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We consider shrinkage estimation of higher-order Hilbert space-valued Bochner integrals in a non-parametric set-

ting. We propose estimators that shrink the U-statistic estimator of the Bochner integral towards a pre-specified

target element in the Hilbert space. Depending on the degeneracy of the kernel of the U-statistic, we construct con-

sistent shrinkage estimators and develop oracle inequalities comparing the risks of the U-statistic estimator and its

shrinkage version. Surprisingly, we show that the shrinkage estimator designed by assuming complete degeneracy

of the kernel of the U-statistic is a consistent estimator even when the kernel is not completely degenerate. This

work subsumes and improves upon Muandet et al. (J. Mach. Learn. Res. 17 (2016) 48) and Zhou, Chen and Huang

(J. Multivariate Anal. 169 (2019) 166–178), which only handle mean element and covariance operator estimation

in a reproducing kernel Hilbert space. We also specialize our results to normal mean estimation and show that for

d ≥ 3, the proposed estimator strictly improves upon the sample mean in terms of the mean squared error.

Keywords: Bernstein’s inequality; Bochner integral; completely degenerate; James-Stein estimator; shrinkage

estimation; SURE; U-statistics

1. Introduction

Let X be a separable topological space and H be a separable Hilbert space. For a Bochner measurable

function—for example, continuous functions are Bochner measurable—r : Xk → H , where k ∈ N,

define the Bochner integral (Dinculeanu, 2000) with respect to the k-fold product measure Pk := P× k. . .

×P as

C =

∫
Xk

r(x1, . . . , xk ) dPk(x1, . . . , xk ) =
∫
Xk

r(x1, . . . , xk)
k∏
i=1

dP(xi).

Given X1, . . . ,Xn
i.i.d.∼ P, the goal of this paper is to construct and analyze shrinkage estimators of C,

of the form

Č := (1 − α̂)Ĉ + α̂ f ∗ = (1 − α̂)(Ĉ − f ∗) + f ∗, (1)

where 0 < α̂ < 1 is a random variable that depends on (Xi)ni=1
, f ∗ is a fixed target in H towards which

Ĉ is shrunk to, and Ĉ is the U-statistic estimator of C given by

Ĉ =
1

nCk

∑
Jn
k

r(Xi1, . . . ,Xik ),

with Jn
k
= {(i1, . . . ,ik) : 1 < i1 < i2 < · · · < ik < n}. Without loss of generality, we assume that r is

symmetric (see Section 2 for the definition).

Traditionally, shrinkage estimators of the form in (1) are studied for k = 1 and r(x) = x, x ∈ Rd ,

which in fact corresponds to shrinking the empirical mean, X̄ := 1
n

∑n
i=1 Xi , towards a fixed vector
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f ∗ ∈ Rd . For P = N(µ,σ2I) where σ2 is known, James and Stein (1960), Stein (1956) constructed a

shrinkage estimator, µ̌ of µ of the form in (1), given by

µ̌ =

(
1 − (d − 2)σ2

n‖ X̄ − f ∗‖2
2

)
X̄ +

(d − 2)σ2

n‖ X̄ − f ∗‖2
2

f ∗,

and showed that for d ≥ 3, the shrinkage estimator, µ̌ improves upon X̄ in terms of the mean-squared

error, i.e.,

E‖ µ̌ − µ‖2
2 < E‖ X̄ − µ‖2

2, ∀ µ ∈ R
d . (2)

When σ2 is unknown, it can be replaced by its estimator σ̂2
=

1
n

∑n
i=1 ‖Xi − X̄ ‖2

2
in µ̌ while still main-

taining (2) for d ≥ 3. Similar types of results have been established for location families of spherically

symmetric distributions (see Brandwein and Strawderman, 1990, 2012 and references therein).

For k = 2 and r(x1, x2) = 1
2
(x1 − x2)(x1 − x2)⊤, x1, x2 ∈ Rd , (1) reduces to the covariance matrix asso-

ciated with P. Starting with Stein (1975), a lot of work has been carried out on the shrinkage estimation

of covariance matrices under the parametric setting of samples being observed from a multivariate nor-

mal distribution. Under different losses (e.g., Frobenius loss, Stein loss) and under different settings of

d ≤ n, d > n, d growing to infinity with n, the shrinkage estimator has been shown to strictly improve

upon the sample covariance matrix (e.g., see Chen et al., 2010, Fisher and Sun, 2011, Ledoit and Wolf,

2018 and references therein). In the non-parametric setting where no specific parametric assumption is

made on P, consistent shrinkage estimators of the sample covariance matrix have been developed in

the high-dimensional setting (Ledoit and Wolf, 2004, Touloumis, 2015).

While most of the above-mentioned works deal with parametric families of distributions, recently,

Muandet et al. (2016) proposed shrinkage estimators for C in the non-parametric setting without mak-

ing parametric assumptions on P, with k = 1 and r(x) = K(·, x), where K is the reproducing ker-

nel (i.e., a positive definite kernel) of a reproducing kernel Hilbert space (RKHS)—see Section 2

for the definition. This corresponds to the shrinkage estimation of the mean element, which is an

infinite-dimensional object if the RKHS is infinite-dimensional. This is in sharp contrast to the above-

mentioned works where the parameter is finite-dimensional or its dimension grows with the sample

size. Extending this idea, Zhou, Chen and Huang (2019) proposed shrinkage estimators for C when

k = 2 and r(x1, x2) = 1
2
(K(·, x1) − K(·,X2)) ⊗H (K(·, x1) − K(·, x2)), which corresponds to the covari-

ance operator on an RKHS with reproducing kernel, K . The mean element and covariance opera-

tor has been widely used in nonparametric goodness-of-fit testing (Balasubramanian, Li and Yuan,

2021), two-sample testing (Gretton et al., 2012), independence testing (Gretton et al., 2007), supervised

dimensionality reduction (Fukumizu, Bach and Jordan, 2004), feature selection (Song et al., 2012),

etc., and therefore their shrunk versions are also useful in these applications. Of course, the choice of

K(·, x) = x, x ∈ Rd , results in the mean and covariance matrix of P with H = Rd .

One of the key ideas in constructing a shrinkage estimator is based on minimizing an unbiased

estimator of the risk, referred to as Stein Unbiased Shrinkage Estimation (SURE). Formally, suppose

∆ = E‖Ĉ −C‖2
H is the mean squared error (i.e., risk) of the empirical estimator Ĉ. Define ∆α = E‖Ĉα −

C‖2
H , where Ĉα ∈ C = {(1 − α)Ĉ + α f ∗ : α ∈ R}. Note that (∆α)α corresponds to the family of risks

associated with the estimators in C. Č is constructed as Ĉα̂, where α̂ = arg minα ∆̂α, which means

Č = (1 − α̂)Ĉ + α̂ f ∗. It can be shown that α̂ = ∆̂u/‖Ĉ − f ∗‖2
H , so that the shrinkage estimator of C

based on SURE is given by

Č =

(
1 − ∆̂u

‖Ĉ − f ∗‖2
H

)
Ĉ +

∆̂u

‖Ĉ − f ∗‖2
H

f ∗,

where ∆̂u is an unbiased estimator of ∆.
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Another approach to find α̂ is based on the observation that ∆α < ∆ if and only if α ∈
(
0, 2∆

∆+‖C− f ∗ ‖2
H

)
with |∆α − ∆| maximized at

α∗ =
∆

∆ + ‖C − f ∗‖2
H
, (3)

which corresponds to the midpoint of the above interval. α∗ can be estimated as

α̃ =
∆̂

∆̂ + ‖Ĉ − f ∗‖2
H

(4)

so that

Č =

(
1 − ∆̂

∆̂ + ‖Ĉ − f ∗‖2
H

)
Ĉ +

∆̂

∆̂ + ‖Ĉ − f ∗‖2
H

f ∗, (5)

where ∆̂ is some estimator (not necessarily unbiased) of ∆. This means, the SURE approach first es-

timates the risk and then minimizes it to find α̂ while the latter approach first finds the optimal α (in

population) which is then estimated to find α̂. The difference in these approaches is an additional term

of ∆̂ in the denominator of α̃ compared to that of α̂ obtained from SURE.

Muandet et al. (2016) and Zhou, Chen and Huang (2019) considered the latter approach to construct

a shrinkage estimator of C and showed the oracle bound

∆α∗ < ∆α̃ ≤ ∆α∗ + O(n−3/2), as n →∞, (6)

which holds for all P that satisfy certain moment conditions, and also showed Č to be a
√

n-consistent

estimator of C. A motivation to consider this approach is as follows: For f ∗ = 0 and r(x) = K(·, x), we

have

‖Ĉ‖2
H =

1

n2

n∑
i, j=1

〈K(·,Xi),K(·,Xj )〉H =
1

n2

n∑
i, j=1

K(Xi,Xj ) =
1

n2
1⊤K1,

where 1 = (1, n. . .,1)⊤ and [K]i, j = K(Xi,Xj ), i, j = 1, . . . ,n. If K is not strictly positive definite, then

there exists (X1, . . . ,Xn) such that 1⊤K1 = 0, which means ‖Ĉ‖2
H = 0 resulting in an invalid estimator.

1.1. Contributions

In this work, we first generalize and improve the results of (Muandet et al., 2016) and (Zhou, Chen and

Huang, 2019) to any k and any separable Hilbert space H (that is not necessarily an RKHS) without

making any parametric assumptions on P. Using the variance decomposition of the U-statistics, we

construct an unbiased estimator, ∆̂general of ∆, which is used in (5) to construct the shrinkage estimator,

Č = Ĉα̃general
, where α̃general is obtained by replacing ∆̂ by ∆̂general in (4). In Theorem 2, we show this

estimator to be a
√

n-consistent estimator of C and improve on the oracle bound in (6) by showing

∆α∗ < ∆α̃general
≤ ∆α∗ + O(n−2), as n →∞. (7)

Next, we present our key contributions in Theorems 3–6, which are detailed below. For k ≥ 2, if r −C

is P-complete degenerate (see Section 2 for the definition), again using the variance decomposition of

degenerate U-statistics, we obtain an alternate estimator of ∆, i.e., ∆̂degen, using which we show (see
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Theorem 3) the resulting estimator Č = Ĉα̃degen
(obtained by using ∆̂degen in (5)) to be nk/2-consistent

estimator of C along with significantly faster error rates in the oracle bound:

∆α∗ < ∆α̃degen
≤ ∆α∗ + O(n−(3k+1)/2), as n →∞, (8)

where α̃degen is obtained by replacing ∆̂ by ∆̂degen in (4). Note that in these results (Theorems 2 and 3),

the estimator is constructed based on the knowledge of whether r −C is P-complete degenerate or not.

However, since it is not easy to verify the P-complete degeneracy of r−C, in Theorem 4, we analyze the

scenario of using Ĉα̃degen
as an estimator of C irrespective of whether r −C is P-complete degenerate or

not—of course, the situation of r −C being P-complete degenerate is handled by Theorem 3. Moreover,

this scenario is practically interesting because Ĉα̃degen
is computationally simpler than Ĉα̃general

. We show

in Theorem 4 that for k ≥ 2, Ĉα̃degen
is also a

√
n-consistent estimator of C—a surprising result—and

satisfies the oracle bound:

∆α∗ < ∆α̃general
≤ ∆α∗ + OP(n−3/2), as n →∞,

without assuming the P-complete degeneracy of r −C. This means, Ĉα̃degen
has a slightly weaker oracle

bound than the one in (7) but the bound improves significantly to (8) if r −C is P-complete degenerate.

To the best of our knowledge, we are not aware of any results in the literature similar to Theorems 3

and 4. All these results are based on Bernstein-type inequalities for unbounded, Hilbert space-valued

random elements. For the degenerate case, we extended Bernstein’s inequality of Arcones and Giné

(1993, Proposition 2.3(c)) and de la Peña and Giné (2012, Theorem 4.1.12(a)) to unbounded Hilbert

space-valued random elements (see Theorem A.5 of the Supplementary Material (Utpala and Sripe-

rumbudur, 2024)—from now on referred to as the Supplement), which is of independent interest.

Since all the above-mentioned results are obtained in the non-parametric setting, we are not able

to show the exact improvement of the shrinkage estimator over Ĉ but only show oracle bounds that

include an additional error term. In order to understand the behavior of the proposed estimator in the

parametric setting, in Section 4, we specialize and analyze our estimator Ĉα̃general
in the well-studied

normal mean estimation problem. In other words, we use k = 1, r(x) = x, x ∈ Rd and P = N(µ,σ2I),
where µ is the parameter of interest and σ2 > 0 may not be known. In this setting with f ∗ = 0, it is easy

to verify that

Ĉα̃general
= Ĉα̃degen

=

‖ X̄ ‖2
2

S2

n
+ ‖ X̄ ‖2

2

X̄ =

(
1 −

S2

n

S2

n
+ ‖ X̄ ‖2

2

)
X̄,

where S2 := 1
n−1

∑n
i=1 ‖Xi − X̄ ‖2

2
. In Theorem 5, we show Ĉα̃general

to strictly improve upon X̄ in terms of

the mean squared error for all µ ∈ Rd if n ≥ 2 and d ≥ 4 + 2
n−1

. A small modification to this estimator,

i.e., (
1 − 2n − 2

3n − 1
·

S2

n

S2

n
+ ‖ X̄ ‖2

2

)
X̄

yields that for all d ≥ 3, the above modified estimator strictly improves upon X̄ for all µ ∈ Rd (see The-

orem 6)—a result similar to that of the James-Stein estimator. The proofs of these results are provided

in Section 5 and additional results are provided in the Supplement.
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2. Definitions and notation

For a � (a1, . . . ,ad) ∈ Rd , b � (b1, . . . ,bd) ∈ Rd , ‖a‖2 �

√∑d
i=1

a2
i

and 〈a,b〉2 =
∑d

i=1
aibi .

nCi =

n!
(n−i)!i! , nPi =

n!
(n−i)! and Sn denotes the symmetric group on {1, . . . ,n} with σ ∈ Sn being a permuta-

tion. Un
k
(r) = 1

nPk

∑
In
k

r(Xi1, . . . ,Xik ) denotes a U-statistic with kernel r of order k computed with n

variables, where In
k
= {(i1, . . . ,ik) : i1 � i2 � · · · � ik }. A function r : Xk →H is said to be symmetric if

it does not depend on the order of its inputs, i.e., r(x1, . . . , xk ) = r(xσ(1), . . . , xσ(k)), ∀σ ∈ Sk . When r

is symmetric, Un
k
(r) reduces to Un

k
(r) = 1

nCk

∑
Jn
k

r(Xi1, . . . ,Xik ), where Jn
k
= {(i1, . . . ,ik ) : 1 < i1 < i2 <

· · · < ik < n}. For a symmetric function r : Xk →H and a probability measure P on X, the canonical

function of order i with respect to P, denoted as ri : Xi →H , is defined as

ri(x1, . . . , xi) =
∫
Xk−i

r(x1, . . . , xk)
k∏

j=i+1

dP(xj ),

with the convention r0 :=
∫
Xk r(x1, . . . , xk)

∏k
j=1 dP(xj ) and rk := r(x1, . . . , xk). A symmetric function

r : Xk →H is P-complete degenerate if (i) ∀i ∈ {0,1, . . . , k − 1} and ∀x1, . . . , xi ∈ X, ri(x1, . . . , xi) = 0;

and (ii) rk is not a constant function.

A real-valued symmetric function K : X ×X → R is called a positive definite (pd) kernel if, for all

n ∈ N, {αi}ni=1
∈ R and {xi}ni=1

∈ X, we have
∑n

i, j=1 αiαjK(xi, xj ) ≥ 0. A function K : X × X → R,

(x, y) �→ K(x, y) is a reproducing kernel of the Hilbert space (HK , 〈·, ·〉HK
) of functions if and only if

(i) ∀x ∈ X, K(·, x) ∈ HK and (ii) ∀x ∈ X, ∀ f ∈ HK , 〈K(·, x), f 〉HK
= f (x) hold. If such a K exists, then

HK is called a reproducing kernel Hilbert space.

3. Main results

In this section, we present our main results related to the consistency of the shrinkage estimator and

oracle bounds for the mean-squared error. Theorem 2 deals with r being a symmetric function while

Theorem 3 considers the case of when r − C is P-complete degenerate. We show that the shrinkage

estimator has a faster rate of convergence when r − C is P-complete degenerate (see Theorem 3) in

contrast to r being simply symmetric (see Theorem 2). We would like to mention that the shrinkage

estimators considered in Theorems 2 and 3 are different as their construction is based on whether r −C

is P-complete degenerate or not. In Theorem 4, we show that the shrinkage estimator of Theorem 3, i.e.,

the P-complete degenerate case, is still a
√

n-consistent estimator with a slightly slow error rate in the

oracle bound, even if r −C is not P-complete degenerate but only symmetric. This result is interesting

as the estimator in the degenerate case is simpler to compute than the estimator in the symmetric case.

Before we present our results, we state the following result, which provides the motivation for the

estimator proposed in Theorem 2. This result is a simple extension of (Lee, 2019, Theorem 3) and the

claim in the proof of Theorem 2 of Lee (2019) to Hilbert space-valued random elements.

Theorem 1. Let Ĉ = 1
nCk

∑
Jn
k

r(Xi1, . . . ,Xik ) be a U-statistics estimator of

C =

∫
Xk

r(x1, . . . , xk )
k∏
i=1

dP(xi),
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where r : Xk →H is a symmetric function. Let

κ2k−i(X1, . . . ,X2k−i) = 〈r(X1, . . . ,Xk ),r(X1, . . . ,Xi,Xk+1, . . . ,X2k−i)〉H

for each i ∈ {0,1, . . . , k}. Then,

EX1,...,X2k−i

[
κ2k−i(X1, . . . ,X2k−i)

]
= EX1,...,Xi

‖ri(X1, . . . ,Xi)‖2
H . (9)

Further,

∆ = E‖Ĉ‖2
H − ‖C‖2

H =
1

nCk

k∑
i=1

kCi
n−kCk−i σ

2
i , (10)

where σ2
i
= E‖ri(X1, . . . ,Xi)‖2

H − ‖E[r(X1, . . . ,Xk )]‖2
H , with ri being the canonical function of order i

with respect P.

Combining (9) with the observation that

‖E[r(X1, . . . ,Xk )]‖2
H = E

[
κ2k (X1, . . . ,X2k )

]
yields

σ2
i = EX1 ,...,X2k−i

[
κ2k−i(X1, . . . ,X2k−i)

]
− E

[
κ2k (X1, . . . ,X2k )

]
, (11)

which therefore can be estimated as

σ̂2
i =Un

2k−i [κ2k−i(X1, . . . ,X2k−i)] − Un
2k [κ2k (X1, . . . ,X2k )] ,

resulting in an estimator for ∆ as

∆̂general =

k∑
i=1

kCi
n−kCk−i
nCk

σ̂2
i .

Note that κ2k−i(X1, . . . ,X2k−i) and κ2k (X1, . . . ,X2k ) need not be symmetric for any i ∈ {1, . . . , k} and

k ≥ 1, and therefore, Un
2k−i and Un

2k
uses the permutation definition as mentioned in Section 2. Based

on the above, a shrinkage estimator of C can be defined as

Ĉα̃general
= (1 − α̃general)Ĉ + α̃general f ∗, (12)

where

α̃general =
∆̂general

∆̂general + ‖Ĉ − f ∗‖2
H
.

The following result (proved in Section 5.1) analyzes the consistency and mean-squared error of

Ĉα̃general
.

Theorem 2. Let n ≥ 2k, and r : Xk →H be a symmetric function such that E‖r(X1, . . . ,Xk )‖H <∞,

where X is a separable topological space and H is a separable Hilbert space. Define

∆̂general =

k∑
i=1

kCi
n−kCk−i
nCk

(
Un

2k−i [κ2k−i(X1, . . . ,X2k−i)] − Un
2k [κ2k (X1, . . . ,X2k )]

)
.
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Suppose for all m ≥ 2 and all i ∈ {0,1, . . . , k},

E‖r(X1, . . . ,Xk ) −C‖mH ≤ m!

2
β2θm−2, (13)

and

E|κ2k−i(X1, . . . ,X2k−i) − E[κ2k−i(X1, . . . ,X2k−i)]|m ≤ m!

2
βiθ

m−2
i , (14)

for some finite positive constants β,θ, {βi}ki=0
, and {θi}ki=0

. Then, as n →∞, the following hold:

(i) |α̃general − α∗ | = OP(n−
3
2 );

(ii) | ‖Ĉα̃general
−C‖H − ‖Ĉα∗ −C‖H | = OP(n−

3
2 );

(iii) Ĉα̃general
is a

√
n-consistent estimator of C;

(iv) minα E‖Ĉα −C‖2
H ≤ E‖Ĉα̃general

−C‖2
H ≤ minα E‖Ĉα −C‖2

H + O(n−2),

where Ĉα̃general
is defined in (12), α∗ is defined in (3), and Ĉα = (1 − α)Ĉ + α f ∗.

Remark 1.

(i) It follows from Theorem 2(iv) that∆α̃general
≤ ∆α∗+O(n−2) as n →∞, which when combined with

∆α∗ < ∆, yields ∆α̃general
< ∆ + O(n−2) as n →∞, for all P that satisfy the moment conditions.

(ii) Muandet et al. (2016) considered k = 1, H to be a reproducing kernel Hilbert space (RKHS),

HK , with a continuous reproducing kernel, K , f ∗ = 0 and r(X) = K(·,X) ∈ HK , resulting in the

problem of shrinkage estimation of the mean element. (Muandet et al., 2016, Theorem 7) provides

an oracle bound

min
α
E‖Ĉα −C‖2

H ≤ E‖Ĉα̃general
−C‖2

H ≤ min
α
E‖Ĉα −C‖2

H + O(n−3/2), n →∞, (15)

which Theorem 2(iv) improves by a providing an improved error rate of n−2.

(iii) With k = 2, f ∗ = 0 and r(X,Y ) = 1
2
(K(·,X) − K(·,Y )) ⊗H (K(·,X) − K(·,Y )), i.e., the shrinkage

estimation of the covariance operator on HK with H being the space of Hilbert-Schmidt oper-

ators on HK , (Zhou, Chen and Huang, 2019, Theorem 2) showed (15), which is again improved

by Theorem 2. Here ⊗HK
denotes the tensor product on HK .

(iv) Clearly the moment conditions of Theorem 2 are satisfied if r is bounded. If r is unbounded,

then the moment conditions are quite stringent as they require all the higher moment conditions

to exist. However, by only requiring (13) to hold for m = 2, i.e., r has a finite central second

moment, all the results of Theorem 2 can be obtained but at the cost of achieving polynomial

concentration instead of sub-Gaussian concentration in Theorem 2(i,ii). This claim can be proved

by using Theorem A.9 (Chebyshev inequality for U-statistics) in the proof of Theorem 2 instead

of Theorem A.4 (Bernstein inequality for U-statistics) of the Supplement.

(v) Suppose there exists a constant ζ > 0 such that P(‖r(X1, . . . ,Xk ) −C‖2 ≥ t) ≤ 2e−t
2/ζ2

for all t ≥
0, i.e., r(X1, . . . ,Xk) is sub-Gaussian, which implies r(X1, . . . ,Xk ) satisfies the moment condition,

E‖r(X1, . . . ,Xk ) −C‖mH ≤ mζmΓ(m/2), ∀ m ≥ 1. (16)
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In the following, we show that (16) implies the moment conditions of Theorem 2. To this end,

clearly (13) holds since E‖r(X1, . . . ,Xk)−C‖mH ≤ mζmΓ(m/2) ≤ mζmΓ(m) ≤ m!ζm for all m ≥ 1.

Since

κ2k−i(X1, . . . ,X2k−i) = 〈r(X1, . . . ,Xk ),r(X1, . . . ,Xi,Xk+1, . . . ,X2k−i)〉H,

for i ∈ {0, . . . , k}, we have

E|κ2k−i(X1, . . . ,X2k−i) − E[κ2k−i(X1, . . . ,X2k−i)]|m

= E | 〈r(X1, . . . ,Xk ),r(X1, . . . ,Xi,Xk+1, . . . ,X2k−i)〉H
−E[〈r(X1, . . . ,Xk ),r(X1, . . . ,Xi,Xk+1, . . . ,X2k−i)〉H]|m

≤ 2m−1
E | 〈r(X1, . . . ,Xk ),r(X1, . . . ,Xi,Xk+1, . . . ,X2k−i)〉H |m

+ 2m−1 |E[〈r(X1, . . . ,Xk ),r(X1, . . . ,Xi,Xk+1, . . . ,X2k−i)〉H]|m

≤ 2mE | 〈r(X1, . . . ,Xk ),r(X1, . . . ,Xi,Xk+1, . . . ,X2k−i)〉H |m

≤ 2mE
[
‖r(X1, . . . ,Xk )‖mH ‖r(X1, . . . ,Xi,Xk+1, . . . ,X2k−i)‖mH

]
≤ 2mE ‖r(X1, . . . ,Xk )‖2m

H

≤ 2mE ‖r(X1, . . . ,Xk ) −C +C‖2m
H ≤ 23m−1

E ‖r(X1, . . . ,Xk ) −C‖2m
H + 23m−1‖C‖2m

H

≤ 2(max(8ζ2,8‖C‖2
H))mm!,

implying that (14) holds. This means, when k = 1 and r(x) = x, x ∈ Rd , these moment conditions

hold if X is sub-Gaussian.

The following examples specialize the proposed shrinkage estimator for the mean element and co-

variance operator on a Hilbert space.

Example 1 (Mean element, moment generating function and Weierstrass transform). Suppose

k = 1. Then

∆̂general =
1

n


1

n

n∑
i=1

〈r(Xi),r(Xi)〉H − 1
nC2

n∑
i< j

〈r(Xi),r(Xj )〉H


and

‖Ĉ − f ∗‖2
H =

�����1

n

n∑
i=1

(r(Xi) − f ∗)
�����

2

H
=

1

n2

∑
i, j

〈r(Xi),r(Xj )〉H − 2

n

n∑
i=1

〈r(Xi), f ∗〉H + ‖ f ∗‖2
H .

Define K(x, y) = 〈r(x),r(y)〉H , x, y ∈ H . It is easy to verify that K is a positive definite kernel and

therefore a reproducing kernel (Aronszajn, 1950) of some reproducing kernel Hilbert space (RKHS),

HK so that K(x, y) = 〈K(·, x),K(·, y)〉HK
. Note that these quantities match those proposed in (Muandet

et al., 2016), where r(x) = K(·, x) and f ∗ = 0, resulting in a mean element of P in HK . When X = Rd
and r(x) = x for x ∈ Rd , E[r(X)] corresponds to the mean vector in Rd and K(x, y) = 〈x, y〉2 is the

linear kernel. We analyze this scenario in detail in Section 4 when P is a Gaussian distribution.

The choice of r(x) = e 〈·,x〉2 with H being an RKHS of the exponential kernel, i.e., K(x, y) = e 〈x,y〉2 =
〈r(x),r(y)〉H , x, y ∈ Rd , results in a shrinkage estimator for the moment generating function. Equiva-
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lently, this choice can be interpreted as

r(x) =
����
1,(xi)di=1,(xi1 xi2/

√
2!)d

i1 ,i2=1, . . . ,
���

m∏
j=1

xi j /
√

m!
���
d

i1,...,im=1

, . . .
����

with H = ℓ2(N). Similarly, the choice of r(x) = e ‖ ·−x ‖2
2 with H being an RKHS of a Gaussian kernel,

i.e., K(x, y) = e ‖x−y ‖2
2 , x, y ∈ Rd , results in a shrinkage estimator for the Weierstrass transform of P.

Example 2 (Covariance operator). Let H be the space of Hilbert-Schmidt operators defined on a

reproducing kernel Hilbert space HK with K : X × X → R as the reproducing kernel, defined on a

topological space X. Choosing k = 2 and

r(X,Y ) = 1

2
(K(·,X) − K(·,Y )) ⊗HK

(K(·,X) − K(·,Y ))

yields the covariance operator on HK . Note that

4〈r(X,Y ),r(U,V)〉H =
〈
(K(·,X) − K(·,Y )) ⊗HK

(K(·,X) − K(·,Y )),

(K(·,U) − K(·,V)) ⊗HK
(K(·,U) − K(·,V))

〉
H

=

〈
K(·,X) − K(·,Y ),K(·,U) − K(·,V)

〉2

HK

= [K(X,U) − K(X,V) − K(Y,U) + K(Y,V)]2 .

Therefore,

∆̂general =
2n − 4
nC2

Un
3 [κ3(X1,X2,X3)] −

2n − 3
nC2

Un
4 [κ4(X1,X2,X3,X4)] +

1
nC2

Un
2 [κ2(X1,X2)]

=

2n − 4
nC2

Un
3

[
〈r(X1,X2),r(X1,X3)〉H

]
+

1
nC2

Un
2

[
〈r(X1,X2),r(X1,X2)〉H

]

− 2n − 3
nC2

Un
4

[
〈r(X1,X2),r(X3,X4)〉H

]

=

2n − 4
nC2 · nP3

∑
i�j�l

〈
r(Xi,Xj ),r(Xi,Xl)

〉
H +

1
nC2 · nP2

∑
i�j

〈
r(Xi,Xj ),r(Xi,Xj )

〉
H

− 2n − 3
nC2 · nP4

∑
i�j�l�m

〈
r(Xi,Xj ),r(Xl,Xm)

〉
H

=

2n − 4

4 · nC2 · nP3

∑
i�j�l

[
K(Xi,Xi) − K(Xi,Xl) − K(Xi,Xj ) + K(Xj,Xl)

] 2

+

1

4 · nC2 · nP2

∑
i�j

[
K(Xi,Xi) − 2K(Xi,Xj ) + K(Xj,Xj )

] 2

− 2n − 3

4 · nC2 · nP4

∑
i�j�l�m

[
K(Xi,Xl) − K(Xi,Xm) − K(Xj,Xl) + K(Xj,Xm)

] 2
.
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Also for any f ∗ ∈ H ,

‖Ĉ − f ∗‖2
H =

������
1

nP2

∑
i�j

(
r(Xi,Xj ) − f ∗

) ������
2

H

=

1
nP2 · nP2

∑
i�j

∑
l�m

〈
r(Xi,Xj ),r(Xl,Xm)

〉
H − 2

nP2

∑
i�j

〈
r(Xi,Xj ), f ∗

〉
H + ‖ f ∗‖2

H

=

1

4 · nP2 · nP2

∑
i�j

∑
l�m

[
K(Xi,Xl) − K(Xi,Xm) − K(Xj,Xl) + K(Xj,Xm)

] 2

− 1
nP2

∑
i�j

〈
K(·,Xi) − K(·,Xj ), f ∗

(
K(·,Xi) − K(·,Xj )

) 〉
HK
+ ‖ f ∗‖2

H .

We would like to highlight that the expressions provided in (Zhou, Chen and Huang, 2019) for the

above quantities are only asymptotically equivalent to ours when f ∗ = 0 because of the approximations

the authors employed to simplify their asymptotic analysis.

For K(x, y) = 〈x, y〉2, x, y ∈ Rd and f ∗ = Id (the d × d identity matrix), it can be shown that (see

Proposition B.2 of the Supplement)

∆̂general =
1

(n − 2)(n − 3)

n∑
i=1

‖ X̃i ‖4
2 − n(n + 1)

(n − 1)2(n − 3)
Tr[Σ̂2] − n

(n − 1)(n − 2)(n − 3)Tr2[Σ̂], and

‖Ĉ − I ‖2
F =

n2

(n − 1)2
Tr[Σ̂2] − 2n

n − 1
Tr[Σ̂] + d,

where X̃i = Xi − X̄, i = 1, . . . ,n, Σ̂ = 1
n

∑n
i=1 X̃i X̃

⊤
i

, and Ĉ = 1
nC2

∑
i< j

(Xi−Xj )(Xi−Xj )⊤
2

, with ‖ · ‖F being

the Frobenius norm.

Theorem 2 is based on Bernstein’s inequality for Hilbert space-valued U-statistics, which guarantees

that Ĉ and Ĉα̃general
are

√
n-consistent estimators of C. However, if r −C is bounded, real-valued, sym-

metric, P-complete degenerate of k ≥ 2 variables, Arcones and Giné (1993, Proposition 2.3(c)) and de

la Peña and Giné (2012, Theorem 4.1.12(a)) showed that there exist finite positive constants c1,c2,c3

depending only on k such that for all δ ∈ (0,1),

P



|Un

k
(r) −C | ≥ σ

(
log

c1

δ

c2n

) k
2

+ ‖r ‖∞

(
log

c1

δ

c3n

) k+1
2



≤ δ, (17)

where ‖r ‖∞ = supx1 ,...,xk
|r(x1, . . . , xk)| and σ2

= E(r(X1, . . . ,Xk ) − C)2 denotes the variance. We

would like to mention that while Arcones and Giné (1993, Proposition 2.3(c)) and de la Peña and

Giné (2012, Theorem 4.1.12(a)) presented (17) as an exponential concentration inequality, we wrote

it in the confidence interval form in (17) to obtain the rate of convergence (see Appendix C of the

Supplement for details). For k = 2, (17) implies a rate of n−1 to estimate C using Un
k
(r), which is sig-

nificantly faster than the usual n−1/2-rate that is obtained by Bernstein’s inequality that does not take

into account the complete degeneracy of r − C. Joly and Lugosi (2016) showed a similar result for

the median-of-means estimator with the motivation of robust mean estimation in the presence of heavy
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tails. In Theorem A.5 of the supplement, we generalize this result to unbounded, H -valued, P-complete

degenerate U-statistics using the ideas from (de la Peña and Giné, 2012). Using this result, we devise

an estimator of α denoted as α̃degen, using which we show Ĉα̃degen
= (1 − α̃degen)Ĉ + α̃degen f ∗ to be

nk/2-consistent estimator of C if r − C is P-complete degenerate. Further, we provide improved error

bound rates in the oracle inequality associated with Ĉα̃degen
.

Our design of α̃degen is based on the variance decomposition of U-statistics (see Theorem 1) and the

definition of degeneracy. First if r −C is P-complete degenerate we have that ∀i ∈ {0,1, . . . , k − 1} and

∀x1, . . . , xi ∈ X, ri(x1, . . . , xi)−C = 0, which implies that σ2
i
= 0. It therefore follows from (10) and (11)

that

∆ =
1

nCk

[
E
[
κk (X1, . . . ,Xk )

]
− E

[
κ2k (X1, . . . ,X2k )

] ]
.

Using this observation, we consider the following estimator for ∆,

∆̂degen =
1

nCk

[
Un
k

[
κk(X1, . . . ,Xk )

]
− Un

2k

[
κ2k (X1, . . . ,X2k )

] ]

so that

α̃degen =
∆̂degen

∆̂degen + ‖Ĉ‖2
H
. (18)

Note that ∆̂general = ∆̂degen when k = 1. The following result (proved in Section 5.2) presents the statis-

tical behavior of Ĉα̃degen
.

Theorem 3. Let n ≥ 2k, k ≥ 2, r : Xk →H be a symmetric function such that E‖r(X1, . . . ,Xk )‖2
H <∞

and r − C is P-complete degenerate, where X is a separable topological space and H is a separable

Hilbert space. Suppose there exist positive constants M,σ1,σ2 and θ,θ1, θ2, such that ∀p ≥ 2,

E

+++ ‖r(X1, . . . ,Xk ) −C‖2
H − E ‖r(X1, . . . ,Xk ) −C‖2

H

+++p ≤ p!

2
θ2Mp−2, (19)

E

+++κk (X1, . . . ,Xk ) − E[κk (X1, . . . ,Xk)]
+++p ≤ p!

2
σ2

1 θ
p−2

1
, and (20)

E

+++κ2k (X1, . . . ,X2k ) − E[κ2k (X1, . . . ,X2k )]
+++p ≤ p!

2
σ2

2 θ
p−2

2
. (21)

Then, as n →∞, the following hold:

(i)
++α̃degen − α∗

++
= OP(n−(2k+1)/2);

(ii)

+++‖Ĉα̃degen
−C‖H − ‖Ĉα∗ −C‖H

+++ = OP(n−(2k+1)/2);

(iii) Ĉα̃degen
is a nk/2-consistent estimator of C;

(iv) minα E‖Ĉα −C‖2
H ≤ E‖Ĉα̃degen

−C‖2
H ≤ minα E‖Ĉα −C‖2

H + O(n−(3k+1)/2),

where α∗ is defined in (3), α̃degen is defined in (18), and Ĉα = (1 − α)Ĉ + α f ∗.

Now, inspired by our analysis of the completely degenerate case, we show that α̃degen is a good

estimator of α∗ even if r − C is not P-complete degenerate. Specifically, we show that without any

assumption of degeneracy,
++α̃degen − α∗

++
= OP(n−1) (compared to OP(n−3/2) with α̃general), Ĉα̃degen

is
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a
√

n-consistent estimator of C and more importantly that E‖Ĉα̃degen
− C‖2

H ≤ minα E‖Ĉα − C‖2
H +

O(n−3/2) (in contrast to O(n−2)) as n →∞. This is surprising because the number of terms in ∆̂degen

remains constant with k whereas the number of terms in ∆̂general grows linearly with k. This means

∆̂degen is computationally efficient than ∆̂general and therefore is Ĉα̃degen
over Ĉα̃general

. These are captured

in the following result, which is proved in Section 5.3.

Theorem 4. Let n ≥ 2k, k ≥ 2, r : Xk →H be a symmetric function such that E‖r(X1, . . . ,Xk )‖2
H <∞,

where X is a separable topological space and H is a separable Hilbert space. Suppose there exist

positive constants σ,σ1,σ2 and θ,θ1, θ2 such that ∀p ≥ 2,

E‖r(X1, . . . ,Xk ) −C‖pH ≤ p!

2
σ2θp−2,

E

+++κk (X1, . . . ,Xk ) − E[κk (X1, . . . ,Xk)]
+++p ≤ p!

2
σ2

1 θ
p−2

1
, and

E

+++κ2k (X1, . . . ,X2k ) − E[κ2k (X1, . . . ,X2k )]
+++p ≤ p!

2
σ2

2 θ
p−2

2
.

Then, as n →∞, the following hold:

(i)
++α̃degen − α∗

++
= OP(n−1);

(ii)

+++‖Ĉα̃degen
−C‖H − ‖Ĉα∗ −C‖H

+++ = OP(n−1);

(iii) Ĉα̃degen
is a

√
n-consistent estimator of C;

(iv) minα E‖Ĉα −C‖2
H ≤ E‖Ĉα̃degen

−C‖2
H ≤ minα E‖Ĉα −C‖2

H + O(n−3/2).

The reason for assuming k > 1 in Theorem 4 is that, when k = 1, we have ∆̂general = ∆̂degen, and

the claims follow from Theorem 2. Furthermore, the observation in Remark 1(iv) is also valid for

Theorems 3 and 4, and can be shown by using Theorem A.9 instead of Theorems A.5 and A.4 (of the

Supplement), respectively in the proofs of Theorems 3 and 4.

Remark 2.

(i) Based on Remark 1(v), we would like to highlight that the moment conditions in Theorems 3 and

4 are satisfied if r(X1, . . . ,Xk ) satisfies the moment condition,

E‖r(X1, . . . ,Xk ) −C‖pH ≤ pζ pΓ(p/2), ∀ p ≥ 1,

which in turn is implied if r(X1, . . . ,Xk ) is sub-Gaussian.

(ii) Interestingly, as a converse, we show below that (19) and

E‖r(X1, . . . ,Xk ) −C‖2
H ≤ σ2 (22)

combinedly imply that there exist constants σ3 and θ3 such that E‖r(X1, . . . ,Xk) − C‖pH ≤
p!
2
σ2

3
θ
p−2

3
for all p ≥ 2, i.e., r(X1, . . . ,Xk ) is sub-Gaussian. Similarly, (20) and (21) (which also

appear in Theorem 4) along with (22) combinedly imply that there exist constants σ4 and θ4 such

that E‖r(X1, . . . ,Xk ) − C‖pH ≤ p!
2
σ2

4
θ
p−2

4
for all p ≥ 2. This means, (19)–(21) along with (22)

imply that r(X1, . . . ,Xk ) is sub-Gaussian, which in combination with Remark 2(i) implies the the
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equivalence of these conditions to the sub-Gaussianity of r(X1, . . . ,Xk ). To prove the first claim,

for p ≥ 2, we have

E‖r(X1, . . . ,Xk ) −C‖pH = E
[
‖r(X1, . . . ,Xk ) −C‖2

H

] p/2

≤ 2
p
2
−1
E

+++‖r(X1, . . . ,Xk ) −C‖2
H − E‖r(X1, . . . ,Xk ) −C‖2

H

+++p/2

+ 2
p
2
−1

(
E‖r(X1, . . . ,Xk ) −C‖2

H

) p/2

(22)
≤ 2

p
2
−1

√
E

+++‖r(X1, . . . ,Xk ) −C‖2
H − E‖r(X1, . . . ,Xk ) −C‖2

H

+++p + 1

2
(2σ2)

p
2

(19)
≤

√
p!θM

p−2
2 2

p−3
2 +

1

2
(2σ2)

p
2

≤ p!

2
max(2

√
2θ,4σ2)max

(√
2M,

√
2σ2

) p−2

.

A similar calculation involving (20)–(22) is provided in Appendix D of the Supplement.

Example 3 (Covariance operator). For the same setting as in Example 2, we obtain

∆̂degen =
1

nC2
Un

2 [κ2(X1,X2)] −
1

nC2
Un

4 [κ4(X1,X2,X3,X4)]

=

1

4 · nC2 · nP2

∑
i�j

[
K(Xi,Xi) − 2K(Xi,Xj ) + K(Xj,Xj )

] 2

− 1

4 · nC2 · nP4

∑
i�j�l�m

[
K(Xi,Xl) − K(Xi,Xm) − K(Xj,Xl) + K(Xj,Xm)

] 2
,

which reduces to

∆̂degen =
n(n2 − 3n + 4)
2 · nC2 · nP4

n∑
i=1

‖ X̃i ‖4
2 − 2n2(n − 2)

nC2 · nP4
Tr[Σ̂2] + n2(n2 − 5n + 4)

2 · nC2 · nP4
Tr2[Σ̂],

when K(x, y) = 〈x, y〉2, x, y ∈ Rd . See Proposition B.2 of the Supplement for details.

The proposed shrinkage estimators Ĉα̃general
and Ĉα̃degen

can be shown to be solutions to regularized

minimization problems. Since

Ĉα = arg inf
g∈H

1
nCk

∑
(i1,...,ik )∈Jn

k

��r(Xi1, . . . ,Xik ) − g

��2

H +
α

1 − α ‖g − f ∗‖2
H,

where α
1−α , 0 < α < 1 acts as the regularization parameter, it follows that the choice of

α̃general

1−α̃general
and

α̃degen

1−α̃degen
as regularization parameters yield Ĉα̃general

and Ĉα̃degen
, respectively. This demonstrates the reg-

ularization effect of shrinkage estimators. A similar result was shown in (Muandet et al., 2016) when

f ∗ = 0, H =HK , k = 1 and r(x) = K(·, x).
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4. Normal mean estimation

In Section 3, we only established oracle bounds on the mean squared error that include an error term,

since no parametric assumptions were made on P. In this section, we study the estimator Ĉα̃general
when

X = Rd , H = Rd , r(x) = x and P is a normal distribution, i.e., the shrinkage estimation of normal

mean. Note that the degenerate case is not applicable in this setting as k = 1. This is the classical

setting studied heavily in the literature (Brandwein and Strawderman, 2012). Since P is Gaussian, we

show that concrete results can be obtained on the mean-squared error of Ĉα̃general
, in contrast to oracle

inequalities of the previous section.

Define C =
∫
X r(x) dP(x) =

∫
x dP(x) =: µ and Ĉ = 1

n

∑n
i=1 Xi = X̄ =: µ̂. In this setting with f ∗ = 0,

it is easy to verify that

∆̂general =
1

n


1

n

n∑
i=1

‖Xi ‖2
2 − 1

n(n − 1)
∑
i�j

〈Xi,Xj〉2


=

1

n


1

n

n∑
i=1

‖Xi ‖2
2 − 1

n(n − 1)

n∑
i, j=1

〈Xi,Xj〉2 +
1

n(n − 1)

n∑
i=1

‖Xi ‖2
2


=

1

n


1

n − 1

n∑
i=1

‖Xi ‖2
2 − n

n − 1

�����1

n

n∑
i=1

Xi

�����
2

2


=

1

n

[
1

n − 1

n∑
i=1

‖Xi ‖2
2 − n

n − 1
‖ X̄ ‖2

2

]
=

1

n(n − 1)

n∑
i=1

‖Xi − X̄ ‖2
2 =:

S2

n
,

and

Ĉα̃general
=: µ̌ =

‖ X̄ ‖2
2

S2

n
+ ‖ X̄ ‖2

2

X̄ =

(
1 −

S2

n

S2

n
+ ‖ X̄ ‖2

2

)
X̄ .

The following result (proved in Section 5.4) shows that the shrinkage estimator, µ̌ has strictly smaller

mean squared error compared to µ̂ when d ≥ 4 + 2
n−1

.

Theorem 5. Let X1, . . . ,Xn
i.i.d.∼ Nd(µ,σ2I). For n ≥ 2 and d ≥ 4 + 2

n−1
,

E ‖ µ̌− µ‖2
2 < E‖ µ̂ − µ‖

2
2

for all µ ∈ Rd and σ2 > 0.

When n = 2, µ̌ improves upon µ̂ for d ≥ 6. For all n ≥ 3, the improvement phenomenon occurs

for d ≥ 5. By slightly modifying the estimator µ̌, the following result (proved in Section 5.5) shows

improvement over µ̂ when d ≥ 3.

Theorem 6. Let X1, . . . ,Xn
i.i.d.∼ Nd(µ,σ2I). For n ≥ 2, c ∈ (0,2) and d ≥ 4

2−c +
2c

(n−1)(2−c) ,

E‖ µ̌c − µ‖2
2 < E‖ µ̂ − µ‖

2
2 (23)
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for all µ ∈ Rd andσ2 > 0 where µ̌c = (1−cα̃general)µ̂with α̃general =

S2

n

S2

n +‖X̄ ‖2
2

. In particular, if c = 2n−2
3n−1

,

then (23) holds for all d ≥ 3.

It is interesting to note that the estimator µ̌c with c = 2n−2
3n−1

behaves similar to that of the James-

Stein estimator in showing improvement over µ̂ for d ≥ 3 but with important differences. µ̌ has an

additional term of S2

n
in the denominator and c depends only on n instead of d—James-Stein estimator

has c = d − 2. Because of this additional term in the denominator, establishing Theorem 6 is far more

tedious than proving such a result for the James-Stein estimator. In fact, because of this additional term

in the denominator, we are not able to establish concrete results in the non-spherical Gaussian scenario

and it remains an open question.

5. Proofs

The following is a master theorem, which we will repeatedly use to prove the results of Section 3.

Theorem 7. Let Ĉ and ∆̂ be estimators of C and ∆, respectively, where ∆ = E‖Ĉ − C‖2
H . For τ > 0,

suppose there exist positive constants a,b,c1,c2,c3,d1,d2 that do not depend on τ and n such that the

following statements hold with probability at least 1 − c3e−τ:

‖Ĉ −C‖H ≤ c1

(
1 + τ

n

) a/2

+ c2

(
1 + τ

n

) (a+1)/2

, (24)

|∆̂ − ∆| ≤ d1

(
1 + τ

n

) b/2

+ d2

(
1 + τ

n

) (b+1)/2

.

Define α∗ = ∆

∆+‖C− f ∗ ‖2
H

and Ĉα̃ = (1− α̃)Ĉ + α̃ f ∗ as an estimator of C where α̃ = ∆̂

∆̂+‖Ĉ− f ∗ ‖2
H

. Then as

n →∞, the following hold:

(i) |α̃ − α∗ | = OP
(
n−min{3a,b}/2

)
;

(ii) | ‖Ĉα̃ −C‖H − ‖Ĉα∗ −C‖H | = OP
(
n−min{3a,b}/2

)
;

(iii) Ĉα̃ is a nmin{a,b}/2- consistent estimator of C;

(iv) minα E‖Ĉα −C‖2
H ≤ E‖Ĉα̃ −C‖2

H ≤ minα E‖Ĉα −C‖2
H + O(n−min{4a,(a+b),2b}/2).

Proof. Consider

α∗ − α̃ =
∆

∆ + ‖C − f ∗‖2
H

− ∆̂

∆̂ + ‖Ĉ − f ∗‖2
H
=

∆‖Ĉ − f ∗‖2
H − ∆̂‖C − f ∗‖2

H
(∆ + ‖C − f ∗‖2

H)(∆̂ + ‖Ĉ − f ∗‖2
H)

=

∆

(
‖Ĉ − f ∗‖2

H − ‖C − f ∗‖2
H

)
+ ‖C − f ∗‖2

H

(
∆ − ∆̂

)
(∆ + ‖C − f ∗‖2

H)(∆̂ + ‖Ĉ − f ∗‖2
H)

=

α∗
(
‖Ĉ − f ∗‖2

H − ‖C − f ∗‖2
H

)
+ (1 − α∗)

(
∆ − ∆̂

)
∆̂ + ‖Ĉ − f ∗‖2

H
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=

α∗
(
‖Ĉ − f ∗‖2

H − ‖C − f ∗‖2
H

)
+ (1 − α∗)

(
∆ − ∆̂

)
∆ + ‖C − f ∗‖2

H −
(
‖C − f ∗‖2

H − ‖Ĉ − f ∗‖2
H

)
+

(
∆̂ − ∆

)
from which we have

|α̃ − α∗ | ≤
α∗

+++‖C − f ∗‖2
H − ‖Ĉ − f ∗‖2

H

+++ + (1 − α∗)
++∆̂ − ∆++

∆ + ‖C − f ∗‖2
H −

+++‖C − f ∗‖2
H − ‖Ĉ − f ∗‖2

H

+++ − ++∆̂ − ∆++ (25)

if

∆ + ‖C − f ∗‖2
H >

+++‖C − f ∗‖2
H − ‖Ĉ − f ∗‖2

H

+++ + ++∆̂ − ∆++ . (26)

(i) Consider

‖Ĉ −C‖2
H

(∗)
≤

[
c1

(
1 + τ

n

) a/2

+ c2

(
1 + τ

n

) (a+1)/2
] 2

(∗∗)
≤ d

(
1 + τ

n

) a
, (27)

for some constant d that doesn’t depend on τ,n and we used (24) in (∗) and assume 1+τ
n

≤ 1 in (∗∗).
Using Lemma A.1 (see the Supplement) for (27) yields ∆ ≤ e1n−a, which implies that,

α∗ =
∆

∆ + ‖C − f ∗‖2
H

≤ ∆

‖C − f ∗‖2
H

≤ e2

na
, (28)

for some positive constants e1,e2 that does not depend on τ and n. Next, |‖C − f ∗‖2
H − ‖Ĉ − f ∗‖2

H | can

be bounded as

| ‖C − f ∗‖2
H − ‖Ĉ − f ∗‖2

H | ≤ ‖Ĉ −C‖2
H + 2 ‖C − f ∗‖H ‖Ĉ −C‖H

(∗)
≤ d

(
1 + τ

n

) a
+ 2 ‖C − f ∗‖H

(
c1

(
1 + τ

n

) a/2

+ c2

(
1 + τ

n

) (a+1)/2
)
≤ f

(
1 + τ

n

) a/2

, (29)

for some positive constant f that does not depend on τ and n, and we used (24) and (27) in (∗) along

with the assumption that n ≥ τ + 1. Also, note that there exists a constant g such that

|∆̂ − ∆| ≤ d1

(
1 + τ

n

) b/2

+ d2

(
1 + τ

n

) (b+1)/2

≤ g

(
1 + τ

n

) b/2

. (30)

If n ≥ max

{
1,

(
4 f

‖C− f ∗ ‖2
H

) 2/a
,

(
4g

‖C− f ∗ ‖2
H

) 2/b}
(1 + τ), the denominator in (25) can be bounded as

∆ + ‖C − f ∗‖2
H −

+++‖C − f ∗‖2
H − ‖Ĉ − f ∗‖2

H

+++ − ++∆̂ − ∆++
≥ ‖C − f ∗‖2

H − f

(
1 + τ

n

) a
2

− g

(
1 + τ

n

) b
2

≥ ‖C − f ∗‖2
H − 1

4
‖C − f ∗‖2

H − 1

4
‖C − f ∗‖2

H ≥ 1

2
‖C − f ∗‖2

H . (31)
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Therefore, using (28)–(31) in (25), we obtain

|α̃ − α∗ | ≤ h

(
1 + τ

n

) min{3a,b}/2

, (32)

where h is a constant that does not depend on τ and n, thereby yielding the result.

(ii) We now bound | ‖Ĉα̃ −C‖H − ‖Ĉα∗ −C‖H | as

| ‖Ĉα̃ −C‖H − ‖Ĉα∗ −C‖H |

≤ ‖Ĉα∗ − Ĉα̃‖H ≤ |α̃ − α∗ |‖Ĉ −C‖H + |α̃ − α∗ | ‖C − f ∗‖H
≤ |α̃ − α∗ |

[
‖Ĉ −C‖H + ‖C − f ∗‖H

]
(32)
≤ h

(
1 + τ

n

) min{3a,b}/2
[
c1

(
1 + τ

n

) a/2

+ c2

(
1 + τ

n

) (a+1)/2

+ ‖C − f ∗‖H

]

≤ p

(
1 + τ

n

) min{3a,b}/2

, (33)

where p is constant that does not depend on τ and n and the result follows.

(iii) ‖Ĉα∗ −C‖H can be bounded as

‖Ĉα∗ −C‖H = ‖(1 − α∗)(Ĉ −C) + α∗ f ∗ − α∗C‖H
≤ (1 − α∗)‖Ĉ −C‖H + α∗ ‖C − f ∗‖H

≤ c1

(
1 + τ

n

) a/2

+ c2

(
1 + τ

n

) (a+1)/2

+

e2

na
‖C − f ∗‖H ≤ q

(
1 + τ

n

) a/2

, (34)

where q is constant that does not depend on τ and n. The result follows from (33) and (34) by noting

that

‖Ĉα̃ −C‖H ≤ ‖Ĉα∗ −C‖H + OP(n−min{3a,b}/2) ≤ OP(n−a/2) + OP(n−min{3a,b}/2)

as n →∞.

(iv) We now bound ‖Ĉα̃ −C‖2
H − ‖Ĉα∗ −C‖2

H as

‖Ĉα̃ −C‖2
H − ‖Ĉα∗ −C‖2

H

=

(
‖Ĉα̃ −C‖H − ‖Ĉα∗ −C‖H

) 2
+ 2‖Ĉα∗ −C‖H

(
‖Ĉα̃ −C‖H − ‖Ĉα∗ −C‖H

)
,

≤
(
p

(
1 + τ

n

) min{3a,b}/2
) 2

+ 2q

(
1 + τ

n

) a/2
(
p

(
1 + τ

n

) min{3a,b}/2
)
≤ s

(
1 + τ

n

) min{4a,a+b,2b}/2

,

where s is a constant that does not depend on τ and n. The result therefore follows by using Lemma A.1

of the Supplement. Finally, note that the assumptions on n and the condition in (26) hold as n →∞.
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5.1. Proof of Theorem 2

Note that

‖Ĉ −C‖H =
���Un

k

[
r(X1, . . . ,Xk ) − E (r(X1, . . . ,Xk ))

] ���
H
.

Using Theorem A.4 of the Supplement on r(X1, . . . ,Xk )−E(r(X1, . . . ,Xk )), we get that with probability

at least 1 − exp(−τ),

‖Ĉ −C‖H ≤ 4β
√

k

(
1 + τ

n

) 1
2

+ 4θk

(
1 + τ

n

)
= c1

(
1 + τ

n

) 1
2

+ c2

(
1 + τ

n

)
, (35)

where c1,c2 > 0 are constants that do not depend on τ and n. Now consider

|∆̂general − ∆|

=

+++++
k∑
i=1

kCi
n−kCk−i
nCk

(
Un

2k−i [κ2k−i(X1, . . . ,X2k−i)] − Un
2k [κ2k (X1, . . . ,X2k )]

)

−
k∑
i=1

kCi
n−kCk−i
nCk

(E [κ2k−i(X1, . . . ,X2k−i)] − E [κ2k (X1, . . . ,X2k )])
+++++

(∗)
≤ ♠,

where we used Vandermonde’s identity in (∗) and

♠ :=

k∑
i=1

kCi
n−kCk−i
nCk

+++++Un
2k−i

[
κ2k−i(X1, . . . ,X2k−i) − E [κ2k−i(X1, . . . ,X2k−i)]

] +++++
+

++++ n−kCk

nCk

− 1

++++
+++++Un

2k

[
κ2k (X1, . . . ,X2k ) − E [κ2k (X1, . . . ,X2k )]

] +++++.
Now applying Theorem A.4 of the Supplement to

κ2k−i(X1, . . . ,X2k−i) − E [κ2k−i(X1, . . . ,X2k−i)]

for each i ∈ {0,1, . . . , k}, we have that with probability at least 1 − (k + 1) exp (−τ),

♠ ≤
k∑
i=1

kCi
n−kCk−i
nCk

[
4βi

√
2k − i

(
1 + τ

n

) 1
2

+ 4θi(2k − i)
(

1 + τ

n

) ]

+

++++ n−kCk

nCk

− 1

++++
[
4β2k

√
2k

(
1 + τ

n

) 1
2

+ 4θ2k (2k)
(

1 + τ

n

) ]

≤ c3

[
√

2k

(
1 + τ

n

) 1
2

+ 2k

(
1 + τ

n

) ] [
k∑
i=1

kCi
n−kCk−i
nCk

+

++++ n−kCk

nCk

− 1

++++
]
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(∗)
= c3

[
√

2k

(
1 + τ

n

) 1
2

+ 2k

(
1 + τ

n

) ] [
1 −

n−kCk

nCk

+

++++ n−kCk

nCk

− 1

++++
]

(∗∗)
= 2c3

[
√

2k

(
1 + τ

n

) 1
2

+ 2k

(
1 + τ

n

) ] [
1 −

n−kCk

nCk

]

(†)
≤ 2c3

[
√

2k

(
1 + τ

n

) 1
2

+ 2k

(
1 + τ

n

) ] [
nk − (n − 2k)k

nk

]

(‡)
≤ 2c3

[
√

2k

(
1 + τ

n

) 1
2

+ 2k

(
1 + τ

n

) ] [
2nk−1k2

nk

]

≤ c4

(
1 + τ

n

) 3/2

+ c5

(
1 + τ

n

) 2

, (36)

where we used Vandermonde’s identity that
∑k

i=0

kCi
n−kCk−i
nCk

= 1 in (∗),
n−kCk
nCk

< 1 in (∗∗), and
n−kCk
nCk

≥
(n−2k)k

nk
in (†). In (‡), we used 0 < b < a =⇒ ak − bk ≤ kak−1(a − b). Now applying Theorem 7 with

a = 1 (see (35)) and b = 3 (see (36)), the result follows.

5.2. Proof of Theorem 3

Using Theorem A.5 of the Supplement on r(X1, . . . ,Xk ) − E(r(X1, . . . ,Xk )) yields that with probability

at least 1 − ã exp (−τ),

‖Ĉ −C‖H ≤ qkk
( τ

na′

) k/2

+Mkk
( τ

na′′

) (k+1)/2

, (37)

where ã,a′ and a′′ are positive constants, and q = (θ + σ2
+ θ2M−1) with σ2

= E‖r(X1, . . . ,Xk )‖2
H −

‖C‖2
H . Therefore,

|∆̂degen − ∆| =
+++++(nCk)−1

[
Un
k

[
κk (X1, . . . ,Xk )

]
− Un

2k

[
κ2k (X1, . . . ,X2k )

] ]

− (nCk)−1
[
E
[
κk (X1, . . . ,Xk )

]
− E

[
κ2k (X1, . . . ,X2k )

] ] +++++
≤

+++++(nCk)−1Un
k

[
κk (X1, . . . ,Xk ) − E [κk (X1, . . . ,Xk )]

] +++++
+

+++++(nCk )−1Un
2k

[
κ2k (X1, . . . ,X2k ) − E [κ2k (X1, . . . ,X2k )]

] +++++
=: ♠.

Now, using Theorem A.4 of the Supplement for

κk (X1, . . . ,Xk ) − E [κk (X1, . . . ,Xk )] and κ2k (X1, . . . ,X2k ) − E [κ2k (X1, . . . ,X2k )] ,
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we obtain that with probability at least 1 − 2e−τ ,

♠ ≤ (nCk)−1

[
4(σ1 +

√
2σ2)

√
k

(
1 + τ

n

) 1
2

+ 4(θ1 + 2θ2)k
(

1 + τ

n

) ]

≤ c1

(
1 + τ

n

) 2k+1
2

+ c2

(
1 + τ

n

) 2k+2
2

, (38)

where c1 and c2 are positive constants that do not depend on τ and n. Now applying Theorem 7 with

a = k (see (37)) and b = 2k + 1 (see (38)) and noting that min{3a,b} = min{3k,2k + 1} = 2k + 1,

min{2b,(a + b),4a} =min{4k + 2,3k + 1,4k} = 3k + 1, yields the result.

5.3. Proof of Theorem 4

Applying Theorem A.4 of the Supplement on r(X1, . . . ,Xk ) − E(r(X1, . . . ,Xk )), yields that with proba-

bility at least 1 − exp(−τ),

‖Ĉ −C‖H ≤ 4σ
√

k

(
1 + τ

n

) 1
2

+ 4θk

(
1 + τ

n

)
≤ c1

(
1 + τ

n

) 1
2

,

where the second inequality holds for n ≥ τ + 1. Hence, it follows from Lemma A.1 of the Supplement

that

∆ = E‖Ĉ −C‖2
H ≤ e1

n
, (39)

for some positive constant e1. Therefore,

|∆ − ∆̂degen |

=

+++++∆ − (nCk )−1
[
Un
k

[
κk(X1, . . . ,Xk)

]
− Un

2k

[
κ2k (X1, . . . ,X2k )

] ] +++++
=

+++++∆ − (nCk )−1σ2
k + (

nCk )−1σ2
k

− (nCk )−1
[
Un
k

[
κk(X1, . . . ,Xk )

]
− Un

2k

[
κ2k (X1, . . . ,X2k )

] ] +++++
≤

+++++∆ − (nCk )−1σ2
k

+++++ + (nCk)−1

+++++Un
k

[
κk (X1, . . . ,Xk ) − E[κk (X1, . . . ,Xk)]

] +++++
+ (nCk )−1

+++++Un
2k

[
κ2k (X1, . . . ,X2k ) − E[κ2k (X1, . . . ,X2k )]

] +++++
=: ♠.

Now, using Theorem A.4 of the Supplement on

κk (X1, . . . ,Xk ) − E [κk (X1, . . . ,Xk )] , and κ2k (X1, . . . ,X2k ) − E [κ2k (X1, . . . ,X2k )] ,
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we obtain that with probability at least 1 − 2e−τ ,

♠ ≤
+++∆ − (nCk)−1σ2

k

+++ + (nCk )−1

[
4σ1

√
k

(
1 + τ

n

) 1
2

+ 4θ1k

(
1 + τ

n

) ]

+ (nCk)−1

[
4σ2

√
2k

(
1 + τ

n

) 1
2

+ 8θ2k

(
1 + τ

n

) ]

≤
+++∆ − (nCk)−1σ2

k

+++ + c′(nCk )−1

(
1 + τ

n

) 1/2

≤
+++∆ − (nCk)−1σ2

k

+++ + c′
(

k

n

) k (
1 + τ

n

) 1/2

≤




c′
(

1

n

) (
1 + τ

n

) 1/2

, k = 1

max {∆,(nCk)−1σ2
k } + c′

(
k

n

) k (
1 + τ

n

) 1/2

, k > 1

≤




c′
(

1 + τ

n

) 3/2

, k = 1

c′′
(

1 + τ

n

)
, k > 1

,

where c′,c′′ > 0 are constants that do not depend on τ and n, and we used (39) in the above inequality.

Now applying Theorem 7 with a = 1 and b = 2 (for k > 1) yields the result.

5.4. Proof of Theorem 5

Define α̂ :=
S2

n

S2

n +‖X̄ ‖2
2

so that µ̌ = (1 − α̂)X̄ . Define W := X̄ ∼ N(µ, σ2

n
I) and U := S2

n
. Consider

E‖ µ̂− µ‖2
2 − E‖ µ̌ − µ‖2

2 = E

[
‖ X̄ − µ‖2

2 − ‖(X̄ − µ) − α̂X̄ ‖2
2

]
= E

[
2α̂

〈
X̄ − µ, X̄

〉
2
− ‖α̂X̄ ‖2

2

]

= E


2

〈
W − µ, UW

U + ‖W ‖2
2

〉
2

−
����� UW

U + ‖W ‖2
2

�����
2

2


. (40)

Note that 〈
W − µ, UW

U + ‖W ‖2
2

〉
2

=

d∑
i=1

(Wi − µi)
(

UWi

U +
∑

i W2
i

)

where Wi ∼ N(µi,σ2/n). By partial integration, we have

E

[
(Wi − µi)

(
UWi

U +
∑

i W2
i

) ]
=

σ2

n
E

[
d

dWi

(
UWi

U +
∑

i W2
i

) ]
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=

σ2

n
E

[
U

U + ‖W ‖2
2

−
2UW2

i

(U + ‖W ‖2
2
)2

]

and therefore

E

[
(W − µ)T

(
UW

U + ‖W ‖2
2

) ]
=

σ2

n
E

[
dU

U + ‖W ‖2
2

−
2U‖W ‖2

2

(U + ‖W ‖2
2
)2

]
. (41)

Using (41) in (40), we have

E‖ µ̂− µ‖2
2 − E‖ µ̌ − µ‖2

2 = E

[
2dσ2U

n(U + ‖W ‖2
2
)
−

4σ2U‖W ‖2
2

n(U + ‖W ‖2
2
)2

−
U2‖W ‖2

2

(U + ‖W ‖2
2
)2

]
. (42)

Note that ‖W ‖2
2
∼ σ2

n
χ2
d
(λ) where λ =

n‖µ ‖2
2

σ2 with χ2
d
(λ) denoting a non-central χ2 distribution with d

degrees of freedom and λ being the non-centrality parameter. Also note that
(n−1)S2

σ2 ∼ χ2
(n−1)d with S2

being independent of W . Define Z :=
n ‖W ‖2

2

σ2 ∼ χ2
d
(λ) and Y :=

n(n−1)U
σ2 ∼ χ2

(n−1)d where Y and Z are

independent. Then (42) reduces to

E‖ µ̂− µ‖2
2 − E‖ µ̌− µ‖2

2 =
σ2

n
E

[
2dY

Y + (n − 1)Z − 4(n − 1)Y Z

(Y + (n − 1)Z)2
− Y2Z

(Y + (n − 1)Z)2

]

=

σ2

n
E

[
(2d − Z)Y2

+Y Z(n − 1)(2d − 4)
(Y + (n − 1)Z)2

]
. (43)

Using the fact that
∫ ∞

0
te−at dt = 1

a2 for a > 0 and employing Fubini’s theorem, we have

E

[
Y Z

(Y + (n − 1)Z)2

]
=

∫ ∞

0

tE
[
Ye−tY

]
E

[
Ze−t(n−1)Z

]
dt (44)

and

E

[
Y2(2d − Z)

(Y + (n − 1)Z)2

]
=

∫ ∞

0

tE
[
Y2e−tY

]
E

[
(2d − Z)e−t(n−1)Z

]
dt . (45)

To compute the above expectations, we require the following: for any t > 0,

• E
[
e−tY

]
= (1 + 2t)−

(n−1)d
2 ,

• E
[
Ye−tY

]
= − d

dt
E

[
e−tY

]
=

(n−1)d
1+2t

E
[
e−tY

]
,

•

E

[
Y2e−tY

]
=

d2

dt2
E

[
e−tY

]
=

(n − 1)d
1 + 2t

(
E

[
Ye−tY

]
+

2E
[
e−tY

]
1 + 2t

)

=

(n − 1)2d2
+ 2(n − 1)d

(1 + 2t)2
E

[
e−tY

]
,

• E
[
e−t(n−1)Z ]

= (1 + 2(n − 1)t)− d
2 exp

(
− λ(n−1)t

1+2(n−1)t

)
,
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•

E

[
Ze−t(n−1)Z

]
= − 1

n − 1

d

dt
E

[
e−t(n−1)Z

]

=

(
d

1 + 2(n − 1)t +
λ

(1 + 2(n − 1)t)2

)
E

[
e−t(n−1)Z

]
.

Therefore, (44) and (45) reduce to

E

[
Y Z

(Y + (n − 1)Z)2

]

=

∫ ∞

0

tE
[
Ye−tY

]
E

[
Ze−t(n−1)Z

]
dt

= (n − 1)d
∫ ∞

0

t

1 + 2t

(
d

1 + 2(n − 1)t +
λ

(1 + 2(n − 1)t)2

)
E

[
e−tY

]
E

[
e−t(n−1)Z

]
dt

= d

∫ ∞

0

a

n − 1 + 2a

(
d

1 + 2a
+

λ

(1 + 2a)2

)
E

[
e−

aY
n−1

]
E

[
e−aZ

]
da (46)

and

E

[
Y2(2d − Z)

(Y + (n − 1)Z)2

]
=

∫ ∞

0

tE
[
Y2e−tY

]
E

[
(2d − Z)e−t(n−1)Z

]
dt

= d(n − 1)((n − 1)d + 2)
∫ ∞

0

t

(1 + 2t)2

(
2d − d

1 + 2(n − 1)t −
λ

(1 + 2(n − 1)t)2

)

×E
[
e−tY

]
E

[
e−t(n−1)Z

]
dt

= d(n − 1)((n − 1)d + 2)
∫ ∞

0

a

(n − 1 + 2a)2

(
2d − d

1 + 2a
− λ

(1 + 2a)2

)

×E
[
e−

aY
n−1

]
E

[
e−aZ

]
da. (47)

Using (46) and (47) in (43), we obtain

E‖ µ̂− µ‖2
2 − E‖ µ̌ − µ‖2

2

=

d(n − 1)σ2

n

[ ∫ ∞

0

(
((n − 1)d + 2)a
(2a + n − 1)2

(
2d − d

1 + 2a
− λ

(1 + 2a)2

)

+

(2d − 4)a
2a + n − 1

(
d

1 + 2a
+

λ

(1 + 2a)2

) )
E

[
e−

aY
n−1

]
E

[
e−aZ

]
da

]

=

∫ ∞

0

d(n − 1)σ2a

n(2a + n − 1)2
B(a,λ)(1 + 2a)− d

2
−2
E

[
e−

aY
n−1

]
da,

with

B(a,λ) :=
(
(nd − d + 2)

(
2d(1 + 2a)2 − d(1 + 2a) − λ

)
+ (2d − 4)(2a + n − 1)(d + 2ad + λ)

)
e−

aλ
1+2a
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=

(
(nd − d + 2)(d(8a2

+ 6a + 1) − λ) + (2d − 4)(2a + n − 1)(d + 2ad + λ)
)

e−
aλ

1+2a

=: (θ1 + θ2λ)e−
aλ

1+2a ,

where for all a ∈ [0,∞),

θ1 := d(nd − d + 2)(8a2
+ 6a + 1) + d(2d − 4)(2a + n − 1)(1 + 2a) > 0 for d ≥ 2,

and

θ2 := (2d − 4)(2a + n − 1) − (n − 1)d − 2 = 4a(d − 2) + (n − 1)(d − 4) − 2 ≥ 0

if d ≥ supa
8a+2+4(n−1)

4a+n−1
= 4+ 2

n−1
. This means for d ≥ 4+ 2

n−1
, n ≥ 2, B(a,λ) > 0 for all λ and a ∈ [0,∞)

and the result follows.

5.5. Proof of Theorem 6

Proceeding as in the proof of Theorem 5, we obtain

E‖ µ̂ − µ‖2
2 − E‖ µ̌c − µ‖2

2 =
cσ2

n
E

[
(2d − cZ)Y2

+Y Z(n − 1)(2d − 4)
(Y + (n − 1)Z)2

]

=

∫ ∞

0

dc(n − 1)σ2a

n(2a + n − 1)2
A(a,λ)(1 + 2a)− d

2
−2
E

[
e−

aY
n−1

]
da,

where

A(a,λ) :=
(
(nd − d + 2)

(
2d(1 + 2a)2 − cd(1 + 2a) − cλ

)
+ (2d − 4)(2a + n − 1)(d + 2ad + λ)

)
e−

aλ
1+2a

=

(
(nd − d + 2)(d(8a2

+ 8a − 2ac + 2 − c) − cλ) + (2d − 4)(2a + n − 1)(d + 2ad + λ)
)

e−
aλ

1+2a

=: (θ3 + θ4λ)e−
aλ

1+2a

with

θ3 := d(nd − d + 2)(8a2
+ 8a − 2ac + 2 − c) + d(2d − 4)(2a + n − 1)(1 + 2a) > 0

for d ≥ 2, c ∈ [0,2) and all a ∈ [0,∞), and

θ4 := (2d − 4)(2a + n − 1) − (n − 1)dc − 2c = 4a(d − 2) + (n − 1)(2d − 4 − dc) − 2c ≥ 0

for d ≥ 4
2−c +

2c
(n−1)(2−c) , n ≥ 2, c ∈ (0,2) and all a ∈ [0,∞). This means, that for the choice of n, c, and

d in the statement of Theorem 6, the result follows.
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