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ABsTrACT. Topological data analysis has emerged as a powerful tool for ex-
tracting the metric, geometric and topological features underlying the data
as a multi-resolution summary statistic, and has found applications in several
areas where data arises from complex sources. In this paper, we examine the
use of topological summary statistics through the lens of statistical inference.
We investigate necessary and sufficient conditions under which valid statistical
inference is possible using topological summary statistics. Additionally, we pro-
vide examples of models that demonstrate invariance with respect to topological
summaries.

1. Introduction. Let X,, = {X1, Xo,..., X} be a collection of points observed
i.i.d. at random from a probability distribution P on X C R%. The core objective
of the statistical inference is to employ a test statistic T(X,,) to infer meaningful
information underlying the data-generating mechanism P. A good choice of the
statistic T(-) sheds light on some population quantity of interest, ¥ (IP), which
encodes the essential information underlying the sample X,,. For instance, choosing
T(X,) = (X1+X2+---+X,)/n to be the sample mean sheds light on the population
mean )(P) = [, @ - dP(z). In particular, for two classes of probability distributions
Py and Py, a good choice of T(-) for 1)(IP) enables a practitioner to test hypotheses
Hy : P € Py vs. Hy : P € Py related to the data generating mechanism and to
perform valid statistical inference.

Recent years have witnessed the availability of high-dimensional data from uncon-
ventional sources such as text and images, and it has become increasingly important
to employ statistical summaries that encode the subtle features that underlie the
data. To this end, topological data analysis (TDA) has emerged as an important tool
for extracting geometric and topological features underlying the data. Summary sta-
tistics obtained using TDA are particularly attractive since they are multi-resolution
summaries that encode the metric, geometric and topological features underlying
the data. Therefore, topological summary statistics, e.g., Betti numbers [12], Euler
characteristic curves [33], persistence functions [43] and persistence diagrams [2],
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have been employed in statistical tests for data arising from complex sources such as
neuroscience [11], cosmology [1] and proteomics [20]. Despite the widespread adop-
tion of TDA in data-analysis pipelines, a formal framework for statistical inference
using these statistics is still limited.

More precisely, topological summary statistics, represented as T : X — S, are
measurable mappings (w.r.t. P®") such that the data X,, is mapped to an element
T(X,,) € S in a suitable topological summary space. However, several topological
summaries are challenging to analyze in a formal statistical context owing to the
unusual mathematical structure of the summary space S. For example, the summary
space for persistence diagrams is an Alexandrov space with non-negative curvature
bounded from below [34]. Working with topological representations on such summary
spaces S are not amenable for employing classical tools of statistical inference owing
to the bounded curvature of geodesics, non-uniqueness of Fréchet means, and absence
of any Hilbertian structure [13, 47].

In contrast, well-behaved topological summaries’—such as Betti numbers and
persistent Betti numbers—have been studied extensively in a probabilistic context.
Based on the central ideas from Penrose [38], the large sample behavior of T(X,,)
branches into three qualitatively different regimes: the sparse, thermodynamic and
dense regimes which depend on the resolution at which the observations are examined
relative to the number of samples n — oo. In particular, recent advances in the
discipline have established the existence of limiting quantities p(P) and X(P) such
that

1

TXn) 2 ), ana LEn) = 1(P)
n vn
as n — oo under a suitable asymptotic regime. For example, the law of large numbers
and central limit theorem for the Betti numbers of random geometric complexes
is established in [27, 28, 49, 50, 22, 46, 7, 5|. Similar results for the persistent
Betti numbers of random geometric complexes are established in [26, 31, 10]. In
a similar vein, by regarding the topological summaries as stochastic processes,
analogous convergence results also hold in the Skorohod metric [45, 37, 30]. These
results establish that studying fundamental topological quantities in a random
setting guarantee stability in a probabilistic sense, and pave the way to more
detailed statistical investigation. In particular, methods for incorporating topological
summaries in a formal statistical inference setting are described in [18, 3, 40, 14].
Notwithstanding, it is tempting to ask:
When are these topological summaries T(X,,) meaningful for statistical inference?
The central objective of this work is to investigate a variant of this question: when
are the topological summaries insufficient for statistical inference? To this end, we
characterize conditions under which the limiting distribution of T\(X,,) fails to be
injective.

4, N(0,3(P)),

1.1. Contributions. In the deterministic setting, even without imposing the proba-
bilistic structure, the injectivity of metric spaces via topological transforms is largely
an open problem [36]. Therefore, we make a foray into this question using a slightly
simplified approach. Given X,, sampled i.i.d. from P where supp(P) = X c R? and
dim(X) =d < D, and for 0 < s,t < co the topological summary we investigate are

le.g., when S = R¥, or, more generally, when S is a Hilbert space or a Banach space.
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the persistent Betti numbers, 3 (IC(n Xn)) foreach 0 <k < d, i.e.,
T(X,) = (ﬁg’t(lC(nl/an)),ﬁf’t (K(nM%0)),..., 83" (K(nl/dxn))) ez,

where, as outlined in Section 2, K(n'/?X,,) corresponds to the Cech complex con-
structed using X,, in the thermodynamic regime. Examining the behavior of the
Betti numbers collectively serves as a stepping-stone to understanding the behavior
of more complex topological invariants in the context of persistent homology.

Although the exact sampling distribution for T(X,,) is difficult to characterize,
we can investigate its usefulness in the following asymptotic sense. If T(P) =
((P), 3(P)) characterizes the limiting distribution of T(X,) i.e.,

nTIT(X,) B p(P), and n V2(T(X,) — u(P)) <5 N (0,2(P)),

in this paper we investigate conditions under which the map P — T(P) fails to
be injective, i.e., for two different probability distributions P # Q, we have that
T(P) = T(Q).

At this point, it becomes instructive to consider a class of distributions P =
{Pp : 0 € ©} indexed by a parameter set ©. A statistic T(X,,(0)) is said to be suffi-
cient for the model P when the probabilistic and statistical information underlying
the observations X, (0) ~ Py is faithfully encoded in the statistic T(X,(6)), and
plays a central role in statistical inference?. The injectivity of T is closely related
to the notion of sufficiency of T. In particular, when injectivity fails, the limiting
distribution of T'(X,,(9)) ultimately provides no information about the parameter 6
underlying X, (). This qualitative behavior, which is complementary to the notion
of sufficiency, is called ancillarity; our results can be viewed as characterizing condi-
tions for P under which the topological summary statistic T(X,,(0)) is asymptotically
ancillary for the model P.

Our main contributions are the following:

(I) We introduce the notion of S-equivalence which characterizes distributions for
which the mapping T fails to be injective. We examine conditions under which
a parametric class of distributions P = {Py : § € O} admits S-equivalence,
by introducing an alternate equivalence relationship, called F-equivalence,
whereby distributions satisfying F-equivalence are also guaranteed to sat-
isfy fB-equivalence (Lemma 3.5). As a consequence, when P and Q admit
F-equivalence, any statistical test for distinguishing between X,, ~ P and
Yo ~ Q using T(X,,), T(Y,,) has vanishing power as n, m — oo.

(IT) By imposing an algebraic structure on P, and using the notion of group
mazimal invariance [48, 15], in Theorem 4.5, we provide the necessary and
sufficient conditions for the family P to admit F-equivalence. We illustrate
this result through some supporting examples in Section 4.

(III) Next, in Theorem 5.4 we relax the algebraic assumptions on P and investigate
sufficient conditions for F-equivalence when the underlying space X admits a
smooth fiber bundle structure. In contrast to (IT), our method here is more
constructive and is illustrated through several examples in Section 5.

(IV) Lastly, in Theorem 5.14, we present a necessary and sufficient condition for
F-equivalence to hold based on the geometry of the score function Vg log fo ().

2Specifically, T(X,,) is sufficient for the model P if the joint distribution of X, () admits the
factorization fx,, (€1:n;60) = h(x) - g(0, T(21:n))
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In contrast to (II) and (III), this result provides a simple method to verify if a
given class of distributions, P, admits F-equivalence.

The rest of the paper is organized as follows. In Section 2, we provide a background
on the probabilistic, topological and statistical tools needed. Sections 3, 4 and 5
contain the main results, and missing proofs are collected to Section 6. In Section 7
we discuss possible extensions, and collect the supplementary results in the Appendix.

2. Background. In this section, we provide background on probabilistic, topologi-
cal, and statistical tools needed for the rest of the paper. We use X,Y, Z to denote
random variables from a probability space (£, F,7) taking values in a measurable
space (X, B(X)), and we use X L Y to indicate that X and Y are independent.
We assume that the space on which the random values are observed, X is sufficiently
regular, i.e., either X C R? contains an open subset of R?, or X' is a compact
C'-manifold of dimension d < D. For all probability distributions P, defined on
X, we assume the existence of a Radon-Nikodym derivative f = dP/dp w.r.t. a
canonical choice of the base measure on p on X, e.g., the d-dimensional Lebesgue
measure, denoted Ay, when X' contains an open subset of RY. We further assume
that f € LP(X, ) for all 1 < p < oco. The Jacobian of a differentiable function f is
denoted by D f and |Df|| = |det(D f)| denotes the absolute value of its determinant.

2.1. Betti numbers and persistent homology. Given a collection of obser-
vations X,, = {@x1,@9,...,x,} in a metric space (X,d), and for a given spatial
resolution r > 0, the topology underlying the points at resolution r is encoded in a
simplicial complex K(X,,r) C 2%n The simplicial complex can be constructed in
several ways (see, for example, [16]). In particular, the Cech complex is given by

K(X,,r) = {O’ CXp: B(x,r) # @}, (1)

xEo
where B(z,r) = {y € R : || — y|| <r}. For 0 < k < d, the k*"-homology of a
simplicial complex K, given by H(K) is an algebraic object encoding its topology
as a vector-space (over a fixed field k, typically taken to be Zs; [25]). Using the
Nerve lemma [8], Hy(K(X,,,r)) is isomorphic to the homology of its union of r-balls,
Hy (U, B(zi,7)). The k'"-Betti number is defined as

Br(K (X)) = dim(H, (K(X,,,7)))-
It counts the number of k-dimensional voids or non-trivial k—cycles in K(X,,r).
The ordered sequence {K(X,,7)},., forms a filtration, encoding the evolution of
topological features over a spectrum of resolutions. For 0 < s < ¢, |J;_; B(wi,s) C
Ui, B(w;,t) and the simplicial complex K(X,,,s) is a sub-simplicial complex of
K(X,,,t). Their homology groups are associated with the induced linear map

b Hy(K(Xy, 8)) — Hy(K(X,,, 1))
and the k*" order (r, s)-persistent Betti number, given by
Br(K(Xp, s,t)) = rank(ﬁs),

counts the number of non-trivial cycles which are born at or before s and have a
death after t. The k'"-persistence diagram, denoted by dgm, (X,,), is defined as the
collection {(b;,d;)}; of birth-death pairs associated with the non-trivial cycles from
the filtration. We refer the reader to [25, 16] for a comprehensive introduction.
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(A) Sparse regime (B) Thermodynamic regime (C) Dense regime

Ficure 1. Ilustration of different asymptotic regimes

2.2. Asymptotic regimes. A point process @ is a locally finite, random counting
measure defined on the measurable space (2, F) whose random elements take values
in X, and for a B € B(X), the random variable ®(B) measures the number of ele-
ments of @ in B. X,, is called a Binomial point process if X,, = {X1, Xa,..., X} is
i.i.d. with distribution P. The Binomial point process can equivalently be rep-

resented by the random measure ®,, = Y '  dx,, from which it follows that
®,,(B) = Bin(n,P(B)) for all B € B(X).
In Section 2.1, the collection of points {@1, x>, ...,x,} were fixed points from

a space (X, d). The probabilistic setting deals with a random collection of points
X, ={X1,X5,...,X,}. The analysis of the asymptotic behavior of the topological
quantities depends on how the radii of the balls for the Cech complex, r,, decays
relative to n. If the radii r,, decay too quickly, then the associated simplicial
complexes fail to recognize the higher dimensional simplices, resulting in sparsely
connected points. On the flip side, if the radii r,, decay too slowly, then all the
points become densely connected. At a critical rate of decay for r,, one can observe
a phase transition. This is illustrated in Figure 1.

Formally, the thermodynamic regime corresponds to the case when the expected
number of points inside a ball of radius r,, has constant order, i.e., if P < A\; then

E(®(B(z,1,))) = nP(X € B(z,1,)) nré e as n— oo,

whenever 7, = en~ /. Faster rates of decay, 7, = o(n~'/?), corresponds to the

sparse regime, and slower rates of decay, r, = w(n~'/%), corresponds to the dense
regime.

From the definition of the Cech complex in Eq. (1), it is easy to see that in the
thermodynamic regime r,, = tn~ /¢ K(X,,,r,) is equivalently obtained by holding
the radius fixed at ¢ and rescaling the original points to get K(n'/4X,,,t). Specifically,
taking r, = tn~ Y% if ¢ C X,, is a k—simplex of K(X,,7,) then for n'/%¢ C n'/4X,,
it follows that

(| Bwn#e <« ()Br)#e,

ycnl/dg xCo

and, therefore, K(X,,r,) ~ K(n"/?X,,t) is a simplicial isomorphism. Similarly,
when 7,, R, are such that r, = sn=%/? and R, = tn'/? in the thermodynamic
regime, the (r,, R,)-persistent Betti numbers are equivalently given by

ﬁz’t(K(nl/dxn)) 2 B, (/C(nl/dxn,S,t)) = Br(K(Xy, T, Bn))-
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3. Injectivity of T(P), S-equivalence and F-equivalence. We begin by de-
scribing the setting in which we examine injectivity. Let X,, = {X 1, Xo,..., X, }
be sampled i.i.d. from a probability distribution P with density f on X C R”. The
topological summary we are interested in is the collection of persistent Betti numbers
for the random Cech complexes in the thermodynamic regime,

T(X,) = (ﬁg’t(lc(nl/dxn))a Bf’t(lc(nl/dxn))7 e 7B§7t(’C(nl/dxn))>’

for 0 < s < t. The thermodynamic limit for each S (K(X,,,7,)), 0 < k < d has been
established in [28, 50, 46, 22, 31, 10]. In particular, we rely on the following charac-
terization of the thermodynamic limit found in [31, Proposition 3.1 & Theorem 4.5]
which follows from a slight restatement of the conditions in [22, Theorem 1.1].

Proposition 3.1 (|22, Theorem 1.1]; [31, Proposition 3.1 & Theorem 4.5]). Let
X, C X sampled i.i.d. from P with density f, such that f € LP(u,X) for all
1 <p<oo. Forfired ) < s <t < oo, there exist fixred functions v, <, depending
only on k such that

ey (KM X))

n—00 n

= pu®is.t) = [ (£(@)s, £(2)/%) (o) da

X

and

By (K(n'9%,)) — pi(P; s, 1) KA
NG
where o3 (s,t) = Jx se(f(x)Y s, f(2)Y %) f(x)dz.

N(0,05(s, 1)),

Remark 3.2. While we focus on Betti numbers associated with random Cech
complexes in the thermodynamic regime, as noted in [49, Section 1.3], the results in
this paper will extend to the Vietoris-Rips, alpha and witness complexes as well. For
example, the probabilistic results in [22, Theorem 1.1] and [46, Theorem 3.3] hinge
on establishing moment bounds using the topological additivity property in [22,
Lemma 2.2] and [46, Lemma 2.1] respectively—which extend to the aforementioned
simplicial complexes. In particular, some general conditions an abstract simplicial
complex needs to satisfy for the results to hold are described in [40, Section 4.2].

A key observation is to note that the limiting quantities in Proposition 3.1 can
equivalently be written as the statistical functionals

plPist) = [ (@)%, @)1 )i,
ok (P:s, 1) = / Sk (f (@) "s, (@) ") [ () de,

X
where f is the density associated with P. Therefore, the thermodynamic
limit, Bg(P;s,t) = (,uk(}P’; s,t), o2 (P;s, t)), encodes the limiting behavior of
n=1285H (K(n'/9X,,)).

With this background, we define the notion of Bx-equivalence under which two
distributions P, Q admit the same thermodynamic limit 8 (P;s,t) for all 0 < s < t.
We are interested in families of distributions which admit Sg-equivalence for each k,
ie., Br(P;s,t) = Br(Q;s,t) for each £ > 0. We call such a family of distributions
[-equivalent.
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Definition 3.3 (S-equivalence). Two distributions P, Q are said to admit Si-
equivalence if B (P;s,t) = Br(Q;s,t) for all 0 < s < t. Furthermore, P and Q

are said to admit -equivalence, denoted P L Q, if P and Q admit Si-equivalence

for all £k > 0. Moreover, a family of distributions P admits [-equivalence if P L Q
forall P,Q € P.

Establishing S-equivalence for distributions directly is infeasible because the exact
forms of the quantities ~, and ¢, as described in Proposition 3.1, are typically
unknown. To circumvent this challenge, we introduce an alternative equivalence,
termed F-equivalence.

Definition 3.4 (F-equivalence). Consider two probability distributions P, Q with
probability density functions f and g, respectively. Let X ~ f and Y ~ g be two
random variables with distribution P and Q, respectively. Then, P and Q are said

to be F-equivalent, denoted PP & Q (equivalently, f & g) if f(X) 4 g(Y). A family
of distributions P is said to admit F-equivalence if P Z Q for all P,Q € P.

The following result establishes the relationship between distributions that admit
F-equivalence and those that admit S-equivalence.

Lemma 3.5. If P is a family of probability distributions that admit F-equivalence,
then P also admits B-equivalence.

In other words, F-equivalence is a sufficient condition for distributions to admit
[B-equivalence, i.e., distributions satisfying F-equivalence are also guaranteed to
satisfy S-equivalence.

Remark 3.6. We make the following observations regarding distributions which
admit F-equivalence.

(i) Let P(©) = {Pg : 0 € O} be a parametric family of distributions. A statistic
T(X,,) is an ancillary statistic for the model P(O) if the distribution of T(X,)
(w.r.t. ]P’g@") does not depend on 6. In a similar vein, T(X,,) is approzimately
ancillary for the model if the limiting distribution T(Py) does not depend on 6 [42,
Chapter 6.6]. This provides the following interpretation of F-equivalence: if P(O)
admits F-equivalence, then the topological summaries are approximately ancillary
statistics for the model.

Given a fixed model P(0), in general, there are no constructive techniques for
determining ancillary statistics [32]. Our objective here is, however, somewhat
complementary; given a fixed statistic T(X,,), we investigate conditions under which
the model P(©) admits T'(X,,) as an approximate ancillary statistic.

(ii) Notably, if we are given observations X,,(0) ~ Py from a f-equivalent family
P(0©), any level-a hypothesis test for Hy : 0 € O vs. Hy : 6 € ©1 with ©9NO; = &
using T'(X,,) as a test statistic will have negligible power. This is a simple consequence
of the fact that, in the limit, for any rejection region B € B(R?),
B, (T(X,) € B) <P, (T(X,) € B) + (PHl (T(X,) € B) =B, (T(X,) € B)‘
<a+o(1),

where the last inequality follows from the fact that the « is the fixed type-I error
rate and the second term follows from the fact that, due to F-equivalence, as n — oo
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the limiting distributions of T(X,,) under the null and alternate hypothesis are the
d

same, i.e., T(Py,) = T(Py,) for all y € ©¢ and 6, € O;.

We, however, emphasize that the approximate ancillarity of topological summaries
T(X,,) for such models does not invalidate their usefulness in statistical inference;
it only limits their ability to be used as the primary test statistic when the model
admits F-equivalence. In fact, ancillary statistics play a pivotal role in deriving
efficient and optimal testing procedures in the framework of conditional inference
[17, 21].

(iii) Studying injectivity for Betti numbers collectively serves as a stepping-stone to
understanding the behavior of several other topological invariants, e.g., the Fuler
characteristic is an important topological invariant and is given by the alternating
sum of Betti numbers,

d

XK (X)) = D (=) Br(K(Xn, 7). (2)
k=0
Unlike Betti numbers, the asymptotic behavior of the Euler characteristic of a
random Cech complex exhibits interesting phenomena only in the thermodynamic
regime [5, Corollary 4.2], i.e.,

T\ (X,) = n-l/zx(n(xn,m—l/d)).

By noting that 8y (K(X,,,tn='/%)) = gr*(K(n'/?X,,)) in Eq. (2) and invoking the
continuous mapping theorem, it is easy to see that families of distributions which ad-
mit F-equivalence in the thermodynamic regime will also admit identical asymptotic
behavior of the Euler characteristic. In particular, this shows that the goodness-of-fit
test proposed in [14] will fail to distinguish between (S-equivalent point processes.

(iv) Furthermore, note that the persistence diagram, which (informally) is given by
dgmk(nl/dxn) é{(bi, d;) : 3k-dim feature with birth time b; & death time d; > bl},
can be represented by a locally finite Radon measure ([26, 13])
W[dgm(n'/?X,,)] = Yo b
(u,0)Edgm, (n1/4X,,)

Denoting by B, = [0,s] X [t,00) the rectangular set in the upper-left half-plane,
the persistent Betti numbers are equivalently given by

By (K" *X,)) = (1(Bur). dgmy (n'/*X,.))

= / 1((u,v) € Byy) d\I![dgm(nl/an)] (u,v).
0<u<v<oo
As a direct consequence, F-equivalence also implies that the distribution of

(¢,dgm,, (n'/9X,,)) is the same for all P € P and for all piecewise constant functions
¢(+) on the space of persistence diagrams.

We conclude this section with a numerical illustration to demonstrate the topo-
logical inference in a family of distributions admitting F-equivalence (and, thereby,
also B-equivalence).
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Ficure 2. Scatterplot and Betti curve for point clouds X,, obtained from
two different distributions in {fg : 0 € ©}. (Left) X;, ~ fg for 0 =
(0.46,0.47,0.03,0.04) in blue, (Center) X,, ~ fo for @ = (0.17,0.29,0.21,0.24)
in orange, and (Right) the (normalized) Betti curve r — S1(Xy,r)/n for the
two point clouds.
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Ficure 3. Betti curves and the Betti numbers in the thermodynamic regime
for {fp : 0 € ©} from Example 3.7.

Example 3.7. Let © = {(01, 02,05,0,) € Ri 201+ 05403+ 04 = 4}, and let fg
be a probability density function on X = R2, given by

x/\/gla y/\/gl /45 1f$205y20

9( )
P g x/V0s, —y/V0s)/4, fx>0,y<0’
g(—x/V0y, —y/NO5)/4, ifx<0,y<0

where g ~ Biv-x2(10, 10, 0) is the probability density function of the bivariate x2
distribution with parameters n = p = 10 and m = 0 [24, Eq. 4.5]. In Example 5.13,
we detail how {fg : @ € O} admits F-equivalence, and, therefore, from Lemma 3.5
also admits S-equivalence. Here, we examine the topological summaries of samples
X,, obtained from this family of distributions. Figures 2 (A) and 2 (B) show the
scatterplot of samples X,, obtained from two different distributions in this family.
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The 15 order (normalized) Betti curves r — 31 (K(X,,,7))/n, in Figure 2 (C), show
that that their topological summaries are almost indistinguishable.

In Figure 3(A), for ¥ = 20 random parametrizations {0;:1 <i <k} of
fo, we plot the Betti curves curve; : r — (1(X,(6;),7)/n for X,(0;) when
n € {1000,5000,10000}. For fixed n, the (pointwise) mean Betti curve for the
k individual curves is highlighted in bold. The plot shows that as the sample
size n increases, the individual curves are harder to distinguish, and, shed light
on the indistinguishability of the parameters in the asymptotic setting. In
addition, the vertical dashed line in Figure 3 (A) highlights the region of maximum
variability, which was empirically observed to correspond to 7, = 20 x n~'/2 in the
thermodynamic regime.

To further investigate this region, we choose k = 3 random parametrizations fo,
for i € {1,2,3}. For n ranging from 1,000 to 20,000, and for each combination of
n and @; we generate 30 realizations of the samples from fy,, i.e., ng )(01) for j €
{1,2,...,30}, and compute their normalized Betti numbers in the thermodynamic
regime, b(n,i,7) := Bl(lC(ng)(Oi),rn))/n, with 7, = 20 x n~='/2, Figure 3 (B) shows
the plot of n vs. b(n,i,j) for each combination of ¢ and j. For each fixed 6, the
mean curve is highlighted in a bold dotted line with the shaded region illustrating
one standard deviation. The figure shows that the topological summaries, in this
example, are insufficient to distinguish the three parameters in a formal statistical
setting. The accompanying code for reproducing the experiments is available at
https://github.com/sidv23/invariance. &

4. F-equivalence I: Algebraic perspective. Having introduced the notion of
F-equivalence, and discussed its implications in the preceding section, a natural
question arises: when does a family of distributions admit F-equivalence? In this
section, we impose an algebraic structure on the parametric model P(©) in order to
provide a general template for characterizing distributions that admit F-equivalence.
We begin by motivating the choice of imposing an algebraic structure by means of
the following prototypical example.

Example 4.1 (Location and scale families). For X = R? and a fixed
density function fo on R? consider the location family of distributions,
Proc = {fg(zc) = folx—0):0 ¢ Rd}, if Xg9 ~ fg, by a standard transfor-
mation of random variables it follows that (Xg — ) 2 Xo~ fo.  Therefore,
fo(Xo) = fo(Xo—0) 4 fo(Xo), which does not depend on 6. It follows that P
admits F-equivalence.

However, the scale family of distributions, Pscale = {go(x) : 0 € Ry}, where
go(x) = 071 f1(x/0) for a fixed density function f;, does not admit F-equivalence.
If Yy ~ gg, then Yy /6 4 Y1 ~ f1. But, the distribution of gy(Yy) is the same as
the distribution of 8! f;(Y 1), which clearly depends on § € R, . Therefore, Pscqle
does not admit F-equivalence. &

It may be argued that it is natural to expect topological invariants to be insensitive
to translations but sensitive to scaling and dilation. The next example illustrates a
simple family of distributions which admit F-equivalence.
Example 4.2 (Motivating example). Let X = [0, 1]? and © = [0, 27], consider the
family of distributions P(©) = {fp : 0 € ©} given by

fo(z,y) = (cosf - d(z) +sinf - '1>_1(y))2]l((x,y) eX),
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Ficure 4. Illustration fg(z,y) from Example 4.2 for 8 € {n /15,7 /4,27 /3}

where ®1(.) is the inverse CDF of a standard Normal distribution N(0,1). See
Figure 4 for an illustration. It is easy to verify that fp is a well-defined probability
density function. Let (Xp,Ys) ~ fo and consider the transformation (z,y)
(@ 1(x),® Yy)) =: (u,v). A simple transformation shows that the density function
for the transformed random vector (Ug, Vp) = (& 1(X,), @ 1(Ys)) is given by

fo(u,v) = (cosf - u+sinf - 0)2(27T)7167%<UQ+U2).

By further transformation (u, v) (u cosf +vsinf, —usinf + v cos 0) =:(r,s), the
density function for the random vector (Ry, Sp) becomes

Jo(r,s) = (27T)717"267T2/2 . 6752/2,

from which we can see that the distribution of (Rg,Ss) is free of § and Ry L Sp.
Therefore, by marginalizing (Rp, Sp) and then squaring, the desired distribution for
Zg = fo(Xg,Yy) = R} is

f20(2) = (2f2m) 2712,
Thus Zg ~T'(3/2,1/2) for all § € ©, and P(O) admits F-equivalence. &

A key step in establishing F-equivalence in Example 4.2 is showing that the
distribution of (Rp, Sp) is free of §. In particular, the map (u,v) > (r,s) can be
represented by the action of an element of the rotation group, i.e., (r,s) = go(u, v),
where gg € SO(2); and the (u? + v?) term in fy(u,v) ensures that the action of
gp remains constant on orbits of gg. This suggests that the algebraic structure
underlying the family of distributions (if any) plays a key role in establishing their
invariance. Lie groups provide a natural framework for studying such properties.
We begin by reviewing some basic facts about group invariance in statistics. The
presentation here closely follows the monographs by Wijsman [48] and Eaton [15].

Given a group G = (G,*) acting on a space X, its orbit is given by Gz =
{gx : g € G}; the stabilizer with respect to ¢ is G, = {g € G : gxr = x}. When G
acts bijectively on X, a function T : X — T is G-invariant if T'(x) = T(gx) for all
g € G and a space 7.

Definition 4.3 (Maximal Invariant). A function T': X — T is G-maximal invariant
if it is constant on orbits, i.e., T(gx) = T'(x) for each g € G; and, it takes different
values on different orbits, i.e., for each @,y € X such that T'(x) = T(y), we have
that y € Gx.

It follows from this definition that if J : T — 7, from the space T to the space 7, is
any injective map, then the composition JoT will also be G-maximal invariant. Thus,
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maximal invariants for a group G are unique up to injective transformations. The
relationship between a G-invariant function and G-maximal invariance is described
in the following result.

Proposition 4.4 ([15]). Suppose T : X — T is G-mazimal invariant. A function
¢: X = Y is G-invariant if and only if there exists k : T — Y such that ¢ = ko T.

If : X — ) is a surjective function taking elements from X to the space ),
then the action of g € G on elements in X induces an action on elements in ) via .
The induced action of G on Y is given by gy = ¥(gz) for every x € ¥~1(y). This
is well-defined whenever ¥(x1) = ¥(x3) implies that U(gx,) = ¥(gxz) for each
g € G. We say that U : X — ) is G-compatible when the induced action of G on Y
is well-defined.

With this background, let P be a fixed distribution on X and X ~ P. The
action of an element g € G on X induces a transformation on X to a new random
variable g X taking values in (¢X,B(gX)). With a slight abuse of notation, let g4P
denote the distribution of ¢X. If the elements of G are indexed by a parameter
0 € 0, ie, G(O) = {gg:0 € O}, then the action of G on X induces a family
of distributions P(©) = {Py=go4P:60 € ©}. The following result establishes
necessary and sufficient conditions for P(©) to admit F-equivalence for a wide class
of distributions.

Theorem 4.5 (Group Invariance). Suppose ¥ : X — Y is differentiable and bijective,
G(©) is a Ct-group of isometries acting on Y, and T : Y — T is G(O)-mazimal
invariant. Define the family of distributions P(©) ={fy:60 € O} on X by

fo(®) = d(gg 0 V()),
where gg € G(O) and ¢ : X — R is some function which ensures that fg is a valid

density. Then:
(i) P(O) admits F-equivalence if and only if there exists ¢ : T — R such that

det (DU~ (y)) = ¢(T(y)).

(i) If G(O©) = X, Gi(©;) where © = O1 X Oz X -+ X Oy, then P(O) admits
F-equivalence if and only if there exists a sequence of G;(©;)-compatible functions
T : Vioy = Yi with Yy = Y and a function ¢ : V,, — R such that each T; is
G;i(0;)-mazimal invariant and

det (DY (y)) = (T 0 Trn_1 0~ 0 T1(y)).

We defer the proof to Section 6.2 and illustrate some examples of Theorem 4.5 in
the remainder of the section. We begin by illustrating a multivariate generalization
of Example 4.2 in the context of Theorem 4.5.

Example 4.6. Let £ ~ F be random variable on R with density f(z) = F’(x) such
that E(¢) = 0 and E(¢2) = 1. For X = [0,1]? and © € %1, let P(©) = {fg : 0 € O}
be given by
2
fo(z) = (0TF '(z)) 1(z € X), (4)
where, for brevity, F~'(x) = (F~ (z1), F (=), - - -, F’l(acd))T € R? is the “vector-

ized” inverse CDF of F. Then, the family of distributions P(©) admits F-equivalence
if and only if £ ~ A(0,1).
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First note that fy is a well-defined density. To see this, taking y = F~'(x), we
have

d
f, Jotwrie = [ 6T T 100 ay

d d d
= ZZ/ 9j9kyjyk:Hf(yi) dy
Re i=1

j=1 k=1
d d d
= Z/ Oy [T fw) dy+ ) / 2 0;60kyu [ [ Fwi) dy
j=17/R? i=1 Re i=1
d

1<j<k<d
() 2 _
> 6r+0=1,
j=1

where (i) uses the fact that E(¢) = 0 and E(¢2) = 1.

Let G = SO(d) = {99 € GL(R,d) : g;l =gg,95e1=10¢€ Sd’l} be the group of
rotations on Y = R? where ¢; = (1,0,...,0)T € R%. The function T(y) = ||ly|* is
G-maximal invariant since T'(y,) = T(y,) if and only if y, = ggy, for some gy € G.
As per Theorem 4.5, Eq. (4) is equivalently written as fp(x) = ¢(go o U(x)) where

U(x)=F (), and ¢(y)=(y er)”.

The Jacobian for W' is given by |[D¥~!(y)|| =[], f(y:). From Theorem 4.5 it
follows that P(0) admits F-equivalence if and only if there exists some function (g :
Ry — Ry, which may implicitly depend on d, such that [[;", f(y;) = (d(||y||2). We
show, using Lemma A.1 in Appendix A, that this is satisfied only when & ~ A(0, 1).
When d = 2, this recovers the family of distributions illustrated in Example 4.2. <>

IS

To illustrate a family of distributions generated by a subgroup of transformations,
consider the following variant of Example 4.6.

Example 4.7. For p 4+ ¢ = d, consider G = SO(p) x SO(q) acting as a subgroup
of SO(d) on Y = R, i.e., for every gy € G it follows that g, e; = 6, @ 6, where
0, € S~1 and 6, € ST, Let &, : [0,1]” — RP and &, : [0,1]9 — R? be
the “vectorized” inverse CDFs of N'(0,02) and N(0,02). For X = [0, 1], consider

P(O) = {fo:0 €SPt xS '} given by

fo(@) = k(p,q) (6] B, (x,) + 0] B, (x,)” L(z, @ 2y € X), (5)

where ¢ = &, ® &, and £(p, ¢) is a fixed normalizing constant free of . As before,
fo(x) = ¢(go o ¥(x)) where

U(x) = (@, (z,), ;" (z,)),
2 2
R S o Y
(2m)4/ 200 ol 20’% 203 '

In the context of Theorem 4.5, let )V = RP2 and Y5 = RQ, and consider 7} : Y — )
and Ts : Y1 — Vs given by

and

Tl:yp@yq'_>?>’p@||:'>’q“27 and TQ:yp@Z*_)Hyp’F@Z'
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Clearly, T} is SO(g)-maximal invariant and T5 is a maximal invariant w.r.t. the
induced action of SO(p) on ;. Therefore, for ¢ : R> — R, given by

() = o
T,Y) = ———5 2P| 25 — = |,
Y (2m)d/20b ol P 202 20?2

it follows that ||D\Il_1(y)|| = ((T3 o Ti(y)), implying that P(O) admits
F-equivalence. &

The preceding two examples provide an alternate characterization of the Normal
distribution through the lens of F-equivalence w.r.t. rotational transformations. The
next example illustrates F-equivalence for a family of distributions generated by an
unconventional group of transformations.

Example 4.8. For a fixed shape parameter x = 0.5, consider the family of bivariate
Weibull distributions on R% | given by

Jolo) = e (—M - Vf)

For © = Ry, it follows that P(0©) = {fo(z,y) : 0 € ©} admits F-equivalence. We
verify this as per Theorem 4.5. The functions ¥ and ¢ are ¥(z,y) = (y/,/y), and
¢(x,y) = exp (—(z +y))/4zy. The group action may be identified as follows: let G
be a subgroup of GL(R, 2) consisting of elements

=0 1Js):

for 8 € R4. It is easy to verify that T'(z,y) = zy is G-maximal invariant. The
density can now be expressed in the form fp(z,y) = ¢(gg o U(z,y)). It follows that
UH(z,y) = (2°,y) and

det(D\Ilfl(z7 y)) =day = 4T (z,y).
Hence, by Theorem 4.5, P(©) admits F-equivalence. &

5. F-equivalence II: General cases. While the results in Section 4 examined
necessary and sufficient conditions for F-equivalence by enforcing some algebraic
structure on the family of distributions, the objective of this section is to relax
these requirements and, instead, exploit the structure underlying the support of the
distributions, X. Before we present the main results, we introduce the main tools
we employ:

(i) The modular character of a measure p, denoted by ¥, and

(ii) A fiber bundle representation & = (X, Z,Y,, G) of the underlying space X.

Modular Character. Counsider the set of diffeomorphisms A(X), given by
A(X) = {¢ € Diff(X) : [Dg()|| = [Do(z)], Va,z' € X}

In other words, A(X) comprises of smooth maps from X to itself such that the
Jacobian of the map does not depend on the specific location where the transformation
is made, e.g., when X = R? the set A(X) is the group of rigid transformations on
R?, E(d). The elements of A(X) form a subgroup of transformations with respect
to Diff(X). The change in measure induced by diffeomorphic transformations of a
space X w.r.t. the measure p is given by its modular character.
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Definition 5.1 (Modular Character). Given a measure u on the space (X, B(X)),
a function ¥ is defined to be the modular character of p if for each ¢ € A(X) with
y = ¢(x) we have that

p(dy) = V([|Do|)p(dz).

For example, when X = R? and p = Ay, the d-dimensional Lebesgue measure,
the modular character of u is given by ¥(z) = . Observe that for any full-rank
linear map ¢ € GL(R,d) such that y = ¢(x), we have u(dy) = dy = |Do||de =
|IDo||pu(de). A nontrivial example of the modular character is illustrated in Exam-
ple 5.7.

Remark 5.2. The modular character is closely related to the notion of tensor-density
(see, for instance, [41]). When G < A(X) is a locally compact group continuously
acting on X from the left, i.e., (g, &) — g - x for every g € G, then ¥, is also called
the relatively invariant multiplier [15].

Fiber Bundle Representation.  Following the convention in [44], when X is a
compact d-dimensional C'-manifold, suppose X admits a fiber bundle representation
&= (X,2,Y,7,G), ie., X is the total space, Z is the base space with the bundle
projection m defined by the continuous surjective map = : X — Z, and G is
a topological group® which acts on the canonical fiber space . A collection
{(Vj,4;) : j € J} is called a local trivialization of & and serves as the coordinate
charts for the fiber bundle, i.e., {V; : j € J} is an open cover of Z and for each j € J
the map ¢; : V; x Y — n~1(V}) is a diffeomorphism which guarantees that locally,
in the neighborhood V; C Z, the fiber 7= (V}) looks like the product V; x Y. In
particular, the map ¢; , = v¥;(z,-) : Y — YV, := 7 1(z) is a diffeomorphism for each
zeV; CZ.

Furthermore, for every i,j € J and all z € V; NV, the map wj_zl o Y=Y
should coincide with an element g;; » of the structure group G, and & is represented
by the following commutative diagram:

P
(V) o Vix Y )
WJ/ (z,y)—z
Vi

From [44, Section 2.4], if {(U;,n;) : i € I} is another local trivialization for &,
then the two local trivializations are equivalent in the sense that for every z € U;NV;
there exists g;; » € G such that

9jiz = %_zl 0Nz (6)
In other words, the structure group G determines the change of coordinates from
{(Vj,05) :j € J} to {(Ui,ms) - i € I}

If the base space Z and the fiber ) are endowed with measures i and v respectively,
they induce a local product measure A = v @i, i on the space X [23]. Specifically,
for a measurable set A C X such that 7(A4) C V; C Z, the induced measure X is
given by

A(A) = (v Broe 1) (471 (4)) = / e 0 Autaz), )

3We use G to distinguish the structure group, in this section, from the groups, G, in Section 4.
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where for * € X and z = n(z) € V; C Z, the measure v, = (¥j,2) 4V is the

pushforward of v on the space 77!(z) via the diffeomorphism v; ., i.e., v,(B) =
v(¢;2(B)) for all measurable B C 7~!(z). Furthermore, for f € L'(X,)), the
following version of Fubini’s theorem holds [23]:

Jor@ra = [ [ ) v dnn) 0

From [23, Theorem 1], the measure A in Eq. (7) exists only when v is G-invariant.
To see this, consider two local trivializations {(V},v;) : j € J} and {(U;,m;) : ¢ € I};
for z € U; NV; and a measurable set B C 7~ 1(z) from the fiber over z, the induced
measure v, (B) should be invariant to the specific choice of the local trivialization,
ie., V(n;zl (B)) = V(?ﬂ;zl (B)). From Eq. (6), this implies that

v(n2(B)) = v(g5:k 0 vj L(B)) = v(4; 1(B)),
from which it follows that v is G-invariant.

It is worth pointing out that when & is a flat bundle, i.e., X = Z x ), then
G = {idy} and v is always well-defined.

Excess mass function. The final ingredient we require is an alternate charac-
terization of F-equivalence using excess mass functions. They are defined as follows:
For a probability distribution P with density f and X ~ P, the excess mass function,
]?, is given by

Fit)y=P(f(X)>1t) = /Xu‘(f(m) > 1) f(x)de, for all t > 0.

Excess mass functions have been employed for geometric inference in nonparamet-
ric statistics [35, 39], and to characterize the Betti-0 function [9]. The next lemma
supplements Lemma 3.5 using excess mass functions.

Lemma 5.3. For two probability density functions f and g, f Z g if and only if
f: g. Moreover, if P is a family of distributions such that f: g forall f,g € P,
then P admits B-equivalence.

In other words, for X ~ f and Y ~ g we may replace the condition f(X) 4 9(Y)
in Definition 3.4 with the condition f: g. Lemma 3.5 formalizes the intuition that
the topological summaries in the thermodynamic limit are capturing, at most, local
information encoded in the superlevel sets of the probability density function.

With this background, the following result provides a sufficient characterization for
distributions to admit J-equivalence and is generated using structure underlying X'

Theorem 5.4. Let & = (X,2,),7,G) be a fiber bundle representation of X with
a local trivialization {(V;,v;) : j € J} and compact Y. For each x € X with z =
n(x) € V;, let fg be given by

fo@) = Cg(o(v71(®),2)), (9)
where

(i) C=1/v(Y) is the density of a uniform distribution w.r.t. a measure v on Y,

(ii) g is the density of a probability distribution on Z w.r.t. a base measure p
with modular character ¥,,,

(iii) ¢ : Y x Z — Z is such that ¢y = ¢(y,-) € A(Z) for eachy € Y.
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Then {fy : ¢ € O} admits F-equivalence when
oc {¢:/yc~m,¢(un¢—1<y7~>u) vty =1}, (10)

The proof is deferred to Section 6.4, and we provide the intuition here. The
density g on the base space Z together with the uniform distribution on the fiber ),
induce a probability density C - g(z) locally in X'. The map ¢(y, -) is free to move
mass on the base space Z, which, in turn, induces a different mass in the fiber over z.
By Lemma 5.3, F-equivalence holds when the excess mass function is preserved; this
corresponds to the Jacobian constraint in Eq. (10). Theorem 5.4 demonstrates that,
in the thermodynamic limit, the topological summaries are effectively capturing, at
most, only local information underlying the probability distribution.

While the density function f4 in Theorem 5.4 seems to depend on the choice of
the local trivialization {(V}, ;) : j € J}, the following result shows that for a fixed
¢ € @, the density function f, doesn’t depend on the choice of the local trivialization
used.

Proposition 5.5. Under the conditions of Theorem 5.4, let {(V;,v;):j € J} and
{(Ui,m;) : i € T} be two local trivializations of & = (X,2,Y,7,G). For a fived ¢ and
for x € X with z =n(x) € U; NV}, let fy(x) be the density given by Eq. (9), and
let ]A";g(a:) be given by

Jo@) = C-g(o(n2(w),2)). (1)

Then, for every measurable A C X,

Amw:AﬁM

In other words, Proposition 5.5 ensures that two equivalent coordinate represen-
tations of the & induce the same probability density function fy on X for a fixed
¢, and the collection ® in Theorem 5.4 cannot be simply obtained by a coordinate
transformation of &.

Remark 5.6. We highlight some salient observations regarding Theorem 5.4 below.
(i) When Y = G is a Lie group, £ simplifies to become a principal G-bundle
and the bundle projection 7 : X — X /G projects each element in X to its
orbit. Principal G-bundles admit local cross-sections. Furthermore, when it
admits a global-cross section, X admits the factorization X = X' /G x G, and the
factorization of measure on X simplifies to the product of an invariant measure p
and an equivariant measure v (see, for example, [29]). Lastly, when X =Y x Z
is globally trivial, then the bundle charts simply become 1, = idx, such that
the induced-measure v, = v for each z € Z, and Eq. (8) reduces to the familiar
setting of Fubini’s theorem.

(ii) Suppose P is a distribution on X’ with density f w.r.t. a dominating measure
A, and A C X is a set of A—measure zero. Let IP”X\A be the restriction of P on

X'\ A and let fa\ 4 be its resulting density. Then, for all £ > 0,

ft) = / 1(f () > 1) (z)dA(z) 2 / 1(f () > 1) f(@)dMz) = Fya(t),
x X\A
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where (i) follows by noting that A(A) = 0. Therefore, f = fx\ A, indicating
that F-equivalence for families of distributions can be analyzed by excluding a
set of measure zero from the space X. In particular, if & = (X,2,Y,7,G) is a
fiber bundle, then we may omit sets of measure zero from both Z and ) since
the dominating measure A on X is admits the disintegration A = v ®jo¢ p, for
dominating measures v and p on ) and Z, respectively.

It follows from Theorem 5.4 that a fairly large family of distributions admit
F-equivalence. However, the exact representation of these families using the index
¢ is not entirely obvious. Nevertheless, the elements in ® may be indexed by a
more well-behaved set © such that the family {fp : 6 € ©} admits F-equivalence.
This is made precise in the following examples. The following example illustrates
F-equivalence when v has a non-trivial modular character but X admits global cross
sections.

Example 5.7. Consider the spherical decomposition « = (r,8) of R?\ {0} where
r € Ry and @ € S*"!. Let u be a measure on Z = R, with density g w.r.t.  such
that

n(dr) = d(r®) = r¢=tdr. (12)

For a nonnegative valued function ¢ : S¥~! — R, , and for € X with spherical
coordinates (7, 0), let fe given by

fe(@) = Cu-g(r-€(9)), (13)

where 1/Cy = 27%2 /T'(d/2) is the surface area of S*~!. In the context of Theorem 5.4,
consider the fiber bundle representation of X = R%\ {0} given by & = (X, Y, 2,7, G)
where )) = S?~1 denotes the typical fiber, the base space Z = R, and the projection
map 7(z) = ||z||. Taking V =2 =R, and =1 : X — V x Y to be the map given
by
@) = (|lz],0) where 6 =z/|z| €,

provides a local trivialization {(V, )} for X'. Therefore, the density in Eq. (14) is
equivalently given by

fe(x) = Ca- (o4 (), 7)),
where r = 7(x) and ¢(0,r) = r-£(0). It is easy to verify that the map ¢(0,-) € A(Z)
for all @ € S*~! and ¢~1(0,r) = r/£(0). Importantly, from Eq. (12), the modular
character of 1 is W(¢) = t¢. If we consider the set =, satisfying the constraint in

Eq. (10),
5= {5 [, Ca-eto)vte) - 1},

then from Theorem 5.4 it follows that P(Z) = {f¢ : £ € Z} admits F-equivalence.
Moreover, from Remark 5.6 (i), fe(x) also satisfies F-equivalence on R O

Remark 5.8. While seemingly contrived, the preceding example arises naturally in
several situations. When v is the surface measure on S¢~1 (which is invariant under
G = SO(d)) and 7 is the measure given by Eq. (12), then g on Z =R, and v on
Y = S9! induce the standard Lebesgue measure \g locally in R, \g = 1 Q1o v,
i.e., for & = (r,0) in local coordinates A\y(dx) = n(dr) - v(dz). In other words the
non-trivial modular character in 7 arises naturally when the standard Lebesgue
measure on R? is decomposed in spherical coordinates.
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Ficure 5. The sets {& € R2: f,(x) > t} for p € {—0.99,—0.5,0.99} respec-
tively. For a fixed level ¢, all three of them have the same mass. In general,
Po({x € R? : f,(x) > t}) is the same for each |p| < 1.

For a more concrete version of Example 5.7, let d = 2 such that Z = St ~ [0, 2]/ ~
where {0} ~ {27}, and for @ = (rcos@,rsin @) we have Az(dx) = r dr df. Consider

£, (0
fotay = L&),
where ¢(r) and £,(0) from Example 5.7 are given by
g(r) =71 exp(—r®/am), and  £,(0) = (1+ peos6) /7. (14)

Note that £,(6) is well-defined whenever |p| < 1, and

2m de
_9 -
/o £, (9)% =1.

Therefore {f,(x) : |p| < 1} admits F-equivalence. Figure 5 illustrates the superlevel
sets {x €R?: f,(x) >t} of f,.

The next example illustrates F-equivalence for a family of distributions supported
on the surface of a Mébius band with a full twist.
Example 5.9. Let X be the surface of a M&bius band with a full twist given by
P {x(e,t) ER®:0c[0,27), t € [—0.5,0.5]},
where
x(0,t) = (cos O(1 + tcosh), sinf(1 + tcosb), tsin 0) ;
as illustrated in Figure 8 (A). For o € R, let f, be a density function on X given by
exp (k - cos (at + 0))
a — Ja 0; t)) = ’
o) = fa((0,1) SR

where x € R is a fixed parameter and Iy(x) is the modified Bessel function of
the first kind. Then {f, : o € R} admits F-equivalence. This follows by noting
that X can be written as a fiber bundle with base space Z = S! and typical fiber
Y =[-0.5,0.5]. By identifying Z =~ [0, 2]/~ where {0} ~ {27}, the projection map
is given by m(x) = arctan(xs/z1). The collection {(V;, ;) : j = 1,2} provide the
local trivialization for X, where

Vi=(00,2m)\{r}, and Vo =1[0,e)U (7 —¢,7+€)
for sufficiently small 0 < € < 7/2, and for # = =(x) € [0, 27)

Vi b@) = =2 and ¢, M) L (‘Tl f1).

sing’ cos @ \cos b

(15)
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Ficure 6. Superlevel sets of the probability density function f, on X from
Example 5.9 when o € {0,—5,8}. For a fixed level ¢ > 0, the mass of the
superlevel set {& € X : fo(x) > t} is the same for each «.

A more detailed description is provided in Appendix A.2. The density in Eq. (15)
may be rewritten as

Jal@) = g(dalt;4 (@), 0)),

where ¢g(0) = exp(kcos®)/2nly(k) is the density of the von Mises distribution
on [0,27]/ ~ with parameter x, and modular character ¥(u) = u. The map
¢$a(0,1) = at + 0 mod 27 is such that ¢, (-, t) € A(Z) for all ¢ € [-0.5,0.5]. The
Jacobian constraint in Eq. (10),
0.5
dl/(t):/ 1-dt =1,

0.5 q 0.5
=10, A ldp) — &
1 Do)t / -

is satisfied for all & € R. Therefore, by Theorem 5.4, {f,:a € R} admits
F-equivalence. Figure 6 shows the superlevel sets {x € X' : f,(x) >t} when
a € {0,—5,8}.

(0 —at mod 27)

For the fiber bundle representation & = (X, Y, Z, 7, G), when the typical fiber
space Y is discrete, Theorem 5.4 simplifies to the following result.

Corollary 5.10. Let X C R%, p be a measure on X, and 7 : X — A be a given
continuous surjection from X to A C X. Suppose X admits the representation
X = (LlﬁvzlAi) L] (U}nlez') where each A; is diffeomorphic to A and p(Bj;) = 0 for
each j. For a collection of maps ¢ = {¢1, d2,...,¢n} such that each ¢; € A(A), let
J¢ be a probability density funciion on X given by

N
folw) = 3+ g(ou(x(@)) - 1w € 40, (16)

where g is a probability density function with supp(g) = A. Then, {fg RS CI’N}

admits F-equivalence for

N
or {6 tonounon) s £ 3w (Ioa -1}
1=1

Remark 5.11. For ¢ € R, the excess mass function for fy is given by ff (t) = g(Nt).
Therefore, N € Z_ is a fixed value in the family of distributions { Jp:pc® N}. In
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(a, b) = (3.0, 0.6) (a, b) =(1.0, 1.0) (a, b) =(0.67, 2.0)
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Ficure 7. Ilustration of F-equivalence when g ~ 0.5T'(10,5) 4+ 0.5T'(10,2) is a
mixture of Gamma distributions. For different values of 8 € ©, the excess mass
functions fy(t) are identical, as shaded in orange for ¢t = 0.006.

other words, if f¢1’ f¢2 admit the representation in Eq. (16) and f¢’1 o f¢2, then
|£1| - |£2|

For completeness, the proof is provided in Section 6.6. The following two ex-
amples illustrate F-equivalence for distributions which admit the representation in
Corollary 5.10.

Example 5.12. For 6 = (01,05), let © = {(61,6:) € R? _ : 1/6; +1/65 = 2}, and
consider the family of distributions {fs : 8 € ©} on X = R given by
g(61x)/2, ifx>0
fola) = § 02 >0 (17)
g(—bx)/2, ifx <0
where g is a probability density function on R,. Then, {fp: 80 € ©} admits
F-equivalence. This can be seen by representing X = R, UR_ LI {0}, where
A1 =Ry and Ay = R_ are both diffeomorphic to A =R, and {0} has measure
zero. By taking w(x) = |z| to be the continuous surjection from X to A, and the
maps ¢1, ¢2 € A(RL) to be

$1(z) =01z and  ¢2(z) = b2z,

the density function, fg, is equivalently expressed as

%; 9(6i12) - 16z € Ay)

Since ¢ = {¢1, @2} is completely specified by 8 = (01,02), from Corollary 5.10, the
Jacobian constraint is satisfied when

| . 1 1
;5 w(||Do; ) = 2—91+E71

Therefore, {fp : 0 € ©} admits F-equivalence from Corollary 5.10. See Figure 7 for
an illustration when ¢ is the density function associated with the mixture of Gamma

distributions: 0.5-T'(10,5) + 0.5 - T'(10, 2). &

Example 5.13. For 8 = (01,02,03,04) € Ri . consider the probability density fe
on X = R? from Eq. (3) in Example 3.7. To see that {fg : 01 + 02 + 05 + 04 = 4}
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admits F-equivalence, consider the representation of X = R? as

X:{QA,}U {(@1,22) s21 =0 0r 22 =0}, (18)

=:B

where B is a set of measure zero, and A;, As, Az, A4 are the four (open) quadrants
of R? which are each diffeomorphic to A = R% | = {(21,22) € R?: 21,20 > 0}. By
taking 7(x1,x2) = (|1], |z2|) to be the continuous surjection from X to A, consider
the maps ¢; € A(R% ) to be given by ¢;(z) = R(0;) "z where

~ (1/4/0; 0
o= (5% )
Then, fp is equivalently expressed as

4

folw) = 1 3 g(on(n(w))) - 1w € 4.

=1

Similar to Example 5.12, ¢ = {¢1, ¢2, ¢3, ¢4} is completely specified by 8 € R*, and
the Jacobian constraint in Eq. (10) is satisfied when

1 1 A
D lDertl =2 5 det(RO)T) = 73 0 =1,
=1 =1 i=1

and, therefore, the family {fo : ¢ € ©} admits F-equivalence. &

While Theorem 4.5 and Theorem 5.4 provide conditions for P(©) to admit
F-equivalence when fy has a specific form, we might ask: What happens to distri-
butions that do mot conform to the templates mentioned above? The next result
provides a necessary and sufficient geometric constraint (in the space of probability
distributions) which P(©) needs to satisfy for F-equivalence.

Theorem 5.14. For an open set © C RP, let P(©) = {fy: 0 € O} be a family of
distributions on X. Then P(O) admits F- equwalence if and only if for all 1 < i < p,

FEH (g _
26, (/ > =0, for all k € Ny. (19)

Moreover, if the gradient Vg fo exists a.e.-\q and there exists a function M € L'(X)
such that for each 1 < 1 < p and for all 6 € O, %f@(.’l))‘ < M(x) a.e.-\g, then
P(O) admits F-equivalence if and only if

<f5, V9f0>L2(X) =0, forallkeN,. (20)

We collect the proof in Section 6.7, and illustrate Theorem 5.14 by verifying
F-equivalence for the family of distributions already studied in Example 5.12.

Example 5.15. Consider the family of distributions on R? from Example 5.7 in
Eq. (14) given by,

1 —r’
Fote) = alr-6,0) = 3o (5o )
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where r = ||| and tan(f) = zo/x;. First, observe that p € [—1, 1] contains an
open set in R. Moreover, f, clearly satisfies the stochastic regularity assumptions in
Theorem 5.14 by taking

2| cos(0)|

M@) = T q " Teos@)])

exp(—r?/4).

The derivative of f, is given by

gf,,(m) — _ r?eos(6) iexp <(72)

p 2(1+ pcos(0))? 27 2(1+ pcos(0))
Then, for any k > 0, Eq. (20) now becomes
oo 27
r2 cos(6) (k +1)r?
—————— | - rdrdf
<fp’ (’)pfp L2(R?) // 2(1 + pcos(0))?(2m)k+1 P ( 2(1 4 pcos(6)) ar
0

(i) /2” cos(6)dd —0
Jo (k12 2mkt

where (i) follows from making the substitution ¢ = r2. It follows from Theorem 5.14
that {f, : [p| < 1} admits F-equivalence. O

Example 5.16. For © = (1, 00), consider the family of distributions on R given by

folo) = 5 96201 > 0) + 5 o 1255 ) 16w <0) 1)

where g is any density on Ry satisfying the assumptions of Theorem 5.14. Then,
{fo : 0 € O} admits F-equivalence. Vis-a-vis Example 5.12, the density in Eq. (21)
is a reparametrization of the density in Eq. (17) to ensure that © C R is an open

set. Observe that
1 20 — 1
R

implying that fy is a well defined density function for all # > 1. In order to verify
the condition in Eq. (19) note that

a [ 1 @

1 9 k+1 / pi1 0z
= — « — >
okl 9 (/}Rg (0z)1(x > 0)dx + 9 T 59 I(z < 0)dx

o /1 1-20\ T o T 1
s g\ (o) [t = 5 [ e rwa=o
0 0

where (i) follows from taking ¢ = 6z in the first integral and ¢t = 6z/1 — 26
in the second integral. By Theorem 5.14, this implies that {fy : 0§ € ©} admits
F-equivalence. &

—~
=
—_

6. Proofs. In this section, we present the proofs for the main results of this paper.
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6.1. Proof of Lemma 3.5. Consider P,Q € P with their respective probability
density functions f and g,and consider X ~ f and Y ~ g. For every fixed function

vk, the equivalence f Z ¢ implies that
(s F (VL LF(X)V4) Loy (s9(Y) Y, tg(¥)1/4), forall 0<s <t
It follows that pg(P;s,t) = pur(Q;s,t) for all 0 < s < t. A similar argument also

holds for ¢;. This implies that 5i(P; s, t) < B1r(Q; s,t). Since this holds for each
k > 0 we have that P & @, and the result follows. O

6.2. Proof of Theorem 4.5. Part (i). Suppose Xy is a random variable with
density fg. Consider the random variable Yy = go(¥(Xy)) as a transformation of
X, such that fp(Xg) = #(Y ). By Lemma 3.5, if we can show that the distribution
of Yy does not depend on the parameter 6 if and only if det(D¥~(y)) = ((T(y))
for some function ¢ : T — R, then F-equivalence for the family of distributions P(0)
follows.

The inverse transformation for Yy is given by & = ¥~! o 9y 1(y) The existence
of gy ! is guaranteed by the group G. The Jacobian for the inverse transformation
can be simplified using the multivariable chain-rule,

D(U " o g,")(y) = DV (g, () - Dy, (v).

Since G is a group of isometries, we have that, ’det (Dg;l(y))| = 1. The density of
Yy is expressed as

ho(y) = é(y) - [DE (g5 ()
It follows that density hy does not depend on @ if and only if det (D\I/_1 (g; 1(y)))

does not depend on 0, i.e., det(D¥~!(y)) is G-invariant. By Proposition 4.4, this
holds if and only if there exists some function ¢ : 7 — R such that

det(DT ! (y)) = ¢(T(y)),

where T is G-maximal invariant. Therefore, the distribution of Yy doesn’t depend
on O if and only if the condition in Eq. (22) holds. Since ¢ is a fixed function
and fp(Xs) = #(Yy), this implies that Eq. (22) is also a necessary and sufficient
condition for the distribution of f3(Xp) to not depend on #. This concludes the
proof for the first part of the Theorem 4.5.

Part (ii). For ease of notation, let G = x!™; G; act on the space Y. If T; : Vi1 —
Y; is a sequence of G;-compatible maximal invariants, then, for the second claim,
from part (i), it suffices to show that

Ty)=TmoTm-10...T1(y)

is G-maximal invariant. The proof follows from induction. For the case m = 1,
T(y) = T1(y) by definition, so the property holds trivially. Assume that the property
holds for m > 1. Then, T = T;, 0 T},_1 0 - - - o T} is G’-maximal invariant, where
g = Xﬁlgzﬂ

Let G,,41 be a group acting on Y, such that T,41 @ Vi — Vint1 18 G-
maximal invariant. From the assumption that 7,1 is G,,41-compatible, we also
have that T" is G+ 1 compatible; therefore, we only need to show that T = T}, 107"
is G-maximal invariant, where G = G’ X G,,+1. Each element g € G is given by
g=1(g",gm+1) where ¢’ € G and gp41 € Gmr1- We can write g as

9= (glvgm-i-l) = (g/a em+1) * (e/agm-l-l) = gl * §m+17
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where €’ and e, 1 are the identity elements of G’ and G,, 1 respectively, and g’ and
Jm-1 are the representations for the group action of G’ and G,, 11 on Y as subgroups
of G. First, we examine that 7" is G-invariant. For each y € ) we have that

T(gy) == Tm-i—l o T/(gy) = Tm+1 o T/(gl * .&M+1y)' (22)

By the definition of the group action, we can write §'*gm11y = §'z, where z = Gpi1y.
Since T" is G’-maximal invariant, we have that T'(¢'z) = T'(z) = T (gm+1Y)-
Additionally, since T" is G, y1-compatible, it follows that T"(gm1y) = gpm 11" (y),
where gy, | is the induced action of §,,41 on Yy, via T". Lastly, using the fact that
Tm+1 18 Gmy1-maximal invariant, Eq. (22) becomes

T(9y) = Trmt1 (91 T'(¥)) = T1 0 T'(y) = T(y).

Next, let  and y be such that T(x) = Tp41 0T/ (x) = Tint1 0 T (y) = T'(y). Since
Tn+1 is maximally invariant, there exists gm41 € Gm1 such that g, T' () = T'(y).
From the G, 1-compatibility of 7" we have that gy,  \T'(x) = T'(gm+1%), giving
us T'(y) = T'(gm+1). Lastly, since T" is G’-maximal invariant, there exists §’ such
that §'(gm+12) = y. This implies that there exists g € G such that

9% =7 * Gm+1® = §'(Gm+1%) = y.

Therefore, T(x) = T(y) if and only if * € Gy, from which it follows that T =
Tma1 0T’ is G-maximal invariant. O

6.3. Proof of Lemma 5.3. Consider X ~ fand Y ~ g for f,g € P, and let
Zx = f(X) and Zy = ¢g(Y") be the transformation of X and Y under their own
density. Then, for ¢t > 0
F() = B(f(X) 2 t) = E(L(f(X) > 1)) = E(L(Zx > 1)) = 1 = Fz, (1),

where Fz, (t) is the cumulative distribution function of Zx. Similarly, g(t) =
1—Fz, (b).

For the first claim, note that if Zx < Zy, then Fz, (t) = Fz, (t) for all t > 0,
which implies that f = g. Conversely, if f =g, then F;, = F,., which implies that
Zx £ Zy . Therefore, f Z g if and only if f: g. The second claim now follows

from Lemma 3.5. O

6.4. Proof of Theorem 5.4. Let A = v ®)oc p be the local product measure
induced in X, and let C' = 1/v(Y). First, we verify that fy as defined in Eq. (9) is
a well-defined probability density function for each ¢ € ®. From [23, Eq. 6]

Joran= [ [ o oot =) )avstwiintz
o R G0 A RO

0 / / C - gy (2))dv (y)dpu(2)
(D / / C - g(w)dv(y)dp (65" (w))
2 [ [ e omarwe(po, s
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<v>/c ¥(|Dg, 1”){/ )dulu )}My)
- [ e ulipe sy =1

where (i) follows from making the substitution y = ¢ 1 (w), (ii) follows from noting
that ¢ z( Lz )) Y by definition of the local tr1v1ahzat10n and the pushforward
measure v, is defined to be v, (B) = v(; 1(B)) for all measurable sets B C 7 !(2).
Similarly, (iii) follows by making the substitution u = ¢, (z), (iv) follows from the
fact that ¢, € A(Z) for every y € Y and the modular character of x4 is ¥, and (v)
follows from Tonelli’s theorem [19, Theorem 2.7]. Next, it remains to verify that

qu(t) does not depend on ¢, and we use the same machinery as before. Consider,

Folt) = /X 1(fp(@) > ) folz)dA()

=[] (oot =) =1) e oozt )i

Again, substituting y = w._l('w), and then taking u = ¢, (z) we get

= [ [ 100w 2 1) Cotw) w(|Da |- dv(wintu)

= [ 1€t = 0 gt { / ¢ (e ) - o) bt
= [ 1(C-gtw) > 0) gtwydu(u) =5¢/0).
which does not depend on the choice of ¢ € ®, and F-equivalence follows. O

6.5. Proof of Proposition 5.5. For a fixed ¢ : Y x Z = Z, let fs and fqﬁ be the
density functions given by Eq. (9) and Eq. (11):

fo@) = C-g(6(vjl(@),2)), and fo(@) = C-g(o(nil(@).)),

corresponding to the local trivializations {(Vj, ;) :j € J} and {(Us,n;) : i € I},
respectively. Without loss of generality, we may take C' = 1 for ease of notation.
For a measurable set A C X, and for ¢ € [ and j € J such that z € 7(A)NU; NV},

using Eq. (8) we get
[doirn=[ [ fudvadn, (23)
A w(A)JA,

where A, = AN 7~1(z). Therefore, in order to establish the claim, it suffices to
show that
/ fodv = / fodvs.
Az Az
To this end, we have

/ ﬁbdﬁz@/ g(n;zl(w)z)dl/z(w)
A, A

z

= /71 9(¢(y, 2))dv(y)
n; 2 (Az)
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= [ e,
95:,2°M; 2 (Az)

where (i) follows from the substitution y = 7, 1(w), and the last equality follows
by taking u = gﬁ}z (y) for g;i » € G and by noting that v is G-invariant. Using the
“change of coordinates” in Eq. (6), we have wj_zl = gﬁ}z ;. zl, and therefore,

/Az odv= = /w;imz) oot
= [ a0t 2w).2) (w0 ) (w)

= [ stotwstaw), 2N dvatw) = [ g,
which proves the claim. O

6.6. Proof of Corollary 5.10. Let X° =L} ; A; = X\ UL, B;. First, note that
since u(B;) = 0 for each j € {1,2,...,m}, it follows that ,u(U;-”:lBj) = 0. Therefore,
from Remark 5.6 (ii), omitting U;”:IBJ- doesn’t affect F-equivalence, and it suffices
to show that the claim holds for X°.

To this end, observe that X° can be represented as the fiber bundle & =
(X°,0,2,7,G) where Z=A, Y ={1,2,...,N} and G is isomorphic to Zy acting
on Y by addition modulo N. Indeed, since 7 is assumed to be a continuously
surjective map from X to A, it suffices to show that X is locally trivializable.
Let V = A, and for 7 1(A4) = Uj—1A4; let ¥ : A xY — 7 1(A) be given by
(A x {i}) =71 (A)NA; = A; for each i = 1,2,..., N. Since each A; is diffeomor-
phic to A, it follows that 1) is a diffeomorphism. Additionally, for a € A, the map
Yal(x) = {i: x € A;}. Therefore, {(V,7)} is a local trivialization, and & is a fiber
bundle.

Let v be the counting measure on Y, and C' = 1/N = 1/v(Y). For z = w(x), we
may write the density function in Eq. (16)

fol@) = C-g(6(v2'(@).2)),

where the map ¢(i,a) = ¢;(a). Furthermore, the Jacobian constraint Eq. (10)
requires that

N
-1 1 1
[ e wuliot ) avt = 3 - wa(por ) =

Therefore, from Theorem 5.4, it follows that { fo: @€ tI>} admits
F-equivalence. O

6.7. Proof of Theorem 5.14. For each 8 € O, let X ¢ be a random variable with
density fo. From Lemma 3.5, we know that if the distribution of Zg = fo(Xg) does

not depend on 6, F-equivalence follows. The characteristic function for Zy is given
by

©o(t) ZEZe(eitZG) =Ex, (eitfe(Xe)) :/X itfo(x fe( Vde
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for ¢t € R. Using Euler’s formula, we can write
colt) = [ (cos(tfol@) +i-sin(tfo(z) - fow)de
X

Using the Taylor series representation for cos (¢ fg(x)) and sin (tfe(x)) we get,

X 1\k+2k ol k2k+1
gae(t)—/)((Z((;)kf, GERDY T 3k+1(w)>~fe(w)dw

k=0 =0

() )k 2k+1( o (—1)kg2R 2642
:H Sl daz+zz S /Zf
o0 kt2k | kt2k+1
= Z h2k(0) +- Z ((2k)+l)|h2k+1(0)a
k=0 ’

where hy(0) = [, 2*1(z)da and (i) follows from Fubini’s theorem. It follows from
this that the characterlstlc function yg does not depend on 8 if and only if Re(pg(t))
and Im(gg(t)) do not depend on @ for all ¢ € R. Therefore, @g does not depend on 6
if and only if the function hy(0) does not depend on 0 for each k € Ny. Equivalently,
for each k € No we must have that 5 hk(O) =0forall1<i<p,ie.,

)
a0, "0 ~ 90, (/ka )ZO'

Under the additional stochastic regularity conditions, using the Lebesgue-
dominated convergence theorem we have

FREY kel (g —
06; (/ da:) 80 <f9’ f >L2(X) =0

from which the second claim follows. O

7. Discussion. In this work, we have studied the framework of topological inference
through the lens of classical statistical theory. In the parametric setup, we have
investigated cases when the parameters of the statistical model are not sufficient for
statistical inference based on their asymptotic limit in the thermodynamic regime.
In our case, this is analogous to the property of S-equivalence. We have charac-
terized several conditions under which a parametric family of distributions admits
F-equivalence, which also guarantees -equivalence. When the distributions share
an algebraic structure, we are able to describe necessary and sufficient conditions
under which this asymptotic identifiability fails. In the absence of the underlying
algebraic structure, we have shown that when the distributions satisfy a certain
Jacobian constraint, they admit F-equivalence. Lastly, in the absence of any of
the above, when the distributions are stochastically regular (as is most often the
case), we have shown that if the density function shares a certain geometry with its
gradient, then F-equivalence follows.

As noted in Remark 3.6, studying injectivity for Betti numbers collectively serves
as a stepping-stone to understanding the behavior of more complex topological
invariants, and we have focused on the phenomenon of F-equivalence in the thermo-
dynamic regime. Analogous asymptotic behavior for Betti numbers in the sparse
regime has been the focus in [27, 7, 49]. For fixed 1 < k < d — 1, in the regime
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that nrd —0 and n(k”)?"z(kﬂ) — 00, the following limit theorem is established for
random Cech complexes in [27, Theorem 3.2] and [7, Theorem 4.1]:

PO n)) ZF 2, yr(0, ), (o)
n(k+2) d(k+1)

where, for fixed quantities ¢}, and &, the functionals uj, and o} are given by

_ 1 _ 1
My = M/}((kf(a:)k”dm, and Ty = M/ngf(m)kﬂd:c.

From Theorem 5.14, we can see that if a family of distributions admit S-equivalence,
then for each 1 < k < d—1, in the regime that nrfl — 0 and n(k“)rg(kﬂ) — 00, the
limit on the r.h.s. of Eq. (24) is identical. A similar conclusion for the Betti numbers
of random Rips complexes also follows from [27, Theorem 3.1] in the regime that
n(2k+2)rg(2k+1) — 00. As noted in [6, page 344] this difference in the regimes stems
from the fact that the smallest nontrivial Hy cycle in the Rips complex is supported
on 2k + 2 vertices as opposed to the k + 2 vertices required for the Cech complex.
The results in [4] suggest a useful direction for pursuing this line of investigation
and is left for future work.

Lastly, it is important to note that the conditions characterized in this work
are purely statistical in nature, and hold in the asympotic setting. However, there
is still hope that topological summaries for statistical inference from F-equivalent
families of distributions may be useful in finite samples and is a promising direction
for future work. We hope that this work will serve as a stepping-stone for further
investigations in this direction.

Appendix A. Supplementary results.

Lemma A.1. Suppose f is a probability density function with mean 0 and variance
1. For eachd € Zy, let x € R? and (5 : Ry — Ry. Then ngl Fla) = Ca(lz|?)
holds for each d € Ny if and only if f(z) = exp (—x2/2)/\/ 2w, for each x € R.

Proof. The sufficient condition follows unambiguously by plugging in the value for
f(w;), i.e., when f(z) = exp (—2?/2)/v/2r it follows that

d
Fwi) = @) exp (—21?/2) = Galll2]?):

1

K2

It remains to verify the necessary condition. To begin, consider the case when d = 1.
For z € R, we have f(x) = (1(2?). Define k = f(0) = (1(0). We now proceed to
consider the case when d = 2. For (x,0) € R?, we have f(z)- f(0) = (2(2?). Since
f(x) = ¢ (2?) and f(0) = k, it follows that (2(2?) = k(i (2?) for all z € R. By
induction, for each d € Z, we have

Ca(z?) = k471 (22). (A.1)

Thus, for any € R?, Eq. (A.1) implies

d
[1/@) = Ca@? + a3+ +23) = k' G(@f + 23 + - +27).
=1
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(A) An illustration of the space X—the M6bius band with the full twist. (Left) The projection
map 7 onto a neighborhood U C [0,2x]/ ~= Z. (Right) The map 14 (t) for ¢ € [—0.5,0.5] preserves
length and orientation, unlike the M&bius band with a half-twist. Therefore, the measure induced
on the fiber over 8, 7—1(0), is also a unit uniform distribution.

a=2.0 a=—6.5 a=9.0

. 0.20
d s

0.10

& 0.05

0.00
(B) Superlevel sets of the probability density function fo on X for a € 2.0, —6.5,9.0.

Ficure 8. Illustration of the family of distributions from Example 5.9.

We also have that ], f(z:) = [y C1(22). Define g(z) = Clém), which implies g
satisfies

_H g(zd) = g(z3 + 2%+ +23). (A.2)

Eq. (A.2) holds if and only if g(z?) = 65“32, for some fixed g € R, which implies

flx) =G =k -g=*) =k - B

However, f is a probability density function on R with mean 0 and variance 1, i.e,
Jo f@)dz =1, [y zf(z)dz =0 and [, 2*f(x)dz = 1. This yields 8 = —3, k= \/%
and the result follows. d

Example A.2 (Example 5.9 Continued). The space X is the surface of a Mébius
band with a full twist, X', given by

X — {x(e,t) ER®:0€[0,27), t € [—0.5,0.5]},
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where
x(0,t) = (COS 0(1 4 tcosh), sinf(1+ tcosh), tsin 9).

This can be represented as a fiber bundle & = (X,2Z,), 7, G), with the base space
Z = 81, the typical fiber Y = [—0.5,0.5], and the projection map given by 7(x) =
arctan(zs/z1) by identifying Z ~ [0, 27]/ ~ where {0} ~ {27}.

Consider the sets V7 = (0,27)\ {7}, and Vo = [0,€)U(m —¢,m+€) for 0 < € < /2,
and for 6 = 7(x) € [0, 2)

w;é(a:) = & and ¢;é(m) L ( 1 1),

sinf’ cosf \cosd

The collection {(V}, ;) : j = 1,2} provides a local trivialization for X'. Additionally,
the structure group G = {id} is simply the identity element since w;el ot); ¢ = id for all
0 €V;NV;, and i, € {1,2}. It is straightforward to verify that for 6 € V; C [0, 2),
t € [-0.5,0.5], and & = x(0,1), it follows that 7(x) = 6 and wj_;(a;) =t.

Let v ~ Unif([-0.5,0.5]) be the uniform distribution on Y = [—0.5,0.5] with
dv(t) =1-dt for all t € [-0.5,0.5]. For a fixed § € V;, the map v, 9 pushes forward
the measure vy to the fiber 7=1(#). The image 1/;4([—0.5,0.5]) is a line segment in
R3 of length

11,6(0.5) — 1 (—0.5)|| = H(COS2 6,sin 6 cos 6, sin Q)H =1,

as shown in Figure 8 (A). Therefore, the pushforward measure, vy = (1;¢) 4V, is
also a uniform distribution with dvg(x) = 1 for all z € 7~1(6). Hence, the density
fo in Eq. (15) can be faithfully represented as

fal@) = 9(¢a(¥74 (@), 0) ) dvo().
The F-equivalence of {f, : @ € R} now follows from Example 5.9. &
Example A.3 (Family of distributions on S?). Let X = S?\ {+p, —p} be the

surface of the unit sphere embedded in R?, excluding the two poles. This can be
represented in polar coordinates as

X = {m(ﬂ,gp) = (sinf cos p,sin @ sin p, cos§) € R* : 6§ € (0,7), and ¢ € [0,271')}.

Let f, be a probability density function on X given by
1 0+ ap/2 mod
Jal) = folali0) = 5o 27 ) (A3)

2T T

where ¢ is a fixed probability density function with supp(g) = (0,1) w.r.t. the
Lebesgue measure. The family {f, : a € Z} admits F-equivalence.

This is similar to Example 5.9, and can be understood by considering the fiber
bundle representation of X with Z = (0,7), ¥ = S! ~ [0, 27]/ ~ and the projection
map m(x) = arctan(zz/x1). The local trivialization is given by {(V, )}, where

V=(0,7), v (zx) = <arctan (x2/21), arccos (x3)>, and 1, ! (x) = arccos(z3).

The uniform measure on Y is dv(p) = 1/27, and for * € X with 6 = w(x) the
density in Eq. (A.3) can be rewritten as

fal@) = C - g(o(vy ' (2),0)),
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e e

0.3
=-2 a= -5

0.2

oo

FicURE 9. Superlevel sets of the density function fo on X = §2\ {p, —p}
from Example A.3 when g ~ Beta(10,10) is the density function of a Beta
distribution on (0, 1), and for o € {0,1, -2, -5}

where C' = 1/27, and the map ¢(¢, 0) = 0+ aqp/2 satisfies ¢(¢, -) € A((0, 7)) for all
@ € [0,27). Since S* ~ [0,27]/ ~ requires 0 ~ 27, we have

$(0,0) = ¢(27,0) <= 7o modw =0,

which holds whenever o € Z. As g is a density w.r.t. the Lebesgue measure, the
modular character is the identity map, and the Jacobian constraint in Eq. (10),
d 1
— (0 — 2 d m)|—d
(0 ap/2 mod m)|—dp

| cmetenlate - [

2m 1
— 1-—de—=1
|ogae -t

ig satisfied for all o € Z. From Theorem 5.4, we conclude that the family of
distributions {f, : & € Z} admits F-equivalence.

Furthermore, according to Remark 5.6 (ii), this family of distributions can be
continuously extended to a family of distributions supported on S%. Figure 9
illustrates the superlevel sets {x € X' : f,(x) > t} for four different values of o when
g ~ Beta(10, 10) is the density function of a Beta distribution on (0, 1). &




ON THE LIMITS OF TOPOLOGICAL DATA ANALYSIS FOR STATISTICAL INFERENCE 33

Acknowledgments. Kenji Fukumizu is supported in part by JST CREST JP-
MJCR15D3 and JSPS Grant-in-Aid for Transformative Research Areas (A) 22H05106.
Satoshi Kuriki is partially supported by JSPS KAKENHI Grant Number JP16H02792.
Bharath Sriperumbudur is partially supported by the National Science Foundation
(NSF) grant DMS-1713011 and CAREER award DMS-1945396.

(1]

2l
3l
[4]
(5]
[6]
(7]
(8]
(9]

(10]

(11]

[12]

(13]

(14]
[15]
[16]
(17]
(18]
[19]

20]

21]
22]

23]

REFERENCES

R. J. Adler, S. Agami and P. Pranav, Modeling and replicating statistical topology and
evidence for CMB nonhomogeneity, Proceedings of the National Academy of Sciences, 114
(2017), 11878-11883.

P. Bendich, J. S. Marron, E. Miller, A. Pieloch and S. Skwerer, Persistent homology analysis
of brain artery trees, The Annals of Applied Statistics, 10 (2016), 198-218.

C. A. N. Biscio, N. Chenavier, C. Hirsch and A. M. Svane, Testing goodness of fit for point
processes via topological data analysis, Electronic Journal of Statistics, 14 (2020), 1024-1074.
0. Bobrowski, Homological connectivity in random Cech complexes, Probability Theory and
Related Fields, 183 (2022), 715-788.

O. Bobrowski and R. J. Adler, Distance functions, critical points, and the topology of random
Cech complexes, Homology, Homotopy and Applications, 16 (2014), 311-344.

O. Bobrowski and M. Kahle, Topology of random geometric complexes: A survey, Journal of
Applied and Computational Topology, 1 (2018), 331-364.

O. Bobrowski and S. Mukherjee, The topology of probability distributions on manifolds,
Probability Theory and Related Fields, 161 (2015), 651-686.

K. Borsuk, On the imbedding of systems of compacta in simplicial complexes, Fundamenta
Mathematicae, 35 (1948), 217-234.

P. Bubenik and P. T. Kim, A statistical approach to persistent homology, Homology, Homotopy
and Applications, 9 (2007), 337-362.

V. H. Can and K. D. Trinh, Random connection models in the thermodynamic regime: Central
limit theorems for add-one cost stabilizing functionals, Electronic Journal of Probability, 27
(2022), 1-40.

E. G. Z. Centeno, G. Moreni, C. Vriend, L. Douw and F. A. N. Santos, A hands-on tutorial
on network and topological neuroscience, Brain Structure and Function, 227 (2022), 741-762.
M. K. Chung, S.-G. Huang, A. Gritsenko, L. Shen and H. Lee, Statistical inference on the
number of cycles in brain networks, in 2019 IEEE 16th International Symposium on Biomedical
Imaging (ISBI 2019), IEEE, 2019, 113-116.

V. Divol and T. Lacombe, Understanding the topology and the geometry of the space of
persistence diagrams via optimal partial transport, Journal of Applied and Computational
Topology, 5 (2021), 1-53.

P. Dlotko, N. Hellmer, L. Stettner and R. Topolnicki, Topology-driven goodness-of-fit tests in
arbitrary dimensions, Statistics and Computing, 34 (2024), 34, 23 pp.

M. L. Eaton, Group Invariance Applications in Statistics, Institute of Mathematical Statistics
and the American Statistical Association, Hayward, CA and Alexandria, VA, 1989.

H. Edelsbrunner and J. L. Harer, Computational Topology: An Introduction, American
Mathematical Society, Providence, RI, 2010.

B. Efron and D. V. Hinkley, Assessing the accuracy of the maximum likelihood estimator:
Observed versus expected Fisher information, Biometrika, 65 (1978), 457-483.

B. T. Fasy, F. Lecci, A. Rinaldo, L. Wasserman, S. Balakrishnan and A. Singh, Confidence
sets for persistence diagrams, The Annals of Statistics, 42 (2014), 2301-2339.

G. B. Folland, Real Analysis: Modern Techniques and Their Applications, John Wiley & Sons,
New York, 1999.

M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow and V. Nanda, A topological
measurement of protein compressibility, Japan Journal of Industrial and Applied Mathematics,
32 (2015), 1-17.

M. Ghosh, N. Reid and D. A. S. Fraser, Ancillary statistics: A review, Statistica Sinica, 20
(2010), 1309-1332.

A. Goel, K. D. Trinh and K. Tsunoda, Strong law of large numbers for Betti numbers in the
thermodynamic regime, Journal of Statistical Physics, 174 (2019), 865-892.

A. Goetz, On measures in fibre bundles, in Colloguium Mathematicum, 7 (1959), 11-18.



34

S. VISHWANATH, K. FUKUMIZU, S. KURIKI AND B. K. SRIPERUMBUDUR

[24] R. F. Gunst and J. T. Webster, Density functions of the bivariate chi-square distribution,

Journal of Statistical Computation and Simulation, 2 (1973), 275-288.

[25] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, UK, 2002.
[26] Y. Hiraoka, T. Shirai and K. D. Trinh, Limit theorems for persistence diagrams, The Annals

of Applied Probability, 28 (2018), 2740-2780.

[27] M. Kahle, Random geometric complexes, Discrete & Computational Geometry, 45 (2011),

553-573.

[28] M. Kahle and E. Meckes, Limit theorems for Betti numbers of random simplicial complexes,

Homology Homotopy Appl., 15 (2013), 343-374.

[29] H. Kamiya, A. Takemura and S. Kuriki, Star-shaped distributions and their generalizations,

Journal of Statistical Planning and Inference, 138 (2008), 3429-3447.

[30] J. Krebs, B. Roycraft and W. Polonik, On approximation theorems for the Euler characteristic

with applications to the bootstrap, Electronic Journal of Statistics, 15 (2021), 4462-4509.

[31] J. Krebs and W. Polonik, On the asymptotic normality of persistent Betti numbers, arXiv

preprint, arXiv:1903.03280.

[32] C. J. Lloyd, E. J. Williams and P. S. Yip, Ancillary Statistics-II, Encyclopedia of Statistical

Sciences, 1.

[33] K. Meng, J. Wang, L. Crawfordc and A. Eloyan, Randomness of shapes and statistical inference

on shapes via the smooth Euler characteristic transform, Journal of the American Statistical
Association, (2024), 1-25.

[34] Y. Mileyko, S. Mukherjee and J. Harer, Probability measures on the space of persistence

diagrams, Inverse Problems, 27 (2011), 124007.

[35] D. W. Miiller and G. Sawitzki, Excess mass estimates and tests for multimodality, Journal of

the American Statistical Association, 86 (1991), 738-746.

[36] S. Oudot and E. Solomon, Inverse problems in topological persistence, in Topological Data

Analysis: The Abel Symposium 2018, Springer International Publishing, 2020, 405-433.

[37] T. Owada and A. M. Thomas, Limit theorems for process-level Betti numbers for sparse and

critical regimes, Advances in Applied Probability, 52 (2020), 1-31.

[38] M. Penrose, Random Geometric Graphs, vol. 5, Oxford University Press, Oxford, UK, 2003.
[39] W. Polonik, Measuring mass concentrations and estimating density contour clusters-an excess

mass approach, The Annals of Statistics, 28 (1995), 855-881.

[40] B. Roycraft, J. Krebs and W. Polonik, Bootstrapping persistent Betti numbers and other

stabilizing statistics, The Annals of Statistics, 51 (2023), 1484-1509.

[41] J. A. Schouten, Ricci—Calculus: An Introduction to Tensor Analysis and Its Geometrical

Applications, Springer—Verlag, Berlin, Germany, 1954.

[42] T. A. Severini, Likelihood Methods in Statistics, Oxford University Press, 2000.
[43] S. S. Sgrensen, C. A. N. Biscio, M. Bauchy, L. Fajstrup and M. M. Smedskjaer, Revealing

hidden medium-range order in amorphous materials using topological data analysis, Science
Advances, 6 (2020), eabc2320.

[44] N. Steenrod, The Topology of Fibre Bundles, vol. 44, Princeton University Press, 1999.
[45] A. M. Thomas and T. Owada, Functional limit theorems for the Euler characteristic process

in the critical regime, Advances in Applied Probability, 53 (2021), 57-80.

[46] K. D. Trinh, A remark on the convergence of Betti numbers in the thermodynamic regime,

Pacific Journal of Mathematics for Industry, 9 (2017), 4, 7 pp.

[47] K. Turner, Y. Mileyko, S. Mukherjee and J. Harer, Fréchet means for distributions of persistence

diagrams, Discrete & Computational Geometry, 52 (2014), 44-70.

[48] R. A. Wijsman, Invariant Measures on Groups and Their Use in Statistics, Institute of

Mathematical Statistics, Hayward, CA, 1990.

[49] D. Yogeshwaran and R. J. Adler, On the topology of random complexes built over stationary

point processes, The Annals of Applied Probability, 25 (2015), 3338-3380.

[50] D. Yogeshwaran, E. Subag and R. J. Adler, Random geometric complexes in the thermodynamic

regime, Probability Theory and Related Fields, 167 (2017), 107-142.

Received June 2023; 1st revision February 2024; 2nd revision May 2024; early

access August 2024.



