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Abstract. Topological data analysis has emerged as a powerful tool for ex-
tracting the metric, geometric and topological features underlying the data
as a multi-resolution summary statistic, and has found applications in several
areas where data arises from complex sources. In this paper, we examine the
use of topological summary statistics through the lens of statistical inference.
We investigate necessary and sufficient conditions under which valid statistical
inference is possible using topological summary statistics. Additionally, we pro-
vide examples of models that demonstrate invariance with respect to topological
summaries.

1. Introduction. Let Xn = {X1,X2, . . . ,Xn} be a collection of points observed
i.i.d. at random from a probability distribution P on X ⊆ Rd. The core objective
of the statistical inference is to employ a test statistic T(Xn) to infer meaningful
information underlying the data-generating mechanism P. A good choice of the
statistic T(·) sheds light on some population quantity of interest, ψ(P), which
encodes the essential information underlying the sample Xn. For instance, choosing
T(Xn) = (X1+X2+· · ·+Xn)/n to be the sample mean sheds light on the population
mean ψ(P) =

∫
X
x · dP(x). In particular, for two classes of probability distributions

P0 and P1, a good choice of T(·) for ψ(P) enables a practitioner to test hypotheses
H0 : P ∈ P0 vs. H1 : P ∈ P1 related to the data generating mechanism and to
perform valid statistical inference.

Recent years have witnessed the availability of high-dimensional data from uncon-
ventional sources such as text and images, and it has become increasingly important
to employ statistical summaries that encode the subtle features that underlie the
data. To this end, topological data analysis (TDA) has emerged as an important tool
for extracting geometric and topological features underlying the data. Summary sta-
tistics obtained using TDA are particularly attractive since they are multi-resolution
summaries that encode the metric, geometric and topological features underlying
the data. Therefore, topological summary statistics, e.g., Betti numbers [12], Euler
characteristic curves [33], persistence functions [43] and persistence diagrams [2],

2020 Mathematics Subject Classification. Primary: 62R40, 62F30; Secondary: 94A16.
Key words and phrases. Statistical invariance, topological data analysis, Betti numbers.
∗Corresponding author: Siddharth Vishwanath.

1



2 S. VISHWANATH, K. FUKUMIZU, S. KURIKI AND B. K. SRIPERUMBUDUR

have been employed in statistical tests for data arising from complex sources such as
neuroscience [11], cosmology [1] and proteomics [20]. Despite the widespread adop-
tion of TDA in data-analysis pipelines, a formal framework for statistical inference
using these statistics is still limited.

More precisely, topological summary statistics, represented as T : Xn → S, are
measurable mappings (w.r.t. P⊗n) such that the data Xn is mapped to an element
T(Xn) ∈ S in a suitable topological summary space. However, several topological
summaries are challenging to analyze in a formal statistical context owing to the
unusual mathematical structure of the summary space S. For example, the summary
space for persistence diagrams is an Alexandrov space with non-negative curvature
bounded from below [34]. Working with topological representations on such summary
spaces S are not amenable for employing classical tools of statistical inference owing
to the bounded curvature of geodesics, non-uniqueness of Fréchet means, and absence
of any Hilbertian structure [13, 47].

In contrast, well-behaved topological summaries1—such as Betti numbers and
persistent Betti numbers—have been studied extensively in a probabilistic context.
Based on the central ideas from Penrose [38], the large sample behavior of T(Xn)
branches into three qualitatively different regimes: the sparse, thermodynamic and
dense regimes which depend on the resolution at which the observations are examined
relative to the number of samples n → ∞. In particular, recent advances in the
discipline have established the existence of limiting quantities µ(P) and Σ(P) such
that

T(Xn)

n

p→ µ(P), and
T(Xn)− µ(P)√

n

d
 N

(
0,Σ(P)

)
,

as n→ ∞ under a suitable asymptotic regime. For example, the law of large numbers
and central limit theorem for the Betti numbers of random geometric complexes
is established in [27, 28, 49, 50, 22, 46, 7, 5]. Similar results for the persistent
Betti numbers of random geometric complexes are established in [26, 31, 10]. In
a similar vein, by regarding the topological summaries as stochastic processes,
analogous convergence results also hold in the Skorohod metric [45, 37, 30]. These
results establish that studying fundamental topological quantities in a random
setting guarantee stability in a probabilistic sense, and pave the way to more
detailed statistical investigation. In particular, methods for incorporating topological
summaries in a formal statistical inference setting are described in [18, 3, 40, 14].
Notwithstanding, it is tempting to ask:

When are these topological summaries T(Xn) meaningful for statistical inference?
The central objective of this work is to investigate a variant of this question: when

are the topological summaries insufficient for statistical inference? To this end, we
characterize conditions under which the limiting distribution of T(Xn) fails to be
injective.

1.1. Contributions. In the deterministic setting, even without imposing the proba-
bilistic structure, the injectivity of metric spaces via topological transforms is largely
an open problem [36]. Therefore, we make a foray into this question using a slightly
simplified approach. Given Xn sampled i.i.d. from P where supp(P) = X ⊂ RD and
dim(X ) = d ≤ D, and for 0 ≤ s, t ≤ ∞ the topological summary we investigate are

1e.g., when S = Rk, or, more generally, when S is a Hilbert space or a Banach space.



ON THE LIMITS OF TOPOLOGICAL DATA ANALYSIS FOR STATISTICAL INFERENCE 3

the persistent Betti numbers, βs,tk
(
K
(
n1/dXn

))
for each 0 ≤ k ≤ d, i.e.,

T(Xn) =
(
βs,t0

(
K(n1/dXn)

)
, βs,t1

(
K(n1/dXn)

)
, . . . , βs,td

(
K(n1/dXn)

))
∈ Zd+,

where, as outlined in Section 2, K(n1/dXn) corresponds to the Čech complex con-
structed using Xn in the thermodynamic regime. Examining the behavior of the
Betti numbers collectively serves as a stepping-stone to understanding the behavior
of more complex topological invariants in the context of persistent homology.

Although the exact sampling distribution for T(Xn) is difficult to characterize,
we can investigate its usefulness in the following asymptotic sense. If T(P) =
(µ(P),Σ(P)) characterizes the limiting distribution of T(Xn) i.e.,

n−1
T(Xn)

p→ µ(P), and n−1/2
(
T(Xn)− µ(P)

) d
 N

(
0,Σ(P)

)
,

in this paper we investigate conditions under which the map P 7→ T(P) fails to
be injective, i.e., for two different probability distributions P 6= Q, we have that
T(P) = T(Q).

At this point, it becomes instructive to consider a class of distributions P =
{Pθ : θ ∈ Θ} indexed by a parameter set Θ. A statistic T(Xn(θ)) is said to be suffi-
cient for the model P when the probabilistic and statistical information underlying
the observations Xn(θ) ∼ Pθ is faithfully encoded in the statistic T(Xn(θ)), and
plays a central role in statistical inference2. The injectivity of T is closely related
to the notion of sufficiency of T. In particular, when injectivity fails, the limiting
distribution of T(Xn(θ)) ultimately provides no information about the parameter θ
underlying Xn(θ). This qualitative behavior, which is complementary to the notion
of sufficiency, is called ancillarity ; our results can be viewed as characterizing condi-
tions for P under which the topological summary statistic T(Xn(θ)) is asymptotically
ancillary for the model P.

Our main contributions are the following:

(I) We introduce the notion of β-equivalence which characterizes distributions for
which the mapping T fails to be injective. We examine conditions under which
a parametric class of distributions P = {Pθ : θ ∈ Θ} admits β-equivalence,
by introducing an alternate equivalence relationship, called F-equivalence,
whereby distributions satisfying F-equivalence are also guaranteed to sat-
isfy β-equivalence (Lemma 3.5). As a consequence, when P and Q admit
F-equivalence, any statistical test for distinguishing between Xn ∼ P and
Ym ∼ Q using T(Xn),T(Ym) has vanishing power as n,m→ ∞.

(II) By imposing an algebraic structure on P, and using the notion of group
maximal invariance [48, 15], in Theorem 4.5, we provide the necessary and
sufficient conditions for the family P to admit F-equivalence. We illustrate
this result through some supporting examples in Section 4.

(III) Next, in Theorem 5.4 we relax the algebraic assumptions on P and investigate
sufficient conditions for F-equivalence when the underlying space X admits a
smooth fiber bundle structure. In contrast to (II), our method here is more
constructive and is illustrated through several examples in Section 5.

(IV) Lastly, in Theorem 5.14, we present a necessary and sufficient condition for
F-equivalence to hold based on the geometry of the score function ∇θ log fθ(x).

2Specifically, T(Xn) is sufficient for the model P if the joint distribution of Xn(θ) admits the
factorization fXn (x1:n; θ) = h(x) · g(θ,T(x1:n))
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In contrast to (II) and (III), this result provides a simple method to verify if a
given class of distributions, P, admits F-equivalence.

The rest of the paper is organized as follows. In Section 2, we provide a background
on the probabilistic, topological and statistical tools needed. Sections 3, 4 and 5
contain the main results, and missing proofs are collected to Section 6. In Section 7
we discuss possible extensions, and collect the supplementary results in the Appendix.

2. Background. In this section, we provide background on probabilistic, topologi-
cal, and statistical tools needed for the rest of the paper. We use X,Y ,Z to denote
random variables from a probability space (Ω,F , π) taking values in a measurable
space (X ,B(X )), and we use X ⊥ Y to indicate that X and Y are independent.
We assume that the space on which the random values are observed, X is sufficiently
regular, i.e., either X ⊂ Rd contains an open subset of Rd, or X is a compact
C1-manifold of dimension d < D. For all probability distributions P, defined on
X , we assume the existence of a Radon-Nikodym derivative f = dP/dµ w.r.t. a
canonical choice of the base measure on µ on X , e.g., the d-dimensional Lebesgue
measure, denoted λd, when X contains an open subset of Rd. We further assume
that f ∈ Lp(X , µ) for all 1 ≤ p <∞. The Jacobian of a differentiable function f is
denoted by Df and ‖Df‖ •

= |det(Df)| denotes the absolute value of its determinant.

2.1. Betti numbers and persistent homology. Given a collection of obser-
vations Xn = {x1,x2, . . . ,xn} in a metric space (X , d), and for a given spatial
resolution r > 0, the topology underlying the points at resolution r is encoded in a
simplicial complex K(Xn, r) ⊆ 2Xn . The simplicial complex can be constructed in
several ways (see, for example, [16]). In particular, the Čech complex is given by

K(Xn, r)
•

=

{
σ ⊆ Xn :

⋂

x∈σ

B(x, r) 6= ∅

}
, (1)

where B(x, r) =
{
y ∈ RD : ‖x− y‖ < r

}
. For 0 ≤ k ≤ d, the kth-homology of a

simplicial complex K, given by Hk(K) is an algebraic object encoding its topology
as a vector-space (over a fixed field k, typically taken to be Z2; [25]). Using the
Nerve lemma [8], Hk(K(Xn, r)) is isomorphic to the homology of its union of r-balls,
Hk(

⋃n
i=1B(xi, r)). The kth-Betti number is defined as

βk(K(Xn, r))
•

= dim(Hk(K(Xn, r))).

It counts the number of k-dimensional voids or non-trivial k–cycles in K(Xn, r).
The ordered sequence {K(Xn, r)}r>0 forms a filtration, encoding the evolution of
topological features over a spectrum of resolutions. For 0 < s < t,

⋃n
i=1B(xi, s) ⊂⋃n

i=1B(xi, t) and the simplicial complex K(Xn, s) is a sub-simplicial complex of
K(Xn, t). Their homology groups are associated with the induced linear map

ιts : Hk(K(Xn, s)) → Hk(K(Xn, t))

and the kth order (r, s)-persistent Betti number, given by

βk(K(Xn, s, t)) = rank
(
ιts
)
,

counts the number of non-trivial cycles which are born at or before s and have a
death after t. The kth-persistence diagram, denoted by dgmk(Xn), is defined as the
collection {(bi, di)}i of birth-death pairs associated with the non-trivial cycles from
the filtration. We refer the reader to [25, 16] for a comprehensive introduction.





6 S. VISHWANATH, K. FUKUMIZU, S. KURIKI AND B. K. SRIPERUMBUDUR

3. Injectivity of T(P), β-equivalence and F-equivalence. We begin by de-
scribing the setting in which we examine injectivity. Let Xn = {X1,X2, . . . ,Xn}
be sampled i.i.d. from a probability distribution P with density f on X ⊆ RD. The
topological summary we are interested in is the collection of persistent Betti numbers
for the random Čech complexes in the thermodynamic regime,

T(Xn)
•

=
(
βs,t0 (K(n1/dXn)), β

s,t
1 (K(n1/dXn)), . . . , β

s,t
d (K(n1/dXn))

)
,

for 0 ≤ s < t. The thermodynamic limit for each βk(K(Xn, rn)), 0 ≤ k ≤ d has been
established in [28, 50, 46, 22, 31, 10]. In particular, we rely on the following charac-
terization of the thermodynamic limit found in [31, Proposition 3.1 & Theorem 4.5]
which follows from a slight restatement of the conditions in [22, Theorem 1.1].

Proposition 3.1 ([22, Theorem 1.1]; [31, Proposition 3.1 & Theorem 4.5]). Let
Xn ⊂ X sampled i.i.d. from P with density f , such that f ∈ Lp(µ,X ) for all
1 ≤ p < ∞. For fixed 0 ≤ s < t ≤ ∞, there exist fixed functions γk, ςk depending
only on k such that

lim
n→∞

βs,tk
(
K(n1/dXn)

)

n

•

= µk(P; s, t) =

∫

X

γk

(
f(x)1/ds, f(x)1/dt

)
f(x)dx,

and

βs,tk
(
K(n1/dXn)

)
− µk(P; s, t)√

n

d
 N (0, σ2

k(s, t)),

where σ2
k(s, t)

•

=
∫
X
ςk(f(x)

1/ds, f(x)1/dt)f(x)dx.

Remark 3.2. While we focus on Betti numbers associated with random Čech
complexes in the thermodynamic regime, as noted in [49, Section 1.3], the results in
this paper will extend to the Vietoris-Rips, alpha and witness complexes as well. For
example, the probabilistic results in [22, Theorem 1.1] and [46, Theorem 3.3] hinge
on establishing moment bounds using the topological additivity property in [22,
Lemma 2.2] and [46, Lemma 2.1] respectively—which extend to the aforementioned
simplicial complexes. In particular, some general conditions an abstract simplicial
complex needs to satisfy for the results to hold are described in [40, Section 4.2].

A key observation is to note that the limiting quantities in Proposition 3.1 can
equivalently be written as the statistical functionals

µk(P; s, t)
•

=

∫

X

γk

(
f(x)1/ds, f(x)1/dt

)
f(x)dx,

σ2
k(P; s, t)

•

=

∫

X

ςk(f(x)
1/ds, f(x)1/dt)f(x)dx,

where f is the density associated with P. Therefore, the thermodynamic
limit, βk(P; s, t)

•

=
(
µk(P; s, t), σ

2
k(P; s, t)

)
, encodes the limiting behavior of

n−1/2βs,tk (K(n1/dXn)).
With this background, we define the notion of βk-equivalence under which two

distributions P,Q admit the same thermodynamic limit βk(P; s, t) for all 0 ≤ s < t.
We are interested in families of distributions which admit βk-equivalence for each k,
i.e., βk(P; s, t) = βk(Q; s, t) for each k ≥ 0. We call such a family of distributions
β-equivalent.
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Definition 3.3 (β-equivalence). Two distributions P,Q are said to admit βk-
equivalence if βk(P; s, t) = βk(Q; s, t) for all 0 ≤ s < t. Furthermore, P and Q

are said to admit β-equivalence, denoted P
β
∼ Q, if P and Q admit βk-equivalence

for all k ≥ 0. Moreover, a family of distributions P admits β-equivalence if P
β
∼ Q

for all P,Q ∈ P.

Establishing β-equivalence for distributions directly is infeasible because the exact
forms of the quantities γk and ςk, as described in Proposition 3.1, are typically
unknown. To circumvent this challenge, we introduce an alternative equivalence,
termed F-equivalence.

Definition 3.4 (F-equivalence). Consider two probability distributions P,Q with
probability density functions f and g, respectively. Let X ∼ f and Y ∼ g be two
random variables with distribution P and Q, respectively. Then, P and Q are said
to be F-equivalent, denoted P

F
∼ Q (equivalently, f F

∼ g) if f(X)
d
= g(Y ). A family

of distributions P is said to admit F-equivalence if P F
∼ Q for all P,Q ∈ P.

The following result establishes the relationship between distributions that admit
F-equivalence and those that admit β-equivalence.

Lemma 3.5. If P is a family of probability distributions that admit F-equivalence,
then P also admits β-equivalence.

In other words, F-equivalence is a sufficient condition for distributions to admit
β-equivalence, i.e., distributions satisfying F-equivalence are also guaranteed to
satisfy β-equivalence.

Remark 3.6. We make the following observations regarding distributions which
admit F-equivalence.
(i) Let P(Θ) = {Pθ : θ ∈ Θ} be a parametric family of distributions. A statistic
T(Xn) is an ancillary statistic for the model P(Θ) if the distribution of T(Xn)
(w.r.t. P⊗n

θ ) does not depend on θ. In a similar vein, T(Xn) is approximately
ancillary for the model if the limiting distribution T(Pθ) does not depend on θ [42,
Chapter 6.6]. This provides the following interpretation of F-equivalence: if P(Θ)
admits F-equivalence, then the topological summaries are approximately ancillary
statistics for the model.

Given a fixed model P(Θ), in general, there are no constructive techniques for
determining ancillary statistics [32]. Our objective here is, however, somewhat
complementary; given a fixed statistic T(Xn), we investigate conditions under which
the model P(Θ) admits T (Xn) as an approximate ancillary statistic.

(ii) Notably, if we are given observations Xn(θ) ∼ Pθ from a β-equivalent family
P(Θ), any level-α hypothesis test for H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1 with Θ0 ∩Θ1 = ∅

using T(Xn) as a test statistic will have negligible power. This is a simple consequence
of the fact that, in the limit, for any rejection region B ∈ B(Rd),

P
H1

(
T(Xn) ∈ B

)
≤ P

H0

(
T(Xn) ∈ B

)
+
∣∣∣PH1

(
T(Xn) ∈ B

)
− P

H0

(
T(Xn) ∈ B

)∣∣∣
≤ α+ o(1),

where the last inequality follows from the fact that the α is the fixed type-I error
rate and the second term follows from the fact that, due to F-equivalence, as n→ ∞
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the limiting distributions of T(Xn) under the null and alternate hypothesis are the

same, i.e., T(Pθ0)
d
= T(Pθ1) for all θ0 ∈ Θ0 and θ1 ∈ Θ1.

We, however, emphasize that the approximate ancillarity of topological summaries
T(Xn) for such models does not invalidate their usefulness in statistical inference;
it only limits their ability to be used as the primary test statistic when the model
admits F-equivalence. In fact, ancillary statistics play a pivotal role in deriving
efficient and optimal testing procedures in the framework of conditional inference
[17, 21].

(iii) Studying injectivity for Betti numbers collectively serves as a stepping-stone to
understanding the behavior of several other topological invariants, e.g., the Euler
characteristic is an important topological invariant and is given by the alternating
sum of Betti numbers,

χ(K(Xn, r))
•

=

d∑

k=0

(−1)kβk(K(Xn, r)). (2)

Unlike Betti numbers, the asymptotic behavior of the Euler characteristic of a
random Čech complex exhibits interesting phenomena only in the thermodynamic
regime [5, Corollary 4.2], i.e.,

Tχ(Xn) = n−1/2χ
(
K(Xn, tn

−1/d)
)
.

By noting that βk(K(Xn, tn
−1/d)) = βt,tk (K(n1/dXn)) in Eq. (2) and invoking the

continuous mapping theorem, it is easy to see that families of distributions which ad-
mit F-equivalence in the thermodynamic regime will also admit identical asymptotic
behavior of the Euler characteristic. In particular, this shows that the goodness-of-fit
test proposed in [14] will fail to distinguish between β-equivalent point processes.

(iv) Furthermore, note that the persistence diagram, which (informally) is given by

dgmk(n
1/dXn)

•

=
{
(bi, di) : ∃k-dim feature with birth time bi & death time di > bi

}
,

can be represented by a locally finite Radon measure ([26, 13])

Ψ[dgm(n1/dXn)] =
∑

(u,v)∈dgmk(n
1/dXn)

δ(u,v).

Denoting by Bs,t = [0, s]× [t,∞) the rectangular set in the upper-left half-plane,
the persistent Betti numbers are equivalently given by

βs,tk (K(n1/dXn)) =
〈
✶(Bs,t), dgmk(n

1/dXn)
〉

=

∫

0≤u<v≤∞

✶
(
(u, v) ∈ Bs,t

)
dΨ
[
dgm(n1/dXn)

]
(u, v).

As a direct consequence, F-equivalence also implies that the distribution of
〈φ, dgmk(n

1/dXn)〉 is the same for all P ∈ P and for all piecewise constant functions
φ(·) on the space of persistence diagrams.

We conclude this section with a numerical illustration to demonstrate the topo-
logical inference in a family of distributions admitting F-equivalence (and, thereby,
also β-equivalence).
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The 1st order (normalized) Betti curves r 7→ β1(K(Xn, r))/n, in Figure 2 (C), show
that that their topological summaries are almost indistinguishable.

In Figure 3 (A), for k = 20 random parametrizations {θi : 1 ≤ i ≤ k} of
fθ, we plot the Betti curves curvei : r 7→ β1(Xn(θi), r)/n for Xn(θi) when
n ∈ {1000, 5000, 10000}. For fixed n, the (pointwise) mean Betti curve for the
k individual curves is highlighted in bold. The plot shows that as the sample
size n increases, the individual curves are harder to distinguish, and, shed light
on the indistinguishability of the parameters in the asymptotic setting. In
addition, the vertical dashed line in Figure 3 (A) highlights the region of maximum
variability, which was empirically observed to correspond to rn = 20× n−1/2 in the
thermodynamic regime.

To further investigate this region, we choose k = 3 random parametrizations fθi

for i ∈ {1, 2, 3}. For n ranging from 1, 000 to 20, 000, and for each combination of
n and θi we generate 30 realizations of the samples from fθi , i.e., X(j)

n (θi) for j ∈
{1, 2, . . . , 30}, and compute their normalized Betti numbers in the thermodynamic
regime, b(n, i, j) := β1(K(X

(j)
n (θi), rn))/n, with rn = 20×n−1/2. Figure 3 (B) shows

the plot of n vs. b(n, i, j) for each combination of i and j. For each fixed θi, the
mean curve is highlighted in a bold dotted line with the shaded region illustrating
one standard deviation. The figure shows that the topological summaries, in this
example, are insufficient to distinguish the three parameters in a formal statistical
setting. The accompanying code for reproducing the experiments is available at
https://github.com/sidv23/invariance. ♦

4. F-equivalence I: Algebraic perspective. Having introduced the notion of
F-equivalence, and discussed its implications in the preceding section, a natural
question arises: when does a family of distributions admit F-equivalence? In this
section, we impose an algebraic structure on the parametric model P(Θ) in order to
provide a general template for characterizing distributions that admit F-equivalence.
We begin by motivating the choice of imposing an algebraic structure by means of
the following prototypical example.

Example 4.1 (Location and scale families). For X = Rd and a fixed
density function f0 on Rd, consider the location family of distributions,
Ploc =

{
fθ(x) = f0(x− θ) : θ ∈ Rd

}
, if Xθ ∼ fθ, by a standard transfor-

mation of random variables it follows that (Xθ − θ)
d
= X0 ∼ f0. Therefore,

fθ(Xθ) = f0(Xθ − θ)
d
= f0(X0), which does not depend on θ. It follows that Ploc

admits F-equivalence.
However, the scale family of distributions, Pscale = {gθ(x) : θ ∈ R+}, where

gθ(x) = θ−1f1(x/θ) for a fixed density function f1, does not admit F-equivalence.

If Y θ ∼ gθ, then Y θ/θ
d
= Y 1 ∼ f1. But, the distribution of gθ(Y θ) is the same as

the distribution of θ−1f1(Y 1), which clearly depends on θ ∈ R+. Therefore, Pscale
does not admit F-equivalence. ♦

It may be argued that it is natural to expect topological invariants to be insensitive
to translations but sensitive to scaling and dilation. The next example illustrates a
simple family of distributions which admit F-equivalence.

Example 4.2 (Motivating example). Let X = [0, 1]2 and Θ = [0, 2π], consider the
family of distributions P(Θ) = {fθ : θ ∈ Θ} given by

fθ(x, y) =
(
cos θ · Φ−1(x) + sin θ · Φ−1(y)

)2
✶((x, y) ∈ X ),
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maximal invariants for a group G are unique up to injective transformations. The
relationship between a G-invariant function and G-maximal invariance is described
in the following result.

Proposition 4.4 ([15]). Suppose T : X → T is G-maximal invariant. A function
φ : X → Y is G-invariant if and only if there exists κ : T → Y such that φ = κ ◦ T .

If Ψ : X → Y is a surjective function taking elements from X to the space Y,
then the action of g ∈ G on elements in X induces an action on elements in Y via Ψ.
The induced action of G on Y is given by gy •

= Ψ(gx) for every x ∈ Ψ−1(y). This
is well-defined whenever Ψ(x1) = Ψ(x2) implies that Ψ(gx1) = Ψ(gx2) for each
g ∈ G. We say that Ψ : X → Y is G-compatible when the induced action of G on Y
is well-defined.

With this background, let P be a fixed distribution on X and X ∼ P. The
action of an element g ∈ G on X induces a transformation on X to a new random
variable gX taking values in (gX ,B(gX )). With a slight abuse of notation, let g#P
denote the distribution of gX. If the elements of G are indexed by a parameter
θ ∈ Θ, i.e., G(Θ) = {gθ : θ ∈ Θ}, then the action of G on X induces a family
of distributions P(Θ) =

{
Pθ = gθ#P : θ ∈ Θ

}
. The following result establishes

necessary and sufficient conditions for P(Θ) to admit F-equivalence for a wide class
of distributions.

Theorem 4.5 (Group Invariance). Suppose Ψ : X → Y is differentiable and bijective,
G(Θ) is a C1-group of isometries acting on Y, and T : Y → T is G(Θ)-maximal
invariant. Define the family of distributions P(Θ) = {fθ : θ ∈ Θ} on X by

fθ(x) = φ(gθ ◦Ψ(x)),

where gθ ∈ G(Θ) and φ : X → R≥0 is some function which ensures that fθ is a valid
density. Then:

(i) P(Θ) admits F-equivalence if and only if there exists ζ : T → R such that

det
(
DΨ−1(y)

)
= ζ(T (y)).

(ii) If G(Θ) = ×mi=1 Gi(Θi) where Θ = Θ1 ×Θ2 × · · · ×Θm, then P(Θ) admits
F-equivalence if and only if there exists a sequence of Gi(Θi)-compatible functions
Ti : Yi−1 → Yi with Y0 = Y and a function ζ : Ym → R such that each Ti is
Gi(Θi)-maximal invariant and

det
(
DΨ−1(y)

)
= ζ(Tm ◦ Tm−1 ◦ · · · ◦ T1(y)).

We defer the proof to Section 6.2 and illustrate some examples of Theorem 4.5 in
the remainder of the section. We begin by illustrating a multivariate generalization
of Example 4.2 in the context of Theorem 4.5.

Example 4.6. Let ξ ∼ F be random variable on R with density f(x) = F ′(x) such
that E(ξ) = 0 and E(ξ2) = 1. For X = [0, 1]

d and Θ ∈ Sd−1, let P(Θ) = {fθ : θ ∈ Θ}
be given by

fθ(x) =
(
θ⊤F−1(x)

)2
✶(x ∈ X ), (4)

where, for brevity, F−1(x)
•

=
(
F−1(x1), F

−1(x2), . . . , F
−1(xd)

)⊤ ∈ Rd is the “vector-
ized” inverse CDF of F . Then, the family of distributions P(Θ) admits F-equivalence
if and only if ξ ∼ N (0, 1).
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First note that fθ is a well-defined density. To see this, taking y = F−1(x), we
have
∫

X

fθ(x)dx =

∫

Rd

(θ⊤y)2
d∏

i=1

f(yi) dy

=

d∑

j=1

d∑

k=1

∫

Rd

θjθkyjyk

d∏

i=1

f(yi) dy

=

d∑

j=1

∫

Rd

θ2jy
2
j

d∏

i=1

f(yi) dy +
∑

1≤j<k≤d

∫

Rd

2 · θjθkyjyk
d∏

i=1

f(yi) dy

(i)
=

d∑

j=1

θ2j + 0 = 1,

where (i) uses the fact that E(ξ) = 0 and E(ξ2) = 1.
Let G = SO(d) =

{
gθ ∈ GL(R, d) : g−1

θ = g⊤θ , g
⊤
θ e1 = θ ∈ Sd−1

}
be the group of

rotations on Y = Rd where e1 = (1, 0, . . . , 0)⊤ ∈ Rd. The function T (y) = ‖y‖2 is
G-maximal invariant since T (y1) = T (y2) if and only if y2 = gθy1 for some gθ ∈ G.
As per Theorem 4.5, Eq. (4) is equivalently written as fθ(x) = φ(gθ ◦Ψ(x)) where

Ψ(x) = F−1(x), and φ(y) = (y⊤e1)
2.

The Jacobian for Ψ−1 is given by
∥∥DΨ−1(y)

∥∥ =
∏n
i=1 f(yi). From Theorem 4.5 it

follows that P(Θ) admits F-equivalence if and only if there exists some function ζd :
R+ → R+, which may implicitly depend on d, such that

∏n
i=1 f(yi) = ζd(‖y‖2). We

show, using Lemma A.1 in Appendix A, that this is satisfied only when ξ ∼ N (0, 1).
When d = 2, this recovers the family of distributions illustrated in Example 4.2. ♦

To illustrate a family of distributions generated by a subgroup of transformations,
consider the following variant of Example 4.6.

Example 4.7. For p+ q = d, consider G = SO(p) × SO(q) acting as a subgroup
of SO(d) on Y = Rd, i.e., for every gθ ∈ G it follows that g⊤θ e1 = θp ⊕ θq where
θp ∈ Sp−1 and θq ∈ Sq−1. Let Φ

−1
p : [0, 1]p → Rp and Φ

−1
q : [0, 1]q → Rq be

the “vectorized” inverse CDFs of N (0, σ2
p) and N (0, σ2

q). For X = [0, 1]d, consider
P(Θ) =

{
fθ : θ ∈ Sp−1 × Sq−1

}
given by

fθ(x) = κ(p, q)
(
θ⊤p Φ

−1
p (xp) + θ⊤q Φ

−1
q (xq)

)2
✶(xp ⊕ xq ∈ X ), (5)

where x = xp ⊕ xq and κ(p, q) is a fixed normalizing constant free of θ. As before,
fθ(x) = φ(gθ ◦Ψ(x)) where

Ψ(x) =
(
Φ

−1
p (xp),Φ

−1
q (xq)

)
,

and

∥∥DΨ
−1(y)

∥∥ =
1

(2π)d/2σppσ
q
q
exp

(
−
∥∥yp

∥∥2

2σ2
p

−
∥∥yq

∥∥2

2σ2
q

)
.

In the context of Theorem 4.5, let Y1 = Rp+2 and Y2 = R2, and consider T1 : Y 7→ Y1

and T2 : Y1 7→ Y2 given by

T1 : yp ⊕ yq 7→ yp ⊕
∥∥yq

∥∥2, and T2 : yp ⊕ z 7→
∥∥yp

∥∥2 ⊕ z.
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Clearly, T1 is SO(q)-maximal invariant and T2 is a maximal invariant w.r.t. the
induced action of SO(p) on Y1. Therefore, for ζ : R2 → R+ given by

ζ(x, y) =
1

(2π)d/2σppσ
q
q
exp

(
− x

2σ2
p

− y

2σ2
q

)
,

it follows that
∥∥DΨ

−1(y)
∥∥ = ζ(T2 ◦ T1(y)), implying that P(Θ) admits

F-equivalence. ♦
The preceding two examples provide an alternate characterization of the Normal

distribution through the lens of F-equivalence w.r.t. rotational transformations. The
next example illustrates F-equivalence for a family of distributions generated by an
unconventional group of transformations.

Example 4.8. For a fixed shape parameter κ = 0.5, consider the family of bivariate
Weibull distributions on R2

++ given by

fθ(x, y) =
1

4
√
xy

exp

(
−θ√x−

√
y

θ

)
.

For Θ = R+, it follows that P(Θ) = {fθ(x, y) : θ ∈ Θ} admits F-equivalence. We
verify this as per Theorem 4.5. The functions Ψ and φ are Ψ(x, y) = (

√
x,

√
y), and

φ(x, y) = exp (−(x+ y))/4xy. The group action may be identified as follows: let G
be a subgroup of GL(R, 2) consisting of elements

gθ =

(
θ 0
0 1/θ

)
,

for θ ∈ R+. It is easy to verify that T (x, y) = xy is G-maximal invariant. The
density can now be expressed in the form fθ(x, y) = φ(gθ ◦Ψ(x, y)). It follows that
Ψ−1(x, y) = (x2, y2) and

det
(
DΨ−1(x, y)

)
= 4xy = 4T (x, y).

Hence, by Theorem 4.5, P(Θ) admits F-equivalence. ♦

5. F-equivalence II: General cases. While the results in Section 4 examined
necessary and sufficient conditions for F-equivalence by enforcing some algebraic
structure on the family of distributions, the objective of this section is to relax
these requirements and, instead, exploit the structure underlying the support of the
distributions, X . Before we present the main results, we introduce the main tools
we employ:

(i) The modular character of a measure µ, denoted by Ψµ, and

(ii) A fiber bundle representation E = (X ,Z,Y, π,G) of the underlying space X .

Modular Character. Consider the set of diffeomorphisms ∆(X ), given by

∆(X )
•

= {φ ∈ Diff(X ) : ‖Dφ(x)‖ = ‖Dφ(x′)‖, ∀x,x′ ∈ X}.
In other words, ∆(X ) comprises of smooth maps from X to itself such that the
Jacobian of the map does not depend on the specific location where the transformation
is made, e.g., when X = Rd the set ∆(X ) is the group of rigid transformations on
Rd, E(d). The elements of ∆(X ) form a subgroup of transformations with respect
to Diff(X ). The change in measure induced by diffeomorphic transformations of a
space X w.r.t. the measure µ is given by its modular character.
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Definition 5.1 (Modular Character). Given a measure µ on the space (X ,B(X )),
a function Ψ is defined to be the modular character of µ if for each φ ∈ ∆(X ) with
y = φ(x) we have that

µ(dy) = Ψ(‖Dφ‖)µ(dx).

For example, when X = Rd and µ = λd, the d-dimensional Lebesgue measure,
the modular character of µ is given by Ψ(x) = x. Observe that for any full-rank
linear map φ ∈ GL(R, d) such that y = φ(x), we have µ(dy) = dy = ‖Dφ‖dx =
‖Dφ‖µ(dx). A nontrivial example of the modular character is illustrated in Exam-
ple 5.7.

Remark 5.2. The modular character is closely related to the notion of tensor-density
(see, for instance, [41]). When G ≤ ∆(X ) is a locally compact group continuously
acting on X from the left, i.e., (g,x) 7→ g · x for every g ∈ G, then Ψµ is also called
the relatively invariant multiplier [15].

Fiber Bundle Representation. Following the convention in [44], when X is a
compact d-dimensional C1-manifold, suppose X admits a fiber bundle representation
E

•

= (X ,Z,Y, π,G), i.e., X is the total space, Z is the base space with the bundle
projection π defined by the continuous surjective map π : X → Z, and G is
a topological group3 which acts on the canonical fiber space Y. A collection
{(Vj , ψj) : j ∈ J} is called a local trivialization of E and serves as the coordinate
charts for the fiber bundle, i.e., {Vj : j ∈ J} is an open cover of Z and for each j ∈ J
the map ψj : Vj × Y → π−1(Vj) is a diffeomorphism which guarantees that locally,
in the neighborhood Vj ⊂ Z, the fiber π−1(Vj) looks like the product Vj × Y. In
particular, the map ψj,z = ψj(z, ·) : Y → Yz := π−1(z) is a diffeomorphism for each
z ∈ Vj ⊆ Z.

Furthermore, for every i, j ∈ J and all z ∈ Vi ∩ Vj , the map ψ−1
j,z ◦ ψi,z : Y → Y

should coincide with an element gji,z of the structure group G, and E is represented
by the following commutative diagram:

π−1(Vj) Vj × Y

Vj

ψ−1

j

π

g∈G

(z,y) 7→z

From [44, Section 2.4], if {(Ui, ηi) : i ∈ I} is another local trivialization for E ,
then the two local trivializations are equivalent in the sense that for every z ∈ Ui∩Vj
there exists gji,z ∈ G such that

gji,z = ψ−1
j,z ◦ ηi,z. (6)

In other words, the structure group G determines the change of coordinates from
{(Vj , ψj) : j ∈ J} to {(Ui, ηi) : i ∈ I}.

If the base space Z and the fiber Y are endowed with measures µ and ν respectively,
they induce a local product measure λ = ν ⊗loc µ on the space X [23]. Specifically,
for a measurable set A ⊂ X such that π(A) ⊂ Vj ⊆ Z, the induced measure λ is
given by

λ(A) = (ν ⊗loc µ)(ψ
−1
j (A)) =

∫

π(A)

νz(π
−1(z) ∩A)µ(dz), (7)

3We use G to distinguish the structure group, in this section, from the groups, G, in Section 4.
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where for x ∈ X and z = π(x) ∈ Vj ⊆ Z, the measure νz
•

= (ψj,z)#ν is the
pushforward of ν on the space π−1(z) via the diffeomorphism ψj,z, i.e., νz(B) =

ν(ψ−1
j,z(B)) for all measurable B ⊆ π−1(z). Furthermore, for f ∈ L1(X , λ), the

following version of Fubini’s theorem holds [23]:
∫

X

f(x)λ(dx) =

∫

Z

∫

π−1(z)

f(w) νz(dw)µ(dz). (8)

From [23, Theorem 1], the measure λ in Eq. (7) exists only when ν is G-invariant.
To see this, consider two local trivializations {(Vj , ψj) : j ∈ J} and {(Ui, ηi) : i ∈ I};
for z ∈ Ui ∩ Vj and a measurable set B ⊆ π−1(z) from the fiber over z, the induced
measure νz(B) should be invariant to the specific choice of the local trivialization,
i.e., ν

(
η−1
i,z (B)

)
= ν

(
ψ−1
j,z(B)

)
. From Eq. (6), this implies that

ν
(
η−1
i,z (B)

)
= ν

(
g−1
ji,z ◦ ψ−1

j,z(B)
)
= ν

(
ψ−1
j,z(B)

)
,

from which it follows that ν is G-invariant.
It is worth pointing out that when E is a flat bundle, i.e., X = Z × Y, then

G = {idY} and ν is always well-defined.
Excess mass function. The final ingredient we require is an alternate charac-

terization of F-equivalence using excess mass functions. They are defined as follows:
For a probability distribution P with density f and X ∼ P, the excess mass function,
f̂ , is given by

f̂(t) = P
(
f(X) ≥ t

)
=

∫

X

1(f(x) ≥ t)f(x)dx, for all t ≥ 0.

Excess mass functions have been employed for geometric inference in nonparamet-
ric statistics [35, 39], and to characterize the Betti-0 function [9]. The next lemma
supplements Lemma 3.5 using excess mass functions.

Lemma 5.3. For two probability density functions f and g, f
F
∼ g if and only if

f̂ = ĝ. Moreover, if P is a family of distributions such that f̂ = ĝ for all f, g ∈ P,
then P admits β-equivalence.

In other words, for X ∼ f and Y ∼ g we may replace the condition f(X)
d
= g(Y )

in Definition 3.4 with the condition f̂ = ĝ. Lemma 3.5 formalizes the intuition that
the topological summaries in the thermodynamic limit are capturing, at most, local
information encoded in the superlevel sets of the probability density function.

With this background, the following result provides a sufficient characterization for
distributions to admit F-equivalence and is generated using structure underlying X .

Theorem 5.4. Let E = (X ,Z,Y, π,G) be a fiber bundle representation of X with
a local trivialization {(Vj , ψj) : j ∈ J} and compact Y. For each x ∈ X with z =
π(x) ∈ Vj, let fφ be given by

fφ(x) = C · g
(
φ
(
ψ−1
j,z(x), z

))
, (9)

where
(i) C=1/ν(Y) is the density of a uniform distribution w.r.t. a measure ν on Y,

(ii) g is the density of a probability distribution on Z w.r.t. a base measure µ
with modular character Ψµ,

(iii) φ : Y × Z → Z is such that φy
•

= φ(y, ·) ∈ ∆(Z) for each y ∈ Y.
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Then {fφ : φ ∈ Φ} admits F-equivalence when

Φ ⊆
{
φ :

∫

Y

C ·Ψµ
(∥∥Dφ−1(y, ·)

∥∥) dν(y) = 1

}
. (10)

The proof is deferred to Section 6.4, and we provide the intuition here. The
density g on the base space Z together with the uniform distribution on the fiber Y ,
induce a probability density C · g(z) locally in X . The map φ(y, ·) is free to move
mass on the base space Z, which, in turn, induces a different mass in the fiber over z.
By Lemma 5.3, F-equivalence holds when the excess mass function is preserved; this
corresponds to the Jacobian constraint in Eq. (10). Theorem 5.4 demonstrates that,
in the thermodynamic limit, the topological summaries are effectively capturing, at
most, only local information underlying the probability distribution.

While the density function fφ in Theorem 5.4 seems to depend on the choice of
the local trivialization {(Vj , ψj) : j ∈ J}, the following result shows that for a fixed
φ ∈ Φ, the density function fφ doesn’t depend on the choice of the local trivialization
used.

Proposition 5.5. Under the conditions of Theorem 5.4, let {(Vj , ψj) : j ∈ J} and
{(Ui, ηi) : i ∈ I} be two local trivializations of E = (X ,Z,Y, π,G). For a fixed φ and
for x ∈ X with z = π(x) ∈ Ui ∩ Vj, let fφ(x) be the density given by Eq. (9), and

let f̃φ(x) be given by

f̃φ(x) = C · g
(
φ
(
η−1
i,z (x), z

))
. (11)

Then, for every measurable A ⊂ X ,
∫

A

fφdλ =

∫

A

f̃φdλ.

In other words, Proposition 5.5 ensures that two equivalent coordinate represen-
tations of the E induce the same probability density function fφ on X for a fixed
φ, and the collection Φ in Theorem 5.4 cannot be simply obtained by a coordinate
transformation of E .

Remark 5.6. We highlight some salient observations regarding Theorem 5.4 below.

(i) When Y = G is a Lie group, X simplifies to become a principal G-bundle
and the bundle projection π : X → X/G projects each element in X to its
orbit. Principal G-bundles admit local cross-sections. Furthermore, when it
admits a global-cross section, X admits the factorization X = X/G × G, and the
factorization of measure on X simplifies to the product of an invariant measure µ
and an equivariant measure ν (see, for example, [29]). Lastly, when X = Y × Z

is globally trivial, then the bundle charts simply become ψα = idX , such that
the induced-measure νz = ν for each z ∈ Z, and Eq. (8) reduces to the familiar
setting of Fubini’s theorem.

(ii) Suppose P is a distribution on X with density f w.r.t. a dominating measure
λ, and A ⊂ X is a set of λ−measure zero. Let P

∣∣
X\A

be the restriction of P on
X \A and let fX\A be its resulting density. Then, for all t ≥ 0,

f̂(t) =

∫

X

✶(f(x) ≥ t)f(x)dλ(x)
(i)
=

∫

X\A

✶(f(x) ≥ t)f(x)dλ(x) = f̂X\A(t),
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where (i) follows by noting that λ(A) = 0. Therefore, f̂ = f̂X\A, indicating
that F-equivalence for families of distributions can be analyzed by excluding a
set of measure zero from the space X . In particular, if E = (X ,Z,Y, π,G) is a
fiber bundle, then we may omit sets of measure zero from both Z and Y since
the dominating measure λ on X is admits the disintegration λ = ν ⊗loc µ, for
dominating measures ν and µ on Y and Z, respectively.

It follows from Theorem 5.4 that a fairly large family of distributions admit
F-equivalence. However, the exact representation of these families using the index
φ is not entirely obvious. Nevertheless, the elements in Φ may be indexed by a
more well-behaved set Θ such that the family {fθ : θ ∈ Θ} admits F-equivalence.
This is made precise in the following examples. The following example illustrates
F-equivalence when ν has a non-trivial modular character but X admits global cross
sections.

Example 5.7. Consider the spherical decomposition x = (r,θ) of Rd \ {0} where
r ∈ R+ and θ ∈ Sd−1. Let µ be a measure on Z = R+ with density g w.r.t. η such
that

η(dr) = d(rd) = rd−1dr. (12)

For a nonnegative valued function ξ : Sd−1 → R+, and for x ∈ X with spherical
coordinates (r,θ), let fξ given by

fξ(x) = Cd · g
(
r · ξ(θ)

)
, (13)

where 1/Cd = 2πd/2/Γ(d/2) is the surface area of Sd−1. In the context of Theorem 5.4,
consider the fiber bundle representation of X = Rd \{0} given by E = (X ,Y,Z, π,G)
where Y = Sd−1 denotes the typical fiber, the base space Z = R+, and the projection
map π(x) = ‖x‖. Taking V = Z = R+, and ψ−1 : X → V × Y to be the map given
by

ψ−1(x) = (‖x‖,θ) where θ
•

= x
/
‖x‖ ∈ Y,

provides a local trivialization {(V, ψ)} for X . Therefore, the density in Eq. (14) is
equivalently given by

fξ(x) = Cd · g
(
φ(ψ−1

r (x), r)
)
,

where r = π(x) and φ(θ, r) = r ·ξ(θ). It is easy to verify that the map φ(θ, ·) ∈ ∆(Z)
for all θ ∈ Sd−1, and φ−1(θ, r) = r/ξ(θ). Importantly, from Eq. (12), the modular
character of η is Ψ(t) = td. If we consider the set Ξ, satisfying the constraint in
Eq. (10),

Ξ =

{
ξ :

∫

Sd−1

Cd · ξ(θ)−dν(dθ) = 1

}
,

then from Theorem 5.4 it follows that P(Ξ) = {fξ : ξ ∈ Ξ} admits F-equivalence.
Moreover, from Remark 5.6 (ii), fξ(x) also satisfies F-equivalence on Rd. ♦

Remark 5.8. While seemingly contrived, the preceding example arises naturally in
several situations. When ν is the surface measure on Sd−1 (which is invariant under
G = SO(d)) and η is the measure given by Eq. (12), then µ on Z = R+ and ν on
Y = Sd−1 induce the standard Lebesgue measure λd locally in Rd, λd = η ⊗loc ν,
i.e., for x = (r,θ) in local coordinates λd(dx) = η(dr) · ν(dz). In other words the
non-trivial modular character in η arises naturally when the standard Lebesgue
measure on Rd is decomposed in spherical coordinates.
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admits F-equivalence, consider the representation of X = R2 as

X =

{
4⊔

i=1

Ai

}
⊔ {

(x1, x2) : x1 = 0 or x2 = 0
}

︸ ︷︷ ︸
=:B

, (18)

where B is a set of measure zero, and A1, A2, A3, A4 are the four (open) quadrants
of R2 which are each diffeomorphic to A = R2

++ =
{
(z1, z2) ∈ R2 : z1, z2 > 0

}
. By

taking π(x1, x2) = (|x1|, |x2|) to be the continuous surjection from X to A, consider
the maps φi ∈ ∆(R2

++) to be given by φi(z) = R(θi)
⊤z where

R(θi) =

(
1/
√
θi 0

0 1/
√
θi

)
.

Then, fθ is equivalently expressed as

fθ(x) =
1

4

4∑

i=1

g
(
φi(π(x))

)
· ✶(x ∈ Ai).

Similar to Example 5.12, φ = {φ1, φ2, φ3, φ4} is completely specified by θ ∈ R4, and
the Jacobian constraint in Eq. (10) is satisfied when

4∑

i=1

1

4

∥∥Dφ−1
i

∥∥ =

4∑

i=1

1

4
· det

(
R(θi)

−1
)
=

1

4
·

4∑

i=1

θi = 1,

and, therefore, the family {fθ : θ ∈ Θ} admits F-equivalence. ♦
While Theorem 4.5 and Theorem 5.4 provide conditions for P(Θ) to admit

F-equivalence when fθ has a specific form, we might ask: What happens to distri-
butions that do not conform to the templates mentioned above? The next result
provides a necessary and sufficient geometric constraint (in the space of probability
distributions) which P(Θ) needs to satisfy for F-equivalence.

Theorem 5.14. For an open set Θ ⊆ Rp, let P(Θ) = {fθ : θ ∈ Θ} be a family of
distributions on X . Then P(Θ) admits F-equivalence if and only if for all 1 ≤ i ≤ p,

∂

∂θi

(∫

X

fk+1
θ (x)dx

)
= 0, for all k ∈ N0. (19)

Moreover, if the gradient ∇θfθ exists a.e.-λd and there exists a function M ∈ L1(X )

such that for each 1 ≤ i ≤ p and for all θ ∈ Θ,
∣∣∣ ∂∂θi fθ(x)

∣∣∣ ≤ M(x) a.e.-λd, then

P(Θ) admits F-equivalence if and only if
〈
fkθ ,∇θfθ

〉
L2(X )

= 0, for all k ∈ N0. (20)

We collect the proof in Section 6.7, and illustrate Theorem 5.14 by verifying
F-equivalence for the family of distributions already studied in Example 5.12.

Example 5.15. Consider the family of distributions on R2 from Example 5.7 in
Eq. (14) given by,

fρ(x) = g(r · ξρ(θ)) =
1

2π
exp

( −r2
2(1 + ρ cos(θ))

)
,
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where r = ‖x‖ and tan(θ) = x2/x1. First, observe that ρ ∈ [−1, 1] contains an
open set in R. Moreover, fρ clearly satisfies the stochastic regularity assumptions in
Theorem 5.14 by taking

M(x) =
r2| cos(θ)|

4π(1− | cos(θ)|) exp
(
−r2/4

)
.

The derivative of fρ is given by

∂

∂ρ
fρ(x) =

r2 cos(θ)

2(1 + ρ cos(θ))2
· 1

2π
exp

( −r2
2(1 + ρ cos(θ))

)
.

Then, for any k ≥ 0, Eq. (20) now becomes

〈
fkρ ,

∂

∂ρ
fρ

〉
L2(R2)

=

∞∫

0

2π∫

0

r2 cos(θ)

2(1 + ρ cos(θ))2(2π)k+1
exp

(
− (k + 1)r2

2(1 + ρ cos(θ))

)
· rdrdθ

(i)
=

∫ 2π

0

cos(θ)dθ

(k + 1)2 · (2π)k+1
= 0,

where (i) follows from making the substitution t = r2. It follows from Theorem 5.14
that {fρ : |ρ| < 1} admits F-equivalence. ♦

Example 5.16. For Θ = (1,∞), consider the family of distributions on R given by

fθ(x) =
1

2
g(θx)✶(x ≥ 0) +

1

2
g

(
θx

1− 2θ

)
✶(x < 0), (21)

where g is any density on R+ satisfying the assumptions of Theorem 5.14. Then,
{fθ : θ ∈ Θ} admits F-equivalence. Vis-à-vis Example 5.12, the density in Eq. (21)
is a reparametrization of the density in Eq. (17) to ensure that Θ ⊂ R is an open
set. Observe that ∫

R

fθ(x)dx =
1

2θ
+

2θ − 1

2θ
= 1,

implying that fθ is a well defined density function for all θ > 1. In order to verify
the condition in Eq. (19) note that

∂

∂θ

∫

R

fk+1
θ (x)dx

=
1

2k+1
· ∂
∂θ

(∫

R

gk+1(θx)✶(x ≥ 0)dx+

∫

R

gk+1

(
θx

1− 2θ

)
✶(x < 0)dx

)

(i)
=

1

2k+1
· ∂
∂θ



(
1

θ
− 1− 2θ

θ

)
·

∞∫

0

gk+1(t)dt


 =

∂

∂θ

∞∫

0

1

2k
· gk+1(t)dt = 0,

where (i) follows from taking t = θx in the first integral and t = θx/1− 2θ
in the second integral. By Theorem 5.14, this implies that {fθ : θ ∈ Θ} admits
F-equivalence. ♦

6. Proofs. In this section, we present the proofs for the main results of this paper.
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6.1. Proof of Lemma 3.5. Consider P,Q ∈ P with their respective probability
density functions f and g,and consider X ∼ f and Y ∼ g. For every fixed function
γk, the equivalence f F

∼ g implies that

γk(sf(X)1/d, tf(X)1/d)
d
= γk(sg(Y )1/d, tg(Y )1/d), for all 0 ≤ s < t.

It follows that µk(P; s, t) = µk(Q; s, t) for all 0 ≤ s < t. A similar argument also

holds for ςk. This implies that βk(P; s, t)
d
= βk(Q; s, t). Since this holds for each

k ≥ 0 we have that P
β
∼ Q, and the result follows. �

6.2. Proof of Theorem 4.5. Part (i). Suppose Xθ is a random variable with
density fθ. Consider the random variable Y θ

•

= gθ(Ψ(Xθ)) as a transformation of
Xθ, such that fθ(Xθ) = φ(Y θ). By Lemma 3.5, if we can show that the distribution
of Y θ does not depend on the parameter θ if and only if det

(
DΨ−1(y)

)
= ζ(T (y))

for some function ζ : T → R, then F-equivalence for the family of distributions P(Θ)
follows.

The inverse transformation for Y θ is given by x = Ψ−1 ◦ g−1
θ (y). The existence

of g−1
θ is guaranteed by the group G. The Jacobian for the inverse transformation

can be simplified using the multivariable chain-rule,

D
(
Ψ−1 ◦ g−1

θ

)
(y) = DΨ−1

(
g−1
θ (y)

)
·Dg−1

θ (y).

Since G is a group of isometries, we have that,
∣∣det

(
Dg−1

θ (y)
)∣∣ = 1. The density of

Y θ is expressed as
hθ(y) = φ(y) ·

∥∥DΨ−1
(
g−1
θ (y)

)∥∥.
It follows that density hθ does not depend on θ if and only if det

(
DΨ−1

(
g−1
θ (y)

))

does not depend on θ, i.e., det
(
DΨ−1(y)

)
is G-invariant. By Proposition 4.4, this

holds if and only if there exists some function ζ : T → R such that

det
(
DΨ−1(y)

)
= ζ(T (y)),

where T is G-maximal invariant. Therefore, the distribution of Y θ doesn’t depend
on θ if and only if the condition in Eq. (22) holds. Since φ is a fixed function
and fθ(Xθ) = φ(Y θ), this implies that Eq. (22) is also a necessary and sufficient
condition for the distribution of fθ(Xθ) to not depend on θ. This concludes the
proof for the first part of the Theorem 4.5.

Part (ii). For ease of notation, let G = ×mi=1 Gi act on the space Y . If Ti : Yi−1 →
Yi is a sequence of Gi-compatible maximal invariants, then, for the second claim,
from part (i), it suffices to show that

T (y) = Tm ◦ Tm−1 ◦ . . . T1(y)
is G-maximal invariant. The proof follows from induction. For the case m = 1,
T (y) = T1(y) by definition, so the property holds trivially. Assume that the property
holds for m > 1. Then, T ′ = Tm ◦ Tm−1 ◦ · · · ◦ T1 is G′-maximal invariant, where
G′ = ×mi=1Gi.

Let Gm+1 be a group acting on Ym such that Tm+1 : Ym → Ym+1 is Gm+1-
maximal invariant. From the assumption that Tm+1 is Gm+1-compatible, we also
have that T ′ is Gm+1 compatible; therefore, we only need to show that T = Tm+1 ◦T ′

is G-maximal invariant, where G = G′ × Gm+1. Each element g ∈ G is given by
g = (g′, gm+1) where g′ ∈ G′ and gm+1 ∈ Gm+1. We can write g as

g = (g′, gm+1) = (g′, em+1) ∗ (e′, gm+1) = g̃′ ∗ g̃m+1,
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where e′ and em+1 are the identity elements of G′ and Gm+1 respectively, and g̃′ and
g̃m+1 are the representations for the group action of G′ and Gm+1 on Y as subgroups
of G. First, we examine that T is G-invariant. For each y ∈ Y we have that

T (gy) = Tm+1 ◦ T ′(gy) = Tm+1 ◦ T ′(g̃′ ∗ g̃m+1y). (22)

By the definition of the group action, we can write g̃′∗g̃m+1y = g̃′z, where z = g̃m+1y.
Since T ′ is G′-maximal invariant, we have that T ′(g̃′z) = T ′(z) = T ′(g̃m+1y).
Additionally, since T ′ is Gm+1-compatible, it follows that T ′(g̃m+1y) = g∗m+1T

′(y),
where g∗m+1 is the induced action of g̃m+1 on Ym via T ′. Lastly, using the fact that
Tm+1 is Gm+1-maximal invariant, Eq. (22) becomes

T (gy) = Tm+1

(
g∗m+1T

′(y)
)
= Tm+1 ◦ T ′(y) = T (y).

Next, let x and y be such that T (x) = Tm+1 ◦ T ′(x) = Tm+1 ◦ T ′(y) = T (y). Since
Tm+1 is maximally invariant, there exists gm+1 ∈ Gm+1 such that g∗m+1T

′(x) = T ′(y).
From the Gm+1-compatibility of T ′ we have that g∗m+1T

′(x) = T ′(g̃m+1x), giving
us T ′(y) = T ′(g̃m+1x). Lastly, since T ′ is G′-maximal invariant, there exists g̃′ such
that g̃′(g̃m+1x) = y. This implies that there exists g ∈ G such that

gx = g̃′ ∗ g̃m+1x = g̃′(g̃m+1x) = y.

Therefore, T (x) = T (y) if and only if x ∈ Gy, from which it follows that T =
Tm+1 ◦ T ′ is G-maximal invariant. �

6.3. Proof of Lemma 5.3. Consider X ∼ f and Y ∼ g for f, g ∈ P, and let
ZX = f(X) and ZY = g(Y ) be the transformation of X and Y under their own
density. Then, for t ≥ 0

f̂(t) = P(f(X) ≥ t) = E(✶(f(X) > t)) = E(✶(ZX > t)) = 1− FZX
(t),

where FZX
(t) is the cumulative distribution function of ZX . Similarly, ĝ(t) =

1− FZY
(t).

For the first claim, note that if ZX
d
= ZY , then FZX

(t) = FZY
(t) for all t ≥ 0,

which implies that f̂ = ĝ. Conversely, if f̂ = ĝ, then FZX
= FZY

, which implies that

ZX
d
= ZY . Therefore, f F

∼ g if and only if f̂ = ĝ. The second claim now follows
from Lemma 3.5. �

6.4. Proof of Theorem 5.4. Let λ = ν ⊗loc µ be the local product measure
induced in X , and let C = 1/ν(Y). First, we verify that fφ as defined in Eq. (9) is
a well-defined probability density function for each φ ∈ Φ. From [23, Eq. 6]

∫

X

fφdλ =

∫

Z

∫

π−1(z)

C · g
(
φ
(
ψ−1
j,z(w), z

))
dνz(w)dµ(z)

(i)
=

∫

Z

∫

ψ−1

j,z◦π
−1(z)

C · g
(
φ
(
y, z

))
dνz
(
ψj,z(y)

)
dµ(z)

(ii)
=

∫

Z

∫

Y

C · g(φy(z))dν(y)dµ(z)

(iii)
=

∫

Z

∫

Y

C · g(u)dν(y)dµ
(
φ−1
y (u)

)

(iv)
=

∫

Z

∫

Y

C · g(u)dν(y)Ψ
(∥∥Dφ−1

y

∥∥)dµ(u)
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(v)
=

∫

Y

C ·Ψ
(∥∥Dφ−1

y

∥∥)
{∫

Z

g(u)dµ(u)

}
dν(y)

=

∫

Y

C ·Ψ
(∥∥Dφ−1

y

∥∥)dν(y) = 1,

where (i) follows from making the substitution y = ψ−1
j,z(w), (ii) follows from noting

that ψ−1
j,z

(
π−1(z)

)
= Y by definition of the local trivialization and the pushforward

measure νz is defined to be νz(B) = ν(ψ−1
j,z(B)) for all measurable sets B ⊆ π−1(z).

Similarly, (iii) follows by making the substitution u = φy(z), (iv) follows from the
fact that φy ∈ ∆(Z) for every y ∈ Y and the modular character of µ is Ψ, and (v)
follows from Tonelli’s theorem [19, Theorem 2.7]. Next, it remains to verify that
f̂φ(t) does not depend on φ, and we use the same machinery as before. Consider,

f̂φ(t) =

∫

X

✶(fφ(x) ≥ t) fφ(x)dλ(x)

=

∫

Z

∫

π−1(z)

✶

(
C·g
(
φ(ψ−1

j,z(w), z)
)
≥ t

)
C· g

(
φ(ψ−1

j,z(w), z)
)
dνz(w)dµ(z).

Again, substituting y = ψ−1
j,z(w), and then taking u = φy(z) we get

f̂φ(t) =

∫

Z

∫

Y

✶(C·g(u) ≥ t) C·g(u) Ψ(
∥∥Dφ−1

y

∥∥) · dν(y)dµ(u)

=

∫

Z

✶(C·g(u) ≥ t) g(u)

{∫

Y

C· Ψ(
∥∥Dφ−1

y

∥∥) · dν(y)
}
dµ(u)

=

∫

Z

✶(C·g(u) ≥ t) g(u)dµ(u) = ĝ(t/C),

which does not depend on the choice of φ ∈ Φ, and F-equivalence follows. �

6.5. Proof of Proposition 5.5. For a fixed φ : Y × Z → Z, let fφ and f̃φ be the
density functions given by Eq. (9) and Eq. (11):

fφ(x) = C· g
(
φ
(
ψ−1
j,z(x), z

))
, and f̃φ(x) = C· g

(
φ
(
η−1
i,z (x), z

))
,

corresponding to the local trivializations {(Vj , ψj) : j ∈ J} and {(Ui, ηi) : i ∈ I},
respectively. Without loss of generality, we may take C = 1 for ease of notation.
For a measurable set A ⊂ X , and for i ∈ I and j ∈ J such that z ∈ π(A) ∩ Ui ∩ Vj ,
using Eq. (8) we get ∫

A

fφdλ =

∫

π(A)

∫

Az

fφdνzdµ, (23)

where Az = A ∩ π−1(z). Therefore, in order to establish the claim, it suffices to
show that ∫

Az

f̃φdν̃z =

∫

Az

fφdνz.

To this end, we have
∫

Az

f̃φdν̃z
(i)
=

∫

Az

g
(
η−1
i,z (w), z

)
dνz(w)

=

∫

η−1

i,z(Az)

g
(
φ(y, z)

)
dν(y)
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=

∫

g−1

ji,z◦η
−1

i,z(Az)

g
(
φ(u, z)

)
dν(u),

where (i) follows from the substitution y = η−1
i,z (w), and the last equality follows

by taking u = g−1
ji,z(y) for gji,z ∈ G and by noting that ν is G-invariant. Using the

“change of coordinates” in Eq. (6), we have ψ−1
j,z = g−1

ji,z ◦ η−1
i,z , and therefore,

∫

Az

f̃φdν̃z =

∫

ψ−1

j,z(Az)

g
(
φ(u, z)

)
dν(u)

=

∫

Az

g
(
φ(ψ−1

j,z(w), z)
)
d
(
(ψj,z)#ν

)
(w)

=

∫

Az

g
(
φ(ψ−1

j,z(w), z)
)
dνz(w) =

∫

Az

fφdνz,

which proves the claim. �

6.6. Proof of Corollary 5.10. Let X ◦ = ⊔ni=1Ai = X \ ∪mj=1Bj . First, note that
since µ(Bj) = 0 for each j ∈ {1, 2, . . . ,m}, it follows that µ

(
∪mj=1Bj

)
= 0. Therefore,

from Remark 5.6 (ii), omitting ∪mj=1Bj doesn’t affect F-equivalence, and it suffices
to show that the claim holds for X ◦.

To this end, observe that X ◦ can be represented as the fiber bundle E =
(X ◦,Y,Z, π,G) where Z = A, Y = {1, 2, . . . , N} and G is isomorphic to ZN acting
on Y by addition modulo N . Indeed, since π is assumed to be a continuously
surjective map from X to A, it suffices to show that X is locally trivializable.
Let V = A, and for π−1(A) = ⊔i=1Ai let ψ : A × Y → π−1(A) be given by
ψ(A× {i}) = π−1(A) ∩Ai = Ai for each i = 1, 2, . . . , N . Since each Ai is diffeomor-
phic to A, it follows that ψ is a diffeomorphism. Additionally, for a ∈ A, the map
ψ−1
a (x) = {i : x ∈ Ai}. Therefore, {(V, ψ)} is a local trivialization, and E is a fiber

bundle.
Let ν be the counting measure on Y, and C = 1/N = 1/ν(Y). For z = π(x), we

may write the density function in Eq. (16)

fφ(x) = C · g
(
φ
(
ψ−1
z (x), z

))
,

where the map φ(i,a) = φi(a). Furthermore, the Jacobian constraint Eq. (10)
requires that

∫

Y

C ·Ψµ
(∥∥Dφ(i, ·)−1

∥∥)dν(i) =
N∑

i=1

1

N
·Ψµ

(∥∥Dφ−1
i

∥∥) = 1.

Therefore, from Theorem 5.4, it follows that
{
fφ : φ ∈ Φ

}
admits

F-equivalence. �

6.7. Proof of Theorem 5.14. For each θ ∈ Θ, let Xθ be a random variable with
density fθ. From Lemma 3.5, we know that if the distribution of Zθ

•

= fθ(Xθ) does
not depend on θ, F-equivalence follows. The characteristic function for Zθ is given
by

ϕθ(t) = EZθ

(
eitZθ

)
= EXθ

(
eitfθ(Xθ)

)
=

∫

X

eitfθ(x)fθ(x)dx,
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for t ∈ R. Using Euler’s formula, we can write

ϕθ(t) =

∫

X

(
cos(tfθ(x)) + i · sin(tfθ(x))

)
· fθ(x)dx.

Using the Taylor series representation for cos (tfθ(x)) and sin (tfθ(x)) we get,

ϕθ(t) =

∫

X

(
∞∑

k=0

(−1)kt2k

(2k)!
f2kθ (x) + i ·

∞∑

k=0

(−1)kt2k+1

(2k + 1)!
f2k+1
θ (x)

)
· fθ(x)dx

(i)
=

∞∑

k=0

(−1)kt2k

(2k)!

∫

X

f2k+1
θ (x)dx+ i ·

∞∑

k=0

(−1)kt2k+1

(2k + 1)!

∫

X

∞∑

k=0

f2k+2
θ (x)dx

=

∞∑

k=0

(−1)kt2k

(2k)!
h2k(θ) + i ·

∞∑

k=0

(−1)kt2k+1

(2k + 1)!
h2k+1(θ),

where hk(θ)
•

=
∫
X
fk+1
θ (x)dx and (i) follows from Fubini’s theorem. It follows from

this that the characteristic function ϕθ does not depend on θ if and only if Re(ϕθ(t))
and Im(ϕθ(t)) do not depend on θ for all t ∈ R. Therefore, ϕθ does not depend on θ

if and only if the function hk(θ) does not depend on θ for each k ∈ N0. Equivalently,
for each k ∈ N0 we must have that ∂

∂θi
hk(θ) = 0 for all 1 ≤ i ≤ p, i.e.,

∂

∂θi
hk(θ) =

∂

∂θi

(∫

X

fk+1
θ (x)dx

)
= 0.

Under the additional stochastic regularity conditions, using the Lebesgue-
dominated convergence theorem we have

∂

∂θi

(∫

X

fk+1
θ (x)dx

)
=

∫

X

∂

∂θi
fk+1
θ (x)dx =

〈
fkθ ,

∂

∂θi
fθ

〉
L2(X )

= 0,

from which the second claim follows. �

7. Discussion. In this work, we have studied the framework of topological inference
through the lens of classical statistical theory. In the parametric setup, we have
investigated cases when the parameters of the statistical model are not sufficient for
statistical inference based on their asymptotic limit in the thermodynamic regime.
In our case, this is analogous to the property of β-equivalence. We have charac-
terized several conditions under which a parametric family of distributions admits
F-equivalence, which also guarantees β-equivalence. When the distributions share
an algebraic structure, we are able to describe necessary and sufficient conditions
under which this asymptotic identifiability fails. In the absence of the underlying
algebraic structure, we have shown that when the distributions satisfy a certain
Jacobian constraint, they admit F-equivalence. Lastly, in the absence of any of
the above, when the distributions are stochastically regular (as is most often the
case), we have shown that if the density function shares a certain geometry with its
gradient, then F-equivalence follows.

As noted in Remark 3.6, studying injectivity for Betti numbers collectively serves
as a stepping-stone to understanding the behavior of more complex topological
invariants, and we have focused on the phenomenon of F-equivalence in the thermo-
dynamic regime. Analogous asymptotic behavior for Betti numbers in the sparse
regime has been the focus in [27, 7, 49]. For fixed 1 ≤ k ≤ d − 1, in the regime
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that nrdn → 0 and n(k+2)r
d(k+1)
n → ∞, the following limit theorem is established for

random Čech complexes in [27, Theorem 3.2] and [7, Theorem 4.1]:

βk(K(Xn, rn))− µk√
n(k+2)r

d(k+1)
n

d
 N (0, σ2

k), (24)

where, for fixed quantities ζk and ξk, the functionals µk and σ2
k are given by

µk =
1

(k + 2)!

∫

X

ζkf(x)
k+2dx, and σ2

k =
1

(k + 1)!

∫

X

ξkf(x)
k+1dx.

From Theorem 5.14, we can see that if a family of distributions admit β-equivalence,
then for each 1 ≤ k ≤ d−1, in the regime that nrdn → 0 and n(k+2)r

d(k+1)
n → ∞, the

limit on the r.h.s. of Eq. (24) is identical. A similar conclusion for the Betti numbers
of random Rips complexes also follows from [27, Theorem 3.1] in the regime that
n(2k+2)r

d(2k+1)
n → ∞. As noted in [6, page 344] this difference in the regimes stems

from the fact that the smallest nontrivial Hk cycle in the Rips complex is supported
on 2k + 2 vertices as opposed to the k + 2 vertices required for the Čech complex.
The results in [4] suggest a useful direction for pursuing this line of investigation
and is left for future work.

Lastly, it is important to note that the conditions characterized in this work
are purely statistical in nature, and hold in the asympotic setting. However, there
is still hope that topological summaries for statistical inference from F-equivalent
families of distributions may be useful in finite samples and is a promising direction
for future work. We hope that this work will serve as a stepping-stone for further
investigations in this direction.

Appendix A. Supplementary results.

Lemma A.1. Suppose f is a probability density function with mean 0 and variance

1. For each d ∈ Z+, let x ∈ Rd and ζd : R+ → R+. Then
∏d
i=1 f(xi) = ζd(‖x‖2)

holds for each d ∈ N0 if and only if f(x) = exp
(
−x2/2

)
/
√
2π, for each x ∈ R.

Proof. The sufficient condition follows unambiguously by plugging in the value for
f(xi), i.e., when f(x) = exp

(
−x2/2

)
/
√
2π it follows that

d∏

i=1

f(xi) = (2π)
−d/2

exp
(
−‖x‖2/2

)
•

= ζd(‖x‖2).

It remains to verify the necessary condition. To begin, consider the case when d = 1.
For x ∈ R, we have f(x) = ζ1(x

2). Define k •

= f(0) = ζ1(0). We now proceed to
consider the case when d = 2. For (x, 0) ∈ R2, we have f(x) · f(0) = ζ2(x

2). Since
f(x) = ζ1(x

2) and f(0) = k, it follows that ζ2(x2) = kζ1(x
2) for all x ∈ R. By

induction, for each d ∈ Z+, we have

ζd(x
2) = kd−1ζ1(x

2). (A.1)

Thus, for any x ∈ Rd, Eq. (A.1) implies

d∏

i=1

f(xi) = ζd(x
2
1 + x22 + · · ·+ x2d) = kd−1ζ1(x

2
1 + x22 + · · ·+ x2d).
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where

x(θ, t) =
(
cos θ(1 + t cos θ), sin θ(1 + t cos θ), t sin θ

)
.

This can be represented as a fiber bundle E = (X ,Z,Y, π,G), with the base space
Z = S1, the typical fiber Y = [−0.5, 0.5], and the projection map given by π(x) =
arctan(x2/x1) by identifying Z ≃ [0, 2π]/ ∼ where {0} ∼ {2π}.

Consider the sets V1 = (0, 2π)\{π}, and V2 = [0, ǫ)∪ (π−ǫ, π+ǫ) for 0 < ǫ < π/2,
and for θ = π(x) ∈ [0, 2π)

ψ−1
1,θ(x) =

x3
sin θ

, and ψ−1
2,θ(x) =

1

cos θ

( x1
cos θ

− 1
)
,

The collection {(Vj , ψj) : j = 1, 2} provides a local trivialization for X . Additionally,
the structure groupG = {id} is simply the identity element since ψ−1

i,θ ◦ψj,θ = id for all
θ ∈ Vi ∩ Vj , and i, j ∈ {1, 2}. It is straightforward to verify that for θ ∈ Vj ⊂ [0, 2π),
t ∈ [−0.5, 0.5], and x = x(θ, t), it follows that π(x) = θ and ψ−1

j,θ (x) = t.
Let ν ∼ Unif([−0.5, 0.5]) be the uniform distribution on Y = [−0.5, 0.5] with

dν(t) = 1 · dt for all t ∈ [−0.5, 0.5]. For a fixed θ ∈ Vj , the map ψj,θ pushes forward
the measure νθ to the fiber π−1(θ). The image ψj,θ([−0.5, 0.5]) is a line segment in
R3 of length

‖ψj,θ(0.5)− ψj,θ(−0.5)‖ =
∥∥(cos2 θ, sin θ cos θ, sin θ)

∥∥ = 1,

as shown in Figure 8 (A). Therefore, the pushforward measure, νθ = (ψj,θ)#ν, is
also a uniform distribution with dνθ(x) = 1 for all x ∈ π−1(θ). Hence, the density
fα in Eq. (15) can be faithfully represented as

fα(x) = g
(
φα(ψ

−1
j,θ (x), θ)

)
dνθ(x).

The F-equivalence of {fα : α ∈ R} now follows from Example 5.9. ♦

Example A.3 (Family of distributions on S2). Let X = S2 \ {+p,−p} be the
surface of the unit sphere embedded in R3, excluding the two poles. This can be
represented in polar coordinates as

X =
{
x(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) ∈ R3 : θ ∈ (0, π), and ϕ ∈ [0, 2π)

}
.

Let fα be a probability density function on X given by

fα(x) = fα
(
x(ϕ, θ)

)
=

1

2π
· g
(
θ + αϕ/2 mod π

π

)
, (A.3)

where g is a fixed probability density function with supp(g) = (0, 1) w.r.t. the
Lebesgue measure. The family {fα : α ∈ Z} admits F-equivalence.

This is similar to Example 5.9, and can be understood by considering the fiber
bundle representation of X with Z = (0, π), Y = S1 ≃ [0, 2π]/ ∼ and the projection
map π(x) = arctan(x2/x1). The local trivialization is given by {(V, ψ)}, where

V = (0, π), ψ−1(x) =
(
arctan (x2/x1), arccos (x3)

)
, and ψ−1

θ (x) = arccos(x3).

The uniform measure on Y is dν(ϕ) = 1/2π, and for x ∈ X with θ = π(x) the
density in Eq. (A.3) can be rewritten as

fα(x) = C · g
(
φ
(
ψ−1
θ (x), θ

))
,
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