1) + d(2d — 4)(2a + n— 1)(1 +2a) > 0 for d > 2,

and
0,:=2d-4)2a+n-1)—-(n-1)d-2=4a(d-2)+(n—-1)(d-4)-2>0
ifd > sup,, %ﬁf_ﬁ_l) =4+ %.This means for d > 4+ %, n>2,8B(a,) > 0forall 2 and a € [0, c0)

and the result follows.

5.5. Proof of Theorem 6

Proceeding as in the proof of Theorem 5, we obtain

2 2
. . co 2d—-c2)Y*+YZ(n-1)2d - 4)
Ella - ply —Ellite - ull; —E[

(Y +(n—-1)Z)?

n

® de(n—1)0? a
= / 7L(n Jo~a Aa,)(1 + 2a)_%_2E [e_n_fl] da,
o nQa+n-1)>2

where
Ala, 1) = ((nd —d+2) (2d(1 +2a)? — cd(1 +2a) - c/l) +(2d - 4)2a+n—1)d +2ad + 4)) e THa
- ((nd —d+2)(d(8a% +8a—2ac +2—¢)— )+ (2d - 4)(2a +n - 1)(d + 2ad + /l)) e THa
=i (03 + Oy 0)e THa
with
03 := d(nd — d + 2)(8a® + 8a — 2ac + 2 — ¢) + d(2d — 4)(2a + n—1)(1 + 2a) > 0
ford > 2, ¢ €[0,2) and all a € [0,0), and

04:=2d-4)Ra+n-1)—(n—1)dc-2c=4a(d-2)+(n—-1)2d -4 —dc)-2c >0

for d > % + (n_lz)ﬁ n>2,ce€(0,2) and all a € [0,00). This means, that for the choice of n, ¢, and

d in the statement of Theorem 6, the result follows.
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