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Auxetic materials have a negative Poisson’s ratio and are of significant interest in applications that
include impact mitigation, membrane separations and biomedical engineering. While there are
numerous examples of structuredmaterials that exhibit auxetic behavior, the examples of engineered
auxetic structures is largely limited to periodic lattice structures that are limited to directional or
anisotropic auxetic response. Structures that exhibit a three-dimensionally isotropic auxetic response
have been, unfortunately, slow to evolve. Here we introduce an inverse design algorithm based on
global node optimization to design three-dimensional auxetic metamaterial structures from
disordered networks. After specifying the target Poisson’s ratio for a structure, an inverse design
algorithm is used to adjust the positions of all nodes in a disordered network structure until the desired
mechanical response is achieved. The proposed algorithm allows independent control of shear and
bulk moduli, while preserving the density and connectivity of the networks. When the angle bending
stiffness in the network is kept low, it is possible to realize optimized structures with a Poisson’s ratios
as low as−0.6. During the optimization, the bulkmodulus of these networks decreases by almost two
orders of magnitude, but the shear modulus remains largely unaltered. The materials designed in this
manner are fabricatedbydual-material 3D-printing, andare found to exhibit themechanical responses
that were originally encoded in the computational design engine. The approach proposed here
provides a materials-by-design platform that could be extended for engineering of optical, acoustic,
and electrical properties, beyond the design of auxetic metamaterials.

Auxetic materials, materials with a negative Poisson’s ratio, ν, contract
laterally when compressed or expand laterally when stretched under uni-
axial tension. This unusual mechanical response is a desirable attribute for
applications such as coronary stent for medical devices1,2, acoustic
attenuation3, impact mitigation4,5 and seismic vibration isolation6. After the
original discovery of re-entrant motifs in auxetic foams by Lakes and co-
workers7, the search for auxetic metamaterials has largely evolved through

the gradual, Edisonian identification of auxetic motifs or the design of
periodic arrangement of geometric patterns that induce auxeticity5,8–14.
These pioneering works have revealed important design cues, such as
structural re-entrancy10, rotating squares12 and buckling beams14. However,
the periodic tiling of these structural elements, as in a lattice or crystalline
structure, often leads tomechanical anisotropy thatmay not be desirable for
specific engineering applications such as impact mitigation.
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Disordered structures as a starting point are advantageous in that they
generally give rise to an isotropicmechanical response. The theoretical work
of Goodrich et al., in particular, introduced the concept of designing dis-
ordered auxetic materials by selectively pruning local bonds that make a
large contribution to the bulk modulus, B, or that have a very little effect on
the shear modulus, G. Since the Poisson’s ratio ν is defined as15,16

ν ¼ d � 2G
B

dðd � 1Þ þ 2G
B

; ð1Þ

where d is the dimensionality, a small ν corresponds to a large ratio ofG/B.
Hexner et al. derived a theoretical expression to quantify the bond-level
responses to bond removal in a central-force spring network17. Reid et al.
demonstrated the effectiveness of the concept of local bond pruning by
designing and successfully fabricating 2D auxeticmaterials. In that work, an
angle bending potential energy term was included in the model, leading to
good agreement between simulated designs and experimental
measurements18,19. A material removal strategy through bond pruning
was also implemented by Reyes-Martinez et al. to control the transmitted
stress upon impact in three-dimensional disordered metamaterials. While
effective in reducing the peak transmitted stress more efficiently than
random material removal, this pruning strategy was not able to
independently control bulk, B, and shear moduli, G20. More recent studies
have implementeddisorder to generate auxetic behavior inmaterials design.
2D auxetic metamaterials were achieved by Wang et al. through the
application of disordered distribution of peanut-shaped perforations,
demonstrating that order is not necessary to achieve auxetic behavior.
Nevertheless, this study was limited to 2D architectures21. Crumpled sheets
ofmaterial, such as paper, are inherently disordered andhave been shown to
exhibit auxetic behavior22. Gimenez-Ribes et al. studied the mechanisms
throughwhich auxeticity arises and showed that the compaction levels affect
the shear-to-bulk modulus ratio23. A joint computational and experimental
study demonstrated that electrospun fiber networks can display large out-
of-plane expansion during uniaxial extension24,25. Domaschke et al.
hypothesize that the large volume change is due to fiber segments
undergoingout-of-planebuckling,while otherfibers alignwith thedirection
of uniaxial tension.

It is helpful to point out some of the features or differences that
arise in 3D versus 2D networks. Eq. (1) indicates that auxetic
materials require that G

B >
d
2. In 2D, G > B is sufficient to achieve

auxecticity. In 3D, this requirement increases to G > 1.5B which is
more difficult to realize experimentally. The local bond pruning
method discussed above removes one bond at a time and, in 3D, both
the bulk and shear moduli are generally reduced upon removal of the
bond. There is also an additional rotational degree of freedom for
each bond in 3D which does not arise in 2D; just the angle bending
term employed for design of 2D networks18 is not sufficient to
properly account for the additional bond rotation in 3D26. In this
work, we circumvent some of these challenges by designing 3D
auxetic networks from disordered networks using a global node
optimization strategy where the nodes are defined as the junction
points where multiple bonds are joined together. Rather than prune
individual bonds, in this approach we the shift spatial location of a
node, re-adjust the corresponding bond lengths and angles locally
required to accommodate this node displacement, and then evaluate
the ramifications of this shift on the shear and bulk moduli of the
network. Subsequent shifts to the global networks of nodes are
optimized to achieve the designed mechanical response, akin to the
pruning technique. Our computational designs are then validated by
3D printing these networks using a dual-material process, and
compare the experimentally measured mechanical properties of our
physical networks to the underlying predictions. We find that the
combination of a model that accounts for the rotational degrees of
freedom in 3D, and a global node optimization strategy, are sufficient
to design 3D disordered auxetic networks whose behavior is in

agreement with our experimental observations. We show that the
Poisson’s ratio of 3D disordered networks can be tuned to values that
range from ν ≈ 0.4 to −0.6. The design approach adopted here has
the advantages of being computationally efficient, and provides
independent control of the shear modulus and the bulk modulus at
any given density.

Results and discussion
Design algorithm
The starting point for our computational design strategy is a dis-
ordered network generated by the packing of frictionless spheres27.
The simulations for jammed soft spheres were performed in
LAMMPS with an overlap in soft spheres translating into a bond in a
recipe similar to the one reported elsewhere18. Thus, the network
consists of bonds connected at the junctions between the spheres that
we refer to as nodes (Fig. 1a, inset). The computational model
includes node-specfic bond-stretching stiffness, quantified through a
constant kb, and bond-specific angle bending stiffness, quantified by
kθ. The angle bending resistance is distributed over all possible angles
a given bond can form at a given node, which for a coordination of
Nc bonds leads to a total of Nc− 1 associated angles. Specifically,
kθ ¼ ðNc�1Þk0θ

2 , where Nc is the coordination number and k0θ is the angle
bending resistance between a pair of bonds connected to the same
node (Fig. 2a). In this model kθ represents the angle bending resis-
tance on one bond resulting from all other bonds connected to the
same node; the factor of 2 accounts for the rotational degrees of
freedom for a bond in 3D. The constants kb and k0θ appear in the
Hamiltonian of Eq. (5), described in the Methods section. Note that
kb, kθ and k0θ are all in units of energy and can be directly compared
with each other. We note that the angle bending terms adopted here
guarantee the conservation of angular momentum, and a similar term
of k0θ has been adopted by Rens et al.26. As illustrated in Fig. 1a, the
global node optimization method adjusts node positions by itera-
tively displacing the coordinates of all nodes to increase the ratio of
the shear modulus to the bulk modulus, G/B, thereby reducing the
Poisson’s ratio, ν (contour lines in Fig. 1a). During the optimization,
the shear and bulk moduli are calculated from the elastic constants as
specified in the Methods section, where additional details are pro-
vided. For simplicity, iter0 refers to the non-optimized network, and
the resulting network after iterating the global optimization step #
number of times is referred to as iter#. Throughout the optimization,
the total number of nodes remains constant, but the bond length
distribution changes with each iteration. Figure 1b, c shows the
simulated bulk and shear moduli of representative networks with kθ/
kb = 0.001 as a function of the number of iterations. One can
appreciate that the global node optimization approach significantly
reduces B without altering G of the node-optimized mechanical
metamaterial, leading to a significant reduction of B/G, and conse-
quently, ν. Computationally, it is possible to realize a significant
auxetic response (ν <−0.5) after only 25 global node optimization
iterations (Fig. 1d). Figure 1b–d shows results for disordered net-
works with two different coordination numbers, Z = 6.1 and Z = 7.2.
For each coordination number, multiple different initial networks
were evaluated with the resulting uncertainties reported in the Figure.
This repeatability points the general effectiveness of this strategy for
altering the Poisson’s ratio ν to consistently low negative values (<
−0.5), regardless of the initial network structure. Figure 1e, f serves
to validate the proposed approach by uniaxially compressing in the
vertical direction a representative network with an average coordi-
nation number Z = 6.1, before and after global node optimization.
The global uniaxial compression of iter0 (up to a strain of ε =−0.1)
shows that the structure behaves like a conventional material having
ν = 0.4. Beyond a strain of ε =−0.1, the bonds in the network start to
touch and overlap with each other, leading to a nonlinear mechanical
response. In contrast, upon uniaxial compression to ε =−0.1, the
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optimized network is predicted to become auxetic, with ν =−0.3. In
addition to auxeticity, the global node optimization method produces
a nearly isotropic global response from disordered networks. An
example elastic stiffness matrix of a node-optimized disordered
network is included in Supplementary Note 6.

As shown inFig. 1d, Poisson’s ratio is predicted to reach a value of−0.6
after approximately 40 optimization steps. That value is comparable to the
experimental value of ν =−0.7 reported for the first auxetic foam7.

Angle bending stiffness
Recent work indicates that the tunability of auxetic behavior becomes
limited when the ratio of angle bending stiffness, kθ, to the bond stretching
stiffness, kb, increases towards unity

18 (as indicated earlier, kθ and kb and the
corresponding energy terms are defined in detail in the Methods section.)

To further explore the regime of angle bending stiffness where global
node optimization is effective, we vary the stiffness constant over three
orders of magnitude, kθ/kb = 0.001, 0.01 and 0.1, and investigate the extent
of tunability of the moduli and Poisson’s ratio. The effects of kθ/kb on the
changes in ν, B and G for a Z = 6.1 network are shown in Fig. 2b–d,
respectively. The simulation results in Fig. 2b indicate that the optimization
algorithm is effective at reducing ν of the resultingmetamaterials when kθ is
two or three orders of magnitude smaller than kb. We find that ν continues
to decrease after every iteration until it reaches values as low as ≈−0.7 after
30 optimization steps for kθ/kb = 0.001. Although the initial value of ν is

lower for the kθ/kb = 0.1 system when compared to the cases of kθ/
kb = 0.001, 0.01, it appears thatν doesnotdecrease significantly evenafter 30
global node optimization iterations for kθ/kb = 0.1, which is qualitatively
consistent with observations by Pashine et al.28. To gain a deeper under-
standing of the effect of angle bending stiffness on optimization efficiency,
we decompose B and G into contributions from kb and kθ. Figure 2c shows
thatkθdoesnot directly contribute toB, regardless of themagnitude of kθ/kb,
which is consistent with the definition of B in terms of the stress and strain
tensor15 and the fact that the trace of the stress tensor is not influenced by kθ.
The stress tensor is always tangential to the bond it acts on29. Although kθ
does not directly contribute to the bulk modulus, B, kθ indirectly affects the
evolving value of B during optimization, i.e., the higher the kθ, the higher is
the plateau value of B after optimization, which could be attributed to the
non-affine nature of the deformations in disordered networks30,31. A higher
plateau for B inhibits further reduction of ν for kθ/kb = 0.1, compared with
the other two cases for smaller kθ, which have a higher shear modulus (and
lower Poisson’s ratio) for the initial network (with kθ/kb = 0.1) compared
with initial networks with lower kθ/kb values.

Experimental realization
To validate our computational design method, the node-optimized
mechanical metamaterial structures were converted to 3D-printer files
and experimentally realized using UV-curable resins (Fig. 3). Initially, we
found that the optimized mechanical metamaterials printed from a single

Fig. 1 | Computational results of 3D auxetic metamaterials from disordered
networks by global node optimization. a Two-dimensional representation of the
3N-dimensional global node optimization, where N is the number of nodes in a
network. Each initial network consists of a random arrangement of bonds and nodes
(inset). The geometry of the 3D network evolves after the optimization steps. During
global node optimization, the positions of all nodes, i.e., xi, yi and zi, 1 ≤ i ≤N, are
updated in each iteration step to reduce the Poisson’s ratio (ν). This process is shown
via a representative schematic path the iterationsmight take as they navigate through
a simplified optimization landscape. b–d show the change in the (b) bulk modulus,
B, (c) shear modulus, G, and (d) Poisson’s ratio, ν, as a function of global node
optimization iteration steps for networks of different coordination numbers of
Z = 6.1 and Z = 7.2, respectively. The data of each coordination number is averaged

over multiple initial networks. The error bars are the standard deviation from
multiple initial networks of the same coordination number. Both the bulk and shear
moduli are normalized by the bulkmodulus of the initial network ofZ = 6.1, B0, with
the coordination number Z = 6.1 and Z = 7.2, respectively. The results are validated
by uniaxial compression of (e) the initial non-optimized network (iter0) and (f) the
auxetic network after 25 optimization steps (iter25). Clear differences in the lateral
deformation are observed between the initial and the optimized network.
e Compressing in the vertical direction a network iter0 with a coordination number
Z = 6.1 (red bonds and nodes are at 0 strain as references) to a strain of ε =−0.1 (blue
bonds and nodes), we find that ν = 0.4. f Compressing iter25 to the same strain
results in ν =−0.3.
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homogeneous constituent material (with constant bond thickness) did not
exhibit an auxetic response. This is because networks with homogeneous
and uniformly thick bonds do not satisfy the condition of kθ≪ kb that was
identified by our computational models. To reduce the angle bending
resistance of the nodes while maximizing the stretching resistance of the
bonds, we developed a dual-material 3D printing strategy. Specifically, we
printed the nodes from a soft elastomeric polymer and chose a stiffer

polymeras thematerial for bonds (Fig. 3a) (seeMethods section). This dual-
material printing strategy permits adjusting the magnitude of kθ by simply
changing the relative stiffness of the two materials. Although not system-
atically investigated here, we have also studied the shape of the end portion
of the bonds to control kθ (Supplementary Fig. 2). For the mechanical tests
presented here, the choice of dual-material composition and bond shape
approach the behavior predicted for kθ/kb = 0.01.

Fig. 3 | Experimental realization and comparison with simulations of the
deformation behavior of node-optimized mechanical metamaterials.
a Representative node-optimized mechanical metamaterial sample fabricated via
3D-printing. The experimental control of kθ/kb is achieved via dual-material 3D-
printing (Methods section), where the nodes are printed with a soft elastomeric resin
while the bonds are printed with a relatively stiffer resin. b Images of the uniaxially
compressed iter0 and iter25 samples. The numbered points correspond to front-

facing nodes that are tracked during compression up to ε =−0.1. Scale bar is 20 mm.
cTrajectories of the tracked points for the iter0 and iter25 samples. A comparison of
the experimental and simulation results of the tracked points shows that the
simulated point displacements are in close agreements with experiments in the
regime of small strains (−0.01 ≤ ε ≤ 0). In this limit, themeasured Poisson’s ratio for
iter0 is ν = 0.37 ± 0.03, while iter25 exhibits ν =−0.24 ± 0.05.

Fig. 2 | The ratio of angle bending stiffness, kθ, to the bond stretching stiffness, kb.
a Definition of k0θ and kb in a network. The angle bending stiffness, kθ ¼ ðNc�1Þk0θ

2 ,
represents the accumulated effect of k0θ ’s associated with each bond, where Nc is the
coordination number. The factor of 2 corresponds to the rotational degrees of
freedom for a bond in 3D. b Reduction of Poisson’s ratio as a function of iteration
steps for different local stiffness ratios: kθ/kb = 0.001, 0.01, and 0.1. In the regime of
kθ/kb ≤ 0.1 explored here, the lower limit of the Poisson’s ratio increases with kθ/kb.
The error bars are the standard deviation frommultiple initial networks of the same

coordination number. c Bulk modulus vs. global node optimization iteration steps
for kθ/kb = 0.001, 0.01, and 0.1. Only the bond-stretching stiffness directly con-
tributes to the bulk modulus, B. d Shear modulus vs. global node optimization
iteration steps for kθ/kb = 0.001, 0.01, and 0.1. The change in G during optimization
is strongly dependent on the ratio between the angle bending stiffness and the bond-
stretching stiffness, kθ/kb. The moduli are both normalized by B0, the reference bulk
modulus of the un-optimized networks when kθ/kb = 0.1.
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The upper and lower images in Fig. 3b represent the iter0 and iter25
samples, respectively. The colored dots on the metamaterial networks are
the individual nodes that we tracked as a function of the global compressive
strain ε from 0 to −0.1. As shown in the videos of the compression tests
(Supplementary Video 1, adjusted 100× of the actual speed for clarity), the
iter0 network expands in the lateral direction, whereas the iter25 network
contracts laterally upon compression. Simulation (red curves) and optical
(blue curves) tracking of the node trajectories from both samples during
compression testing (Fig. 3c) show excellent agreement. For small strains,
the simulation and experimental trajectories of all the nodes overlap almost
perfectly. The two sets of data begin to slightly diverge at higher strains.We
attribute these deviations to nonlinear effects that occur when neighboring
nodes and bonds in the 3D-printed networks impinge upon each other and
distort at high compressive strain.Alsonote that, in the interest of generality,
our simulations use periodic boundary conditions, whereas the printed
samples have a finite size and boundaries. Overall, the agreement between
simulations and experiments is particularly encouraging, given the simpli-
city of the models adopted here.

Wefind that simulation and experimental compressionmeasurements
for iter0 exhibit ν ≈ 0.4 up to ε ≈−0.1 (Supplementary Fig. 3). Results for
iter25 show that ν =−0.24 ± 0.05 at small strains, which is slightly larger
than what was predicted for an infinitely large (periodic) sample (Fig. 2b).
The experimentally measured ν increases with increasing compressive
strain, but remains <−0.1 up to ε =−0.1. The effectiveness of the optimi-
zation strategy in tuning the auxetic nature of disordered networks can also
be appreciated in the videos of quasi-static uniaxial compression tests
(Supplementary Video 1).

Local bond strain measurements
TheHamiltonian in ourmodel (Eq. (5)) does not take into account the axial
rotations of bonds since we do not expect torsional deformations to be
significant in the low strain regime (−0.01 ≤ ε ≤ 0). To assess if such axial
bond twisting is present during the experiments, we perform Digital Image
Correlation (DIC) analysis on two representative bonds with their respec-
tive nodes as labeled in Fig. 3c. ThisDIC analysis compares the strains in the
bondbetweennodes 8 and15 (Fig. 4a), as an exampleofwhere the simulated
trajectory of nodes is in good agreement with experiment, with the strain in
the bond between nodes 11 and 12 (Fig. 4b), as an example of where the

simulated trajectory of the nodes deviate from experiment at high strains.
Figure 4c confirms that significant amount of axial twist are not observed for
global compressive strains between 0 and −0.01. As the global strain
increases, the entire soft and stiff portionsof thebond rotate in concert about
the bond axis with respect to node 8 (Supplementary Video 2). Differences
of less than 5° between the axial rotation of soft node 15 and the stiff portion
are observed for ε ≤−0.05. For the case of the bond between between nodes
11–12, Fig. 4d shows that there is no rotation in the stiff and soft portions of
the bond for −0.01 ≤ ε ≤ 0 and that both portions rotate axially almost
concomitantly up to ε =−0.02. However, as the compressive strain
increases, the soft node 12 rotates, while the stiff bond stays relatively
unchangedwith respect tonode11;we start to see evidence of a twist loading
of the bond thatwasnot accounted for in themodel.Webelieve that this is in
part of the reason why the experiments deviate from the modeling between
these nodes, especially at higher global compressive strains. The rate of
increase in axial rotation changes in soft node 12 after ε ≈−0.085 due to
member contactwith a another bond connected to node 12 (Supplementary
Video 3). This contact causes a directional shift in the axial rotation,which is
again, not allowed in the model. In both cases, we observe that the nodes
with higher coordination numbers are able to rotate together with the stiff
portion of the bond, while the node in the same bond with lower coordi-
nation experiences the most relative rotations. Additional DIC data is
included in Supplementary Note 4. Since relatively small axial rotation is
observed in both examples, we conclude that axial rotations do not con-
tribute significantly to the overall deformation energy of the network and
hypothesize that the differences in node trajectory are mainly due to
member contacts that develop as a function of compression, especially at
high compressive strains. Further analysis of the necessity of torsional
constraints in simulations is included in Supplementary Note 5.

Decoupling shear and bulk moduli
Poisson’s ratio inmostmaterial systems, and thus the ratio ofB/G, generally
correlates with the packing density of the structural units16. This correlation
is evident in plots of B/G versus density, ρ, across a wide spectrum of
materials as illustrated in Fig. 5a. This correlation is more clearly observed
for aluminum foams and porous silicon nitride, where the reduction in ρ is
accompanied by an almost linear decrease in B/G across a density range
from 0.43 to 1.39 g cm−3, and a range from 2.12 to 3.28 g cm−3,

Fig. 4 | Digital Image Correlation (DIC) analysis
of representative bonds and nodes. a Photograph
of patterned network with highlighted region of
interest along the bond connecting nodes 8 and 15.
bPhotograph of patterned networkwith highlighted
region of interest along the bond connecting nodes
11 and 12. cAxial rotationwith respect to soft node 8
as a function of global compressive strain. d Axial
rotation with respect to node 11 as a function of
global compressive strain. Error bars are the stan-
dard deviations of mean axial rotation along the
length of the bond in both the soft and stiff regions,
respectively. Scale bar represents 5 mm.
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respectively32,33. The results for our 3D-printed node-optimizedmechanical
metamaterials are also included in Fig. 5a, illustrating a notably different
trend. In our 3D-printedmetamaterials, the density appears to be decoupled
from the elastic moduli; we can generate a ten-fold reduction of B/G at a
constant density when we transition from iter 25 to iter 0. Figure 5b shows
that for the optimizedmetamaterials, the bulkmodulus varies over an order
of magnitude, while the shear modulus is almost unchanged, leading to
significant changes in ν (as predicted by Eq. (1)). Based on the results of our
calculations,we anticipate that further reductions in ν could be realizedwith
improvements to our dual-material printing process and printing material
selection.

It is also helpful to point out that the global node optimization
methodology developed here enables independent control of B and G.
Figure 1b, c show that one can reduce B while keeping G constant. It
is also possible to vary G while holding B constant using the same
approach. Independent control of B and G by pruning disordered
two-dimensional networks has been demonstrated by Goodrich et
al.15. However, our attempts to implement the pruning approach to
realize three-dimensional disordered networks have met with limited
success (Supplementary Fig. 1). Figure 5b shows that both B and G
decrease during bond pruning, as illustrated by the disordered net-
work metamaterial (DNMM) data that was recently reported
elsewhere20. As mentioned earlier, this is due to the more challenging
requirement that G > 1.5B in 3D, the non-trivial correlation between
the local bond contribution to the bulk and shear moduli15,18, and the
contribution of torsional deformations to the mechanical properties.
Removing a bond generally leads to a reduction of the shear mod-
ulus; in the work of Goodrich et al. one sees that only 2% of the
bonds need to be removed to reach auxecticity. However in the work
of Reid et al.18, for an initial network with a coordination number of 4
(a threshold value in a 2D central force network), approximately 19%
of bonds are pruned for a random network to become auxetic, and
there is a danger of rendering the networks under-coordinated. As an
aside, we note that torsion terms are neglected in the model adopted
here; we find that for sufficiently coordinated networks, the rotational
resistance terms between pairs of bonds associated with k0θ introduces
a torsional resistance. The critical coordination number can be
reduced if angle bending terms are introduced31, and it could be
further decreased by incorporating explicit torsional terms.

The simulation results suggest that further reductions in ν could be
realized through improvements to the dual-material printing process and
through alternative choices for the printing materials. It is possible that

limitations in the mapping of simulations to experiments can be improved
by printingmaterial choices. Moreover, the designmethod as implemented
here is limited to relatively small strains. Future research could improve the
prediction and design of mechanical responses into the nonlinear region by
refining the computational models, e.g. by including steric interaction
between bonds and torsional energy contributions, by pushing the struc-
tures to the limit of under-coordinated networks and the regime where the
angle bending stiffness26 and torsional stiffness are higher than the bond
stretching stiffness.

In conclusion, the approach adopted here for design of 3D
auxetic metamaterials from disordered networks leads to facile
development of isotropic, highly auxetic structures. The designs
conceived here on the basis of computational models have been
produced in the laboratory by 3D printing, and are found to exhibit
mechanical properties that are in good agreement with theoretical
predictions. An interesting feature of the optimization strategy
introduced here is that density and topology are preserved
throughout the design process, thereby facilitating tuning of the
Poisson’s ratio without the loss of mechanical integrity. The level of
control that is achieved by simultaneous adjustment of all node
positions could be particularly useful for development of materials
that exhibit multiple designer properties, including mechanical,
optical, or thermal characteristics.

Methods
Certain instruments andmaterials are identified in this paper to adequately
specify the experimental details. Such identification does not imply a
recommendation by the National Institute of Standards and Technology,
nor does it imply that the materials are necessarily the best available for the
purpose.

Bond pruning
In the bond-pruning method, every pruning step proceeds as follows: 1. A
bond i is tentatively removed from the network, where i is the bond index.
Then the decrease in B,G and ν, namelyΔBi,ΔGi andΔνi are calculated for
the network. The tentatively removed bond is then put back to the network.
We repeat this procedure for every bond in the network. 2.We select a bond
to be permanently removed based on the pruning protocol: The bond
leading to minΔG is permanently removed.

In order to account for the redistribution of bond-level contribution to
the global mechanical response after bond removal, only one bond is per-
manently removed at each step.

Fig. 5 | Comparison of material properties of node-optimized mechanical
metamaterials with conventional engineering materials. a Ratio of bulk to shear
modulus (B/G) vs. mass density (ρ) for a variety of materials32,33,40–51. The results for
the node-optimized mechanical metamaterials show that the change in B/G is

independent of ρ. b A plot of B vs. G illustrates the decoupling between shear and
bulk moduli for the node-optimized mechanical metamaterials compared to three-
dimensional disordered network mechanical metamaterials (DNMM) obtained
through pruning strategy previously published20.
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Global node optimization
The global node optimization is realized by a constrained gradient descent
algorithm34,

rnþ1
iα ¼ rniα � λ

∂ðν þ L1 þ L2Þ
∂riα

ð2Þ

where riα is the α component of the coordinate of node i, n is the iteration
number, λ is the learning rate, and L1 and L2 are two constraints imple-
mented to avoid bond overlapping and node overlapping, where

L1 ¼ l1
X

j

½Hðθmin � θjÞðθj � θminÞ�6 ð3Þ

where l1 = 0.01 is a constant, θ is the angle between connected bonds, j is the
angle index, θmin = 15° is the minimum angle allowed, and H(θmin− θj) is
the Heaviside step function.

L2 ¼ l2
X

i;j

½Hðrmin � rijÞðrij � rminÞ�2 ð4Þ

where l2 = 1000.0 is a constant, rij is the distance between node i and node j,
rmin = 0.3r0 is the minimum distance allowed in the length unit r0, and
H(rmin− rij) is the Heaviside step function. The choice of the two constants
(l1, l2) was made with trial and error such that no significant overlap was
observed in the optimized networks upon simulation.

At every step, the coordinate of a node i, ri, is displaced infinitesimally
in the α direction, the force field parameters for the equilibrium angle and
bond length are updated accordingly, and then B,G and ν aremeasured for
the virtually displaced network. After a scan of all the nodes in all three
directions by this procedure, we calculate the gradient of (ν + L1+ L2) with
respect to the node coordinate components. Then we update the node
positions according to Eq. (2). The iterations will maximize G

B, in another
word, minimize ν, under constraints defined by Eqs. (3) and (4).

To simulate the experimental networks and individual node move-
ment, we truncated the periodic networks to a finite block, and simulated
progressive uniaxial strain with the top and bottom surface nodes laterally
fixed. Please see Supplementary Fig. 6 and Supplementary Video 4.

Simulation models
The elastic constants cijkl are calculated by taking the derivative of the stress
tensor with respect to the strain tensor components. Energy minimization is
performed in Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)35,36 at different states of strain to allow calculation of various
athermal elastic constants. These strain tensors were calculated by minute
deformations (10−5 length units). A force tolerance of 10−9 force units were
used for the convergence of energy minimization. The simulation imposes
exceedingly smallmechanical compressions to the structure forPoisson’s ratio
calculations, so they are likely in the linear response regime that is agnostic of
the timescale. Additionally, since the simulation measures a static property
(Poisson’s ratio) at zero temperature, time scale considerationarenot relevant.

G and B are calculated as G ¼ 1
15 ð3cyzyz þ 3cxzxz þ 3cxyxy þ cxxxx þ

cyyyy þ czzzz � cyyzz � cxxzz � cxxyyÞ and B ¼ 1
9 ðcxxxx þ cyyyy þ czzzzþ

2cyyzz þ 2cxxzz þ 2cxxyyÞ, respectively15,37. The Poisson’s ratio is calculated

using the relationship ðν ¼ 3ðB=GÞ�2
6ðB=GÞþ2Þ during bond pruning and optimiza-

tion, and measured by the displacement of edge nodes during validation.

In the athermal limit, theHamiltonian for the simulations is written as:

H ¼ U ¼ 1
2

X

i

kbi
ðlbi � lb0iÞ2

l2b0i
þ 1
2

X

m

k0θmðθm � θ0mÞ2 ð5Þ

whereU is the potential energy, kb and k
0
θ are the bond stretching resistance

and angle bending resistance, respectively. k0θ ¼ 2kθ
Nc�1, where kθ is the total

angle bending stiffness per bond with respect to each node, and Nc is the
coordination number. The factor of 2 accounts for 2 rotational degrees of
freedom for angle bending of each bond in 3D by a mean field approx-
imation, as opposed to only 1 rotational degree of freedom in 2D. lbi and θm
are the bond length of bond i and the bending angle of anglem, respectively.
lb0 and θ0 are the equilibrium bond length and the bending angle, respec-
tively.Thebendingangle is definedbetween twoconnectedbonds, similar to
the respective definitions in widely used classical molecular dynamics force
fields38,39. lb0 and θ0 are the equilibrium bond length and bending angle,
respectively. kb and kθ have the same energy units and can be directly
compared with each other.

Dual-material 3D-printing
To create a 3D printable model of the node-optimized mechanical meta-
materials studied, we use a python script that creates one bond at a time and
merges them together to form the network. Each bond of the network is
considered to be a cylinder with its diameter ≈ 0.2 times the average length
of the bonds. We convert this structure to an .STL file format that can then
be 3D-printed.

All the node-optimized mechanical metamaterials were 3D-printed
using UV-curable printing resins on a Stratasys Connex350 3D printer
(Stratasys Ltd.). Tominimizekθ in the samples, thenodeswereprintedusing
materials that was significantly softer than the bond material. The stiff
VeroWhitePlus (RGD835) was used as the material for the bonds and
TangoBlack Plus (FLX980) as the elastomeric build material for the nodes.
Mechanical properties of printing materials can be found in the Stratasys
Digital Material Data sheet.

To homogenize axial compression, and to get accurate measurements
of global uniaxial strainduring experiments,flat plateswere added to the top
and bottom surfaces of all the generated networks before 3D printing (See
Supplementary Fig. 7 for experimental setup and added flat plates). The top
and bottom plates were printed using the elastomeric build material, Tan-
goBlackPlus (FLX980).Theseflat surfaces embedthe corresponding surface
nodes and, consequently, limit their lateral mobility. To mimic the con-
strained lateral motion that the added plates impose, we performed Global
NodeOptimization applying constraints to the lateralmotion of the surface
nodes. Deep auxetic behavior was still achieved after optimization (Sup-
plementary Video 4).

Measurement of mechanical properties
Quasi-static, uniaxial compression experiments were performed on 3D-
printed node-optimized mechanical metamaterials using a Stable Micro-
systems Texture Analyzer TA.XTplus. Experiments were displacement-
controlled at a rate of 0.1 mm s−1 for both loading and unloading. Force and
displacement were recorded and a minimum of 3 tests were performed on
each sample. A digital camera (JAI BM-500GE) captured images of the
sample deformation during the experiments at a rate of 10 frames
per second. Dot stickers were used on front-facing nodes to facilitate
tracking of independent node movement during deformation. Node
tracking analysiswas performedusing theManual Tracking plugin from the
open source image processing software FIJI.

The transverse strain (εtrans) during deformation experiments was
determined from measured sample width change. Sample width as a
function of strain wasmeasured by analyzing the recorded image sequences
during deformation experiments using a custom-designed LabVIEW edge
detention software routine to obtain the average sample width. Poisson’s
ratio (ν) was then calculated from ν =−Δεtrans/Δεaxial. The Young’s
modulus (E) was determined from the linear section of the load-
displacement curves obtained from compression experiments. Bulk mod-
ulus was determined from the measured E and ν values using the relation
B = E/3(1− 2ν). The shear modulus (μ) was determined from the linear
portions of the load-displacement curves obtained from shear deformation
experiments. Shear deformation experiments were performed bymounting
the samples in a shear configuration and applying uniaxial shear
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deformation using a Stable Microsystems Texture Analyzer TA.XTplus.
Experiments were displacement-controlled at a rate of 0.1 mm s−1.

Digital Image Correlation (DIC)
Samples were prepared for DIC by patterning the surface of the networks
with airbrushed black and white speckles/Airbrush nozzle size: 0.6 mm.
Approximate Pattern Feature Size of 85 μm. Quasi-static, uniaxial com-
pression of disordered networks was performed using an Instron 4465 test
frame with a 5kN load cell capacity. Two Point Gray 12MP - GS3-U3-
123S6M cameras with F11 numerical aperture, and an exposure of 18 ms
were used for stereoscopic image acquisition of the experiment. A Corre-
lated Solutions, inc LED light with linear polarizer filters provided illumi-
nation of the specimen. The images capture a field of view of
18.18mm× 24.82mm at a resolution 3000 pixels × 4096 pixels (165 pixels/
mm). The DIC analysis was performed using the software Vic-3D Version
8.4.0, build 626.The subset sizewas91pixels × 91pixelswith a step size of 30
pixel. The subset Shape unction was affine and a Correlation Criterion
Normalized sum of squared differences (NSSD). A Hencky strain type was
adopted. Strain-Filter Size Diameter: 5. Each image aquisition rate was
manual (1 image/min).

Data availability
Data available upon request.

Code availability
Code available upon request.
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