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Abstract—A unitary k-design is an ensemble of unitaries that
matches the first £ moments of the Haar measure. In this work,
we provide two efficient constructions of k-designs on n-qubits
using new random matrix theory techniques.

Our first construction is based on exponentiating sums of
random i.i.d. Hermitian matrices and uses O(k*n?)-many gates.
In the spirit of central limit theorems, we show that this random
sum approximates the Gaussian Unitary Ensemble (GUE). We
then show that the product of just two exponentiated GUE
matrices is already approximately Haar random. Our second
construction is based on products of exponentiated sums of
random permutations and uses O(k poly(n)) many gates. The
k dependence is optimal (up to polylogarithmic factors) and
is inherited from the efficiency of existing k-wise independent
permutations. Furthermore, replacing random permutations with
quantum-secure pseudorandom permutations (PRPs), we also
obtain a pseudorandom unitary (PRU) ensemble that is secure
under nonadaptive queries.

A central feature of both proofs is a new connection between the
polynomial method in quantum query complexity and the large-
dimension (V) expansion in random matrix theory. In particular,
the first construction uses the polynomial method to control high
moments of certain random matrix ensembles without requiring
delicate Weingarten calculations. In doing so, we define and solve
a moment problem on the unit circle, asking whether a finite
number of equally weighted points can reproduce a given set of
moments. In our second construction, the key step is to exhibit an
orthonormal basis for irreducible representations of the partition
algebra that has a low-degree large-N expansion. This allows
us to show that the distinguishing probability is a low-degree
rational polynomial of the dimension N.

Index Terms—unitary designs, polynomial method, pseudoran-
domness, random matrices

I. INTRODUCTION

Pseudorandom states and unitaries are fundamental tools
in quantum information. By efficiently creating ensembles
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of states and unitaries that mimic the Haar measure, we
can access Haar random properties without paying a cost
exponential in the number of qubits. Broadly speaking, two
types of quantum pseudorandomness have been previously
considered. The first is information-theoretic pseudorandom-
ness, where indistinguishability is determined by the statistical
closeness of an ensemble. Such ensembles that match the
first £ moments of the Haar measure are called unitary
or state k-designs, and are the natural quantum analogs of
k-wise independent functions or permutations. These yield
information-theoretic k-copy security and suffice for many
applications, such as randomized benchmarking [EAZ05],
[KLR*08], [DCEL09], cryptography [DLT02], [ABW09],
shadow tomography [HKP20], communication [HHWYO08],
[SDTR13], and phase retrieval [KL17]. The second is compu-
tational pseudorandomness, where closeness is determined
by the computational hardness of the distinguishing task.
Pseudorandom states and unitaries (PRSs and PRUs) are
ensembles that are computationally indistinguishable from Haar
[JLS18]. These are the quantum analogs of pseudorandom
functions (PRFs) or permutations (PRPs), and have found
significant applications both in quantum cryptography (e.g.,
[Kre21], [KQST23]) and in the complexity of physical systems,
e.g., [BFV19], [KTP20], [ABF*24], [YE23]. This relaxed
security notion allows one to obtain properties impossible in
information-theoretic settings, such as small ensemble (key)
sizes, many copy security, and low entanglement [JLS18],
[ABF24].

Many questions remain open along both branches of the
quantum pseudorandomness family tree. On the k-design side, a
significant open problem has been to efficiently generate unitary
k-designs on n qubits. It is known that this task requires at least
Q(nk) quantum gates [BHH16] but so far existing constructions
have not achieved the bound, despite much work in the area
[Webl5], [ZKGG16], [Zhul7], [MY23], [HLO9b], [HLO09a],
[BHH16], [HM23], [Haf22], [HIJ19], [DCEL09], [CLLW16],
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[OBK'17], NHKW17], [BNZZ19], [NZO*21], [BNOZ22],
[OSP23], [KKS*23]. The first efficient and systematic construc-
tions of approximate unitary k-designs which work for large
values of k were given by [BHH16], who showed that random
local circuits achieved the goal in O(k'%°n?) time. Then,
[Haf22] improved the analysis of this construction, yielding
O(kn?) time. This stands in contrast to constructions of
related k-wise independent objects, which achieve the optimal
linear scaling in k, such as quantum state designs (e.g., [BS19])
as well as for analogous classical objects, namely k-wise inde-
pendent functions [Jof74], [WC81], [ABI86] or approximate
k-wise independent permutations [Kas07], [CK23]. We note
that linear scaling! in k& has been achieved? only in restricted
cases, such as the limit of large local dimension [HHJ21], or
if the number of moments matched is small (k < O(y/n))
[NHKW17]. This problem is not only a fundamental and natural
question in theoretical computer science, but has also gathered
the attention of the quantum gravity community, because the
linear growth in circuit complexity associated with an efficient
k-design ensemble (see e.g., [RY17]) is believed to play a
role in resolving certain paradoxes in the structure of quantum
spacetime [BS18].

On the computational pseudorandomness side, a significant
open problem is to construct pseudorandom unitaries (PRUs)
from standard cryptographic assumptions, such as the existence
of quantum-secure one-way functions (OWFs). While several
efficient constructions of pseudorandom state ensembles are
known [JLS18], [BS19], [ABF"24], [GTB23], [IMW23],
[Ma23], progress has been much more difficult in the unitary
case. [JLS18] proposed a few candidates, but security has yet to
be proven. However, a number of objects intermediate between
a PRS and a PRU have been rigorously constructed. For
example, Ananth et al. constructed a pseudorandom function-
like state, a generalization of a PRS that allows one to create
polynomially many independent PRSs [AQY22], [AGQY22].
Subsequently, Lu et al. defined and constructed pseudorandom
state scramblers, which are ensembles of unitaries that produce
a PRS from any fixed input state [LQS™23]. There has also
been a recent construction of parallel-secure pseudorandom
isometries between spaces of differing dimensions [AGKL23],
as well as another variant of a pseudorandom state scrambler
for real (orthogonal) states [BM24]. However, the existence of
efficient pseudorandom unitaries with general query security
remains open.

In this work, we make progress on both quantum pseudo-
randomness open problems simultaneously. First, we construct
a unitary k-design by summing “simple” random matrices.
Let O(-) absorb polylogarithmic dependence on n, k, ¢!, and
consider approximate k-designs in the parallel query model

Nokulp] = By [US* pUT®F|

'We emphasize that this refers to the quantum gate count — which is
typically the bottleneck in applications — rather than the scaling in the number
of bits of classical randomness, which was recently achieved by [OSP23].

2We note there have also been plausible arguments that certain continuous
time Brownian motions should attain linear scaling [JBS23] but the cost of
simulating them on a quantum computer remains to be analyzed.
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with the diamond norm
[N = Naflo := (N1 = No) @ Z[1-1.

Theorem I.1 (Random sums). For any k < 20(n/logn)
there exists an efficient quantum algorithm that generates
an e-approximate unitary k-design (in diamond norm) using
0 (k*n?log(e™")) quantum gates, and O(kn?) bits of classi-
cal randomness.

Second, we give a construction of a unitary k-design using
quantum gates scaling near-linearly with k, which matches the
lower bound on k-dependence up to logarithmic factors. Here,
the improved efficiency is inherited from existing classical
k-wise independent permutations [Kas07], [CK237.

Theorem 1.2 (Random permutations). For any k < 200",
using existing efficient classical k-wise independent permuta-
tions, there exists an efficient quantum algorithm that generates
an e-approximate unitary k-design (in diamond norm) using
O(kpoly(n)) one and two-qubit quantum gates, and O(kn)
bits of classical randomness.

The same construction using computationally pseudorandom
permutations (instead of k-wise independent permutations)
gives a pseudorandom unitary ensemble with nonadaptive
security.

Corollary I.1 (Parallel PRU from quantum-secure OWF). The
existence of a one-way function secure against quantum attack
implies an efficient quantum algorithm to generate parallel-
secure pseudorandom unitaries.

Our algorithm is fundamentally different than existing
approaches for generating unitary k-designs [BHH16], [Haf22],
[HHJ21]. In particular, instead of using random quantum
circuits, we exponentiate Hamiltonians, which are sums of
independent random terms. Our proof uses tools from random
matrix theory to create efficient unitary designs.

A. The random sum construction

Rather than employ the mixing properties of products of
random matrices to achieve convergence, we aggregate random-
ness from sums of random matrices [CDX"24]. In particular,
we focus on the Gaussian Unitary Ensemble (GUE, Hermitian
matrices with i.i.d. Gaussian entries) a the stepping stone to
Haar random unitaries. In a nutshell, our main construction is
the following:

(i) Consider a finite sum over i.i.d. Hermitian matrices H;
which match the first ¢-moments of the GUE

m

ZHJ- where E[H;@k] ~ E[G®"]

=1

H~——
vm

foreach k=1,...,q.

3The latter construction [CK23] is much simpler and uses finite-field arith-
metic. The classical efficiency of the earliest construction of Kassabov [Kas07]
has been folklore and has been fully verified in [CHHT24].
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(ii) Then, the product of two exponentiations of such matrices
is approximately Haar for appropriate § = O(1):
ey

IOH (OH @ I0G i6C @ .
aar-

=W

The first approximation (1) results from a matrix central
limit theorem: sums of random matrices matching low moments
converge to the GUE matrix G. Remarkably, random matrices
as simple as signed random Pauli strings o, which match
the second moments of GUE (E[o ® o] = E[G ® G]), can
reproduce the very complex GUE. This elementary approach
circumvents the spectral gap calculations key to prior works
[BHH16], [HHJ21], [Haf22]. More precisely, we significantly
generalize a matrix Lindeberg principle from [CDB'23] to
control the convergence rate on m with a suitable choice of ¢
concerning a very different distance.

The second approximation (2) is a highly nontrivial con-
version from the GUE to Haar random unitaries. Although
Gaussian matrices have a Haar-random basis (i.e. they are
unitarily invariant under conjugation), they have spectra very
different from Haar—roughly, the eigenvalues of GUE matrices
are semicircle-distributed while the eigenvalues of Haar-random
unitaries are evenly distributed around the unit circle. This
difference remains even after we exponentiate G' to get unitarity
e’GY_ This difference between an N x N Haar unitary U and
an exponentiated GUE G is exhibited by their trace moments:

% Tr[e'GoP] 2 % Tr[UP] = 0.

Surprisingly, we show that the product of merely two
Gaussian exponentials W = GG’ s close to a Haar
random unitary at particularly chosen values of the numerical
constant 6 (independent of the system size). That is, the product
W is an e-approximate unitary k-design for a very high value
of k (k= 2%") and a small value of e. Intuitively, the two
independent Haar-random bases wash away the structure in
the spectra. Proving this requires both developing a novel
query complexity lower bound specifically for distinguishing
ensembles with symmetries, as well as new random matrix
theory results for bounding moments of the ensemble W using
a novel large-N polynomial method. We describe how this
works in section II-A.

(€5

B. The random permutation construction
The basic building blocks of our second construc-
tion [CBB*24] are random phased permutations, that is random

permutation with random complex signs:
Z:=D,-8S,
where S "%/ S(N)
(uniformly random permutations on NN elements)

(Dz)ij = 52321 where Zi U(l)

(random diagonal complex phases)

(random phased permutations)

i.3.d.
~

Though our ultimate goal is pseudorandomness, in most of the
discussion it suffices to treat the matrix Z as truly random
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since it will eventually be replaced by classical pseudorandom
counterparts.

The central object built from random phased permutations
Z is the matrix exponential

elfmAm

for 6, = O(1). A3)

The 2m-sparse Hermitian matrix A,, is a sum of i.i.d. random
matrices Z and their adjoints

i.4.d.

A ~Z,

1 m
= Vo 2
and can be thought of as the adjacency matrix for a random
graph weighted by random phases. The full construction is
a product of their i.i.d. exponentials (sandwiched by random
phased permutation),

Z,+ Z!) where Z, @)

. (1) i )
Z . l0mAy L G0m AL g Unaar ®)

The key insight of this ensemble is that it forms an approximate
k-design for a superpolynomial value of k, using only very few,
specifically O(m/), random permutations from S(N). Since
sampling uniformly random permutations requires exponen-
tially many bits of randomness, we are not evading known
lower bounds on the cardinality of a unitary design [BHH16],
[RY17]. Crucially, however, the number of iterations ¢ can
be small. For example, setting m = 2 and ¢ = n yields an
approximate k-design for very large value of k = 2%(") but
even m = 2 and ¢ = log?(n) suffices for a superpolynomial
design; on the contrary, spectral gap approaches (e.g., [BHH16])
to unitary designs often cost Q(nk) rounds of products.

In a nutshell, multiplying sparse matrices is an efficient way
to get a dense matrix, but controlling the diamond distance
from Haar requires careful analysis. Prior approaches to unitary
k-designs have often been based on the spectral gaps of
random walks (e.g., [BHH16]), which bootstrap the statistical
distance from a comparatively more tractable spectral gap.
However, this approach necessarily requires a log-dimensional
factor O(log(N*)) = O(nk) multiplicative blowup in the gate
complexity due to the conversion from 2-norm to 1-norm.
For cryptographic applications, the attacker may perform an
arbitrary polynomial number of queries, so security requires
a fixed poly-time construction of a superpolynomial k-design,
posing a fundamental barrier for spectral gap approaches.

The essence of our alternative argument can be captured in
the following observation:

GGinib’re

where the Z; are i.i.d. random phased permutations. The first
approximation (1) is again a central limit theorem as in (1). It
allows us to obtain a very nice random matrix, G, drawn from
the Ginibre ensemble [Gin65], which is a complex Gaussian
matrix that is both left and right unitarily invariant. However,
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the CLT-type convergence rate is too slow (polynomial in the
number of summands) and will incur a large Q(poly(k))-cost
scaling with the number of queries k.

The crux of our argument for circumventing the large number
of ii.d. copies (which is a root cause of the k? scaling
in theorem I.1) is the second approximation (2): a product
of sums reproduces the statistics of an independent sum but
using many fewer (O(mf)) copies of Z;. Roughly, in the
large-N limit, distinct words of permutations are effectively
independent of each other.

As an instructive example, when the dimension NV is large,
the following correlated words of Z;, Z> acting on |i) are
almost independent of each other:

(Z1]i), Z21i), 212, i), Z2 2, i)

dist

~ (21]i), 22 i), Zs i), Zali)) - )

Indeed, knowing Z; |i) and Z |i) tells us nothing about
ZyZ |i), unless the very unlikely collision Zs |i) o |¢) occurs.
Applying this intuition to the product of sums, we can get m*
independent Zs from merely O(m¢) many truly independent
Zs!

At first glance, the above analysis may appear strange, as if
we get “more randomness for free” from a much smaller (m/)
number of independent elements. Careful thought reveals the
approximation in Eq. (6) is possible because we only consider
low-moment properties of the permutations, i.e., we are fixing
k < N and then taking a large-N limit. In the N — oo limit,
the large amount of randomness in the permutations themselves
effectively “decouples” the different terms, as collisions become
vanishingly improbable. Strictly speaking, this precise statement
only holds in a non-adaptive setting, i.e., when the inputs are
fixed in advance. Of course, sequential/adaptive queries would
reveal correlations between these words — for example, if one
were able to query Zs after knowing the result of Z |7), it
would coincide with Z5Z; |¢). However, the key point is that
under non-adaptive queries*, such attacks are not possible, and
the words effectively decouple.

Unfortunately, proving the validity of the argument above
in finite dimensions N is nontrivial. There are nonasymptotic
correlations, however tiny, between the distinct words because
those words are made of only @(mf)-many independent ran-
dom phased permutations. To complete the proof, the remaining
and most substantial technical argument is a framework to
control those finite- /N corrections effectively (see section II-B).

C. From permutations, designs, to PRUs

So far, the above “random permutation” construction assumes
truly random permutations, which are costly to sample from.
To achieve algorithmic efficiency, the key point is that by
substituting pseudorandom permutations in their place, we
establish the link between classical pseudorandom permu-
tations and quantum pseudorandom unitaries, showing the

“We conjecture our ensemble also gives adaptive security, but we note this
would require further proof ideas, such as defining a more refined notion of
independence of different words.
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aforementioned theorem 1.2 and corollary I.1. First, we consider
substituting information-theoretically secure pseudorandom
permutations (i.e., k-wise independent permutations) in place
of the truly random permutations to obtain an efficient unitary
k-design. This requires choosing suitable parameters m and .

Corollary 1.2 (Unitary k-designs from k’-wise independence
(informal)). There is a constant c¢ such that for k < 2°7,
an e-approximate quantum unitary k-design can be efficiently
implemented by applying our construction with k'-wise indepen-
dent (discrete) phases and k'-wise independent permutations
in place of the truly random phases/permutations, where

K = O(klog(k/e)). 8)

Here, we are making key use of the fact that our construction
only relies on & = O(k)-th moments of the permutations via
efficient Hamiltonian simulation algorithms (e.g. [BCC*15],
[GSLW19]). Thus, our result “lifts” the efficient construction
of k’-wise independent permutations and functions to the
construction of unitary k-designs. This is in a similar spirit
to recent results of Brakerski and Shmueli that lift 2k-wise
independent functions to approximate quantum state k-designs
[BS19].

To achieve an efficient unitary design, we now need to
leverage the fact that k’-wise independent permutations and
functions can be implemented in only O(poly(n)k’) time.
However, one caveat is that the best known classical k’-
wise independent permutations are only approximately &'-
wise independent. Fortunately, explicit constructions of high-
accuracy classical k-wise independent permutations do exist,
with sufficiently low error. This yields unitary k-designs that are
almost algorithmically and information-theoretically optimal
(in terms of k£ dependence and the diamond distance).

To achieve computational pseudorandomness, we substitute
cryptographically secure pseudorandom permutations (i.e.,
PRPs) in place of the truly random permutations to obtain
a parallel-secure PRU:

Corollary 1.3 (Quantum secure-PRP implies parallel-PRU).
Suppose quantum-secure pseudorandom permutations exist.
Then our construction V' gives a pseudorandom unitary under
nonadaptive queries.

Note that the existence of quantum-secure PRPs (with
inverses) only requires assuming the existence of quantum-
secure pseudorandom functions [Zhal6], which is a standard
cryptographic assumption. Furthermore, if there exists a low-
depth implementation of quantum-secure PRPs, then our PRU
can also be low-depth with suitable parameters m,{ and
standard quantum algorithmic implementations.

II. A POLYNOMIAL METHOD FOR RANDOM MATRICES

Both of our constructions feature classical random matrix
ensembles: random Gaussian matrices, random permutations,
and Haar random unitaries. In principle, since these families
are reasonably nice objects, we could brute force through the
combinatorics for whichever quantity f we care about, whether
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that is their moments or certain distinguishing probability. With
more work, we have all the data necessary to perform a large-
N expansion: the Weingarten calculus and its variants yield
sums over diagrams with coefficients being (rational) functions
of %

1
1 ho

H§)=l+y ©
To prove our quantitative results, however, it is necessary to
control the total contribution coming from all orders in the 1/N
expansion. It appears very challenging to systematically capture
the fine-grained combinatorics and cancellations required to
deliver strong enough nonasymptotic bounds required in the
k-design context.
Our main strategy can be summarized by the following
guiding principle:

“Suitable” random matrix properties at finite dimension N are
controlled by the large-N limit.

Conceptually, we are looking for an inferpolation argument:
instead of directly calculating a complicated random matrix
quantity at finite /N, we start with the much simpler large-N
limit, and control the finite-/V corrections by arguing that the
function “changes slowly” as a function of %

The crucial mathematical tool is a basic fact in polynomial
approximation: Markov’s “other” inequality states that a real-
valued, low-degree polynomial f(x) whose values are bounded
on an interval will have bounded derivatives.

Lemma II.1 (Markov’s inequality for polynomials [Mar89],
[Mar16], [RC66], [EZ64]). Let f(z) : R — R be a real
polynomial of degree d. Then,

sup |f()

| < 2d? max |f(z)].
z€[0,1] z€[0,1]

This seemingly innocent property of polynomials has found
profound implications in establishing lower bounds in classical
circuit [Bei93] and quantum query complexity, a strategy
referred to as the polynomial method, e.g. [BBCT01], [AS04],
[BSSO01], [NW99], [Kut05], [Raz03]. The standard recipe for
applying the above inequality to lower-bounding the number
of queries required for distinguishing tasks goes roughly as
follows: cook up a quantity f that depends on an (often
nonobvious) interpolation parameter x such that

« (End-points.) The values f(z1) and f(z2) correspond

to the acceptance probabilities for the two cases to be
distinguished.

o (Low-degree.) The function f(x) is a low-degree polyno-

mial with a degree d, roughly the number of queries.

o (Apriori bound.) The function f(x) can be extended to

a larger interval [x1,x3] with 3 — 21 > @9 — x1 such
that its (unknown) value remains bounded.
Then, the distinguishing probability must not change too
quickly between the two cases provided the degree d is small:

) — Flao)] < 2222720 oy 5@

|-T1 - x3| z€[z1,23)

(10)
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f (.CU) apriori bounds

finite-N correction
—|

— 1

N

large-N limit

L

Fig. 1. Interpolating the  expansion. For suitable quantities dependent on
the dimension N, we control the finite-N behavior by interpolating from
the large-N limit. This argument requires that (1) the quantity of interest be
a low-degree rational function of N, (2) the function obeys a good apriori
bound, and (3) the large- /N limit can be effectively calculated.

While explicitly understanding all possible adversarial quantum
algorithms is essentially impossible, we often do have sufficient
structural restrictions to guarantee that f(z1) — f(z2) is a
bounded degree polynomial which, remarkably, proves to be
sufficient.

For our purposes, the key insight is to draw a direct connec-
tion between the large-N expansion in random matrix theory
and polynomial approximation by setting the interpolation
parameter to be (fig. 1)

_ 1
fE*N7
hae |F (L) =7 (L)) <22 max 7@, an
such tha oo NJ|— No?f%(l s

which requires constructing a suitable function that fulfills the
requirements of the polynomial methods, which is the most
substantial part of our proofs.

A. The random sum construction

A key step in the “random sum” construction (ii) is that the

moments for the product W = el9Gel?G’ gre very close to the
Haar value
1
IE Te[W?]| < O(M) ~ 0.
poly(N)

We are not aware of existing non-asymptotic bounds of this
type; what is well-known is the infinite dimension limit N —
oo (from e.g., free probability),

lim |[ETr[W?]| =0,
N—oco

which is insufficient if we care about how these quantities scale
as a function of both NV and p.

In principle, such quantities can be computed exactly by
Weingarten calculus and diagrammatic expansion (the GUE ma-
trices are diagonal in Haar random bases), but it often requires
a difficult, tedious, and nonsystematic calculation. Generally,
the number of diagrams in the Weingarten calculation increases
factorially in the number of moments p one considers—even
at leading order in 1/N—and nontrivial cancellations in the
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Weingarten series are difficult to control. Simply applying the
triangle inequality to the Weingarten series yields very loose
upper bounds, like O(%) as they cannot capture these intricate
cancellations. Fortunately, for our usage, we do not need the
exact value of these quantities but rather just an upper bound
to the magnitude of the correction: for example, does it scale
like O(p/N), or O(2P/N?)?
Our solution is to apply the polynomial method for f (%) =
E Tr[WP], going through the checklist:
o (Low-degree in +) The function f(3) is low-degree
(rational) in %, rooted in Weingarten calculus.
o (Large-N limit) The value at N — oo is known to be
f(0)=0.
« (Apriori bounds) For each 1 < N’ < oo, |f(3)| < 1.
This method can be used to prove much tighter upper

bounds on moments without a hard Weingarten calculus: it

) poly(p)
yields bounds of the form O (poly(N)

tively stronger than the naive bound in p dependence and
captures the cancellations occurring in the Weingarten sum.
This observation drastically simplifies many of our moment
calculations and circumvents hard Weingarten calculations,
instead replacing them with (more tractable) challenges in
applying the polynomial method. The alternative problem that
we had to resolve to obtain an apriori bound was to manually
extend the function across different dimensions N’ # N, by
solving a moment problem for unitary matrices (see Section III).

), which is qualita-

B. The random permutation construction

Applying the polynomial method to the “random permu-
tation” construction requires a rather different implementa-
tion. In particular, we choose the function of interest f
to be the distinguishing probability between the unitaries
vV = Z; (H§:1 eiBm,AEYJL)) ZR and UHaar by deﬁning the
key quantity

fp,O (

where N7 = Moy v and Ny = Mok 1y, are the correspond-
ing channels.

We aim to control the finite-N distinguishing probability
fp,o(%) from the large-N limit fpvo(é) for arbitrary fixed
p and O that the quantum attacks may use. We spell out the
structural requirements for f,, o () for interpolation:

Low-degree rational functions of N. The random permuta-
tions are very nice objects that are defined consi/stently across
dimensions N’ # N, inducing channels N\ and NV,
In particular, the average over permutations can be calculated
using a well-defined diagrammatic expansion, with coefficients
that are low-degree rational functions of N 5 However, the
problem is that the test state p and the test operator O,
which are selected adversarially, do not obviously apply in

%) = Tr[ON:p] — Tr [ON;p]

foreach p and O (12)

SQualitatively, this can be regarded as the analog of Weingarten expansion
in the unitary case.
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other dimensions. Finding the suitable extension requires a
few arguments: first, the permutation symmetry substantially
reduces the number of parameters. Specifically, the Schur-
Weyl duality for the commutant of permutations restricts the
effective input state p to a much smaller object, the partition
algebra Py, (N), whose algebraic structure only depends on
the number of copies k, and is in particular independent of N
as long as the dimension is large N > 2k [HRO05], [HJ20].°
While the partition algebra has been studied in the algebraic
combinatorics literature, our argument necessitates explicitly
describing the embedding with respect to the computational
basis in order to verify that the embedding “does not change
too quickly” as N increases. This requires a detailed foray
into the structure of the partition algebra and writing down an
explicit orthogonal basis as a diagrammatic sum to establish
that the basis coefficients are rational polynomials in %

The above understanding of the algebraic structure allows us
to handcraft the suitable extension f, o for other dimensions
N' #N

1 ’ ’ ’
fo0 (ﬁ) = Tr [O(N INND pN >} _
T [ 0NN a3)
by defining a family of test operators

(07,pN)) foreach 2k < N' < o0
(14)

such that (0<N>, p<N>) —(0,p). (15)
The operators p¥), O™N) for other dimensions N’ relate to
the original p, O in dimension N by substituting the basis
we found for the partition algebra. In the end, the function
fp’o(%) is (approximately’) a rational polynomial of N with
degree poly(k) and poles at small integers 1,...,O(2k¢). ®
A priori bounds. The expression is a difference between

probabilities such that

1
fp,0 <ﬁ>’ <2 for each integer N'. (16)

Large- NV limits. The large- N limits of each channel coincide
a pair of nicer ones: N7 to the sum over independent
permutations Y w; W; — > w; Z;, and Ny to the “Gaussian”
model: UHaar - GGinibre-

Tr [ON’NIPN’] N' =00

oA

Tr [OnNapn] ¥ 2% Tr [ON'Nz(GinibTE)PN/} .an

The independent sums NV/"**) and Gaussian V(9" can
be compared by the Lindeberg principle [CDB 23], [CBB'24],

SIn fact, the partition algebras stabilize and are all isomorphic for large
enough dimension N > 2k.

"We need to truncate the rapidly converging Taylor expansion for the
exponential function.

8The resulting rational function in 1/N will have poles that can be handled
by extended versions of Markov-type inequalities.
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with an error suppressed by poly(1/m*) typical in central limit
theorems. While the most general Lindeberg argument works
in any finite dimension N, the large-N limits simplify the
calculations.

III. THE MOMENT PROBLEM

A important ingredient in our proof of Theorem I.1 is finding

solutions to the moment problem mentioned above in Section II.

In general, a moment problem is defined as follows: given
a list of values o, as,...a), and a probability space, find a
measure whose ith moment is ;. Variants of this problem
arise in several places in our proof. First, as just discussed
previously, it arises in our application of the polynomial method
to bounding the value of random matrix theory quantities. In
that context, we have some diagonal matrix D of dimension [V,
and we wish to find diagonal matrices of different dimensions
which yield the same moments. We need to solve the moment
problem in many different dimensions for the proof to work,
as these solutions yield bounds on the polynomial at different
points.

Separately, the moment problem arises in our polynomial
method query lower bound to show that the matrices e?G? eiG'0
are T-query indistinguishable from Haar-random for a high
value of T'. In particular, after showing the trace moments of
our ensemble are close to Haar, we define a linear interpolating

path between our moments and Haar in some parameter x.

The acceptance probability of our query algorithm is then
a low degree univariate polynomial in z, and must jump in
some small range if the algorithm distinguishes our ensemble
from Haar. To show distinguishability, and hence this jump,
is not possible, we must show the polynomial is bounded at
many points along the interpolation path. This requires proving
that unitary matrices exist that have a wide range of moment
vectors.

The moment problem is well-studied in the mathematics

literature—see Chapter 11 of [Sch91] for a related variant.

However, to the best of our knowledge, off-the-shelf statements
from the current literature are too weak to use for our proofs.
The basic issue is that in our context, we need to show there
exist finite-dimensional unitary matrices that have certain trace
moments. This is a more “discrete” version of the moment
problem than has been previously considered.” It is analogous
to asking, given some list of empirical moments tabulated from
finitely many samples, could those empirical moments have
been exactly reproduced by a different number of samples?
To overcome this, we produce a solution to the moment
problem for finite-dimensional unitary matrices. Given a list
of moments, we start by finding a “nearby” moment vector
that admits a discrete solution with a matrix. We then show
that this solution can be perturbed to cover the nearby moment
vector, while maintaining the discreteness of the measure. This
follows from the Jacobian of the moment vector—i.e., the

9To the best of our knowledge, the closest result that exists is for
“atomic measures” which places mass at discrete points but with real-valued
probabilities. However, this is not enough, as for N-dimensional matrices, the
probability masses must be integer multiples of 1/N.
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derivative of the moment vector under perturbing individual
points—being full rank. Therefore, perturbations of the input
point completely cover a small ball around the starting point,
a region that is large enough for our applications.

IV. DISCUSSIONS
A. Related work

This article is merged from two pre-prints [CBB*24],
[CDX"24]. In the early stages, the conceptual connection
between large-N limit and Markov inequality was passed
between the concurrent works [CGVTvH24], [CBB1t24],
[CDX™"24] through the first author. Nevertheless, in each sce-
nario, the technical arguments needed to realize this idea appear
rather different, and we include self-contained expositions.
When [CDX"24] was nearly completion, we became aware of
the independent related work of Haah, Liu, and Tan [HLT24]
achieving similar dependence on k via a different construction;
when [CBB124] was near completion, we became aware of
the independent work of Metger, Poremba, Sinha, and Yuen
[MPSY24], which obtain similar results for parallel-secure
PRUs and k-designs via a completely different construction
and analysis.
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