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Abstract. Approximate fully homomorphic encryption (FHE) schemes,
such as the CKKS scheme (Cheon, Kim, Kim, Song, ASIACRYPT ’17),
are among the leading schemes in terms of efficiency and are particularly
suitable for Machine Learning (ML) tasks. Although efficient, approxi-
mate FHE schemes have some inherent risks: Li and Micciancio (EURO-
CRYPT ’21) demonstrated that while these schemes achieved the stan-
dard notion of CPA-security, they failed against a variant, IND-CPAD,
in which the adversary is given limited access to the decryption ora-
cle. Subsequently, Li, Micciancio, Schultz, and Sorrell (CRYPTO ’22)
proved that with noise-flooding countermeasures which add Gaussian
noise of sufficiently high variance before outputting the decrypted value,
the CKKS scheme is secure. However, the variance required for provable
security is very high, inducing a large loss in message precision.
We consider a broad class of attacks on CKKS with noise-flooding coun-
termeasures, which we call “semi-honest” attacks, in which an adversary
obtains the view of an honest party who holds the public key and can
make evaluation and decryption queries to an oracle. The ciphertexts
submitted for decryption can be fresh ciphertexts, or ciphertexts result-
ing from the homomorphic evaluation of some circuit on fresh and in-
dependent ciphertexts. We analyze the concrete security of CKKS with
various levels of noise-flooding in the face of such attacks. Our aim is to
precisely quantify the various trade-offs between the number of allowed
decryptions before key refreshing, noise-flooding levels, and the concrete
security of the scheme after a number of decryptions have been observed.
Due to the large dimension and modulus in typical FHE parameter sets,
previous techniques even for estimating the concrete runtime of such at-
tacks – such as those in (Dachman-Soled, Ducas, Gong, Rossi, CRYPTO
’20) – become computationally infeasible, since they involve high di-
mensional and high precision matrix multiplication and inversion. We
therefore develop new techniques that allow us to perform fast security
estimation, even for FHE-size parameter sets.

Keywords: Approximate FHE· Concrete security·Average-case noise
analysis.
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1 Introduction
The notion of “approximate FHE” – fully homomorphic encryption schemes that
guarantee only approximate correctness of decryption – was proposed by Cheon,
Kim, Kim, and Song [17]. Their scheme, henceforth referred to as CKKS, is one of
the leading schemes in terms of efficiency and Single Instruction/Multiple Data
(SIMD) parallelization opportunities, and is particularly suitable for Machine
Learning (ML) tasks. Although efficient, approximate FHE schemes have some
inherent risks: Li and Micciancio [31] demonstrated what while these schemes
achieved the standard notion of CPA-security, they failed against a variant,
IND-CPAD, in which the adversary is given limited access to the decryption
oracle. In the same work [31], the authors showed that for exact schemes (such as
BGV, BFV and TFHE), the notions of IND-CPAD and IND-CPA are equivalent.4

Noise-flooding techniques have been suggested as a practical countermeasure
against IND-CPAD attacks [1]. These techniques add noise (from a Gaussian
distribution) to the message obtained by decrypting a ciphertext, before it is
returned to the adversary. Such countermeasures were formally analyzed in the
work of Li, Micciancio, Schultz, and Sorrell [32], and it was shown that when the
noise-flooding level is sufficiently high, they are indeed provably secure. Never-
theless, the amount of noise required for provable IND-CPAD security remains
quite high, and as a result, severely limits the message precision that CKKS can
handle (8 or 16 bits of precision for parameter sets deemed “reasonable").

There are two main reasons for the large noise required for provable
IND-CPAD security. First, a worst-case noise analysis is needed to determine
the amount of noise already present in a ciphertext prior to decryption and the
noise flooding must then scale with this worst-case noise. The reason is that
average-case noise analysis assumes that input ciphertexts to homomorphic cir-
cuits are independent and identically distributed. When a circuit computation is
performed on correlated inputs (a simple example is adding a ciphertext to itself
ℓ times instead of adding ℓ independent ciphertexts), the average-case analysis
will fail to output the correct noise estimation. This particular correlated input
attack has been exploited in [27]. A similar attack exploiting decryption fail-
ures in exact FHE schemes was presented in [15]. Second, the current techniques
for proving IND-CPAD show that the decryptions obtained in the two games of
the indistinguishability definition are statistically close, whereas computational
indistinguishability would be sufficient to achieve the security notion.

In this work, we introduce a formal security model that captures semi-honest
attackers with access to a decryption oracle. As a result of enforcing semi-honest
behavior, average-case noise analysis is sufficient to accurately estimate the noise
present in a ciphertext submitted for decryption, so the noise-flooding level can
4 In a recent work [15], this is called into question, as the authors point out that the
proof of equivalence between IND-CPAD and IND-CPA does not take into account
the decryption failure probability of an exact scheme. The authors of [15] exploit
the fact that this decryption failure probability is rather high in implementations
of exact schemes to run an IND-CPAD attack on the BFV scheme, and remark that
their attack also applies to BGV and TFHE.
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scale with the average-case noise, as opposed to the worst-case noise. We then
investigate the concrete computational security achieved when decryption is aug-
mented with different levels of noise flooding. In particular, we investigate the
concrete runtime and success probability of the state-of-the-art key recovery at-
tacks when incorporating the additional information obtained from decryption.
Thus, our goal is to provide insights into the concrete security of CKKS with
various noise-flooding levels in the semi-honest setting.

We consider internal threats, which are common in deployment scenarios,
and argue that it is conceivable that adversaries access the internal randomness
of the system, after honest parties have finished their computations. Our new
model, which we call IND-CPADSH , captures semi-honest attackers who do not
hold the secret key, but may observe outputs of the decryption oracle and thus
obtain noisy decryptions. In particular, our model enforces that public keys and
ciphertexts are created honestly, and that evaluated ciphertexts correspond only
to evaluations of admissible circuits5, whose inputs correspond to fresh, inde-
pendently generated ciphertexts, and where input ciphertexts are never re-used
across evaluations. Our model captures an adversary who passively corrupts a
party within the system and observes their entire state, and is incomparable
to IND-CPAD. We note that in our model the adversary cannot choose the cir-
cuits to be evaluated adaptively, based on the internal randomness of the honest
party. Instead, we assume the entire computation is performed honestly, and the
adversary is only given the view of the honest party at the end of the experiment.

One may ask why we disallow the adversary from querying the decryption
oracle with ciphertexts generated in ways other than the above. Indeed, when
such queries are allowed, IND-CPAD attacks against average-case noise-flooding
techniques are known [27,15], as mentioned above. We note that in such at-
tacks the attacker actively chooses the distribution over input ciphertexts or
over the circuit to be evaluated such that the decrypted output deviates from
the average-case distribution. On the other hand, we assume a “semi-honest”
model, or alternatively, assume that external measures have been put in place
in the particular deployment to ensure that an adversary cannot perform such
attacks. For example, to ensure the integrity of the computation, as well as the
well-formedness of the ciphertexts and relevant keys, Verifiable Computation
(VC), and Zero-Knowledge (ZK) proofs for FHE schemes or even the use of en-
claves should be considered [8,24,25]. The implementation of these measures are
outside the scope of our work; we simply observe that if such measures are in
place, then adversaries are restricted to be semi-honest as described above. See
Section 4 for the formal security definition, as well as a comparison between our
proposed model and the IND-CPAD one.

Once we have established our security model, we investigate the best attacks
in this model, for various levels of noise flooding. We consider the concrete secu-
rity degradation of the CKKS scheme in the presence of t decryptions, with noise
flooding of some variance ρ2. Our starting point is noise-flooding equal to the

5 In this work, admissible circuits will correspond to either identity, Class 1 or Class
2 circuits and will be defined subsequently.
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noise level computed by the “average-case" noise analysis. Here, the decryption
of a ciphertext is noise-flooded by the variance of the noise already present in the
ciphertext6. This noise-flooding setting is optimal, in the sense that only 1 bit of
message precision is lost. On the other side of the spectrum is setting ρ2 as large
as the variance needed for provable, statistical security. We investigate settings
of ρ2 that fall between these two extremes. Our aim is to present tradeoffs among
(1) the number of allowed decryptions before the secret/public key must be re-
freshed, (2) the variance of the noise-flooding added to the decryption (which
determines the loss of precision), and (3) the concrete security of the scheme
after a number of decryptions have been observed by the adversary (e.g. a drop
of 10 or 15 bits in security for a 256-bit parameter set may still be acceptable).
We stress that the aim of our work is not to provide any definite conclusion on
the concrete level of noise-flooding to apply when deploying CKKS. The conclu-
sions of our experiments should rather be viewed as informing choices such as
choosing parameter sizes and key refreshing policies.

Finally, our results are also applicable to threshold lattice-based encryption
schemes [23,10,9,12]. In such schemes, partial decryptions of the form ⟨ct, sk⟩ =
m + e, for some noise e are released to all parties. These schemes are faced
with the same issue as CKKS; the term e above contains information about
the secret key. The typical approach is to noise-flood the partial decryption
before broadcasting it – either with statistical noise flooding [10,12], or with
some “lighter" noise flooding based on the Rényi divergence [14,18]. A recent
work of Micciancio and Suhl [35] achieves security by noise flooding by very
small amounts of noise (smaller than the noise already present in the ciphetext),
but their techniques are not known to apply to the structured LWE setting.

In Section 2, we give a technical overview that includes a description of the
classes of admissible circuits we consider, as well as our techniques for obtain-
ing concrete hardness estimates. We emphasize that prior methods for concrete
hardness estimation that are applicable in this setting, such as [21], require per-
forming expensive matrix operations on the covariance matrix representing the
conditional distribution of the LWE secret/error. For FHE-scale parameter sets,
the covariance matrix can have dimension as high as 256K × 256K, so sev-
eral hundred terabytes are required to naively store the values (assuming 64-bit
precision, whereas in our experimental results in Section 9.2, we find that up
to 2,000 bit precision is required for meaningful results). Therefore, one of our
main technical contributions is developing new tools to provide fast and accurate
estimates that do not require these high-dimensional matrix operations.

2 Technical Overview and Related Work
We consider three types of admissible circuits: Identity7, Class 1, and Class
2 circuits, which are defined below. For each type of circuit, we consider an
6 As predicted by an average-case noise analysis [19].
7 Identity circuits refer to fresh ciphertexts, i.e. ciphertexts on which no homomorphic
operation was performed. This is the same terminology originally used by Li and
Micciancio [31].
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adversary who requests t evaluations of circuits of this type on fresh ciphertexts,
and then obtains t noisy decryptions of these evaluations. Importantly, for each
circuit type, the information obtained by the adversary from decryption will
correspond to a noisy linear system of equations on the LWE secret and error
underlying the CKKS public key. This means that the view of the adversary
is equivalent to obtaining the public key pk = (−as+ e, a) (mod q), for some
ciphertext modulus q, along with a multivariate Gaussian distribution N (µ′,Σ′)
representing the joint conditional distribution on the secret and error (s, e).

2.1 Admissible Circuits
Decryption Queries on Identity Circuits. We start by considering an attacker
who submits a number t of fresh ciphertexts for decryption, or equivalently, re-
questing t decryptions of ciphertexts obtained from the evaluation of the identity
circuit on a fresh encryption. The adversary receives the noise-flooded output of
the decryption, where the noise is a centered Gaussian of some variance ρ2. This
is a natural circuit class to consider since in the original paper of Li and Miccian-
cio [31], attacks using only identity circuits were shown to allow full key-recovery
against CKKS when there is no noise added during decryption.
Decryption Queries on Class 1 and Class 2 Circuits. We then extend our anal-
ysis to broader classes of circuits, beyond identity circuits (see Section 8 for
formal definitions of these classes). Briefly, Class 1 circuits are circuits that con-
sist of ℓ independent subcircuits8 C1, . . . , Cℓ. These circuits can be completely
arbitrary as long as they all have the same multiplicative depth d ≥ 1 and they
each end in a multiplication with rescale operation. The final circuit consists of
the addition of the outputs of these subcircuits. Intuitively, we require addition
of ℓ ciphertexts so that the noise coefficients, which are individually uniformly
random between [−0.5, 0.5], can be well-approximated by independent Gaussian
distributions. Class 2 circuits are circuits whose output corresponds to the mul-
tiplication without rescale of the outputs of two independent Class 1 circuits.
Our motivation for considering Class 2 circuits is that in practice, a rescale is
typically not performed in the final multiplication gate of the circuit, in order
to reduce the size of the top-level modulus. We recall the noise terms for a
multiplication with and without rescale in [11]. At a high level, the difference
between the two is that the noise in the former is dominated by a rounding noise,
whereas the latter contains more terms, including a quadratic equation in the
secret decryption key.

For circuits in Class 1 and 2, we note that our attacker does not need to know
the internal randomness used by the encryption process, and thus the attack is
valid even in a weaker adversarial model. The analysis in this case is facilitated
by the fact that it was shown in prior work [20,7] that after a rescale step, the
rounding noise (which can be publicly computed) dominates the noise present in
the ciphertext. We note that the same assumption was made in [32] and refer the
8 By “independent” we mean that there are no wires crossing from one subcircuit
to the other. We do not place any requirement on the distribution of the plaintext
values corresponding to the inputs or outputs of the subcircuits.
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reader to the paper for a further discussion. Upon decryption, the information
obtained by the adversary corresponds to an approximate linear equation on the
secret, which induces a conditional Gaussian distribution on the secret. Thus,
the information obtained is in fact a special case of the information obtained by
decryptions of the identity circuit, which corresponds to noisy linear equations
on both the LWE secret and error.

2.2 Key Recovery Attacks

We consider three types of key recovery attacks for each of the three classes of
admissible circuits described above. The attacks reduce the instance observed
by the adversary to a unique-SVP (u-SVP) instance, which is the same approach
used to determine the FHE parameter sets for varying levels of bit security in the
first place! Our analysis differs in that we determine the effect of incorporating
the knowledge that the LWE secret and error are jointly distributed as the mul-
tivariate Gaussian distribution N (µ′,Σ′) (capturing the conditional distribution
on the LWE secret and error) on the concrete runtime of these attacks.

Lattice Reduction Attacks. Here we assume that the adversary embeds the orig-
inal LWE instance and the distribution N (µ′,Σ′) into a Distorted Bounded Dis-
tance Decoding (DBDD) instance (introduced by [21]). Specifically, the resulting
DBDD instance will consist of a tuple (Λ, µ′,Σ′), where Λ is the lattice obtained
by performing Kannan’s embedding on the LWE instance pk = ([−as+ e]qL , a)
obtained from the CKKS public key (see Section 3.1 for more details). As shown
by Dachman-Soled et al. [21], a DBDD instance can be reduced to a u-SVP
instance, and solved using the state-of-the-art BKZ-algorithm. Using the ter-
minology of [21], the information obtained by the adversary from decryption is
denoted as “hints,” and as discussed previously, these hints consist of noisy linear
equations on the LWE secret/error, where the noise is sampled from a Gaussian
distribution. Therefore, the conditional distribution on the LWE secret/error,
given the hints, remains a Gaussian distribution and a closed-form formula for
the new distribution can be obtained from known techniques. Thus, the steps
to integrate the hints and transform the DBDD instance to a u-SVP instance
follow those given in [21] for the case of conditional, full-dimensional, approx-
imate hints. Upon obtaining the resulting u-SVP instance, the adversary then
uses the BKZ algorithm to recover the shortest vector which corresponds to the
LWE secret/error. As shown in [21], the time required by the BKZ algorithm in
terms of bikz (i.e. BKZ-β) to solve the final u-SVP instance, can be accurately
estimated given only the volume and dimension of the final u-SVP instance.

Importantly, although the attack template proceeds as the one outlined in
[21], our analysis of the attack runtime differs. To obtain concrete security es-
timates for the runtime via full-dimensional approximate hints as in [21], one
would need to compute the determinant of a 2n × 2n dimensional matrix that
depends on the t ciphertexts submitted for decryption and the outputs observed
by the adversary. For n = 256 and t = 16, our experiments showed that this
computation takes roughly a week on a supercomputer (See Section 9.2). In con-
trast, typical FHE parameters sets can have dimension up to log2(n) = 17. Thus,
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to provide fast estimates, we analyze the distribution of the resulting 2n × 2n
dimensional matrix arising from the outlined attack. We provide a closed-form
expression for the expected determinant of a matrix drawn from this distribution
(See Section 5 and Lemma 5.1). We verify experimentally (See Section 9.2) that
the predicted and actual expected determinant match closely. Further, to the
best of our knowledge, ours is the first concrete analysis to crucially take into
account the ring structure of the full-dimensional approximate “hints” obtained
by the adversary. We believe this type of analysis is a crucial component for
allowing concrete hardness estimates for FHE-size parameters.
Guessing Attacks. Here the attacker keeps track of the conditional multivariate
Gaussian distribution on the LWE secret/error after integrating the t hints.
When the variance of individual secret/error coordinates becomes small enough,
the adversary rounds the coordinate of the mean of the multivariate Gaussian
distribution to the nearest integer. At some point, the adversary can guess n
out of 2n coordinates correctly with high probability, in which case it can solve
the original LWE system to obtain the remaining n coordinates. Similarly to
the lattice reduction case, actually keeping track of the covariance matrix of the
multivariate Gaussian distribution requires a 2n × 2n matrix inversion and is
highly computationally intensive for FHE-scale parameters. Since we know the
distribution of the matrix, we are able to derive bounds that hold with high
probability on the trace and eigenvalues of the matrix, which in turn can be
used to bound the success probability of the guessing attack, using the Gaussian
correlation inequality [30] (See Section 6 and Lemma 6.1 for the case of identity
circuits, and Section 8.3 for the case of Class 1 and Class 2 circuits).
Hybrid Attacks. Here the attacker guesses g < n number of coordinates as
above, but cannot guess n of them with sufficiently high probability. The attacker
integrates these g guesses as “perfect hints” into the DBDD instance and finally
obtains a new u-SVP instance, which it then solves using lattice reduction. After
integrating the guesses, the information known to the adversary corresponds to
a principal submatrix of the covariance matrix, whose determinant we need to
compute in order to estimate hardness. As before, we do not compute the actual
2n × 2n covariance matrix for the instance, which is highly computationally
intensive, but rather use the fact that the distribution of the covariance matrix
is known. We use the Eigenvalue Interlacing Theorem (see e.g. [28]) and bounds
on the eigenvalues that hold w.h.p. in order to bound the determinant of the
principal submatrix, given the determinant of the entire matrix (See Section 7
and Lemma 7.1 for the case of identity circuits, and Section 8.4 for the case of
Class 1 and Class 2 circuits).

2.3 Summary of Experimental Results
We performed extensive experimentation for a wide range of parameter sets
proposed by the homomorphicencryption.org standards [2], as well as a larger
parameter set with a ring dimension of log2 n = 17 [33]. In Section 9, we provide
experimental validation of Lemma 5.1, and in [11] we provide tables detailing
the effectiveness of each of the three attack types on fresh ciphertexts (identity
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circuits) at various noise-flooding levels: ρ2circ—the noise variance already present
in a ciphertext—100 · ρ2circ, and t · ρ2circ, where t is the number of decryptions the
attacker may observe9. We present the data for the analogous experiments on
Class 1 and 2 circuits in the full version, see [11].

We note that our lemma statements involve complicated mathematical ex-
pressions for quantities such as the determinant or trace of the covariance matrix,
and the implications for concrete security may not be immediately clear from
these statements. The reason for this complexity is that in this work we strive for
concrete (and in some cases achieve exact) values of the expected determinant or
guessing probability, as opposed to asymptotic or approximate values. Further,
our results are tailored to the ring-LWE setting which is crucially required by the
CKKS scheme, and this setting introduces additional complexity as the entries
of the matrices representing the noisy linear transformations of the secret and
error are correlated instead of i.i.d. In order to obtain concrete estimates from
the lemma and theorem statements, we ran scripts that used the expressions in
the lemma and theorem statements, along with a BKZ-estimator, to compute
the concrete hardness for various parameter sets and noise-flooding levels. As
referenced above, we report our findings extensively in the full version [11].

In Section 10, we provide a graphical representation of our results and high-
light our key findings. Most notably, we find that with noise-flooding levels of
ρ2circ and 100 · ρ2circ, full guessing attacks are feasible after observing a sufficient
number of decryption queries (at most ∼ 100K needed), for all parameter sets
and types of circuits considered. On the other hand, for noise level of t · ρ2circ,
lattice reduction attacks are the only effective attacks.

Rephrasing the above, we investigate noise-flooding by x·ρ2circ, where x ranges
from 1 to t, where t is the number of decryption queries. We recall that ρ2circ
corresponds to the variance of the average-case noise that is already present
in the ciphertext. It follows that noise-flooding by x · ρ2circ incurs an additional
loss of 1

2 log2(x + 1) bits in the message precision. This is in contrast to using
the noise-flooding levels in [32], which incur a loss of an additional log2(σ) + 1
bits of precision (beyond the worst-case noise already present in the ciphertext),
where σ = 8

√
tn2κ/2, κ is the security parameter, and n is the dimension (see

Definition 18 and Theorem 3 of [32]).

2.4 Related Work
The inherent noise already present in a CKKS ciphertext was analyzed closely
in [19]. We rely on their average-case analysis in our work in order to calibrate
the noise-flooding noise and determine how much message precision is lost via
the noise-flooding countermeasure.

The tools of incorporating side information on the LWE secret/error into
a lattice reduction attack were developed in [21] via an introduction of an in-
termediate problem known as Distorted Bounded Distance Decoding (DBDD).
Their framework allows the incorporation of “hints” into DBDD instances, which
are finally converted to u-SVP instances via homogenization/isotropization, and
9 Here circ denotes the circuit type that is being evaluated.
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can be applied to analyze the concrete security of the CKKS scheme with noise-
flooding countermeasures. However, in practice, keeping track of the intermediate
DBDD instance is not feasible for FHE-scale parameters. The security estimation
for the LWE problem was revisited in [22], but those techniques similarly do not
scale to FHE-size parameter sets.

The work of Kim, Lee, Seo, and Song [29] considered the provable security
of the Hint-LWE problem, and it can be observed that the information obtained
from noisy decryptions of fresh ciphertexts can be viewed as an instance of Hint-
LWE. Theorem 1 in [29] provides a security reduction from a spherical LWE
instance to Hint-LWE. However, because the conditional Gaussian distribution
arising from the Hint-LWE problem is ellipsoidal (not spherical), the reduction
is not tight (additional noise is added to convert from the spherical to ellipsoidal
distribution). This is in contrast to our approach, which provides an attack that
first converts the Hint-LWE instance to a DBDD instance. Importantly, a DBDD
instance with an ellipsoidal distribution is equivalent to another DBDD instance
with a spherical distribution, and there is no loss in this reduction. Thus, our
concrete security estimates are tighter, but only apply to certain classes of attack
strategies. We also note that reduction in Theorem 1 of [29] is for decisional
LWE, whereas our attacks are for the search LWE problem, making the two
results somewhat incomparable.

Two recent works [27,15] present a key-recovery attack on the schemes CKKS
and the exact FHE schemes, respectively. Both attacks rely on the following ob-
servation: an average-case noise analysis models all noise terms as independent
Gaussians. When that assumption fails, the noise predicted by an average-case
noise analysis will underestimate the actual noise observed. Indeed both works
successfully run a key-recovery attack by using correlated inputs. We note that,
while that research direction is interesting, this does not affect our setting. In
particular, in all circuits we consider (the identity circuit, and the classes C1
and C2), the noise terms remain independent. We note that a recent work [5]
argues that those attacks amount to incorrect estimation of the underlying ci-
phertext noise, as the heuristics specifically assume that inputs are independent,
but [27,15] heavily rely on correlated inputs. The authors of [5] therefore de-
fine the notion of application-aware homomorphic encryption that can precisely
counter these types of attacks. Our work therefore fits well within their model.

The work of Cheon, Hong and Kim [16] suggests noise-flooding countermea-
sures but does not delve deeply into the practical implications on the CKKS
scheme’s performance. Our work extends this by evaluating the practicality and
efficiency of these countermeasures. Specifically, in our analysis, we examine the
trade-offs between the number of allowed decryptions, noise-flooding levels, and
concrete security. We show that while high levels of noise-flooding provide prov-
able security, they significantly degrade message precision, making CKKS less
practical for real-world applications (see [11]).

The work of Bootle, Delaplace, Espitau, Fouque and Tibouchi [13] discusses
LWE problems under certain conditions, relevant to our discussion on lattice
problems post-noise flooding. Specifically, their techniques are most relevant to
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the analysis of our “guessing” attacks. They consider the case in which noisy
linear equations (without reduction modulo q) are released on the LWE secret
and error and provide bounds on the ratio of the noise versus coefficients of
the linear equation needed to prevent guessing attacks. This corresponds to the
setting of “approximate hints” that we use in this work to model the informa-
tion learned by the adversary during decryption. Our results differ in that our
analysis crucially takes into account the ring structure and distribution of the
“hints” specific to the CKKS + noise-flooding setting. This is in contrast to [13]
which assumes the hint vectors and the noise are independently drawn from dis-
tributions with known variances. Further, our goal is to provide a concrete, as
opposed to asymptotic analysis. In particular, for a given CKKS + noise-flooding
parameter set and a given target success probability, our analysis allows one to
compute a concrete number of decryptions that are sufficient for the guessing
attack to succeed with the target probability. Finally, our work derives the distri-
bution of the “approximate hints” specific to the CKKS + noise-flooding setting
and for the particular circuit classes we consider, whereas the prior work focused
on the BLISS signature scheme.

The work of May and Nowakowski [34] shows a faster incorporation of hints
into LWE problems, compared to that of Dachman-Soled et al. [21]. The reason
we do not directly compare our efficiency to that of [34] is that their algorithms
are only for modular and perfect hints (hints that correspond to noiseless linear
equations modulo q or over the integers), whereas the hints required for the
analysis in this work are approximate hints, which require computing the mean
and covariance of a conditional Gaussian distribution.

Finally, Glaser, May, and Nowakowski [26] should be compared with our
proposed technique, and we acknowledge that while it offers an efficient guessing
method, our focus is on the practical complexity and concrete security estimates
of such attacks in the context of CKKS. Our analysis includes the impact of noise-
flooding on the effectiveness of guessing attacks and provides detailed estimates
for the success probabilities of these attacks under various noise-flooding levels
(see Section 6).

3 Preliminaries and Notation
Notation. We use bold lower case letters to denote vectors, and bold upper case
letters to denote matrices. We use row notation for vectors, and denote by Id
the identity matrix of dimension d. We denote by {ei}i∈[n] the standard basis
vectors in dimension n.

We use the notation Rq to denote the ring Z[x]/(Φm(x), q), where Φm(x) =
xn + 1, and n = ϕ(m) is a power of two. We denote ring elements by lowercase,
non-bolded letters. When we employ a particular vector representation of a ring
element in the coefficient or canonical embedding, we use vector notation. [·]q
denotes modular reduction (mod q) (usually centered around 0).

We will make use of the canonical embedding and the subspace H ⊆ CZ∗
m

defined as follows:

H = {x = (xi)i∈Z∗
m
∈ Cn : xi = x−i, ∀i ∈ Z∗

m}.
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H is isomorphic to Rn as an inner product space via the unitary transformation

B =

(
1√
2
I i√

2
J

1√
2
J −i√

2
I

)

where I is the identity matrix of size n/2 and J is its reversal matrix.
The canonical embedding of a ∈ Q[x]/Φm(x) into Cn is the vector of evalu-

ations of a at the roots of Φm(x). Specifically σ(a) = [a(ζj)j∈Z∗
m
], where ζ is a

primitive m-th root of unity. Due to the conjugate pairs, σ maps into the sub-
space H. When a is represented as a vector of coefficients a, we can express the
canonical embedding transformation as a linear transformation aV.

We denote by N (µ,Σ) the multivariate Gaussian with mean µ and covari-
ance Σ. We note that a multivariate Gaussian is fully determined by its mean
and covariance. Thus, when the covariance of a dim dimensional multivariate
Gaussian is a multiple of Idim, the dim variables are all independent.
DBDD and concrete hardness estimates. A DBDD instance (defined in [21])
consists of a tuple (Λ, µ,Σ), where Λ is a lattice, and (µ,Σ) are viewed as the
mean and covariance of a Gaussian distribution. Informally, the DBDD problem
asks to find the unique vector in the lattice Λ that is contained in the ellipsoid
defined by (µ,Σ) (for the formal definition see [21]). The prior work of [21]
showed how to transform a DBDD instance into a u-SVP instance with lattice Λ′

using the homogenization and isotropization steps, and further showed that the
secret vector of this u-SVP instance has expected squared norm ||s||2 = dim(Λ′).
Thus, standard techniques can be used to estimate the hardness of the resulting
u-SVP instance, where hardness is measured in terms of the “bikz” or BKZ-β
required to find the unique solution. In particular, following [3,6,21], β can be
estimated as the minimum integer that satisfies√

β ≤ δ
2β−dim(Λ′)−1
β Vol(Λ′)1/dim(Λ′) (1)

for a lattice Λ′ where δ is the root-Hermite-Factor of BKZ-β.
The CKKS scheme. See [11] for a detailed description of the CKKS encryption
scheme as well as a derivation of the error terms present in the message when
decrypting a fresh ciphertext, and when decrypting after one or more multiplica-
tion steps (with or without a rescale operation). Following [19], we also present
the noise variance in a fresh CKKS ciphertext, and in a ciphertext resulting from
a multiplication and rescale operation (See [11]).

3.1 Modeling Noisy Decryptions as Hints
For the case of identity circuits (we will deal with attacks on Class 1 and Class 2
circuits in Section 8), we concretely consider an adversary who obtains a CKKS
public key pk = ([−as+ e]q, a) and t independently sampled encryptions, and
then asks for t decryptions of the constructed ciphertexts. Thus, for each j ∈ [t],
the adversary obtains the (noisy) polynomial ej1 · s + vj · e ≈ γj , where multi-
plication is over the ring Rq. The adversary knows ej1 and vj whose coefficients
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are modeled as independent Gaussians with 0 mean and variance σ2
hs

and σ2
he
,

respectively. (s||e) corresponds to the LWE secret/error used to construct the
public key. Since we assume that all the polynomials involved have small mag-
nitude, there is actually no wraparound modulo q. In this case, we can view the
multiplication and addition as over the ring of integers Z[x]/Φm(x), where Φm(x)
is the m-th cyclotomic polynomial of degree n = ϕ(m), and n is a power of two.
Using the well-known representation of polynomial multiplication in Z[x]/Φm(x)
as matrix-vector multiplication with vectors in Zn, we note that decryptions
correspond to “hints,” or noisy linear systems of equations with respect to se-
cret/error vectors (s||e). The matrices corresponding to these systems of linear
equations can be combined into a single matrix denoted as H and referred to as
the “hint matrix.”

Since the original LWE secret/error distribution is (well-approximated) by a
multivariate Gaussian (with mean 0 and covariance Σ), and since the informa-
tion obtained from decryption corresponds to noisy linear systems of equations
on the LWE secret/error (where the noise is Gaussian), the information of the
adversary after observing decryptions, is captured by a tuple (pk, µ′,Σ′), where
pk = ([−as+ e]qL , a) is an LWE instance, and (µ′,Σ′) are the mean and covari-
ance matrix of a multivariate Gaussian distribution corresponding to the condi-
tional distribution of the LWE secret and error, given the information learned
by the adversary during decryption (see, for example, Lemma 6 in [21]).

For purposes of our key recovery attacks, will further consider the related
DBDD instance (Λ, µ′,Σ′), where Λ is the lattice obtained from the LWE in-
stance via Kannan’s embedding (see Section 3 and [21] for more details on the
DBDD problem). Since the unique solution of this DBDD instance corresponds
to the LWE secret and error, it is sufficient for our key recovery attacker to solve
this DBDD instance. To estimate the concrete hardness of the DBDD instance
(Λ, µ′,Σ′), it remains to compute det(Σ′)−1. In Section 5, we will not compute
this quantity directly, but instead compute its expected value. While our result
makes the simplifying assumption that the coordinates of ej1 and vj are Gaussian
(as opposed to ternary distributions or discrete Gaussians), we crucially take into
account the ring-LWE setting, which gives rise to the algebraic structure of the
hint matrix H. Indeed, the expected determinant would significantly differ in the
standard LWE setting, where H would be modeled as a matrix whose entries
are independent Gaussians. In our case, the entries of H are correlated, making
the analysis more delicate.

4 Adversarial Model

For reasons of space, we present the definition of IND-CPAD security in [11]. In
this work, we introduce a modification of the IND-CPAD that captures semi-
honest attacks, in which the attacker passively corrupts a user in the system
and obtains its view. We call our new notion IND-CPADSH , where SH stands
for Semi-Honest. .
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Definition 4.1 (IND-CPADSH Security with respect to admissible set G). Let
E = (KeyGen, Encrypt, Decrypt, Eval) be a public-key homomorphic, approxi-
mate encryption scheme with plaintext spaceM, ciphertext space C, randomness
space R. Let the set D correspond to the image of Decrypt. We define an ex-
periment Exprindcpa

DSH

b [A,G], parametrized by a bit b ∈ {0, 1} and involving an
efficient adversary A, given access to the following oracles. The oracles share a
common state S ∈ (M×M×C× (R∪{⊥})× (D∪{⊥}), {0, 1})∗ consisting of a
sequence of tuples. Each tuple consists of two messages, a ciphertext, the random-
ness used to generate the ciphertext or ⊥, the decryption of the ciphertext or ⊥,
and a bit indicating whether the ciphertext is a fresh ciphertext that has not yet
been included in an evaluation. The experiment is also parametrized by a set G
that consists of admissible tuples (S, g, J), where S is a valid state, g is a function
g :Mk →M, and J is a sequence of indices J = (j1, . . . , jk) ∈ {1, . . . , |S|}k.

– An encryption oracle Encrypt(pk,m0,m1) that, given a pair of plaintext
messages m0,m1, computes r ←R, ct = Encrypt(pk,mb; r), and sets d =⊥,
u = 0. If m0 ̸= m1, it sets ρ = ⊥ and if m0 = m1, it sets ρ = r. It extends
the state

S := [S; (m0,m1, ct, ρ, d, u)].

– An evaluation oracle H(evk, g, J) that, given a function g :Mk →M and a
sequence of indices J = (j1, . . . , jk) ∈ {1, . . . , |S|}k, checks whether (S, g, J)
is admissible by checking whether (S, g, J) ∈ G. If so, the evaluation ora-
cle computes the ciphertext ct ← Eval(evk, g, S[j1].ct, . . . , S[jk].ct), and
extends the state

S := [S; (g(S[j1].m0, . . . , S[jk].m0), g(S[j1].m1, . . . , S[jk].m1), ct,⊥,⊥, 1)].

Additionally, for ℓ ∈ [k], it sets the jℓ-th tuple as follows

S[jℓ] := (S[jℓ].m0, S[jℓ].m1, S[jℓ].ct, S[jℓ].ρ, S[jℓ].d, 1).

– A decryption oracle Decrypt(sk, j) that, given an index j ≤ |S|,
checks whether S[j].m0 = S[j].m1. If so, the decryption sets d∗ =
Decrypt(sk, S[j].ct) and sets the j-th tuple of S as follows:

S[j] := (S[j].m0, S[j].m1, S[j].ct, S[j].ρ, d∗, 1).

– At any point, the adversary can query its oracles with a special symbol ⋆.
When this occurs, the entire state S is returned to the adversary. After this
point, no further queries can be made to any of the oracles.

The experiment is defined as

Exprindcpa
DSH

b [A,G](1κ) :(sk, pk, evk)← KeyGen(1κ)
S := [ ]

b′ ← AEncrypt(pk,·,·),H(evk,·,·),Decrypt(sk,·)(1κ, pk, evk)
return(b′)
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The advantage of adversary A with respect to admissible set G against the
IND-CPADSH security of the scheme is

AdvindcpaDSH [A,G](κ) =
∣∣∣Pr[ExprindcpaD0 [A,G](1κ) = 1]

−Pr[Exprindcpa
DSH

1 [A,G](1κ) = 1]
∣∣∣ .

The scheme E is IND-CPADSH-secure with respect to admissible set G if for
any efficient (probabilistic polynomial time) A, the advantage AdvindcpaD [A,G] is
negligible in κ.

We mention some important points about the definition. First, note that the
evaluation oracle checks whether the tuple (S, g, J) ∈ G and this check can take
the stored u value into account – indicating whether a ciphertext is fresh and has
not been previously inputted into an evaluation circuit – since it is part of the
state S. This check is necessary for the validity of average-case noise analysis.

Second, our definition is non-adaptive and we note that this is also necessary
for the validity of average-case analysis. For example, an adaptive adversary may
query the encryption oracle to obtain a large number of fresh ciphertexts along
with their randomness. Then it may choose a smaller subset of these cipher-
texts with the highest noise and query the evaluation oracle with a circuit that
performs a computation over these “biased” ciphertexts. In this case, average-
case noise analysis will greatly underestimate the noise in the final decryption,
since it inherently assumes the inputs are independent and distributed as fresh
ciphertexts.

Importantly, we emphasize that the above attack also works in a model where
the randomness of the ciphertexts is not returned by the oracle and evaluation of
Class 1 or 2 circuits is allowed. This is because the dominating noise in Class 1
and 2 circuits comes from the “rounding error” during a homomorphic multipli-
cation, and this error can be computed given knowledge of the input ciphertexts
and evaluation key only. Thus, non-adaptivity is an inherent requirement for
average-case noise analysis.

We provide a brief comparison with the IND-CPAD model. Firstly, in the
IND-CPAD model, there is no (equivalent) value u checking for “freshness” of
ciphertexts – and indeed, this was exploited in previous works to run an at-
tack [15,27]. Secondly, our definition is non-adaptive, whereas in the IND-CPAD

model, the attacker has adaptive access to the evaluation and decryption or-
acles, enabling attacks such as those described above, where an attacker can
actively bias the noise distribution of a ciphertext. In particular, we stress that
simply adding the notion of admissible circuits to the IND-CPAD notion does
not enforce semi-honest behavior, whereas semi-honest behavior is enforced in
the IND-CPADSH model. Finally, we release the encryption randomness to the
adversary (when this does not lead to trivial distinguishing attacks), whereas
IND-CPAD does not.

We now explain how our attacks on identity circuits and Class 1/Class 2
circuits can be viewed as IND-CPADSH attacks.
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The attack on identity circuits. Recall that our attacker simply asks for decryp-
tions of fresh CKKS ciphertexts, and, given the internal randomness of the fresh
ciphertexts and the noisy decryptions, runs a key recovery attack. We now for-
malize how this attack can be viewed as a IND-CPADSH attack. Our attacker will
query the Encrypt oracle t times with m0 = m1 = 0 and once with m0 ̸= m1. It
will then query the Eval oracle t times with the identity function for each of the
first t ciphertexts. Checking whether (S, g, J) is admissible corresponds to check-
ing that g is the identity function, that J consists of a single index j and that
S[j].u = 0. The adversary will make a decryption query for each of these t eval-
uated ciphertexts. The decryption oracle computes Decrypt(sk, ct) +N (0, σ2

ϵ ),
for some noise-flooding variance σ2

ϵ . Our adversary will then query with ⋆ to
obtain the entire state S. and will use the information to run a full key recov-
ery attack. Once it knows the key, it can trivially break indistinguishability by
using the recovered key to decrypt the (t + 1)-st ciphertext obtained from the
encryption oracle and determine whether it encrypts m0 or m1.

The attack on Class 1 or Class 2 circuits. Recall that our attacker asks for de-
cryptions of Class 1 or Class 2 circuits evaluated on fresh CKKS ciphertexts, and
given the noisy decryptions, runs a key recovery attack. We now formalize how
this attack can be viewed as a IND-CPADSH attack. The attacker first generates
fresh ciphertexts corresponding to the inputs for t evaluations of the Class 1 or
Class 2 circuit. It does this by querying the Encrypt(pk, ·, ·) oracle sufficiently
many times, where each call sets m0 = m1. It queries the Encrypt(pk, ·, ·) a
final time with m0 ̸= m1. The Hevk(·, ·) oracle is then called with functions
g : Mk → M in Class 1 or Class 2 and with input indices J = (j1, . . . , jk).
Checking whether (S, g, J) is admissible corresponds to checking that g is in
Class 1 or Class 2 and that for all j ∈ J , S[j].u = 0. Decryption queries are then
made with ciphertexts ct corresponding to the output of calls to H(evk, ·, ·) as
described above. The decryption oracle computes Decrypt(sk, ct) + N (0, σ2

ϵ ),
for some noise-flooding variance σ2

ϵ . Our adversary will then query with ⋆ to
obtain the entire state S. and will use the information to run a full key recovery
attack. Once it knows the key, it can trivially break indistinguishability by using
the recovered key to decrypt the last ciphertext obtained from the encryption
oracle and determine whether it encrypts m0 or m1.

5 Security Loss under a Lattice Reduction Attack

Recall that the matrix Σ corresponds to the original covariance matrix for the
LWE secret and error. Formally, let Σ be an 2n × 2n diagonal matrix with
the first n diagonal entries set to σ2

s , the second n diagonal entries set to σ2
e .

The matrix Σε corresponds to the covariance of the noise in the set of linear
equations obtained on the LWE secret s from decrypting a ciphertext. Formally,
Σε = σ2

ε · Itn. γ = γ1|| · · · ||γt corresponds to the obtained outputs.
First, note that for j ∈ [t],

ej1 · s = sVBP
(
M(ej1)

)
P−1B−1V−1,
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where V is the canonical embedding transformation into Cn, B is the matrix
corresponding to the isomorphism between H ⊂ Cn and Rn, P is a permutation
matrix, and Aj

1 := M(ej1) is a block diagonal matrix with n/2 blocks, each of
dimension 2× 2, where the i-th block is

Aj
1,i :=

[
1/
√
2wj

i,hs
1/
√
2wj

n−i,hs

−1/
√
2wj

n−i,hs
1/
√
2wj

i,hs
,

]

and wj
hs

= (wj
1,hs

, . . . , wj
n,hs

) is equal to wj
hs

= ej1VB. Since VB is an isometry
(an orthogonal matrix scaled by

√
n), we have that σ2

hs
(VB)(VB)T = nσ2

hs
· In.

So the random variables [wj
i,hs

, wj
n−i,hs

]j∈[t],i∈[n/2] are distributed as independent
Gaussians with variance nσ2

hs
. Note that R = (VBP) is a real matrix, even

though V and B themselves are complex.
Similarly, for j ∈ [t],

vj · e = eVBP
(
M(vj)

)
P−1B−1V−1.

In this case, Aj
2 := M(vj) is a block diagonal matrix with n/2 blocks, each of

dimension 2× 2, where the i-th block is

Aj
2,i :=

[
1/
√
2wj

i,he
1/
√
2wj

n−i,he

−1/
√
2wj

n−i,he
1/
√
2wj

i,he
,

]

and wj
he

= (wj
1,he

, . . . , wj
n,he

) is equal to wj
he

= vjVB. Now for each j ∈ [t],
i ∈ [n/2], wj

i,he
and wj

n−i,he
are random variables distributed as independent

Gaussians with variance nσ2
he
.

Thus, if there are t decryption queries we can represent the hint matrix H
as:

H =

[
R 0
0 R

] [
A1

1 A2
1 . . . At

1

A1
2 A2

2 . . . At
2

]R
−1

. . .
R−1

 ,

where R is an orthogonal matrix scaled by
√
n.

Applying the approximate hints of [21], the transformed covariance matrix
Σ′ and mean µ′ are as follows (the dimension and lattice of the DBDD instance
remain unchanged from the instance described in Section 3.1):

Σ′ = Σ−ΣH(HTΣH+Σε)
−1HTΣ (2)

µ′ = γ(HTΣH+Σε)
−1HTΣ. (3)

Our goal is to find det(Σ′). Given this, we can estimate the hardness of the new
DBDD instance under a lattice reduction attack. However, instead of computing
Σ′ and then det(Σ′) exactly, which requires inversion of a 2n × 2n matrix, we
will instead compute the expected value of det(Σ′), where the expectation is
taken over the choice of the hint matrix H.
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Using a generalization of the Matrix Determinant Lemma, we obtain:

E[det((Σ′)−1)] = E
[
det(HTΣH+Σε)

det(Σε) det(Σ)

]
. (4)

Since Σε and Σ are diagonal matrices whose entries depend on the parameters
of the FHE cryptosystem, their determinants are constants and are easy to
compute. Thus, it remains to compute E[det(HTΣH+Σε)], which can then be
plugged into (4).

Lemma 5.1. Let H,R, [Aj
1 = M(ej1),A

j
2 = M(vj)]j∈[t] be as described above.

Then

E[det(HTΣH+Σϵ)] =(
σ4
sσ

4
eσ

4t−8
ϵ

(7
4
t(t− 1)n4σ4

hs
σ4
he

+ tn2σ4
ϵ (
σ4
hs

σ4
e

+
σ4
he

σ4
s

)

+
(
t(t− 1)n2σ2

hs
σ2
he

+ tnσ2
ϵ (
σ2
hs

σ2
e

+
σ2
he

σ2
s

) +
σ4
ϵ

σ2
sσ

2
e

)2))n
2

,

where the expectation is taken over choice of ej1 ∼ N (0, σ2
hs
)n and vj ∼

N (0, σ2
he
)n for all j ∈ [t].

The proof can be found in [11].
Obtaining the final hardness estimates. One can perform homogeniza-
tion/isotropization of the DBDD instance (as in [21]) to obtain a u-SVP instance
and then estimate the BKZ-β for that instance. However, as described in [21],
one can obtain the BKZ-β estimates using only the dimension and volume of
the lattice after homogenization/isotropization, and the lattice basis itself is not
required. The lattice in our DBDD instance is a qL-ary lattice and thus has log
volume n·ln(qL). After homogenization/isotropization, the log volume of the lat-
tice increases to n ln(qL) + ln(det((Σ′)−1))/2. Using (4) and Lemma 5.1, we use
the expectation of det((Σ′)−1) in the above formula. The dimension remains un-
changed after integrating hints. Thus, this information is sufficient for obtaining
BKZ-β estimates for the final u-SVP instance.

6 Key Recovery via Guessing
When Σ′ in (2) has sufficiently small variance, then instead of running a lattice
reduction attack, another strategy is to simply guess coordinates of the LWE se-
cret/error by rounding the mean µ′ in (3) to the nearest integer. If n coordinates
of these coordinates are guessed and all guesses are correct, then the entire LWE
secret/error can be recovered by solving a linear system modulo q. To analyze
the success of the above attack we begin with the following lemma:

Lemma 6.1. Let Σ′ be defined as in (2). Then Tr(Σ′) ≤ T = n ·(
σ2
s ·σ2

e ·2t·n(σ2
hs

+σ2
he

)

2·σ2
ϵ

+σ2
s+σ2

e

)
B + 3

√
2n·V
B with probability at least 0.99 − 3n · e−12.25
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over choice of hint vectors, where

B =
σ2
s · σ2

e · (2t− 7
√
2t)2 · n2σ2

hs
· σ2

he

4 · σ4
ϵ

+
σ2
s · (2t− 7

√
2t) · nσ2

hs

2 · σ2
ϵ

+
σ2
e · (2t− 7

√
2t)(nσ2

he
)

2 · σ2
ϵ

+ 1−
σ2
s · σ2

e · n2(σ2
hs

+ σ2
he
)2(3.5

√
2t+ 12.25)2

2 · σ4
ϵ

V =
σ4
s · σ4

e · (E[R2
1] + E[R2

2])

4 · σ4
ϵ

+ 2
σ4
s · σ4

e · E[R1] · E[R2]

4 · σ4
ϵ

+ 2
(σ4

s · σ2
e + σ2

s · σ4
e) · (E[R1] + E[R2])

2 · σ2
ϵ

+ (σ2
s + σ2

e)
2

−
(σ2

s · σ2
e · E[R1]

2 · σ2
ϵ

+
σ2
s · σ2

e · E[R2]

2 · σ2
ϵ

+ σ2
s + σ2

e

)2
E[R1] = 2t · nσ2

hs

E[R2] = 2t · nσ2
he

E[R2
1] = 4tn2σ4

hs
+ 4t2n2σ4

hs

E[R2
2] = 4tn2σ4

he
+ 4t2n2σ4

he

We note that up to parameter setting of n = 32768, the success probability
in the above claim is at least 0.52.10 The proof of the lemma can be found in [11].

Given the above, we consider the distribution of e||s−µ′, where µ′ is the mean
from equation (3). The random variable e||s−µ′ is distributed as the multivariate
Gaussian distribution N (0,Σ′). µ′ is the correct guess for e||s as long as for all
i ∈ [n] |ei − µ′

i| ≤ 0.5 and for all i ∈ [n] |si − µ′
i+n| ≤ 0.5. The probability that

the above occurs for each coordinate is the same as the probability weight of
the hypercube corresponding to −0.5 ≤ xi ≤ 0.5, i ∈ [n] under the multivariate
Gaussian distribution N (0,Σ′). We use the following theorem to lower bound
this probability weight:

Theorem 6.2 (Special case of the Gaussian Correlation Inequal-
ity [30]). Let X be an n-dimensional Gaussian random variable. Then for any
t1, . . . , tn > 0,

P(|X1| ≤ t1, . . . , Xn ≤ tn] ≥ P(|X1| ≤ t1) · · ·P(|Xn| ≤ tn].

We instantiate the above theorem with X consisting of a subset S of size n of
the coordinates of the conditional Gaussian distribution ((s||e)−µ′) ∼ N (0,Σ′),
with tj = 0.5, j ∈ S We thus have that

P(|Xj | ≤ tj , i ∈ S) ≥ Πj∈SPXj∼N (0,ejΣ′eT
j )(|Xj | ≤ tj ], (5)

where the ej are the standard basis vectors.
10 For the parameter sets with n = 131072, we increase 7 to 7.5, 3.5 to 3.75, 12.25 to

14.0625, and increase the probability to 0.99− 3n · e−14 > 0.66.
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To analyze PrXj∼N (0,ej ·Σ′·eT
j )[Xj ≤ 0.5], we note that

∑
i∈[2n] ei ·Σ′ · eTi =

Tr(Σ′). By Lemma 6.1, we have that Tr(Σ′) ≤ T with 53% probability. Let
S ⊆ [2n] of size n be the set of indices j corresponding to the n smallest values
among {ei · Σ′ · eTi : i ∈ [2n]} this set of minimum values. Using the analysis
in [11], we have that for each j ∈ S, ej ·Σ′ · eTj ≤ T

2n . Therefore,

Pr
Xj∼N (0,ej ·Σ′·eT

j )
[|Xj | ≤ 0.5] ≥ −erf

 −0.5√
2 · T

2n

 = erf

 0.5√
2 · T

2n

 . (6)

Finally, the attack is as follows: The adversary chooses to guess the values of
ej or sj for these n smallest values (corresponding to the set S), and then use
the LWE instance to solve for the remaining n variables. The probability that all
of the adversary’s guesses are correct is lower bounded by the probability weight
on the hypercube corresponding to |Xj | ≤ 0.5, j ∈ I when X is drawn from the
multivariate Gaussian distribution X ∼ N (0,Σ′). Using (5) and (6), this is at
most

∏
j∈S

−erf

 −0.5√
2 · ej ·Σ′ · eTj

 ≥
−erf −0.5√

2 · T
2n

n

= erf

 0.5√
T
n

n

.

The final success probability of the attack is:11

erf

 0.5√
T
n

n

− 3n · e−12.25 − 0.01. (7)

7 Hybrid Guessing/Lattice-Reduction Attacks
Recall the structure of the eigenvalues of Σ′: There are [n/2] blocks and for
each i ∈ [n/2], the eigenvalues (α4i+1, α4i+2, α4i+3, α4i+4), where α4i+1 = α4i+3,
α4i+2 = α4i+4. For each i ∈ [n/2], we say that {α4i+1, α4i+2} and {α4i+3, α4i+4}
are pairs. For each i, the adversary computes eiΣ

′eTi and guesses µi for the g
minimum values where g is the maximum value such that

erf

 0.5√
T
n

g

≥ p, (8)

for some threshold p. These guesses are made and incorporated as perfect hints.
After this process, the covariance matrix is a principal submatrix of Σ′ of dimen-
sion (2n−g)×(2n−g), which we denote by Σ′′. We denote by PSub2n−g(Σ

′) the
set of all principal submatrices of Σ′ of dimension 2n− g. Similarly, the lattice
reduces dimension by g and its volume remains the same. The following lemma
gives a bound on the determinant of Σ′′.
11 And for n = 131072, we replace e−12.25 with e−14.
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Lemma 7.1. Let g ∈ {0, 1, . . . , n}. Let Σ′ be defined as in (2). Let Σ′′ =

argmaxΣ̃∈PSub2n−g(Σ′)Tr(Σ̃). With probability 0.99 − 4n · e−12.25 over choice of
hint vectors,12

Tr(Σ′) ≤ T and det(Σ′′) ≤ det(Σ′)(
L
U

)g ,

where T and B are defined as in Lemma 6.1, and

L =
G+

√
G2 − 4 ·B · σ2

s · σ2
e

2 ·B

U =
σ2
s · σ2

e

Bmax

G = σ2
s · σ2

e(2t+ 7
√
2t+ 24.5) · (nσ2

he
)2 · σ2

ϵ

+ σ2
s · σ2

e(2t+ 7
√
2t+ 24.5) · (nσ2

hs
)2 · σ2

ϵ + σ2
s + σ2

e

Bmax =
σ2
s · σ2

e · (2t+ 7
√
2t+ 24.5)2 · n2σ2

hs
· σ2

he

4 · σ4
ϵ

+
σ2
s · (2t+ 7

√
2t+ 24.5) · nσ2

hs

2 · σ2
ϵ

+
σ2
e · (2t+ 7

√
2t+ 24.5)(nσ2

he
)

2 · σ2
ϵ

+ 1.

The proof of the lemma can be found in [11].
Combining Lemma 6.1 with Theorem 6.2 as before, we estimate that with at
least p− 4n · e−12.25 − 0.01 probability, all g number of guesses are correct, and

det(Σ′′) ≤ det(Σ′)(
L
U

)g . (9)

We note that for up to n = 32768, 4n · e−12.5 ≤ 0.63. 13 As before, E[det(Σ′)]
can be computed via Lemma 5.1. Thus, we can use (9) to obtain a bound on
the expected value of det(Σ′′) (conditioned on events with probability at least
0.99 − 4n · e−12.25 occurring), compute the log-volume of the lattice after ho-
mogenization/isotropization as described in Section 3.1, and use the log-volume
and dimension to estimate the hardness of the residual instance (after guesses)
under a lattice reduction attack.

8 Extending to Larger Classes of Circuits

8.1 The First Class of Circuits and Lattice Reduction Attacks
In Figure 1a we present the first class of circuits we consider. The circuits
C1, . . . , Cℓ that are depicted each consist of log(r) levels of multiplications as
well as any number of additions. The final gate in each of the circuits C1, . . . , Cℓ

is a multiplication with rescale. Note that the noise after multiplication with
12 For the parameter sets with n = 131072, we increase 7 to 7.5, 24.5 to 28.125 and

increase the probability to 0.99− 4n · e−14.
13 And for n = 131072, 4n · e−14 ≤ 0.44.
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(a) First Class of Circuits (b) Second Class of Circuits

Fig. 1: A pictorial representation of the two classes of circuits we consider.

rescale in circuit Ci is dominated by δi1 · s + δi0 (see [11]), where δi0, δ
i
1 are dis-

tributed as uniform random variables in the range [−0.5, 0.5].
The final gate of the entire circuit is an addition gate that adds the outputs

of each of the Ci circuits. We require ℓ subcircuits and a final addition gate
in order to ensure that the linear coefficients of the noise polynomial (which
are independent and uniform random in the range [−0.5, 0.5] for each of the ℓ
circuits) can be approximated by Gaussian random variables with mean 0 and
variance ℓ

12 , the setting for which our Lemma 5.1 applies.
Specifically, the lattice reduction attack for circuits of this class can be ana-

lyzed by instantiating Lemma 5.1 with the following parameter settings.

– σ2
hs

= ℓ
12

– σ2
he

= 0

– σ2
ϵ is set to the noise-flooding noise. The variance of the noise already present

in the ciphertext can be computed by taking the noise in each ciphertext
before addition (which [11] provides) and multiplying by ℓ.

8.2 The Second Class of Circuits and Lattice Reduction Attacks

In Figure 1b we present the second class of circuits we consider. The circuits
CL

1 , . . . , C
L
ℓ , C

R
1 , . . . , CR

ℓ that are depicted each consist of log(r) levels of mul-
tiplications as well as any number of additions. The final gate in each of the
circuits CL

1 , . . . , C
L
ℓ , C

R
1 , . . . , CR

ℓ is a multiplication with rescale. Note that the
noise after multiplication with rescale in circuit CL

i (resp. CR
i ) is dominated by

δL,i
1 · s + δL,i

0 (resp. δR,i
1 · s + δR,i

0 ) (see [11]), where δL,i
0 , δL,i

1 (resp. δR,i
0 , δR,i

1 )
are distributed as uniform random variables in the range [−0.5, 0.5]. Thus, after
the summation gates on the second level from the top, the linear and constant
coefficients of the noise corresponding to the left and right summations can be
approximated by Gaussian random variables GL,1, GL,0, GR,1, GR,0 with mean
0 and variance ℓ

12 .
These outputs are then multiplied via a multiplication without rescale gate.

For most parameter settings, the dominating terms of the error after the final
multiplication without rescale will correspond to mr

∆r−1 · (GL,1 + GR,1) · s. Fur-
ther, the dominating linear coefficients of s are again (well approximated by) a
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Gaussian of variance σ2
hs

= ℓ
6 · (

mr

∆r−1 )
2. Since the error term does not include

information about e, we can set σ2
he

= 0.
We compute the noise variance that is already present in the ciphertext, as a

contribution of the following terms mr

∆r−1 · (GL,0+GR,0), mr

∆r−1 · (GL,1+GR,1) · s,
(GL,1 ·GR,1) ·s2, (GL,0 ·GR,1) ·s, (GL,1 ·GR,0) ·s, GL,0 ·GR,0. Since the covariance
of the above terms is 0, the total variance is the sum of the variances each term
above. For the derivation of the variance of each of the above terms, see [11].
The total noise in the ciphertext has variance:

2

(
mr

∆r−1

)2

· ℓ
12
·σ2

s+

(
mr

∆r−1

)2

·n · ℓ
6
·σ2

s+
5

2
n3

(
ℓ

12

)2

σ4
s+2n2

(
ℓ

12

)2

σ2
s+n·

(
ℓ

12

)2

Obtaining the hardness estimates. We can now apply Lemma 5.1 with the fol-
lowing parameter settings:

– σ2
hs

= ℓ
6 · (

mr

∆r−1 )
2

– σ2
he

= 0

– σ2
ϵ is set to the noise-flooding noise plus an additional 5

2n
3
(

ℓ
12

)2
σ4
s +

2n2
(

ℓ
12

)2
σ2
s , the noise from the quadratic terms and the linear but non-

Gaussian terms (which comes from the terms of the form (GL,0 ·GR,1) · s).

Note that the noise-flooding noise has variance at least ( mr

∆r−1 )
2 · n·ℓ6 ·σ

2
s , since

the noise already in the ciphertext is larger than this quantity. Thus, for n ∈ N,
when

(
mr

∆r−1
)2 ≫ 5

2
n2 · ℓ

24
+ 2 · n · ℓ

24
>

9

2
n2 · ℓ

24
, (10)

and m achieves the maximum allowed magnitude Bmsg of each coordinate in the
encoded plaintext (in which the message is viewed as a vector in the canonical
embedding and is scaled up by ∆), we have that the noise-flooding noise domi-
nates the additional 5

2n
3
(

ℓ
12

)2
σ4
s + 2n2

(
ℓ
12

)2
σ2
s . Typically, after encoding, the

maximum allowed magnitude of m in the canonical embedding is ≈ ∆. Thus,
(10) is satisfied when ∆ ≥ 3n

4 ·
√

ℓ
3 , which is typically satisfied for most parameter

settings (in fact, ∆ is typically far larger).
Thus, we can plug the above parameter settings into Lemma 5.1 to obtain

the hardness estimates for these circuits under a lattice reduction attack.

8.3 Guessing Attack for Class 1 and 2 Circuits
Now that we have determined σ2

hs
, σ2

he
, and σ2

ϵ for Class 1 and Class 2 circuits,
we can use those values to derive formulas for the concrete security for guessing
and hybrid attacks as well.

Recall that for Class 1 and Class 2 circuits, the hints are only on the s
coordinates. So Σ′ is a block matrix where the lower right hand n×n submatrix
is a diagonal matrix with diagonal (σ2

e , . . . , σ
2
e) and the upper left hand n × n

submatrix has n eigenvalues of the form [(α2i+1, α2i+2)]i∈[n/2] and for all i ∈
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[n/2], α2i+1 = α2i+2. Further, for each i ∈ [n/2],

α2i+1 =
σ2
s

1 +
σ2
s ·R1,i

2σ2
ϵ

.

Since with all but e−11 probability14, R1,i ≥ (2t− 6.63
√
2t) · nσ2

hs
, we have that

with probability 1− n/2 · e−11 all eigenvalues are less than

σ2
max ≤

σ2
s

1 +
σ2
s ·(2t−6.63

√
2t)·nσ2

hs

2σ2
ϵ

, (11)

and so for every standard basis vector ei, eiΣ′
Se

T
i ≤ σ2

max.
Finally, using the same techniques as above, this means that the guessing

probability is at least

erf

(
0.5√
2σ2

max

)n

. (12)

Thus the total success probability of the attack is erf

(
0.5√
2σ2

max

)n

− n/2 · e−11.

We note that for up to parameter n = 32768, n/2 · e−11 ≤ 0.28.15

8.4 Hybrid Attack for Class 1 and 2 Circuits
Again, the attack for both Class 1 and Class 2 circuits is the same, with the only
difference being the settings of σ2

hs
, σ2

he
, and σ2

ϵ in the two cases.
The guessing strategy for the hybrid attack is as follows: For each i, the

adversary computes eiΣ
′eTi and guesses µi for the g number of indices i with

the minimum values of eiΣ′eTi , where g is the maximum value such that

erf

(
0.5√
2σ2

max

)g

≥ p, (13)

for some probability threshold p. These guesses are made and incorporated as
perfect hints. After this process, the covariance matrix is a principal submatrix
of Σ′

S of dimension (n − g) × (n − g), which we denote by Σ′′
S . Similarly, the

lattice reduces dimension by g and its volume remains the same.
Let α1, . . . , αg be the g minimum eigenvalues of Σ′

S . Using the Eigenvalue
Interlacing Theorem [28], we have that det(Σ′′

S) ≤
det(Σ′)
α1···αg

. We therefore need
a lower bound on α1 · · ·αg. Since with all but e−11 probability16, R1,i ≤ (2t +

14 For the parameter sets with n = 131072, we increase 6.63 below to 7.2 and decrease
the probability to e−13.

15 And for n = 131072, n/2 · e−13 ≤ 0.15.
16 For the parameter sets with n = 131072, we increase 6.63 below to 7.2 and decrease

the probability to e−13.
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6.63
√
2t+22) ·nσ2

hs
, we have that with probability 1−n/2 · e−11 all eigenvalues

are greater than

L =
σ2
s

1 +
σ2
s ·(2t+6.63

√
2t+22)·nσ2

hs

2σ2
ϵ

. (14)

Combining the above, we have that with at least p− n · e−11 probability, all
g number of guesses are correct, and

det(Σ′′) ≤ det(Σ′)

Lg
. (15)

We note that for the maximum setting of parameters n = 32768, n·e−11 ≤ 0.55.17
Further, det(Σ′′) can be computed by plugging the parameter settings from
Sections 8.1 and 8.2 into Lemma 5.1. Thus, we can use (15) to estimate the
hardness of the residual instance (after guesses) under a lattice reduction attack.

9 Experiments

9.1 Experimental Set-Up

Parameter sets. We consider the parameter sets proposed by the homomorphi-
cencryption.org standards [2], which were proposed with target security levels of
128, 192 or 256 bits. We update the target estimates using the concrete hardness
given by the tool of [21].18 This is presented in the column “Original Security"
in all the tables below. An entry of x/y represents the original target security
level x, and y represents the concrete (updated) security level. The standards
only consider a ring dimension of up to n = 32768, i.e. log2(n) = 15, but some
FHE applications may require a larger ring dimension, up to log2(n) = 17. We
additionally provide estimates for the concrete security of CKKS for values of
log2(n) = 17 by using the parameters given in [33].

Experimental validation. We first provide experimental validation of Lemma 5.1,
in Section 9.2. We also provide concrete security estimation for provably secure
(statistical) noise-flooding, as presented in [32]. We provide these as a baseline,
and to validate our methods. Since there is no reduction in security when ap-
plying statistical noise-flooding, those results are presented in [11].

Concrete security experiments set-up. Then, we consider the following experi-
ments. We consider a lattice reduction attack, a guessing attack and a hybrid
attack, as outlined in Sections 5, 6 and 7, respectively. We consider these on
three types of circuit: the identity circuit, the class of circuits C1 and the class
of circuits C2. Recall that these are described in Section 8.

17 And for n = 131072, n · e−13 ≤ 0.30.
18 Our analysis may give slightly different concrete hardness estimates than the LWE

Estimator [4], since [21] takes into account the ellipsoidal distribution of the original
secret/error.
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Noise-flooding countermeasures. We use the results of [19] to estimate the output
variance of the noise ρ2circ, where circ is one of Identity, C1 or C2. We then consider
noise-flooding by ρ2circ, 100 · ρ2circ and t · ρ2circ, for t is the number of decryption
queries. For guessing attacks, we do not include results for noise-flooding variance
of t · ρ2circ, since in this case, the guessing probability does not go above 10−200

for any parameter set. Similarly, for hybrid attacks, we do not include results
for noise-flooding variance of t · ρ2fresh, since no coordinates can be guessed with
high confidence for any parameter set, and so the attack is equivalent to a lattice
reduction attack 19.

9.2 Experimental Validation of Lemma 5.1

We first provide a verification of the theoretical results from Section 5, to demon-
strate that the estimations hold in practice. In particular, Lemma 5.1 assumes
that the distribution of the coefficients of ej1 and vj are independent Gaussians,
while in practice this is not the case. The quantity of interest is det(Σ′∼), as
defined in Section 5. In the proof of Lemma 5.1, we use the following fact:

det(Σ′∼) =
det(HΣHT +Σε)

det(Σε) det(Σ)
=

det
(
I2n + 1

σ2
ϵ
Σ1/2HHTΣ1/2

)
det(Σ)

. (16)

In order to validate the canonical embedding transformation used in the
analysis of Lemma 5.1, we sample a random hint matrix H, directly compute
I2n+Σ1/2HHTΣ1/2/σ2

ϵ , and calculate its determinant. In order to construct the
hint matrix, we sample ej1 ← χ and vj ← S as defined in [11]. We perform this
experiment for various settings for the dimension of the LWE secret and error,
and for various numbers of hints applied. For each parameter set, we perform
256 trials and take the average of the results in order to compare to the expected
value predicted by Lemma 5.1. Figure 2 reports the experimental results, which
very closely match the predictions. Notably, we see that the predictions become
more accurate as the number of applied hints increases.

We perform this experiment using the SageMath library and run the calcu-
lations on an Intel Ice Lake XCC server. Calculating the determinant for larger
parameter sets proves computationally infeasible with our experimental setup
due to the extreme scaling, as each trial requires multiplying matrices of size
2n × tn and tn × 2n, as well as calculating the determinant of a matrix of size
2n× 2n, where n is the dimension and t is the number of hints. Additionally, in
order to accurately calculate the final determinant, the numerical values within
the matrix require increasingly high floating-point precision (e.g. hundreds or
even thousands of bits), further slowing the computation. Our experiments take
roughly a week to verify the largest parameter set in Figure 2 (n = 256, t = 16).

19 After ∼ 200 million decryption queries, the estimated variance does not go below 3.6
for identity circuits, and after ∼ 100 million decryption queries does not go below
0.33 and 0.36 for C1 and C2 circuits, respectively.
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Dim Num Predicted Experimental
Hints Determinant Determinant

64 16 708.60 708.76
64 32 799.19 799.28
64 64 888.87 889.14
64 128 978.08 978.10
64 256 1067.04 1067.00
64 512 1155.89 1155.87

128 16 1594.55 1591.58
128 32 1175.78 1775.55
128 64 1955.17 1954.82
128 128 2133.59 2133.49
128 256 2311.52 2311.44
128 512 2489.22 2489.23

256 16 3543.88 3539.04

Fig. 2: Summary of results for experimental validation of Lemma 5.1. Each
parameter set is specified by the dimension of the LWE secret/error (column 1) and
the number of hints applied (column 2). The third column indicates the (ln of) the
expected value of the determinant as predicted by Lemma 5.1. The final column reports
the determinant calculated by performing the experiment, as averaged over 256 trials.

9.3 Concrete Security of Lattice Attacks on Identity Circuits

We begin by considering a lattice-reduction attack where the adversary may
request any number of decryptions of fresh ciphertexts (i.e. evaluation of the
identity circuit on a fresh ciphertext) with various noise-flooding levels. See [11].
To calculate the concrete hardness, we apply Lemma 5.1 to obtain the expected
volume and dimension of the lattice after hints are integrated and homogeniza-
tion/isotropization is completed. As in [21], after homogenization/isotropization
are performed, the hardness estimates for BKZ require only the volume and
dimension of the lattice. These are reported in the final column.

9.4 Concrete Security of Guessing Attacks on Identity Circuits

Next we consider a guessing-only attack, where the adversary may request any
number of decryptions of fresh ciphertexts (i.e. evaluation of the identity circuit
on a fresh ciphertext) with various noise-flooding levels. See [11]. In this attack,
the adversary requests enough decryptions so that n LWE secret/error coordi-
nates can be guessed correctly with high probability. Once these coordinates are
guessed correctly, the LWE system of equations has a unique solution which can
be recovered efficiently using Gaussian elimination. To determine the number
of decryptions required to recover the LWE secret/error with some threshold
probability, we apply Lemma 6.1 and (7).
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9.5 Concrete Security of Hybrid Attacks on Identity Circuits

Here we consider a hybrid attack, where the adversary may request some number
of decryptions of fresh ciphertexts (i.e. evaluation of the identity circuit on a fresh
ciphertext) with various noise-flooding levels. See [11]. The adversary requests
enough decryptions so that some number of LWE secret/error coordinates can
be guessed correctly with high probability. The adversary then integrates these
guesses into its DBDD instance as perfect hints (as in [21]). Finally, the adversary
performs homogenization/isotropization to obtain an SVP instance, and uses a
BKZ solver to recover the LWE secret/error. For a fixed number of decryptions,
we use (8) to determine the number of guesses g that can be made such that all
guesses are correct with high probability. The dimension of the lattice reduces by
g, and we compute the volume of the resulting lattice by applying (9). As in [21],
after homogenization/isotropization are performed, the hardness estimates for
BKZ require only the volume and dimension of the lattice. These are reported
in the final column.

9.6 Concrete Security of Lattice Attacks on Class 1 and 2 Circuits

This is the same attack as in Section 9.3, except the adversary requests decryp-
tions of evaluations of a Class 1 or Class 2 circuit (see Sections 8.1 and 8.2) on
fresh ciphertexts. To calculate the concrete hardness, we apply Lemma 5.1 to ob-
tain the expected volume and dimension of the lattice after hints are integrated
with the parameter settings for σ2

hs
, σ2

he
, σ2

ϵ given in Section 8.1 or Section 8.2
The results are reported in [11].

9.7 Concrete Security of Guessing Attacks on Class 1 and 2 Circuits

This is the same attack as in Section 9.4, except the adversary requests decryp-
tions of evaluations of a Class 1 or Class 2 circuit (see Sections 8.1 and 8.2) on
fresh ciphertexts. To determine the number of decryptions required to recover the
LWE secret with high probability, we apply (12) with the settings of σhs

, σhe
, σ2

ϵ

given in Section 8.1 or Section 8.2. The results for various noise-flooding levels
are reported in [11].

9.8 Concrete Security of Hybrid Attacks on Class 1 and 2 Circuits

This is the same attack as in Section 9.5, except the adversary requests decryp-
tions of evaluations of a Class 1 or Class 2 circuit (see Sections 8.1 and 8.2)
on fresh ciphertexts. For a fixed number of decryptions, we use (8), with the
settings of σ2

h2
, σ2

he
, and σ2

ϵ given in Section 8.1 or Section 8.2, to determine the
number of guesses g that can be made such that all guesses are correct with
high probability. The dimension of the lattice reduces by g, and we compute the
volume of the resulting lattice by applying (9), with the settings of σ2

h2
, σ2

he
, and

σ2
ϵ given in Section 8.1 or Section 8.2. The results are reported in [11].
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10 Discussion of the Results

(a) Lattice Reduction Attack

(b) Guessing Attack

(c) Hybrid Attack

(d) Number of Queries in Hybrid Attack

Fig. 3: Trends for the various attacks. We compare the efficacy of lattice
reduction, guessing, and hybrid attacks for various parameter sets, and for iden-
tity, Class 1, and Class 2 circuits with noise-flooding level equal to ρ2fresh, ρ2C1, and
ρ2C2, respectively. (a) Shows the reduction in bit security for a lattice reduction
attack against an adversary who obtains 1000 decryptions; (b) Shows the num-
ber of queries required for guessing n coordinates with probability at least 0.80.
(c) Shows the reduction in bit security for a hybrid attack against an adversary
who obtains a variable number of decryptions. The number of decryption queries
for each parameter set is displayed in (d).
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Trends for noise-flooding level of ρ2circ. Our experimental data is summarized in
Figure 3. Figure 3(a) shows the reduction in bit security for a lattice reduction
attack when the adversary obtains 1000 decryptions of identity, Class 1, and
Class 2 circuits with noise-flooding level ρ2circ equal to the noise already present
in the ciphertext. We note that the graph exhibits a greater reduction in bit-
security for identity circuits vs. Class 1 and 2 circuits. We believe the reason is
that hints for identity circuits involve all 2n coordinates in the LWE secret/error,
so the variance of all 2n coordinates is reduced after each hint, whereas hints for
Class 1 and 2 circuits involve only the n coordinates from the LWE secret, so
only the variance of these n coordinates is reduced. We also note that there is a
greater security reduction for higher vs. lower target security level. E.g., for the
lattice reduction attack, we see that for log2(n) = 10, identity circuits, and for
a security level target of 192, the value of the bit security is reduced by slightly
over 70 bits. On the other hand, for the same circuit, target security level, and
attack, for log2(n) = 15, bit security reduction is less than 5 bits. In fact, the
reduction in security seems highly correlated with decrease in modulus. When
fixing the dimension n, target security level of 192 have smaller modulus qL,
compared to target security level of 128 and as the modulus qL becomes smaller,
“hints” obtained from decryption have more of an impact on the bit-security for
lattice reduction attacks. The same trends can be seen in the Hybrid attack.

Figure 3(b) shows the number of queries required for guessing n coordinates
with high probability for identity, Class 1 and Class 2 circuits. We note that
guessing attacks perform significantly better for Class 1 and 2 circuits versus
identity circuits. For identity circuits, there are a total of 2n eigenvalues that
are reduced by obtaining hints, but n of these eigenvalues have relatively larger
expectation, while n have smaller expectation (this is because for identity cir-
cuits, hints correspond to linear combinations of both the s and e variables,
in which the s variables have variance 2/3, while the e variables have variance
3.22). The eigenvectors corresponding to these eigenvalues do not align with the
standard basis. Therefore, for purposes of fast estimates, we only take into ac-
count the trace (i.e. sum of the eigenvalues) and, given trace T, we argue that
the variance of the n secret or error coordinates with smallest variance is at
most T/(2n). However, in practice, the n coordinates with the smallest variance
may have variance significantly smaller than T/(2n). For Class 1 and 2 circuits,
hints correspond to linear combinations of only the s variables from the LWE
instance. Thus, we restrict our attention to a subspace with only n eigenvalues.
All of these eigenvalues have the same distribution, and our proof shows that all
the eigenvalues are less than maximum value σ2

max.

Figure 3(c) shows the reduction in bit-security for a hybrid attack when
considering an adversary who obtains decryptions of identity, Class 1, and Class
2 circuits. Figure 3(d) shows the number of queries obtained in each of these
attacks. We chose the number of queries for the identity, Class 1, and Class 2
circuits so that a significant number of guesses can be made for each parameter
set (otherwise the attack will be very similar to a lattice reduction attack). Based
on the discussion above, this means that the number of queries required is far
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higher for identity circuits than Class 1 and Class 2 circuits. Thus, after guesses
are made, the residual instance has lower variance in the case of identity circuits
(since more hints have been incorporated, with each hint slightly reducing the
variance). This explains why for approximately the same number of guesses, the
reduction in bit-security is greater for identity circuits versus Class 1 and Class
2 circuits, as can be observed from the graph.
Trends across various noise-flooding levels. In the full version [11] we validate
that there is no security drop in our experiments when using the statistically-
secure noise-flooding levels proposed in [32]. Indeed, we observed no reduction
in either the security level or in the bikz for any parameter setting. Recall that
we investigate the effectiveness of noise-flooding levels ρ2circ, 100 ·ρ2circ, and t ·ρ2circ,
where t is the number of decryption queries, circ is one of Identity, C1 or C2, and
ρ2circ is the noise variance present in the ciphertext. As expected, we see that
the biggest drop in bit security is observed when noise-flooding by ρ2circ, across
all parameter sets and across all circuits. In contrast, we observe that noise-
flooding by t ·ρ2circ leads to a very low reduction in the security level, if at all. As
opposed to a 70-bit security drop seen for lattice attacks with log2(n) = 10 and
192-bit security for identity circuits with noise level ρ2fresh, when noise-flooding
by t · ρ2fresh, the security level drops by only a few bits. Further, as the value
of log2(n) (and thus also qL increases), the security level drop decreases. For
example, for log2(n) = 17, there is no change in the security level.
Conclusions: We observe that, in practice, there is essentially no reduction in
security when noise flooding with variance t · ρ2circ, where t is the number of
decryption queries, and ρ2circ is the noise variance, as predicted by an average-
case noise analysis. One may also consider noise flooding by α · t · ρ, where
0 < α < 1, if it is acceptable for the security level to drop by a few bits. There is
no definitive setting of α which is “best,” and one can think of α as a parameter
to be fine-tuned depending on the application. In particular, α can be adjusted to
allow for more decryption queries, or to reduce the message precision loss, since
noise-flooding by x · ρ2circ incurs an additional loss of 1

2 log2(x + 1) bits in the
message precision. Finally, we note that the techniques developed in this paper,
as well as the experimental results presented, can be used as a way to establish
key refreshing policies in a concrete application. E.g., if the noise level is set to
α · t · ρ, the keys should be refreshed after releasing t number of decryptions.
Thus, there is a tradeoff among frequency of key refresh, an acceptable precision
loss, and an acceptable drop in bit-security.
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