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Abstract
Background: Software practitioners need reliable metrics to moni-
tor software evolution, compare projects, and understand modular-
ity variations. This is crucial for assessing architectural improve-
ment or decay. Existing popular metrics offer little help, especially
in systems with implicitly connected but seemingly isolated files.
Aim: Our objective is to explore why and how state-of-the-art
modularity measures fail to serve as effective metrics and to devise
a new metric that more accurately captures complexity changes,
and is less distorted by sizes or isolated files.
Methods: We analyzed metric scores for 1,220 releases across 37
projects to identify the root causes of their shortcomings. This led to
the creation of M-score, a new software modularity metric that com-
bines the strengths of existing metrics while addressing their flaws.
M-score rewards small, independent modules, penalizes increased
coupling, and treats isolated modules and files consistently.
Results: Our evaluation revealed that M-score outperformed other
modularity metrics in terms of stability, particularly with respect
to isolated files, because it captures coupling density and mod-
ule independence. It also correlated well with maintenance effort,
as indicated by historical maintainability measures, meaning that
the higher the M-score, the more likely maintenance tasks can be
accomplished independently and in parallel.
Conclusions: Our research identifies the shortcomings of current
metrics in accurately depicting software complexity and proposes
M-score, a newmetric with superior stability and better reflection of
complexity andmaintenance effort, making it a promisingmetric for
software architectural assessments, comparison, and monitoring.
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1 Introduction
Software practitioners and managers need reliable architecture met-
rics to monitor software evolution, compare projects, and capture
architecture decay or improvement [15, 21, 35]. Over the past few
decades, researchers have proposed many metrics. The most well-
known metrics focus on the complexity and quality of functions or
entities within a file, such as McCabe’s Cyclomatic Complexity [26]
and Chidamber & Kemerer’s metrics [9]. These metrics have been
widely studied mainly for their ability to predict and locate de-
fects [18, 22, 28, 43], and have been integrated into commercial
tools like SonarQube [39]. However, these metrics are not designed
to answer questions like “Is the software architecture decaying?" or
"Which project is better modularized than others?" To the best of our
knowledge, MacCormack et al.’s Propagation Cost (PC) [25] and
Mo et al.’s Decoupling Level (DL) [29] are the only architecture
level metrics that attempted to answer these two questions. They
have been applied to multiple industry case studies and evaluated
for their predictive and diagnostic abilities [24, 25, 30, 32, 46].

During our attempts to apply these metrics to real-world projects,
we observed that the applicability and efficiency of PC and DL was
limited to projects with no isolated components, or to projects of
similar sizes. In particular, PC aims to reflect dependency density
change but it is sensitive to project size—larger projects always have
smaller PC scores—making it unsuitable for comparing projects
with different sizes. DL, on the other hand, only reflects the degree
of module independence but does not account for dependency
density, and its score can be unstable with the presence of isolated
files or components that have no syntactic relationship with other
files in the project. There are cases when adding just one or two
isolated files to a project can cause the DL score to change by more
than 20%, which causes confusion among developers.

In this paper, we first report our empirical study on the preva-
lence of seemingly isolated files in monolithic systems and how
and why they can impact modularity scores. The results of this
empirical study guided the creation of our new software modular-
ity metric: M-score, which integrates the best aspects of PC and
DL while addressing their shortcomings. Specifically, similar to
DL, M-score first clusters dependency relation among files into a
hierarchical structure and aggregates the modularity score for each
module of each layer. Different from DL, it also accounts for the
complexity of these modules. Similar to PC, it calculates depen-
dency density but measures densities between and within modules
separately. M-score treats modules at various layers equally, so that
adding isolated files will not affect the measure of other parts of the
system. As a result, M-score rewards more independent modules
and rewards low coupling both within and between modules: the
more independent modules are there, and the less coupled between
and within modules, the higher the M-score.
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We evaluated M-score first by measuring its stability with that of
DL in the presence of isolated files. To assess its ability to compare
different projects, we calculated howM-score correlates to DLwhen
measuring projects without isolated files, where DL demonstrated
good performance in comparing different projects [30, 32, 46]. To
assess if M-score can faithfully reflect maintenance effort, we as-
sessed how it correlates to maintainability measures extracted from
revision histories.

Our results show that the variation of M-score with and without
isolated files is much smaller than that of DL, and its variation is
always smaller than the variation of sizes, meaning that M-score is
much more stable, less affected by sizes and isolated files, and hence
better suitable for multi-release monitoring. Moreover, M-score
highly correlates to DL when assessing projects without isolated
files, meaning M-score can also be used to compare the modular-
ity of different projects. Finally, M-score maintains a significant
correlation to project maintainability measures extracted from his-
torical data, meaning that it retains the important properties of a
maintainability metric but with better stability. Thus M-score has
the potential to serve as a stable modularity metric, not only to
monitor system-wide architectural changes but also to reflect local
complexity variations.

Our research contributions are twofold. First, the isolation file
empirical study (Section 2) reveals the prevalence of, the reason-
ing behind, and the impact of isolated files on existing modularity
scores, following Storey et al.’s framework [40]. Second, we con-
tribute M-score (defined in Section 3), a novel modularity metric
that integrates the best aspects of existing metrics while addressing
their shortcomings. We also present a thorough evaluation of this
new metric (Section 4), demonstrating its predictive value.

2 Empirical Investigation of Modularity Metrics
Our research is motivated by the practical need to monitor the
evolution of a project during its development. In addition, many
real-world projects want to compare their design quality with other
projects in their domain as a gauge of quality. Our goal is for modu-
larity degradation or improvement to be reflected by the modularity
scores. We have studied the following metrics, which, to the best
of our knowledge, are the state-of-the-art: (1) MacCormack et al.’s
Propagation Cost (PC) that measures how tightly coupled a system
is [25]. It is defined as follows: given the dependency graph of a
system, it first calculates its transitive closure to account for all
direct and indirect dependencies until no more dependencies can
be added. PC is calculated as the number of total indirect and direct
dependencies divided by the total number of possible dependencies,
that is, the square of the total number of files. The lower the PC
score, the less coupled the system. (2) Mo et al.’s Decouplig Level
(DL) [29], an option-based metric [5, 41] that first clusters a de-
pendency graph into a hierarchical structure and rewards small
and independent modules, while penalizes dependencies among
modules that reduce module independence.

PC is sensitive to size by definition—the PC score is inversely
proportional to the square of file count: the more files there are,
the better the PC score, making it meaningless to compare projects
of different sizes. For the rest of this paper, we therefore focus on
a comparison with DL. Although DL is less sensitive to system

size, there are cases where the DL scores are very sensitive to
the presence of isolated files. Even adding a single isolated file
can increase DL by more than 20% in some industrial projects. In
practice, however, even for monolithic systems, having isolated
files is inevitable, due to framework usage, for example.

To analyze the prevalence, root causes, and significance of this
problem, we decided to revisit the projects used to evaluate DL
reported in the prior work [29], where DL was evaluated after
removing all of the isolated files in these subjects. In our study,
we calculate the modularity scores with and without isolated files,
respectively, to study how isolated files may distort the metric.
Specifically, we aim to answer the following research questions:

RQ1:How prevalent are isolated files in traditional, non-distributed
projects? If the majority of monolithic projects have isolated files for
valid reasons, it implies that a modularity metric should be stable
with the presence of isolated files. That is, adding or removing a
small number of isolated files should not drastically change the
reported measure.

RQ2:Why are these files isolated? If a non-trivial portion of these
monolithic projects has isolated files, we need to understand the
underlying reasons of why they appear to be disconnected from
the rest of the system. If these are just unused files or dead code, we
could remove them; if these files are isolated for legitimate reasons,
this implies that we need a better metric.

RQ3: How and why do isolated files affect modularity scores? The
answer to this question requires a detailed investigation of these
metrics and identifying the main problems, which will provide
guidance for the design of a new metric.

To investigate these questions, we employed a data research
strategy [40] using previously studied and published projects [29].
Next we introduce these subjects, our study methodology, the re-
sults answering these questions, and how these analyses guide the
development of our new modularity metric.

2.1 Subjects
To compare against existing metrics, we analyzed 37 projects stud-
ied by Mo et al. [29]. These projects were selected from OpenHub1,
with different programming languages, sizes, and domains. More-
over, the evolution histories of these projects were well-managed—
most committed code is linked to an issue ID—so that we can dis-
tinguish bug-fixing commits from other changes. These projects all
have a non-trivial evolution history with 4 to 118 releases. In total,
we studied 1220 releases of these projects. The first few columns in
Table 1 present the demographic data of these projects, including
their names (𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑠), the number of releases (# 𝑜 𝑓 𝑟𝑒𝑙𝑠), and the
average file counts across all releases of each project (#𝐹𝑖𝑙𝑒𝑠).

2.2 Methodology
Now we elaborate on how we identified isolated files, examine their
reasons for being isolated, and calculate their DL scores with and
without isolated files.

1) To identify isolated files, we first extracted dependencies from
source files using a static analysis tool called Understand2. This
tool extracts static relations such as function calls and inheritance

1https://www.openhub.net/
2urlhttps://scitools.com/
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Table 1: Subjects, Isolated Files and Modularity Scores

Projects # of File Averages Category Average DL (%) Average M-score (%) Standard Deviation
rels #iso #Files iso% ess other all no_iso Δ all no_iso Δ Iso% Δ(𝐷𝐿) Δ(M-score)

activemq 27 33.9 2672.3 1.27 X X 83.76 74.05 9.71 75.88 75.57 0.31 0.002 0.030 0.001
amarok 67 13.3 1205.7 1.10 X 65.01 56.21 8.80 52.80 51.80 1.00 0.021 0.014 0.010
aurora 4 3.8 353.3 1.06 X 91.64 90.72 0.92 96.72 96.67 0.05 0.003 0.012 0.000
avro 26 4.5 290.0 1.54 X 79.22 78.12 1.09 86.39 86.17 0.21 0.011 0.008 0.002
camel 63 95.6 6457.6 1.48 X X 88.06 82.91 5.15 86.27 86.04 0.22 0.002 0.005 0.001
cassandra 95 9.2 740.5 1.24 X X 40.92 36.60 4.32 52.83 52.13 0.69 0.006 0.012 0.003
cxf 69 204.9 4311.0 4.75 X X 94.71 90.21 4.50 85.85 85.14 0.71 0.002 0.005 0.001
derby 24 43.6 2463.4 1.77 X X 69.57 62.50 7.07 56.20 55.41 0.79 0.001 0.021 0.001
flink 6 19.8 1864.2 1.06 X 83.03 80.88 2.15 81.99 81.79 0.20 0.001 0.010 0.000
flume 9 4.4 492.7 0.90 X X 92.26 91.98 0.28 92.59 92.52 0.07 0.001 0.002 0.000
gedit 51 0.6 199.8 0.29 X 51.70 50.31 1.39 57.20 57.09 0.12 0.004 0.021 0.002
geronimo 21 154.1 2553.1 6.04 X X 95.73 89.46 6.27 84.94 83.97 0.96 0.011 0.006 0.002
gimp 38 10.7 2715.7 0.39 X 50.57 43.26 7.31 50.45 50.26 0.20 0.001 0.005 0.000
gnome-atk 118 0.03 54.5 0.06 X 40.58 40.35 0.23 64.11 64.08 0.03 0.004 0.012 0.001
hadoop 80 15.0 1348.7 1.11 X X 73.70 68.81 4.90 71.72 71.35 0.37 0.005 0.019 0.002
hibernate-orm 55 162.8 6052.1 2.69 X X 73.61 67.47 6.13 66.65 65.76 0.89 0.009 0.005 0.003
hive 18 32.8 1870.6 1.75 X X 59.40 55.19 4.21 57.97 57.17 0.80 0.016 0.023 0.003
jdt-core 15 1082 2212.8 48.90 X 93.31 72.13 21.18 80.92 65.84 15.08 0.149 0.050 0.046
log4j 21 7.4 256.2 2.90 X 80.90 77.74 3.16 82.24 81.63 0.60 0.006 0.017 0.001
mahout 9 24.8 1074 2.31 X 95.56 94.41 1.15 94.64 94.48 0.15 0.013 0.008 0.001
nant 8 18.9 317.6 5.94 X 82.92 72.30 10.63 80.81 79.44 1.38 0.018 0.021 0.002
nutch 22 10.6 374.2 2.84 X X 88.89 85.79 3.10 89.75 89.50 0.25 0.033 0.020 0.003
ode 10 45 1029.9 4.37 X X 78.77 73.01 5.76 66.91 65.40 1.50 0.007 0.015 0.002
oozie 10 8.9 719.9 1.24 X X 65.76 64.07 1.69 77.67 77.38 0.29 0.001 0.007 0.001
openjpa 18 39.9 2887.5 1.38 X 71.96 64.49 7.47 66.71 66.34 0.37 0.006 0.031 0.002
pdfbox 19 5.2 765.6 0.67 X 51.10 45.97 5.13 52.08 51.75 0.33 0.000 0.008 0.000
pig 18 34.1 1320.7 2.58 X X 63.63 55.40 8.23 66.95 66.17 0.78 0.023 0.017 0.007
spring-frm 42 361.3 5037.8 7.17 X X 94.74 92.65 2.08 93.54 93.02 0.51 0.006 0.004 0.001
storm 7 13.1 563.3 2.33 X X 82.40 76.25 6.14 78.48 77.94 0.54 0.003 0.051 0.001
tajo 7 23 1136.3 2.02 X 72.60 67.40 5.20 69.65 68.97 0.68 0.008 0.009 0.002
thrift 11 22.6 264.1 8.57 X X 94.57 90.40 4.18 88.24 86.92 1.32 0.013 0.007 0.004
tika 16 9.1 323.2 2.82 X 85.11 82.92 2.18 84.16 83.77 0.39 0.017 0.009 0.003
tomcat 28 31.6 881.8 3.59 X 75.57 73.61 1.96 79.05 78.52 0.53 0.015 0.014 0.004
wicket 60 12.4 2472.3 0.50 X 76.20 71.35 4.85 78.73 78.63 0.11 0.001 0.005 0.000
wireshark 60 106.8 2582.8 4.14 X X 43.13 23.46 19.67 36.99 34.24 2.76 0.005 0.023 0.004
xerces2-j 42 8.7 623.0 1.39 X 70.87 65.95 4.92 68.87 68.41 0.46 0.006 0.019 0.002
zookeeper 26 4.7 311.7 1.49 X 78.43 70.94 7.49 72.20 71.79 0.41 0.004 0.041 0.001

Total 1220 2679.1 60799.7 18 37
Average 33.0 72.4 1643.2 3.67 75.13 69.71 5.42 73.76 72.79 0.97 0.012 0.016 0.003
Median 22.0 18.9 1074.0 1.75 78.43 72.13 4.90 77.67 75.57 0.46 0.006 0.012 0.002

among source files. For example, if File A 𝑐𝑎𝑙𝑙𝑠 File B, we consider
that File A depends on File B, and the dependency type is function
𝑐𝑎𝑙𝑙 . The fan-out of a file is the total number of files it depends on,
and the fan-in of a file is the number of its dependents. If a file has
no dependents and does not depend on any other files—that is, both
of its fan-in and fan-out are zero—then this file is isolated. The 3rd
and 5th column in Table 1 presents the average number of isolated
files (#𝑖𝑠𝑜), and the average percentage of isolated files (𝑖𝑠𝑜%) across
all releases of each project. This table shows that all projects have
at least one release that contains isolated files.

2) To understand why these files are isolated, that is, why they
do not appear to refer to, or to be referenced by, any other files in a
project, we manually investigated the files and packages of each
project, and identified twomain categories of isolated files: Essential
(𝑒𝑠𝑠) and Other (𝑜𝑡ℎ𝑒𝑟 ) (the 6th and 7th columns in Table 1). Isolated
files in the 𝑒𝑠𝑠 category contained references to external libraries
and frameworks, and the project will not function without these
files, whereas the 𝑜𝑡ℎ𝑒𝑟 category contains files that can be excluded
from production, such as tests, examples, and documentation. Table
1 depicts which projects contain which categories of isolated files.
Although this manual process may not be completely accurate, e.g.,

a file categorized as being 𝑒𝑠𝑠𝑡𝑖𝑎𝑙 may be obsoleted, the possible
inaccuracy in these categorizations will not impact the result.

3) Finally, to understand how isolated files may distort DL, we cal-
culated the DL scores of each release with and without isolated files,
using a tool called DV8 [8], which has been used to calculate PC and
DL scores as reported in multiple industrial case studies [20, 30, 32].
The DL scores were presented in the “𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝐿 %" columns of
Table 1, which contains the average DL variation (Δ) calculated
by subtracting the DL without isolated files (𝑛𝑜_𝑖𝑠𝑜) from the DL
with all files (𝑎𝑙𝑙 ) and those values were averaged across all releases.
Comparing the isolated file percentage (𝑖𝑠𝑜%) and DL variation (Δ)
columns, it becomes clear that for many projects, a small increase
in isolated files can cause drastic changes in DL, as we will discuss
next. To understand why DL is sensitive to isolated files, we created
examples to better understand the calculations for DL. Given these
data and analyses, we are ready to answer these research questions.

2.3 Answers to Research Questions
(1) Answer to RQ1 (Prevalence of Isolated Files). Table 1 shows

that isolated files are quite prevalent: all the 37 projects contained at
least one isolated file in one of their multiple releases. While most
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projects contain a relatively small percentage of isolated files across
the average releases, we see that isolated files in the following 6
projects, nant, geronimo, spring-framework, thrift, and jdt-core,
take more than 5% of all files. In project jdt-core, 48.90% of files
are isolated. The data reveals that the presence of isolated files is
extremely prevalent and should not be ignored.

(2) Answer to RQ2 (Reasons of Isolation). The "𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦" columns
in Table 1 shows that, of all the 37 projects, 18 of them have isolated
but essential files. These files are isolated for various reasons: they
can be external libraries, framework code, objects used in depen-
dency injection, or classes needed for dynamical loading. Complex
libraries and frameworks use interfaces, plug-ins, or dependency in-
jection to load, and sometimes use client code within the framework
or library itself. These files appear to be isolated because the source
code of the external library or framework cannot be extracted by
the static dependency extraction tools but should be included in
modularity measurement.

All 37 projects contain isolated files that are test cases, examples,
or documentation. These files are not essential to the system’s func-
tionality and can be excluded from production code. One might
exclude these non-essential and isolated files in modularity mea-
surement. However, many projects contain tests and example files
that are explicitly connected with the rest of the system. It would
be inconsistent if only isolated, non-essential files are excluded.
Therefore, we do not attempt to exclude tests and examples within
the repository in the calculations of the maintainability metric.

We also observed that some isolated files are difficult to catego-
rize, as they do not reference external libraries nor appear to be
test or example code. As these are real projects in the process of
evolution, these files could be dead code, or files being developed
and would be integrated with the rest of the files in the future.

Regardless of the reasons behind these isolated files, they are
part of the repository with associated maintainability costs. Having
these files included in a maintainability score seemed reasonable, as
they may need to be understood by new developers, or used by the
final product, all of which impact the maintainability of a project.

(3) Answer to RQ3 (Impacts of Isolation). Table 1 presents the
average variation of DL (Δ), with (𝑎𝑙𝑙 ) andwithout isolated files (𝑖𝑠𝑜).
The table shows that while on average, isolated files make up about
3.67% of the projects, the average DL variation is 5.42%, meaning
that the DL scores are significantly affected by the isolated files
even though the complexity of the rest of the system remains the
same. The distortion is more severe in some projects. For example,
the DL scores of wireshark varied about 20% while only 4% of it
are isolated files. As another example, in activemq, there are only
1.27% of isolated files, but its DL scores vary by 9.71%.

After recreating examples and investigating the DL calculations,
we determined that the distortion of the score is because DL treats
isolated files differently from other files. Since DL is based on the
hierarchical structure of the dependency graph, adding a single
isolated file introduces an additional layer. Thismight be fine, except
that DL applies a size penalty only to the lowest layer. Therefore, if
a system had a large module in the lowest layer, it would incur a
severe size penalty. Once an isolated file is introduced, it becomes
the new lowest layer and effectively removes the size penalty in that
large module, because it is no longer in the bottom layer. Projects

that have a large increase of DL due to isolated files are always
those that have large modules in the lowest level, when isolated
files are excluded.

2.4 Diagnosis of Current Metrics
The diagnosis of DL and PC provides guidance for our proposed
newmetric. In addition to the sensitivity issue of DL in the presence
of isolated files, our investigation revealed two more gaps that were
not handled by the current metrics. Unlike PC, which calculates
dependency density only, DL doesn’t take into account dependency
density at all. As a result, even if there are big and overly complex
modules in the system, as long as they are not in the bottom layer
and do not have many dependents, there is no penalty for such
complexity. As a result, DL ignores larger middle-layer modules
and penalizes large, bottom-layer modules only. Therefore, even
if the development team reduced the complexity of middle-layer
modules, the DL score would not improve.

Another problem is that DL doesn’t account for the number of
dependencies between layers: as long as there are dependencies,
either one or dozens of dependencies, DL has the same penalty.
Consequently, even if a development team reduces the majority of
dependencies between modules, the DL score does not change until
all dependencies between modules are removed.

To summarize, our investigation highlighted a few inefficiencies
in state-of-the-art modularity metrics: PC accounts for dependency
density only but does not explicitly reward independent modules,
and its definition determines that projects with more files have
better PC scores. By contrast, DL rewards module independence,
but ignores the dependency density within a module or depen-
dency count between layers. It applies a size penalty only to the
bottom layer (that contains independent modules), making DL over-
sensitive to isolated files. As a result, neither metric can be generally
applied to compare different projects or reflect complexity varia-
tions effectively. These insights to the shortcomings in current
metrics guided our creation of M-score.

3 Software Modularity Metric: M-score
In this section, we introduce the definition of our new software
modularity metric: M-score, addressing the problems in existing
metrics. In particular, M-score can faithfully reflect complexity vari-
ations in projects, with or without isolated files. We first introduce
the definition of M-score, and then illustrate each of its factors
using examples.

Definition. The M-score calculation is based on a dependency
graph reverse engineering from a project, where each file in the
project is a node. If File 𝐴 depends on File 𝐵, there is a directed
edge from node A to node B. Based on this graph, we then create
a condensation graph that clusters these nodes into a hierarchical
structure [45]. In this structure, files in lower layers depend on
files in upper layers, but the reverse is not true. Within each layer,
nodes are further decomposed into independent modules; that is,
each module is a group of files that are connected with each other
but do not depend on files within other modules of the same layer.

Fig. 1 illustrates such a hierarchical structure clustered from a
dependency graph reverse-engineered from the source code of a
survey management system. The system is supposed to handle
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multiple types of questions and answers, different user interfaces,
and different saving and logging approaches. This representation
shows the layers after the dependency graph is clustered into a
hierarchical structure (layers are separated by dashed lines). The
clustered modules are the grey rounded rectangles that contain one
ormore circles. The circles represent individual files in the code base.
The lines connecting the circles represent dependencies between
the files. In this structure, the files in 𝑙𝑎𝑦𝑒𝑟𝑖 can only depend on
files in 𝑙𝑎𝑦𝑒𝑟𝑖−1, and the modules within a layer are independent
of each other.

By definition, the modules in the lowest level are truly indepen-
dent modules [5] that do not have external dependencies and are
able to be changed or replaced without needing to modify any other
modules. Dependencies between modules are only across layers.
We define the following terms and definitions:

• 𝑛: number of layers within the hierarchical structure
• 𝑚: number of modules within each layer
• 𝑗 : the 𝑗𝑡ℎ module, where j = 1..𝑚
• #𝐹𝑖𝑙𝑒𝑠 (𝑀𝑗 ): number of files contained within the 𝑗𝑡ℎ module
• 𝑁 : number of files contained within the code base
• #𝐿𝑜𝑤𝑒𝑟𝐿𝑎𝑦𝑒𝑟𝐷𝑒𝑝𝑠 (𝑀𝑗 ): number of files within lower layers
that depend on module𝑀𝑗

• #𝐿𝑜𝑤𝑒𝑟𝐿𝑎𝑦𝑒𝑟𝐹𝑖𝑙𝑒𝑠: number of files in all layers lower than
the current level, 𝐿𝑖

• 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑝𝑠 (𝑀𝑗 ): number of dependencies internal to the
module𝑀𝑗 .

M-score =
𝑛∑︁

𝐿𝑖=1

𝑚∑︁
𝑀𝑗=1

SF(𝑀𝑗 ) ∗ CLDDF(𝑀𝑗 ) ∗ IMCF(𝑀𝑗 ) (1)

SF(𝑀𝑗 ) =
#𝐹𝑖𝑙𝑒𝑠 (𝑀𝑗 )

𝑁
∗ SP(𝑀𝑗 ) (2)

CLDDF(𝑀𝑗 ) = 1 − CLDDP(𝑀𝑗 ) (3)

IMCF(𝑀𝑗 ) = 1 − IMCP(𝑀𝑗 ) (4)

SP(𝑀𝑗 ) =
{ 1
𝑙𝑜𝑔5 (#𝐹𝑖𝑙𝑒𝑠 (𝑀𝑗 ) ) if #𝐹𝑖𝑙𝑒𝑠 (𝑀𝑗 ) >= 5

1, if #𝐹𝑖𝑙𝑒𝑠 (𝑀𝑗 ) < 5
(5)

CLDDP(𝑀𝑗 ) =
{ #𝐿𝑜𝑤𝑒𝑟𝐿𝑎𝑦𝑒𝑟𝐷𝑒𝑝𝑠 (𝑀𝑗 )
#𝐿𝑜𝑤𝑒𝑟𝐿𝑎𝑦𝑒𝑟𝐹𝑖𝑙𝑒𝑠∗#𝐹𝑖𝑙𝑒𝑠 (𝑀𝑗 ) if 𝐿𝑖 ≠ 𝑛

0, if 𝐿𝑖 = 𝑛
(6)

IMCP(𝑀𝑗 ) =
{ #𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑝𝑠 (𝑀𝑗 )
(#𝐹𝑖𝑙𝑒𝑠 (𝑀𝑗 )−1)∗(#𝐹𝑖𝑙𝑒𝑠 (𝑀𝑗 ) if #𝐹𝑖𝑙𝑒𝑠 (𝑀𝑗 ) >= 5

0, if #𝐹𝑖𝑙𝑒𝑠 (𝑀𝑗 ) < 5
(7)

For each module of each layer, we calculate the following terms:
• Size Factor (SF) (2)
• Cross Layer Dependency Density Factor (CLDDF) (3)
• Inner Module Complexity Factor (IMCF) (4)

Each of these factors has an associated penalty that accounts for
the lack of modularity from different aspects.

• Size Penalty (SP) (5) is applied to each module to encourage
smaller modules throughout the code base.

• Cross Layer Dependency Density Penalty (CLDDP) (6) ac-
counts for the external dependencies of a module and re-
wards fewer coupling between layers.

• Inner Module Connected Penalty (IMCP) (7) accounts for
the density of the internal dependencies within a module.

Based on these definitions, as shown in formulas (1) to (7), the
score of each module is the combination of all three factors, and
the M-score of the overall design is the summation of all modules
of all layers (1). Large, complex modules will be penalized both for
their size and complexity. Accordingly, the more small, independent
modules there are, the higher the M-score; the fewer dependen-
cies between layers, and the less coupling within a module, the
higher the score. Next, we elaborate on each of these factors using
illustrative examples.

Figure 1: Illustration: A Hierarchical Structure

3.1 Size Penalty
Following the work of Mo et al. [29], we apply a size penalty to
modules that contain more than 5 files. The threshold of 5 is based
on Gobet and Clarkson’s cognitive complexity [16] study: one can
easily process approximately 5 “chunks” of information at a time.
Miller [27]’s famous paper proposed a law of human cognition and
information processing, stating that people can process no more
than seven units of information, plus or minus two, at a given time.
Based on these theories, we assume that a module with five or fewer
files can be processed together by developers without extra effort
to understand or maintain the module.

As shown in Equation (5), M-score penalizes all modules with
more than 5 files in all layers of the hierarchical structure. This
differs from DL, which only applies the penalty to the modules in
the lowest layer. This means that when isolated files are added and
form a new lowest layer—as in Fig. 2 where Fig. 2B adds one isolated
file, 𝑖1, and forms a new Layer 2—we still apply the size penalty
to the large module with 𝑁 − 1 files in Layer 1, even though it is
now moved to an upper layer. The M-score will increase slightly as
adding independent modules should increase the M-score, but the
increase should be small, reflecting just a minor structure change.

To illustrate how the M-score varies when adding an isolated
file, we calculate it for Fig. 2A and Fig. 2B, along with the delta.
Assume 𝑁 = 6, then M-score𝐴 is 66.67%, M-score𝐵 is 71.43%: M-
score increased 4.76 with 17% more files. When 𝑁 grows large, e.g.,
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Figure 2: Adding an isolated file from A to B

𝑁 = 10, 000, then M-score𝐴 is 17.47% , M-score𝐵 is 17.48% and the
change in M-score from A to B is 0.01%.

In general, as N gets extremely large, the 𝑆𝑖𝑧𝑒 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 becomes
the largest penalty. The impact associated with adding an isolated
file in a large system approaches zero, as adding a single isolated file
with no connections or dependencies to other files should have less
and less of an impact on the score. As such, adding an isolated file
only adds a small percentage to the M-score, and the 𝑆𝑖𝑧𝑒 𝑃𝑒𝑛𝑎𝑙𝑡𝑦
applied to a large module cannot be removed by simply adding one
isolated file, which was the main issue of DL.

3.2 Cross Layer Dependency Density Penalty
The𝐶𝑟𝑜𝑠𝑠 𝐿𝑎𝑦𝑒𝑟 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 (𝐶𝐿𝐷𝐷𝑃 ) of a mod-
ule corresponds to the density of the files that depend on it com-
pared to the total possible number of connections between those
files. For any given module, the maximum possible dependencies
are the number of lower-layer files multiplied by the number of files
in the module. The penalty will increase when more dependencies
are added and decrease when dependencies are removed.

We now calculate the M-scores for the graphs in Fig. 3A and
Fig. 3B to demonstrate how the score will change when the de-
pendencies crossing the two layers changed from 6 (Fig. 3A) to
2 (Fig. 3B). When N=8, two modules where each module has 4
files (hence no size penalty), the M-score𝐴 is 75.00%, M-score𝐵 is
87.50%, that is, M-score increases 12.50%, reflecting the reduced cou-
pling. When 𝑁 is large, e.g., 𝑁 = 12, 000, then M-score𝐴 is 13.88%,
M-score𝐵 is 18.50%, increasing 4.62%, with the Cross Layer Depen-
dency Density Penalty 𝐶𝐿𝐷𝐷𝑃𝐵 = 0.000167, directly proportional
to the amount of decoupling performed between layers.

3.3 Inner-Module Complexity Penalty
Lastly, the 𝐼𝑛𝑛𝑒𝑟 𝑀𝑜𝑑𝑢𝑙𝑒 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐼𝑀𝐶𝐹 ) addresses the
density of the internal connections of a module: a more complex
module incurs a larger penalty. We now calculate the M-scores
of the graphs in Fig. 4A and Fig. 4B, where Fig. 4B is refactored

Figure 3: Reducing cross-layer dependencies from A to B

Figure 4: Reducing inner-module coupling from A to B

from Fig. 4A by changing all bi-directional dependencies among
files to unilateral dependencies. In both graphs, there are 𝑁 files,
partitioned into two layers, one module in each layer, where the
larger, lower-level module contains 𝑁 − 1 files. Fig. 4A’s lower-
level module contains 4(𝑁 − 2) internal connections, and Fig. 4B’s
lower-level module contains 2(𝑁 − 2) internal connections.

Considering N=10, where the code base has 10 files, M-score𝐴
is 36.62%, M-score𝐵 is 51.27%, that is, the score increases 14.65%
due to the reduced internal coupling. When 𝑁 grows large, e.g.,
𝑁 = 10, 000, then M-score𝐴 is 17.466%, M-score𝐵 is 17.469%, in-
creasing 0.003%. This increase is so small because the main penalty
comes from the large size of the module. The overall possible inner
connections is: 𝑁 ∗ (𝑁 − 1) therefore 4(𝑁−2)

𝑁 (𝑁−1) is still relatively
small amount. It is also likely that while addressing inner-module
complexity, the consendation graphs will change, which will create
smaller modules and help increase the score.
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Table 2: Statistics of DL and M-score

𝐷𝐿𝑎𝑙𝑙 𝐷𝐿𝑛𝑜_𝑖𝑠𝑜 M-score𝑎𝑙𝑙 M-score𝑛𝑜_𝑖𝑠𝑜
Average 68.50% 63.09% 69.15% 68.39%
Median 73.10% 66.95% 68.97% 68.26%
Max 99.73% 95.31% 97.56% 97.14%
Min 34.63% 20.14% 31.44% 30.69%
Stdev 19.37% 20.03% 15.20% 15.40%
20th Pt 45.10% 42.13% 53.77% 53.19%
40th Pt 66.66% 60.17% 65.98% 64.78%
60th Pt 76.38% 71.22% 74.79% 74.11%
80th Pt 89.08% 84.01% 85.24% 84.43%

3.4 M-score Summary
In summary, the M-score definition combined the best aspects of
both PC and DL, and addressed their shortcomings. Similar to DL,
M-score rewards small and independent modules: the more such
modules, the higher the score. Both DL and M-score follow Baldwin
and Clark’s options theory [5]: independent modules create option
values through independent improvement, and the more high-value
modules are there, the higher the M-score for the overall system.
As shown in Formula (1), M-score, similar to DL, is the summation
of the scores of all the modules of all layers. Unlike DL where a
size penalty is only applied to the bottom layer of the hierarchy,
the M-score 𝑆𝑖𝑧𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (SP), defined in Formula (5), is applied to
all modules in all layers.

Similar to PC, M-score accounts for the density among files.
Unlike PC, M-score, is not sensitive to size. Moreover, while PC
calculates the dependency density of all files, M-score calculates
dependency density within and across modules, respectively, and
rewards fewer dependencies between layers and lower coupling
within a module. As a result, reduced or increased complexity at
different levels can be reflected in the score. The definition of𝐶𝑟𝑜𝑠𝑠−
𝐿𝑎𝑦𝑒𝑟 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 (CLDDP) (Formula (6)), and
𝐼𝑛𝑛𝑒𝑟 𝑀𝑜𝑑𝑢𝑙𝑒 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 (IMCP) (Formula (7)) reflect these
density penalties that make M-score different from DL and PC.

In summary, M-score, rooted in options theory, accounts for
module independence, module size, inner-module complexity, and
inter-module coupling simultaneously. To calculate the M-score
for a project, we first use Understand to extract file dependencies,
which are used by DV8 to generate the hierarchical clustering
needed to calculate M-score. Using the output of DV8 as input, we
created a script to calculate the M-score.

4 Evaluation
The objective of our evaluation is to empirically assess if M-score
can serve as a reliable "metric" to (1) reflect software modularity
variation, with or without isolated files, and (2) reflect maintenance
effort as evidenced in the project’s revision history. We use revision
history to determine if a higher M-score indicates that features
and bugs can be handled in a modularized way, such that different
issues are handled by different developers in parallel. We compared
M-score with DL, as DL is the state-of-the-art modularity metric to
the best of our knowledge. Our goal was to empirically evaluate
M-score, using the same set of subjects used to evaluate DL, to

form a fair comparison. Specifically, we investigate the following
evaluation questions:

EQ1: Is M-score able to handle isolated files better than DL? We
answer this question by comparing the variation of M-scores with
and without isolated files, respectively, against the variation of DL
values. If M-score differences are smaller, then it performs better
in monitoring the evolution of a software system. We determined
previously that isolated files will happen during software evolution,
and a useful metric should not be distorted when isolated files are
added temporarily or permanently in the process of evolution.

EQ2: Can M-score be reliably used to compare different projects
and releases in terms of modularity differences? Since prior works [29,
30, 32] have demonstrated that DL can be an effective measure to
compare different projects and releases when there are no isolated
files, we calculated the correlation of M-score and DL using projects
without isolated files. If they are strongly correlated, it implies that
M-score is also a reliable metric for project comparison.

EQ3: Does M-score significantly correlate with maintenance mea-
sures derived from the revision history? Following thework of DL [29],
we investigate the correlation between M-score values with a suite
of maintainability measures to assess how well development tasks
can be parallelized.

We used the same subjects as reported in Section 2 to conduct
our evaluation.

4.1 M-score Stability with Isolated Files
For all the releases of each of the 37 projects, we calculated the M-
score and DL scores, with and without isolated files, and presented
their summary statistics in Table 2. From this table, we can see that
isolated files have a significant impact on DL: the median DL score
reduces from 73.10% to 66.95% once isolated files are removed. This
volatility makes it hard for DL to serve as a modularity benchmark
since, as we analyzed in Section 2, isolated files are inevitable during
software evolution. By contrast, the M-score statistics are much
more stable: all the statistics differ less than 1%. The implication
is that isolated files have a minor impact on M-score, as it mainly
reflects the complexity, not the size, of a system. The benchmark
formed by M-score can thus provide reliable references for projects.
For example, we can say that if a project achieves a M-score of 68%,
it reaches the median of the benchmark.

Table 1 contains more detailed data to reflect the stability differ-
ence between M-score and DL:

• The Average DL columns contain (𝑎𝑙𝑙 ), the average DL score
across all releases with all files; (𝑛𝑜_𝑖𝑠𝑜), the average DL with
only non-isolated files; and Δ, the difference between the
two across all releases of the project.

• TheAverageM-score columns are defined similarly but present
M-score instead of DL scores.

• The Standard Deviation columns present the standard devia-
tions for the percentage of isolated files (𝑖𝑠𝑜%), the variations
of DL scores (Δ𝐷𝐿), and the variation of M-scores, (Δ M-
score) across all releases.

Table 1 provides a detailed stability comparison for each project.
For example, the “activemq" row shows that when the file count
changes 1.27% because of isolated files, the average DL change is
9.71%, while the M-score only changes 0.31%, which is expected
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Figure 5: Variation of DL, M-score, and file count

(and much more stable). For all projects, the DL variation is always
higher than that of the M-score. The chart in Fig. 5 shows that,
compared with file count variation, DL varies drastically, while M-
score is more stable and lower than file count variations, showing
that M-score is less affected by file isolation or size variation.

The last rows of Table 1 show that the M-score variation caused
by isolated files is significantly less than that of DL variation: On
average, the isolated files increase total file count by 3.67%, which
causes an average increase of 5.42% in DL, but only a 0.97% increase
in M-score. Similarly for the median case, the isolated file percent-
age is 1.75%, which causes a median DL increase of 4.90%, but only
a 0.46% increase in M-score.

To statistically assess if the standard deviation of M-score vari-
ation is significantly smaller than that of DL, we first tested the
average standard deviations of both scores across the releases for
each of the 37 projects, as listed in the “Standard Deviation” columns
in Table 1, using the Anderson-Darling test [4]. The normality test
determined that neither standard deviation columns in Table 1 are
normally distributed: the p-value for Δ(𝐷𝐿) and Δ(M-score) are
1.6791𝐸 − 4 and 0 respectively. As neither fits a normal distribution,
we used the non-parametric 1-tailed Mann-Whitney U Test and
determined that M-score standard deviations are smaller than that
of DL, as indicated by the small p-value: of 2.27E-11.

Answer to EQ1: Compared with DL, M-score is better at han-
dling isolated files within a project.While the exact impact of adding
isolated files and the number of isolated files varies depending on
the structure of the code base, in all cases, the percent increase of
M-score is strictly less than that of DL. The standard deviation of
M-score with isolated files is strictly and significantly smaller than
that of DL, as presented in Table 1.

4.2 M-score for Monitoring and Comparison
Since DL has been used to effectively compare and monitor both
open-source and industrial projects without isolated files [29, 30,
32, 46], to ensure that M-score can be used for similar purposes,
we calculated the Spearman correlation coefficient and p-value

Table 3: DL and M-score Correlations: all p-values < 1e-309

Metrics 𝐷𝐿𝑎𝑙𝑙 𝐷𝐿𝑛𝑜_𝑖𝑠𝑜 M-score𝑎𝑙𝑙 M-score𝑛𝑜_𝑖𝑠𝑜
𝐷𝐿𝑎𝑙𝑙 -
𝐷𝐿𝑛𝑜_𝑖𝑠𝑜 97.34% -
M-score𝑎𝑙𝑙 85.04% 89.86% -
M-score𝑛𝑜_𝑖𝑠𝑜 82.85% 89.14% 99.31% -

Table 4: Spearman correlation to maintenance measures

History Metrics rho p-value

Code Commit Overlap Ratio (CCOR) -0.44 5.90e-03
Bug Commit Overlap Ratio (BCOR) -0.52 9.61e-04
Code Commit Fileset Overlap Ratio (CCFOR) -0.48 2.80e-03
Bug Commit Fileset Overlap Ratio (BCFOR) -0.53 7.56e-04
Code Pairwise Committer Overlap (CPCO) -0.51 1.31e-03
Bug Pairwise Committer Overlap (BPCO) -0.52 9.98e-04

to determine the correlation between M-score and DL across the
1220 releases. When comparing M-score and DL, which can vary
greatly in the presence of isolated files, we calculate the correlation
between each pair of the following metrics:

• 𝐷𝐿𝑎𝑙𝑙 : DL score including isolated files
• 𝐷𝐿𝑛𝑜_𝑖𝑠𝑜 : DL score excluding isolated files
• M-score𝑎𝑙𝑙 : M-score value including isolated files
• M-score𝑛𝑜_𝑖𝑠𝑜 : M-score value excluding isolated files

Their pair-wise correlation is presented in Table 3. All the metric
pairs are highly correlated, and these correlations are all signifi-
cant with p-value < 1E-309, which makes us confident that using
any of these metrics to monitor project evolution in the long run
should provide similar results. The table also shows that M-score
with and without isolated files are almost perfectly correlated with
a coefficient of 99.31%, which is another demonstration that M-
score is stable in the presence of isolated files. Both M-score𝑎𝑙𝑙 and
M-score𝑛𝑜_𝑖𝑠𝑜 are highly correlated with 𝐷𝐿𝑛𝑜_𝑖𝑠𝑜 , with a coeffi-
cient greater than 89%. The implication is that M-score can also be
used to indicate architecture variation, similar to a real “𝑚𝑒𝑡𝑟𝑖𝑐".

Answer to EQ2: The high correlation numbers and low p-values
make it clear that M-score can also be used to monitor architecture
variation and compare different projects, but will be more stable in
the presence of isolated files or components.

4.3 M-score and Maintenance Metrics
To measure how well maintenance tasks are accomplished in paral-
lel, prior work [29] established three maintenance metrics: Commit
Overlap Ratio (COR), Commit Fileset Overlap Ratio (CFOR), and
Pairwise Committer Overlap (PCO). These metrics use a project’s
revision and issue-tracking histories to determine how much par-
allel development and maintenance could have occurred in each
project, based on the assumption that if the project could have been
developed and maintained in parallel, it is likely that the project is
decoupled. Their hypothesis was that for projects with higher mod-
ularity scores, their code base should be better modularized, and
thus, a developer’s maintenance tasks should be better paralleled.
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Table 5: M-score vs. Maintenance Measures

Project Code Bug Code Bug Code Bug Average
COR COR CFOR CFOR PCO PCO M-Score

activemq 4.62 2.88 2.68 1.72 0.53 0.50 75.88%
amarok 13.76 4.01 4.15 1.94 2.05 0.90 52.80%
aurora 6.09 1.96 2.39 1.76 0.36 0.20 96.72%
avro 4.94 2.85 1.49 1.22 0.21 0.10 86.39%
camel 5.72 1.96 2.30 1.29 0.31 0.15 86.27%
cassandra 14.18 5.07 4.19 2.24 1.48 0.88 52.83%
cxf 6.93 2.22 2.09 1.35 0.50 0.23 85.27%
derby 11.20 2.97 4.85 1.70 1.93 0.44 57.48%
flink 4.45 1.37 2.82 1.23 0.57 0.14 77.61%
flume 3.63 2.15 1.76 1.50 0.55 0.56 91.40%
gedit 16.74 3.82 5.82 2.55 0.79 1.28 57.96%
geronimo 3.81 2.12 2.11 1.44 0.80 0.42 83.42%
gimp 16.93 4.35 5.43 2.05 1.23 0.38 51.44%
gnome-atk 18.52 5.67 6.84 3.36 0.46 1.47 63.95%
hadoop 5.26 2.21 2.56 1.83 1.28 1.13 71.60%
hibernate-orm 3.34 1.66 2.49 1.35 0.38 0.25 66.83%
hive 6.22 3.09 3.18 1.93 1.71 1.13 58.54%
jdt-core 8.77 4.92 2.68 2.30 1.73 1.26 82.59%
log4j 7.85 2.98 2.66 1.26 0.83 0.27 79.77%
mahout 4.81 1.56 2.85 1.37 0.86 0.31 93.23%
nant 10.56 2.12 3.17 1.06 0.91 0.02 83.19%
nutch 5.81 2.26 3.26 1.67 1.26 0.53 89.16%
ode 4.00 2.03 2.15 1.58 0.74 0.44 68.93%
oozie 5.96 3.48 3.50 2.47 1.72 1.34 77.37%
openjpa 5.05 1.76 2.74 1.56 1.37 1.01 66.82%
pdfbox 5.67 2.40 2.03 1.45 0.66 0.45 53.13%
pig 6.54 2.48 2.48 1.79 0.95 0.66 65.86%
spring-framework 5.34 2.19 2.94 1.41 0.31 0.17 92.97%
storm 4.14 1.30 2.10 1.27 0.65 0.13 80.47%
tajo 3.44 2.54 1.71 1.31 0.44 0.28 71.45%
thrift 3.63 2.29 2.04 1.48 0.12 0.10 86.11%
tika 7.75 2.60 2.56 1.69 1.08 0.53 84.49%
tomcat 9.11 3.15 2.44 1.42 0.62 0.20 79.62%
wicket 4.97 2.22 3.03 1.62 0.84 0.58 78.69%
wireshark 21.38 4.22 6.62 2.72 2.65 1.04 38.43%
xerces2-j 8.42 2.47 3.04 1.50 0.86 0.31 67.24%
zookeeper 5.48 2.57 1.95 1.94 0.96 1.06 71.78%

P-value 3E-7 8E-4 2E-6 1E-3 2E-2 7E-4 2E-1
Normally
Distributed? No No No No No No Yes

To evaluate M-score, we obtained and generated similar inputs
from the repositories of our subjects to determine if and how well
M-score correlates with COR, CFOR, and PCO. Each of which can
be decomposed into bug and all commit metrics: BCOR (Bug COR),
BCFOR (Bug CFOR), BPCO (Bug PCO), CCOR (Commit COR), CC-
FOR (Commit CFOR), and CPCO (Commit PCO). Table 5 contains
the maintenance metrics broken down by project.

The maintenance metrics were not normally distributed as in-
dicated by the Anderson-Darling test p-value shown in Table 5.
Accordingly, we decided to use Spearman’s rank correlation in-
stead. Table 4 presents these correlations, which shows that all
these metrics are significantly and negatively correlated with the
maintenance measures with very small p-values.

Answer to EQ3: Yes, M-score is significantly correlated with
maintenance metrics: the higher the M-score, the more likely that
maintenance tasks can be accomplished independently.

4.4 Evaluation Summary
In summary, we have shown that M-score addresses the limitations
of DL, better reflects inter-layer and innermodule complexity, and is
more stable in the presence of isolated files. In addition, as a metric,

it has the same key properties of reliably reflecting architectural-
level modularity variations and maintenance efforts.

5 Threats to Validity
In this section, we discuss external, internal, and construct threats
to the validity of our study, following [7].

External Threats to Validity. The projects we examined are mostly
Apache projects written in Java, C, C++, and C#. Therefore, it is
possible that M-score may not be applicable to other projects in
other programming languages. It is also possible that other open-
source projects in other communities or industrial projects may
introduce issues that could necessitate refinement of our metric.

Internal Threats to Validity. The primary internal threat to valid-
ity is associated with the tool used to extract dependencies between
files. In this study, we used Understand [2] to extract dependencies.
It is possible that if we use another static analysis tool, such as
Depends [1], the results could be different. In our comparative eval-
uation with DL, we minimized the risk of this bias by analyzing the
same projects and using the same tools as used in prior work [29].

Construct Threats to Validity. In this study, we used the mainte-
nance measures, COR, CFOR, and PCO proposed byMo et al. [29] as
the ground truth, which may not reflect real maintenance effort or
experts’ perceptions, presenting a restricted generalizability threat.
In practice, real history data has an ebb and flow with new features
being added and bugs being swatted, all complicated by deadlines,
inexperienced developers, turnover, and many other issues that
could make the data noisy. As such history data may not perfectly
represent the amount of decoupling within a code base.

6 Discussion
Here we discuss the implications and future work of our research.

Implications.We believe that M-score takes a step further to-
wards our overall objective of seeking an operable metric. That is,
using such a metric, the designer should be able to faithfully assess
if the quality of their design is getting better or worse as the system
evolves. If the system is refactored, locally or globally, the metric
should be able to tell the extent to which the design has improved. If
a developer takes a shortcut and introduces unexpected dependen-
cies, the metric should be able to reflect the presence of modularity
degradation immediately so that severe architecture decay can be
detected and prevented early.

Having a reliable modularity metric is the first step towards an
industrial benchmark comprising modularity scores collected from
a large number of projects, so that any project can compare its
modularity level with similar projects, i.e., projects using the same
language, in the same domain, or from the same corporation.

Future Work.We envision a number of extensions and future
work of our research.

Investigate Dependency Extraction Tools. In this study, we only
used Understand [2] to extract dependencies. A future research
effort could be to compare and contrast the features, capabilities,
and limitations of different dependency extraction tools to better
understand what should be the most accurate and efficient way
to extract dependency data. Possible questions to investigate are:
what are the differences between dependency extraction tools?
How do they detect third-party software used in the projects, and
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how do they handle different language mechanics or frameworks?
How the tools handle these issues could result in different sets of
dependencies. For example, is an isolated file actually disconnected
from any dependencies, or could the tool not detect it?

Incorporate Dependency Type and Weight into Metrics.M-score
considers all types of dependencies to be equal, whether that de-
pendency is 𝐶𝑎𝑙𝑙 , 𝐸𝑥𝑡𝑒𝑛𝑑 , 𝐼𝑚𝑝𝑜𝑟𝑡 , or 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 . One could argue
that these different dependencies represent a different amount of
coupling; for example, 𝐸𝑥𝑡𝑒𝑛𝑑 and 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 are likely stronger
dependencies than𝐶𝑜𝑛𝑡𝑎𝑖𝑛 or 𝐼𝑚𝑝𝑜𝑟𝑡 . The current M-score doesn’t
account for dependency strength between two files either: two files
calling each other multiple times have the same dependency count
as those only call each other once. Incorporating dependency types
and weights may lead to a more accurate modularity metric.

Case Study using Actual Maintainance Effort. Our study uses revi-
sion history data to approximate maintainability. In the future, we
would evaluate M-score using actual maintenance effort, measured
using coding time or LOC, collected from real industrial projects.
Another option is to use a respondent empirical strategy where
we solicit opinions from domain experts, asking them to identify
architecture improvements (and degradations) and then investigate
if those correlate to an increase (or decrease) in M-score.

7 Related Work
Determining how to measure software to assess maintainability
and prevent architecture decay has been an indispensable step
for software quality control and improvement [15, 21, 35], and for
identifying refactoring opportunities during software evolution.
Software metrics have been studied for decades. McCabe Cyclo-
matic complexity [26] and Halstead metrics [17] are among the
oldest and well-known ones to measure program complexity. C&K
metrics [9], LKMetrics [23], andMOODMetrics [12] were proposed
to measure object-oriented programs. These metrics are derived
mainly from inner file relations and have been used for bug predic-
tion and localization [18, 22, 28, 38, 43], but not for comparing and
monitoring architecture decay or modularity variation.

Researchers have also explored the effectiveness of using com-
bined metrics to aid software maintenance and evolution. Oman
and Hagemeister [33] proposed a Maintainability Index, a com-
posite model for predicting maintainability integrating multiple
metrics, including lines of code and cyclomatic complexity per mod-
ule. Bijlsma et al. [6] and Heitlager et al.’s [19] combined metrics
for software maintainability assessment. Commercial tools such as
SonarQube [39] and Infusion [12] also provide a single “index” to
monitor software quality.

More recently, Papamichail and Symeonidis [34] presented a
framework to identify non-maintainable components by training
Support Vector Machines classifiers based on multiple metrics,
such as complexity, cohesion, coupling, and inheritance properties.
Czuibula et al. [11] proposed a new aggregated coupling captur-
ing both the structural and the conceptual coupling. The problem,
however, is that measures derived from one set of projects cannot
be used for other projects [31, 42].

In addition to object or class level metrics, researchers have
also proposed metrics for packages [3], components [14], and sub-
systems [37] to predict maintainability, testability, and run-time

communication structure complexity between distinct components
and their relationships to quality factors including maintainabil-
ity. Given the popularity of microservices, metrics have also been
proposed to measure microservice systems. Similar to monolithic
systems, coupling is still considered an important indicator that
negatively impacts service maintainability. Independence among
service components is important to allow the system to change and
evolve. [10, 13, 35, 44, 47].

In this paper, we focus on monolithic systems and attempt to
find independent modules, following the essence of design rule
theory [5, 41]: independent modules create option values, and the
more such modules there are, the higher the value of the overall
system. To the best of our knowledge, the only two option-based
metrics that have been used to compare different projects or to
monitor software evolution continuously are PC and DL. DL is
the only modularity metric that has been successfully applied to
hundreds of projects, both open source and industrial [30, 32, 46]; it
has been used to monitor, evaluate, and compare software projects
and their evolution. However, when we tried to apply DL to indus-
trial projects, the developers complained about the instability of DL
in the presence of isolated files. Additionally, they were confused
about why two DL scores were provided by DV8 (an “all” score
and a “non-isolated” score) and how to interpret them. These issues
motivated the creation of M-score.

8 Conclusion
In this paper, we proposed a software modularity metric called M-
score that leverages the advantages of Decoupling Level (DL) and
Propagation Cost (PC), and addresses their problems, especially
their stability problems in the presence of isolated files or com-
ponents. M-score offers four major contributions: (1) aggregating
modularity scores for each module so that a system with more
independent modules will have a better M-score; (2) accounting
for dependency density between modules to reward low coupling
among modules; (3) accounting for inner-module dependency den-
sity to reward low-coupling within each module; and (4) applying
a size penalty uniformly to all modules so that isolated files will
not have a drastic effect on the overall score. As a result, a system
with low coupling both within and among modules and with more
small, independent modules will have a higher M-score.

After analyzing 1220 releases of 37 projects, we have demon-
strated that: M-score is significantly more stable than DL, signif-
icantly correlated with maintenance difficulty, and preserves the
most important properties of being a “𝑚𝑒𝑡𝑟𝑖𝑐". That is, it can be
used to compare different projects or monitor the evolution of a
single project. The implication is that M-score has the potential to
serve as an effective and reliable modularity metric to monitor the
evolution of a single project, and also to serve as the foundation of
an industrial modularity benchmark.

9 Data Availability
We provide all the data in tables, charts, and figures as well as
release dependency files in a replication package at [36].
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